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Abstract

We investigated whether changes in nutrient availability affected N, P, S and polyphenol con-
centrations in different leaf-development stages of three brevideciduous and three evergreen
dominant woody species in a nutrient-limited savanna woodland in Central Brazil.
Treatments included eight years of annual fertilization with 100 kg ha−1 of N, P, N plus P
and control, each replicated in four randomized 15 × 15-m plots. All species increased
S concentrations (minimum 28%) in young and mature leaves in fertilized plots. Dalbergia
miscolobium decreased total phenol concentrations with P (−34.3%, −23.7%) and NP fertili-
zation (−28.2%, −17.1%). Blepharocalyx salicifolius increased total phenol (27.6%, 18.8%) and
tannin (46.3%; 43.5%) in P fertilized and increased total phenol (33.9%) and tannin (27.8%,
43.5%) in NP fertilized plots. Total phenol concentration decreased with leaf age in Ouratea
hexasperma, Styrax ferrugineus and Blepharocalyx salicifolius, which also decreased tannin
concentration with leaf age. For all treatments, brevideciduous species had higher N, P,
total phenols and tannin concentrations and lower S concentration than evergreens. These
differences between phenological groups suggest that tropical ecosystems responses to
environmental changes are more complex than anticipated by global vegetation models, with
consequences for predictions in ecosystem functions and resilience.

Introduction

Polyphenols are the most widespread secondary metabolites in the plant kingdom
(Hättenschwiler & Vitousek 2000) and are involved in nutrient cycling, water retention, soil
temperature and P availability, and exert a dominant role in controlling plant-litter-soil inter-
actions in a wide range of ecosystems (Hättenschwiler et al. 2005). They comprise about 40% of
the dry weight of leaves and stems and a significant portion of the carbon in terrestrial ecosys-
tems (Herms & Mattson 1992) and are a key component in many plant ecological processes.
Polyphenols can reduce N mineralization through linking of organic N and removal of micro-
organisms, resulting in lower N leaching (Chapin 1995) and inhibit litter decomposition,
increasing persistence of soil organic matter and cationic capacity exchange (Northup et al.
1995a). Soil nutrients affect polyphenol production (Hättenschwiler et al. 2003, Haukioja
et al. 1998, Wright et al. 2010), and higher polyphenol levels are often associated with acid soils
with low nutrient content (Haukioja et al. 1998, Northup et al. 1995a, 1995b, 1998; Kraus
et al. 2004).

The savanna biome extends across Africa, Australia and South America and comprises a
mosaic of plant physiognomies, from grasslands to forests (Lehmann et al. 2011). The savanna
is the second largest biome of Brazil and the world’s largest savanna (Sarmiento 1984). It is a
global biodiversity hotspot due to high levels of endemism and rapid conversion of natural hab-
itats into agriculture (Myers et al. 2000). Besides local and regional drivers of change, global
changes also affect ecosystem functioning in this biome. Savanna woodland plants have mor-
phological (Bieras & Sajo 2009, Sternberg et al. 2004) and physiological traits (Franco et al. 2005,
Goldstein et al. 2008, Scholz et al. 2008) associated with growth under a markedly seasonal pre-
cipitation regime and low nutrient availability (Haridasan 1992). Responses to these changes
may differ among functional and phenological groups. The phenological groups of woody spe-
cies vary in leaf longevity, internal water balance (Lenza & Klink 2006), foliar nutrient concen-
trations (Franco et al. 2005), root architecture and temporal patterns of sap flow (Scholz et al.
2008). Some savanna-woodland tree species have high polyphenol leaf concentrations
(Gonçalves-Alvim et al. 2006, 2011; Santos et al. 2002, Skidmore et al. 2010). These are positively
correlated with Al soil concentration and negatively correlated with soil pH and concentrations
of Ca, Mg, Mn, P and K (Jacobson et al. 2005).

