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Abstract

Configuration is a complex task generally involving varying measures of constraint satisfaction, optimization, and the
management of soft constraints. Although many successful systems have been developed, these are often difficult to
maintain and to generalize in rapidly changing domains. In this paper, we consider building intelligent knowledge-
based systems with maintainability well to the fore in our requirements for such systems. We introduce two case stud-
ies: the initial proof of concept, which was in the domain of computer configuration, and a further field-tested study, the
configuration of compressors. Central to our approach is the use of the proof planning technique, and the clean sepa-
ration of different kinds of knowledge: factual, heuristic, and strategic.
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1. INTRODUCTION

1.1. Configuration

The configuration task is generally perceived as a problem
of assembling elements of a system together in such a way
that no internal logical constraints are violated, or so that
the extent of violation is minimal. Stefik~1995! defines four
key elements:

• A specification language. The nature of the environ-
ment and the use of the system are reflected here. A
specification language may include optimization crite-
ria.

• A submodel of parts represents a catalogue of com-
ponent parts. This submodel also describes the mutual
interdependencies. Hence when a particular compo-
nent is configured, there are links to all the other com-
ponents needing to be considered.

• A submodel for spatial arrangementsspecifies the
means of describing spatial arrangements of the com-
ponents and thus defines what combinations of com-
ponents are allowed.

• A submodel of sharingexpresses conditions under
which a component can satisfy more than one set of
requirements. There can be exclusive use, limited shar-
ing, unlimited sharing, serial reusability and measured
capacity.

Formalizing a domain in logic, Najmann and Stein
~1992! define configurations as mathematical structures with
components:

• a set of objects

• a set of properties for each object~functionality—
value pairs!

• a set of functionalities

• for each functionality, a set of values, an addition op-
erator, and a test

• a set of demands~functionality—value pairs!

According to this model, the configuration process is a
finite sequence of compositions of objects while a solution
is a configuration object which the tests show satisfies the
demands.

Some authors have given a logic-based description of con-
figuration tasks, for example, Klein~1996!. The develop-
ment of logical formalisms guarantees soundness of resulting
solutions. The particular constructive type theory of con-
figuration developed in Lowe~1993b! goes further in that
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sound configuration objects are synthesized from the spec-
ification of such an object~see Section 2.2!. We see that
this view is very strongly related to that of constraint-based
approaches~see, e.g., Faltings & Weigel, 1994!. We shall
see that, although it is not explicitly a constraint-based sys-
tem, our approach may be viewed as “constraints as types”,
where many of the constraints are satisfied by allowing only
objects of the correct type to be synthesized.

However, while this takes care of some classes of con-
straint, those remaining tend to be more difficult to man-
age. The difficulty, certainly in the domains we have looked
at, is that the problem is essentiallyunderconstrained. It is
more akin to design, of which, in fact, configuration is one
component~Brown, 1996!. The user wishes to explore the
design space. How to present~only! essentially differentde-
signs for perusal, rather than a whole host of similar ones, is
a major control problem. We useproof planning~see Sec-
tion 2! to represent and generate strategies for exploring
the design space in an efficient manner. These strategies are
expressed explicitly, and separately, from other kinds of
knowledge.

Many authors~see, e.g., Steels & McDermott, 1993! have
pointed out the maintenance problems faced when manag-
ing systems in which product information changes often.
Mannisto et al.~1996! propose a generic structure model
to support different views and classifications of the same
components evolving over time. In our view, the problem
he mentions, that the original engineers may not understand
the way the products are described in the system, is a con-
sequence of mixing different kinds of knowledge. Our ap-
proach, demonstrated in the two case studies described in
this paper, necessitates a clean separation of object-level,
heuristic, and control~strategic! knowledge, which could
be separately maintained with the aid of appropriate user
interfaces.

1.2. Two configuration case studies

We now introduce the problem domains of our two case stud-
ies illustrating our approach to the configuration task, fol-
lowed in Section 1.4 by an overview of the different types
of knowledge which must be represented and the mainte-
nance problems arising from these.

1.2.1. Computer configuration

As an initial proof of concept, we looked at the problem
of how to synthesize a configuration which meets a speci-
fication of a computer system, using data and domain ex-
pertise from personnel at Hewlett Packart, Bristol. This
synthesis should result in a term representing all the com-
ponents needed, together with details of the connections
between them.

As we shall show in Section 1.4, the careful separation of
object-level knowledge from meta-level control and heuris-
tic knowledge is an important feature of our approach. It

has the benefit of facilitating maintenance, in a domain which
traditionally has been bedevilled by maintenance over-
heads. In our configuration systems this separation is both
strict and explicit. We shall show how object-level knowl-
edge may be extracted and formally represented in such a
way as to allow the utilization of techniques analogous to
program synthesis, to perform tasks such as synthesizing
computer configurations which meet specifications. Such
an approach makes the task of maintaining knowledge bases
more tractable and reliable.