Brazilian savanna is limited by N and P (Kozovits et al. 2007) and nutrient cycling (especially
N and P) is very conservative (Bustamante et al. 2006). Thus, changes in nutrient dynamics can
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lead to an improved environment for some species, increasing their
competitiveness (Bobbink et al. 2010). A long-term study of
nutrient addition in a savanna woodland demonstrated that
increased nutrient availability led to changes in density, dominance
and richness of herbaceous and shrub-tree layer, invasion of exotic
grasses and increased rates of leaf litter decomposition, altering
species composition and nutrient cycling (Bustamante et al.
2012, Jacobson et al. 2011, Kozovits et al. 2007).

Nutrient-rich ecosystems and fertilized environments tend
to have lower polyphenolic production (Haukioja et al. 1998,
Northup et al. 1995a, 1995b, 1998). Nonetheless, responses to
changes in nutrient cycling rates due to fertilization may vary
among phenological groups. Considering that the savanna wood-
land is a dystrophic environment, strategies to prevent nutrient
leaching are important. Thus, because leaf turnover is higher in
brevideciduous species than in evergreens, an increase in nutrient
concentration in brevideciduous ephemeral leaves may require
greater investment in polyphenol production to slow down decom-
position and prevent rapid nutrient loss after senescence (Villar &
Merino 2001). Therefore, greater nutrient availability may favour
species with higher leaf turnover and shift the composition of phe-
nological groups in ecosystems. Based on these considerations and
considering the relevance of polyphenols for plant and ecosystem
functions, we evaluated the responses of two savanna-woodland
plant functional types (based on foliar phenology) to the changes
in soil nutrient availability. We hypothesized that (1) N, P and S
(present in the formulation of N and P fertilizers – ammonium sul-
phate and superphosphate) foliar concentrations will increase in
response to N, P and N plus P fertilization but responses will differ
according to phenology and leaf age; (2) foliar concentrations of
total phenols and tannins will differ between phenological group
(being higher in brevideciduous species than in evergreen species)
and will decrease in response fertilization; and (3) responses will
vary according to leaf age (i.e. polyphenol concentrations decreas-
ing with leaf age).

Methods

Study area and fertilization treatments

This study was performed in the Roncador Ecological Reserve,
which belongs to the Brazilian Institute of Geography and
Statistics (RECOR/IBGE), near Brasília – Federal District, Brazil
(15°56'S, 47°53'N, average altitude = 1100 m asl). The soil type is
Oxisol (Haplustox), an acidic soil with high Al levels and low
cation-exchange capacity (Haridasan 1994). Annual precipitation
during the 2-y study period was 1667 and 1184 mm. Air temper-
ature ranged from 10.1°C (July) to 31.9°C (October). The vegeta-
tion is classified as cerrado sensu stricto (savanna woodland) and is
the most common savanna vegetation type in Brazil. It consists of a
continuous grassy layer and a tree and shrub layer with 20% to 60%
canopy cover (Eiten 1983).

The fertilization experiment began in 1998 with a completely
randomized experimental design, with four nutrient-addition
treatments and four replicates randomly divided into 16 plots of
225 m2 (15 × 15 m) at least 10 m apart from each other. The fol-
lowing treatments were applied to the litter layer without incorpo-
ration into the soil: control (C; without fertilization),þN (addition
of ammonium sulphate, (NH4)2 SO4),þP (addition of 20% super-
phosphate, Ca(H2PO4)2þCaSO4.2H2O), andþNP (simultaneous
addition of ammonium sulphate plus 20% superphosphate).
Between 1998 and 2006, 100 kg ha−1 of N, P andþNPwere applied

twice a year (at the beginning and end of the rainy season). The
study was conducted after 8 y of fertilization, and in 2005, all
the plots in the study area were accidentally burned but the plots
were reinstalled immediately after the fire event (Bustamante et al.
2012, Jacobson et al. 2011, Kozovits et al. 2007). The burning dura-
tion was short due to the rapid consumption of fine fuel (mainly
dry mass of grasses) thus reducing the impacts on the woody layer.

Soil sampling and analysis

Composite soil samples were collected at the beginning of the rainy
season (October), consisting of two samples from each plot at five
depths (0–10, 10–20, 20–30, 30–40 and 40–50 cm).We determined
soil pH in water, total N (micro-Kjeldahl method), available P, K,
and exchangeable Ca, Mg and Al. Soil P and K were extracted with
Mehlich 1 solution, and Al was extracted with 1M KCl solution.
The available P concentration was estimated by colorimetry with
ammonium molybdate. Exchangeable Al was quantified by titra-
tion with NaOH. Exchangeable Ca, Mg, and Fe concentrations
were determined by atomic absorption spectrophotometry, and
K concentration by flame emission (EMBRAPA 1999). Soil pH val-
ues were lower in the þN, þP and þNP plots than in the control
plots at 0–30 cm depth. Available P concentration was higher in the
þP and þNP plots at 0–40 cm depth. Soil Ca concentrations were
higher at 0–30 cm depth in þP plots than in control plots. Soil Al
concentration was higher at all depths inþNP plots and at 0–30 cm
inþNplots. Soil pH values increased with depth in all plots, whereas
total N, P, K, Mg and Al concentrations showed the opposite pat-
tern. There were no differences in soil N, K and Mg concentrations
between control plots and fertilizing treatments. For more details
about soil results, see Jacobson et al. (2011).

Woody species

Brazilian savanna plant biodiversity comprises a large number of
rare species and few oligarchic species (Ratter et al. 2012). In this
study, we selected six woody plant species in the experimental plots
from two phenological groups (three brevideciduous and three
evergreen). Caryocar brasiliense A. St.-Hil. (Caryocariaceae),
Blepharocalyx salicifolius (HBK) O.Berg. (Myrtaceae) and
Dalbergia miscolobium Benth. (Leguminosae-Papilionoideae) are
brevideciduous (with complete canopy replacement during the
dry season, and a short period with few or no senescent leaves).
The mean leaf lifespan of deciduous and brevideciduous species
is 279 days (Souza 2012). Ouratea hexasperma (A. St.-Hil.) Baill.
(Ochnaceae), Roupala montana Aubl. (Proteaceae) and Styrax
ferrugineus Nees & Mart. (Styracaceae) are evergreens. They pro-
duce a cohort of new leaves that precedes or is concomitant with
the loss of the older leaf cohort (Lenza & Klink 2006). The mean
leaf lifespan of evergreens is 400 days (Souza 2012). These species,
representing ~38% of community tree density, are among the
10 with the largest importance value index (IVI) (Jacobson et al.
2011). They are common savanna species in Brazil, as demon-
strated by the analysis of 625 Brazilian savanna areas, occurring
in 10.7% (B. salicifolius) to 62.2% (R. montana) of the sampled
areas (Françoso 2014, Françoso et al. 2016).

Leaf sampling

Twenty individuals of each species were selected and marked (five
individuals per treatment, totalling 120 individuals), considering
health status and accessibility to foliage. Samples were collected
between October and January of 2007 (i.e. beginning to middle
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of the rainy season). Leaf samples for each individual were col-
lected, at the same time, in three distinct growth stages: newly
sprouted leaves (that had emerged less than 2 wk before), young
leaves (younger than 2 mo, fully expanded, relatively thin with
lighter pigmentation), and mature leaves (older than 4 mo, fully
expanded, thicker with darker pigmentation). The leaves were
dried at 60°C for 48 h and ground in a Wiley mill (40-mesh).
For nutrient analysis, only young and mature leaves were used.