1.2.2. Compressor configuration

We followed up our initial proof of concept with a fur-
ther experiment. CompAir Reavell Ltd, a member of the
Siebe group, manufactures high-pressure gas compressors
mainly for the naval, NGV, and breathing air markets. Our
objective was to produce an automatic configurer for spec-
ifying compressors in an engineer-and-made-to-order
context. The system was required to present a logically se-
quenced order of questions, together with all legal options,
to the user. The system should then price the solution, cre-
ate the construction description number, and set up the final
quotation document.

Unlike the previous case study, the client wanted an in-
teractive system, with the user presented with legal choices
at each of the main stages. The system was to present an
appropriate and logically sequenced series of questions, com-
plemented with a set of all the legal options, in order to fa-
cilitate the global product specification. There are two main
clusters of decision process to consider. Firstly, there are
several components that constitute a basic solution; once
these have been configured, it is possible to attach a ball-
park figure for the final cost of the compressor. Budget-
related reasoning should be carried out at this stage. The
rest of the configuration, namely customer-specific settings
and the addition of optional accessories, should be elabo-
rated afterwards, and the cost refined component by com-
ponent from that point.

Given the problem of rapidly changing product lines, a
prime goal was for the system to be readily maintainable.
Lowe ~1994! claimed that the proof planning methodology
should facilitate maintenance: now we had a chance to test
this hypothesis in the field. We hoped that the particular for-
malism chosen, expressed in logic and implemented in Pro-
log, with its separation of knowledge and control, would
facilitate the maintenance of all types of knowledge in
the system. To this end, a prototype system was built and
underwent field-testing at CompAir, including tests for
maintainability.

1.3. Classification of knowledge

1.3.1. Object-level knowledge

Our first kind of knowledge isfactual. We represent these
facts asobject level axioms. They include attributes of par-
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ticular components, general configuration rules, and limits.
For example,

1. No more than six devices may be connected to a com-
ponentexample-channel~of typechannel!;

2. No more than four objects of typedisk-drivemay be
connected to it.

3. No more than four components of typecard-cagein a
configuration;

4. No more than four objects of typechannelto be con-
figured in them.

Each of these four limits is ahard constraint, in that they
may never be relaxed. Any object not conforming to them
is not legal.

1.3.2. Heuristics

Secondly, we haveheuristicknowledge. Suppose that it
has been discovered that configuring the maximum number
of components legally possible in a configurationmaylead
to an inefficiently running computer system. Suppose in the
examples of object-level knowledge above, these heuristics
amount to more stringent limits as follows:

1. No more than five devices should be connected to an
ex-channel.

2. No more than three objects of typedisk-driveshould
be connected to anex-channel.

3. No more than fourcard-cagesin a configuration~no
change from the above!.

4. No more than three objects of typechannelto be con-
figured in anex-card cage.

The changes from the previously given limits represent re-
laxed,soft limits, that is, these limits are desirable for some
reason and in some sense, but objects not conforming to
them may still be legal.

Soft compatibility constraints are often discovered dur-
ing the lifetime of a component.

1.3.3. Control knowledge

Thirdly, we havecontrolknowledge, for example, knowl-
edge about the order in which subtasks should be carried
out. An example of top-level strategy might be

1. Try to find a configuration which obeys all heuristic
limits.

2. If not possible, try to find a configuration which breaks
as few heuristics as possible.

Here, we are treating all heuristics as equally important.
However, this leads to us “preferring” breaches of the
channel-per-card cageheuristic, since one breach here gives
us a “breathing space” while we load devices on to the “ex-
tra” channel up to heuristic limits before we have to con-

sider any more breaches. So the strategy can be expanded
as follows:

1. Try to find a configuration which obeys all heuristic
limits.

2. If not possible, ignore the heuristic: No more than three
objects of typechannelto be configured in anex-card
cage, but try to find a configuration which meets both
the other heuristics.

3. Otherwise, just try to find a legal configuration~per-
haps optimal with respect to price!.

Apart from managing heuristics, there are other types of
control knowledge. For example, when configuring devices
on channels, it pays to configure the most restricted devices
first, that is, devices which may not share channels with cer-
tain other devices in the configuration. On a more global
level, there are advantages to performing the task in a par-
ticular order. There may be no universally appropriate or-
der, but, given particular specifications, there may be a way
of ordering the various subtasks so as to cut out excessive
search. These strategies can be expressed as proof plans.