Total phenol extraction and analysis

Leaf extraction was performed at room temperature using 1 g of
ground leaf for every 15 ml methanol, 50% (v/v). The samples were
extracted over a 24-h period in a dark room and mixed with solvent
renewal (þ15ml) (twice for 30 min). The extracts were filtered
through 25-μm filter paper (Whatman International, England)
and stored at −2°C (Hagerman 2002). The Folin–Ciocalteu method
was used to determine total phenol concentration (Forrest & Bendall
1969), by adding 2.5 ml of 10% (v/v) Folin-Ciocalteu reagent
(Sigma-Aldrich) to 0.5 ml extract and 2ml sodium carbonate solu-
tion (0.75 mg g−1). The solution was left at room temperature for 1 h
and analysed by spectrophotometry at 760 nm (ShimadzuUV-1203;
Shimadzu Corporation, Japan). A standard curve was created using
tannic acid (Sigma-Aldrich), and concentrations were expressed as
percentage (dry mass) of tannic acid equivalents. All measurements
were performed in triplicate.

Tannin extraction and analysis

Leaf tannin was analysed using the precipitation method
(Hagerman & Butler 1978). Briefly, 1 ml extract was added to
2 ml bovine serum albumin fraction V (1 mg ml−1; Sigma-
Aldrich). The solution was left at room temperature for 15 min
and centrifuged (3000 rpm) for 15 min. After removing the super-
natant, the precipitate was dissolved in 4 ml solution of sodium
dodecyl sulphate (Sigma-Aldrich) and triethanolamine (Sigma-
Aldrich), and 1 ml ferric chloride (0.01 M) was added. After
30 min, absorption was measured at 510 nm using a Shimadzu
UV-1203 spectrophotometer (Shimadzu Corporation). A standard
curve was created using tannic acid (Sigma-Aldrich), and concen-
trations expressed as percentage (dry mass) of tannic acid equiv-
alents. All measurements were performed in triplicate.

Foliar nutrients

Leaf samples were digested in a solution of nitric, perchloric and sul-
phuric acid (10:2:1). We determined the concentrations of sulphur
with turbidimetry. Phosphorus foliar concentrations were deter-
mined with colorimetric analysis with ammonium molybdate and
ascorbic acid, and nitrogen foliar concentrations were determined
with the micro-Kjeldahl distillation method (EMBRAPA 1999).

Statistical analysis

Normal distribution of the variables was analysed with
Kolmogorov–Smirnov test (α < 0.05). Since data were not nor-
mally distributed, even after transformation, they were compared
using theMann–Whitney non-parametric test (α< 0.05). Nutrient
concentrations at each soil depth were compared with the F and
Student’s t-test (α < 0.05). Comparisons with the control were
made for each depth (n= 4). Arcsine square-root transformation
was used for total phenols (dry mass %), tannins (dry mass %), and
N (mg g−1). Logarithm transformation was used for concentrations
of P (mg g−1) and S (mg g−1) (Zar 1999). Differences in polyphenol

and nutrient concentration between treatments (control, þN, þP,
þNP), phenological groups (brevideciduous, evergreens), species
and growth stages (newly sprouted leaf, young leaf andmature leaf)
were tested by repeated-measures ANOVA using analysis of mixed
linear models, followed by the Bonferroni adjustment (α < 0.05)
andDunnett test (α< 0.05) for multiple comparisons. In themixed
linear model, errors and random effects allow the display of cor-
relations between non-constant variables. Factors are assumed
to have a linear relationship with the dependent variable. This
model can be used to conduct repeated-measures tests, identifying
factors that contribute significantly to the model (McCulloch et al.
2008). These analyses were performed using SPSS 15.0 for
Windows (SPSS Inc., USA).

Results

Nutrient, total phenols and tannin foliar concentration in
control plots

N mean foliar concentration was 14.1 ± 4.1 mg g−1, and ranged
from 10.0 to 22.3 mg g−1. Mean N concentration was 16.5 ± 4.4
mg g−1 in brevideciduous and 11.6 ± 1.7 mg g−1 in evergreens.
Foliar P concentration was 0.67± 0.2 mg g−1, and ranged from 0.5
to 1.3mg g−1 (0.77 ± 0.3 mg g−1 in brevideciduous and 0.57 ± 0.1
mg g−1 in evergreens). S foliar concentration was 0.41 ± 0.1 mg g−1

(0.38 ± 0.1mg g−1 in brevideciduous and 0.43 ± 0.1 mg g−1 in ever-
greens). Total phenol concentration (% dry leaf mass) was
13.5 ±6.3%, and ranged from 3.5 to 26.6% (18.9 ± 3.3% in brevide-
ciduous and 8.1± 2.9% in evergreens). Tannin concentration was
5.2 ±3.2%, and ranged from 1.8–10.5% (6.1 ± 3.3% in brevidecidu-
ous and 4.4 ± 3.0% in evergreens) (Supplementary material table 1).

Nutrient, total phenol and tannin foliar concentrations in
response to fertilization treatments

N, P, S, total phenols and tannin foliar concentration and
differences between leaf growth stages in brevideciduous and ever-
green species, in control and fertilized plots are presented in
supplementary materials tables 1 and 2. Significant differences
between N, P, S, total phenols and tannin foliar concentrations
between control and fertilized plots, in six savanna woodland
species are presented in Table 1.

Table 1. Significant differences (Dunnett, P< 0.05) in N, P, S (mg g−1), total
phenol and tannin foliar concentrations (% dry leaf) between treatments
(C – control, N – nitrogen addition, P – phosphorus addition, NP – nitrogen
plus phosphorus addition) in brevideciduous (Caryocar brasiliense (CB),
Blepharocalix salicifolius (BS), Dalbergia miscolobium (DM)) and evergreen
species (Ouratea hexasperma (OH), Roupala montana (RM), Styrax ferrugineus
(SF)) in a savanna woodland in Central Brazil.

N P S Total phenol Tannin

CB - - (NP>C); (P>C) - -

BS - (NP>C) (N>C); (NP>C);
(P>C)

(NP>C);
(P>C)

(NP>C);
(P>C)

DM (N>NP);
(N>P)

- (NP>C) (NP>C);
(P<C)

-

OH - - (NP>C); (P>C) - -

RM - - (N>C); (NP>C);
(P>C)

-

SF - (P>C) (N>C); (NP>C);
(P>C)

-
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Foliar N (F= 108, n= 120, P< 0.001) and P (F= 72.8, n= 120,
P< 0.001) concentrations were higher in brevideciduous species
whereas foliar S concentrations were higher in evergreens
(F= 20.2, n= 120, P< 0.001).

Only the brevideciduous species Blepharocalix salicifolius
(þNP plots) and Styrax ferrugineus (P plots) presented higher P
concentrations in P fertilized plots compared with control plots,
both in young (F= 3.8, P= 0.02) and mature leaves (F= 4.3,
P= 0.01) (Figure 1).

Foliar N:P ratios varied in response to fertilization (F= 6.6,
P< 0.001) (Figure 2). Among brevideciduous species, the N:P ratio
of B. salicifolius was lower in NP plots than in control plots
(12.6 ± 4.4) (P < 0.001) (Figure 2a). TheN:P ratio ofDalbergiamis-
colobium was lower in þP plots (27.9 ± 2.7) than in control plots
(32.5 ± 2.0) (F= 7.9, P< 0.001) (Figure 2b). Among the evergreen
species, the N:P ratio in leaves of Ouratea hexasperma was higher
in þN plots than in control plots (21.4 ± 7.6) (F= 3.3, P= 0.03)
(Figure 2c) while it was lower in Roupala montana (17.2 ± 6.6)
(F= 4.0, P= 0.01) (Figure 2d) and Styrax ferrugineus
(16.3 ± 3.1) (F= 2.2, P= 0.02) (Figure 2e) in þP plots than in
control plots (24.6 ± 6.3 in Roupala montana and 21.5 ± 6.0 in
S. ferrugineus).