1.4. Knowledge and the maintenance problem

Separating different kinds of knowledge into classes en-
ables us to manage them separately. In the case of computer
configuration, it is very often the case that the price list and
the product list changes rapidly, whereas knowledge of how
to configure solutions stays unchanged for a long time.

This separation enables each type of knowledge to be en-
codeddeclarativelyif we so wish. This is important if we
are to be able to check that the formalism given accords
with our understanding of the semantics, and this is impor-
tant from the maintainability aspect. We need to be able to
check, separately and independently:~1! That the facts rep-
resented are “true”, or at least what we intend~e.g., the rules
of configuration!. ~2! That procedures are captured correctly.

• It is clear that object level knowledge must be updated
as new products come into being and others become
obsolete.

• Heuristic knowledge is, or should be, changing with
time and circumstance; for instance, the fact that par-
ticular configurations lead to inefficiency may only be
learned from experience of actual running configura-
tions. Conversely, it may be rendered obsolete as prod-
ucts improve.

• Explicitly and separately held control knowledge en-
ables us to update the configuration as whole struc-
tures or new kinds of products are added or altered.
This may mean that the system can be generalized if
sales policy changes, or if it is required to be used for
other, similar tasks.
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If the three kinds of knowledge are inextricably inter-
mixed, the configuration task becomes unacceptably hard.
A system based on a clean separation is easier to maintain,
because knowledge is encoded declaratively. We cannot
make the claim that our systems will be easily maintainable
in the face of all future developments as this could involve
sea-changes in technology. However, it seems more likely
that we will be able to salvagesomethingin the face of tech-
nological innovation, provided it is not too extreme. For ex-
ample, if there is a radical change in storage methods and
components, then it will not affect the top-level architec-
ture. Methods of generating partial configurations which are
not affected by the changes to affected components will also
remain unscathed.

2. PROOF PLANNING

2.1. Introduction to proof planning

A proof plan is a means of expressing the commonality be-
tween members of the same “family” of proofs while allow-
ing sufficient flexibility and adaptability to prove a large
number of different theorems. Proof plans provide anex-
plicit expression of strategies for automated reasoning by
describing tactics in terms of the preconditions under which
they are applicable and their effects if applied. This speci-
fication of a tactic in terms of preconditions and effects is
called a method, and methods provide a basis for combin-
ing tactics to form a complete plan—in general, a tree
structure—which, if executed, will carry out a reasoning task.

Bundy~1987! proposed that this, originally developed for
use in theorem proving and program synthesis, be extended
to intelligent knowledge-based systems~ikbs! in general.
The desirable properties of the technique would be

1. Efficiency, because the combinatorial explosion is
avoided, or at least greatly mitigated.

2. Generality, because a proof plan may be applicable to
many cases.

3. Maintainability, because the separation of factual
knowledge from heuristic and control knowledge
means that either may be changed without affecting
the other.

4. Explanatory power, because control decisions can be
explained at the appropriate level, rather than by gen-
erating long chains of low-level choice points in the
inference process.

These properties are important foranyknowledge-based sys-
tem. Thus, proof plans can provide a useful vehicle for ex-
pressing strategies for problem solving in other domains,
including nonmathematical ones.

2.2. The proofs as programs paradigm

Bates and Constable~1985! give a method for synthesizing
algorithms from proofs. If we express the relationship be-

tween the input and the output of a program as spec~input,
output!, then an algorithm may be synthesized by finding a
constructiveproof of the theorem:

; input{'output{spec~input,output!,

and from this extracting the algorithmalg such that

; input{spec@~input,alg~input!#.

We use an analogous technique for synthesizing config-
urations. Suppose we have a specification,spec~c!, for a
computer configuration,c. For example, the specification
might state~translated into informal language! that the con-
figuration should have a certain number of terminals for run-
ning particular applications, that it should have at least a
certain amount of disk storage, that it should have printers
capable of certain speeds, tasks, etc. The synthesizedcshould

• Obey the explicit terms of the specification—have the
correct number and type of terminals, printers, disk
drives, etc.

• Be a legal configuration—function correctly, obeying
the general laws for configurations, that is, possess a
processor of sufficient power, enough memory, backup
devices,etc. In addition, all devices must be correctly
connected up. These laws may be formalized as a gen-
eral theory of configuration.

We synthesize such a configuration from the object-level
theory by proving the theorem~more properly, the conjec-
ture: we could be given an unrealizable specification!

'c{spec~c!. ~1!

wherec is a well-formed object of typeconfiguration, and
spec~c! is the specification thatc must satisfy; it includes
the customer’s inputs as to certain values and properties of
the resulting system.