Both young andmature leaves ofCaryocar brasiliense (F= 22.2,
P< 0.001, Figure 3a), Blepharocalix salicifolius (F= 8.3, P< 0.001,
Figure 3b), Roupala montana (F= 11.7, P< 0.001, Figure 3e) and
Styrax ferrugineus (F= 32.3, P< 0.001) (Figure 3f), showed higher
S concentrations in all fertilized plots compared with control plots.
The smallest increase in S concentration (28%) was observed in
young leaves of Dalbergia miscolobium in þNP plots. The highest
increase (6.5 times) was observed in both young and mature leaves
of Styrax ferrugineus in þP plots.

In all treatments, mean foliar total phenol concentration was
55.5% higher in brevideciduous species, whereas the difference
in tannin concentration between phenological groups was half
that amount. Brevideciduous species had higher foliar total phenol
(F= 578, n = 154 and 170, P< 0.001) and tannin (F= 58.6,
n= 154 and 170, P> 0.001) concentrations than evergreen species.

Only the brevideciduous species Blepharocalix salicifolius (total
phenol, F= 17.2, P< 0.001 (Figure 4a) and tannin, F= 178.7,
P< 0.001 (Figure 4c)) and Dalbergia miscolobium (total phenol
F= 25.6, P< 0.001) (Figure 4b) had significant differences in con-
centrations between fertilized and control plots but responses dif-
fered between species and primarily in immature leaves. In leaves
of Blepharocalix salicifolius, total phenol (Figure 4a) and tannin

(Figure 4c) concentrations increased in þP and þNP plots,
whereas in leaves of Dalbergia miscolobium, total phenol concen-
trations decreased in þP and þNP plots (Figure 4b).

Changes in total phenol and tannin concentrations across leaf
growth stages were also species-specific. In the evergreen group,
total phenol concentration increased in mature leaves of
Roupala montana (þP plots) (F= 6.8, P= 0.002) and Styrax
ferrugineus (þN plots) (F= 16.3, P< 0.001) (Supplementary
material table 2), while tannin concentration decreased with leaf
maturity in Ouratea hexasperma (þN and þP plots, F= 15.2,
P< 0.001) and Styrax ferrugineus (all plots, F= 28.0, P< 0.001)
(Figure 3f). Conversely, the brevideciduous species, Blepharocalix
salicifolius showed lower total phenol concentration with leaf matu-
rity (þNP plots, F= 5.5, P= 0.002). Tannin concentration also
decreased in mature leaves of B. salicifolius (þN, þP, and þNP
plots) (F= 24.9, P< 0.001) and decreased in young leaves relative
to newly sprouted leaves in C. brasiliense (þP plots) (F= 212,
P< 0.05) (Supplementary material table 2).

Discussion

In dystrophic environments such as the Brazilian savanna wood-
land, slow-growing species with low foliar nutrient levels might be
replaced by species with higher growth rates and greater ability to
increase foliar nutrient levels under higher nutrient availability
(Aerts & Chapin 2000, Bustamante et al. 2012).

Previous studies in the experimental site indicated more pro-
nounced responses at community level, such as reduced woody
plant diversity and increased leaf litter decomposition rates in
þNP plots than in þN and þP plots (Jacobson et al. 2011).
Two years after the first fertilization in these plots, N and P con-
centrations were not significantly altered in leaves of C. brasiliense
and O. hexasperma, only B. salicifolius leaves had increased P con-
centrations (in þP plots) (Kozovits et al. 2007). Seven years after
the first fertilization, N (inþNplots) and P (inþP andþNP plots)
concentrations were higher in B. salicifolius and in C. brasiliense
(P in þNP plots) (Saraceno 2006), demonstrating the variation
of leaf nutrient concentration in savanna woodland species over
time in response to fertilization.

Changes in foliar nutrient concentrations in response to
fertilization seems to be more related to differences in the
nutritional requirements of the species. The brevideciduous
B. salicifolius responded more strongly to fertilization than
the other studied species. Thus, changes in soil nutrient

Figure 1. Phosphorus concentration (mg g−1)
in young leaves (YL) and mature leaves (ML)
in the brevideciduous species Blepharocalyx sal-
icifolius (a), and in the evergreen species Styrax
ferrugineus (b) in control plots (C) and fertilized
plots (þN, nitrogen,þP, phosphorus; andþNP,
nitrogen plus phosphorus) in a savanna wood-
land in Central Brazil. * Indicates significant
differences with control plots (Dunnett,
P< 0.05). Error bars represent the standard
deviation.
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availability affect species composition (Jacobson et al. 2011). In
our study, the lack of significant differences in foliar N concen-
trations between control and fertilized plots may have been due
to increased nutrient demand for generation of new tissues
after the accidental burning, causing decreased N leaf storage.
Changes in N plant cycling due to fire were reported by
Nardoto et al. (2006) that showed higher N resorption efficiency
for Brazilian savanna tree species in burned plots compared to
unburned plots. The decreased N:P ratio after P addition sug-
gests plants absorb P at higher rates than N. Only one species
(O. hexasperma) increased its N:P ratio after N addition, also
suggesting greater P translocation efficiency (Kozovits et al.
2007). The higher P limitation was also reflected by differences
in N and P concentrations between young and mature leaves in
this study suggesting that this nutrient is retranslocated even
before senescence begins.

The increased foliar S concentration was evident in all studied
species inþNP plots, and in four of the six species inþP plots. This
result suggests that savanna woody plants may also be limited by S,
which has not been reported in the literature before. Jacobson
(2009) also reported a general pattern of increased S concentration
in leaf litter in fertilized plots and a significant decrease in S use
efficiency compared with control plots. Sulphur might play a role
in strategies to avoid excessive tissue dehydration of savanna
woody plants during the dry season as primary S metabolism
and associatedmetabolites are linked to responses to drought stress
(Chan et al. 2013, Sieh et al. 2013).

Although comparison of polyphenolic concentrations across
studies is hampered by differences in methods (Escarpa &
González 2001, Yu & Dahlgren 2000), the foliar concentrations
of total phenols and tannins in this study (3–26.5% for total phe-
nols and 1.8–11% for tannins) are within the ranges found in

Figure 2. N:P ratio in young leaves (YL) and
mature leaves (ML) in brevideciduous species
Caryocar brasiliense (a), Blepharocalyx salicifo-
lius (b), Ouratea hexasperma (c), Roupala mon-
tana (d) and Styrax ferrugineus (e) in control
plots (C) and fertilized plots (þN, nitrogen;
þP, phosphorus; and þNP, nitrogen plus phos-
phorus) in a savanna woodland in Central Brazil.
* Indicates significant differences with control
plots (Dunnett, P< 0.05). Error bars represent
the standard deviation.
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literature (Hättenschwiler & Vitousek 2000, Hättenschwiler et al.
2003, Kraus et al. 2003). Regarding the second hypothesis, only two
(both brevideciduous) out of six species showed significant
changes in foliar polyphenol concentration in response to fertiliza-
tion. P and NP addition increased total phenol and tannin concen-
trations in young B. salicifolius leaves but decreased total phenol
concentration in young D. miscolobium leaves. Total phenol
concentration increased in mature leaves with P addition only
in B. salicifolius. In the brevideciduous species C. brasiliense and
B. salicifolius, total phenol concentration reached a quarter of
dry leaf weight, indicating that these species allocate much of their
resources toward total phenol production. Production of polyphe-
nolic compounds is thought to be an evolutionary advantage for
species growing in acidic and highly weathered soils (Chapin
1995, Northup et al. 1995b, 1998). Wright et al. (2010) hypoth-
esized that N availability has more influence on polyphenol pro-
duction than P availability because N limitation decreases
protein production and thus competition for phenylalanine, a
precursor of many phenolic compounds. P acts as a recyclable
co-factor in these reactions, allowing protein and phenolic produc-
tion to continue under low P conditions. However, we found that P
addition had greater effect on foliar polyphenol concentrations
than N addition. The production and allocation of polyphenols
in leaves in response to increased nutrient availability differed
among species, even within the same phenological group.
Increased nutrient availability will likely have little effect on this

genotypic trait in such a short period, as observed with four species
in this study. The species with altered polyphenol concentrations in
response to nutrient addition likely have high nutritional require-
ments, such as B. salicifolius. This finding reinforces the idea that
the conceptual models (e.g. Carbon Nutrient Balance Hypothesis
(Bryant et al. 1983) or Resource Availability Hypothesis (Coley
et al. 1985)) are insufficient to explain variability in plant polyphenol
concentrations (Nitao et al. 2002), especially in ecosystems with
extremely high biodiversity, such as the Brazilian savanna.

Contrary to our prediction, the results showed no common pat-
tern for total phenol and tannin concentrations across leaf growth
stages. Decreases in total phenol and tannin concentrations during
leaf maturation are common in other ecosystems (Covelo &
Gallardo 2004), consistent with the results for brevideciduous spe-
cies C. brasiliense and B. salicifolius in this study.

The observed decrease of T:TP ratio (the ratio between tannin and
total phenols) over time in evergreen speciesmay be the result of lower
phenol polymerization during leaf maturation. Leaves of evergreen
species have longer lifespans than those of deciduous and brevidecid-
uous species (Franco et al. 2005, Lenza&Klink 2006). A lower polym-
erization rate canmaintain polyphenolic compounds longer to protect
against oxidation during senescence (McKee et al. 2002). The low
specific leaf area of evergreen species may also mitigate the leaching
of low-molecular-weight phenolic compounds, since leaves with high
leaf mass per area typically have a thicker cuticle to slow water and
solute loss (Villar & Merino 2001).

Figure 3. Sulphur concentration (mg g−1) in
young leaves (YL) and mature leaves (ML) in bre-
videciduous species Caryocar brasiliense (a),
Blepharocalyx salicifolius (b), Dalbergia misco-
lobium (c) and in evergreen species Ouratea hex-
asperma (d), Roupala montana (e) and Styrax
ferrugineus (f) in control plots (C) and fertilized
plots (þN, nitrogen; þP, phosphorus; and
þNP, nitrogen plus phosphorus) in a savanna
woodland in Central Brazil. * Indicates signifi-
cant differences with control plots (Dunnett,
P< 0.05). Error bars represent the standard
deviation.
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The cost of leaf construction is a key factor in determining the
specific competitive characteristics of a phenological group.
Evergreens have the advantage of a longer photosynthetic season,
whereas deciduous species normally have the advantage of leaves
with a high specific area, offsetting the cost of foliar N and P with
a higher rate of photosynthesis per unit leaf area (Franco et al.
2005, Montes & Medina 1977). Lower investment in lignin
and cuticle and greater investment in cheaper structural

compounds such as cellulose and hemicellulose allows brevide-
ciduous species to invest more energy in polyphenol production.
Our study showed consistent patterns in terms of leaf chemical
composition when phenological groups of savanna woodland
woody species are compared. However, their responses to
nutrient additions showed considerable variations, showing that
variability within functional groups should be considered in
modelling efforts to understand how tropical and species-rich

Figure 4. Total phenol concentration (% dry
leaf mass) in newly sprouted leaves (SL), young
leaves (YL) and mature leaves (ML) in brevide-
ciduous species Caryocar brasiliense (a) and
Blepharocalyx salicifolius (b) and tannin concen-
tration (% dry leaf mass) in Blepharocalyx salici-
folius (c) in control plots (C) and fertilized plots
(þN, nitrogen;þP, phosphorus; andþNP, nitro-
gen plus phosphorus) in a savanna woodland in
Central Brazil. * Indicates significant differences
with control plots (Dunnett, P < 0.05). Error bars
represent the standard deviation.
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ecosystems will respond to environmental changes, with conse-
quences for ecosystem function and resilience. In addition, this
study suggests that besides the co-limitation by N and P, savanna
woodland tree species are also limited by S, indicating that the
multi-element limitation deserves further investigation in these
ecosystems.
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