An alternative way of thinking about Eq.~1! is to intro-
duce a meta-variableC and to prove

spec~C!, ~2!

wherespec~C! is a conjunct of goals expressing the re-
quired properties of the configuration.

In proving conjecture, Eq.~2!, C is instantiated to a well-
formed term. This is a gradual process;C starts out as a
simple meta-variable but acquires some structure early on
in the proof; for example,

C [ proc :: L,

whereproc is instantiated butL is not: read this as “C is a
processorproc and some other terms”. Later in the proofL
in turn acquires some structure, and by the end of the proof
it is fully instantiated.
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2.3. Tactics

A tactic is a program encapsulating a significant proof step
with its attendant lower level steps. The latter are typically
ones of less interest to the user of the system, and corre-
spondingly harder to keep track of. We would prefer these
to be taken care of automatically so that we can concentrate
on the “interesting” proof steps. For example, let us con-
sider a Prolog tactic to configure a device, shown in Fig-
ure 1. The arguments ofconfigure-deviceare the device to
be configured, an interface channel~IC!, and the configu-
ration ~C! in which these occur.

To configure a device, we need a cable for it, we need to
connect the devicevia the cable to the interface, and the
whole construction—the interface with the device-cable
pair—must be well formed. In Figure 1,connect-cable03
ensures a cable,connected-via03 takes care of the connec-
tion via the interface, andtype02 is the well-formedness
check.

Reasoning at the level of the tactic facilitates the search
for an acceptable solution whilst ensuring that any such so-
lutions found will be legal; that is, they ensure the sound-
ness of the automatic configuration system.

2.4. Methods

A method is a specification for a tactic. Figure 2 shows the
general structure of a method.

Methods have slots for method name;input, which the
input goal must match;preconditions, which are conditions
which must be true of the input if the method is to be ap-
plicable;output, which will match the rewritten input goal
if the method is applied;effects, which are conditions on
this output goal if the method is applied; and the specified
tactic: the program to be applied to the goal at this point.
Figure 3 gives the method which specifies theconfigure-
devicetactic we saw earlier.

In this method, the goal to be proved must have the form
configure~Device, IC, C!, and the output of the method is
nil: this applies to allterminating methodswhere no further
rewriting will be necessary if the tactic is successfully ap-
plied. The preconditions state, in order, that there is a de-
vice to be configured in C, that IC is of typeType, and that
the number of slots available of the correct type is greater
than zero. The effect of the method is to reduce the number
of such slots by one.

One nice feature of specifying tactics by methods in this
way is that it models the “user” or “customer view” of

configuration, as opposed to the “engineer view”, which is
“modelled” by actually executing the tactic. This makes de-
veloping good explanation facilities a realistic possibility.
This is not true of rule- or constraint-based systems which
work at a low level, where the search space is more com-
plex and reasons for the choices made may not be readily
apparent.

More importantly from the point of view of maintenance
considerations, the use of methods gives an explicit place
for us to write control information. For example, the fact
that the tactic to configure an interface channel in a card
cage should only be run if there are spare card cage slots
belongs in the preconditions of theconfigure-devicemethod.
The fact that a card cage should not be configured if there
are completely empty card cages already present in the con-
figuration finds its place in aconfigure-ccmethod.

2.5. Proof plans

In the context of configuration, we can think of proof plans
as the expressions of meta-level strategies. The aim in proof
planning is to find a plan tailor-made for the specification
which will prove the particular theorem given to us of the
form of Eq.~1!. A sequence of applicable methods is found.
If this sequence, which we call aplan, is executed, then ev-
ery conjunct in the specification is proved and we are guar-
anteed that a well-formed configuration object meeting the
specification will be instantiated as a by-product.

We can go further. High-level strategies for configura-
tion can be developed, and encapsulated as proof plans, or
super-methods. For example, let us consider the most basic
strategy for computer configuration, which is

Fig. 1. An example tactic.

Fig. 2. Method structure.

Fig. 3. An example method.
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1. Decide an appropriate processor from information in
the specification.

2. Each processor fixes a kind of “template” configura-
tion: set this upvia matching.

3. Attend to explicit user needs as given by the specifi-
cation.

4. Add essential components not explicitly specified.

Within this strategy, we might also want to control the order
of configuration of devices, as it can be shown that some
sequences are~heuristically! better than others. Super-
methods are distinguished from other methods in that they
call other methods~or super-methods! from within their ef-
fects slots. Some methods are iterators: for example, we may
want to call a method to configure a device until there are
no devices so far left unconfigured.

Within the overall guidance given by this plan, there is
sufficient flexibility to cater for a variety of specifications.
At the same time, the existence of a proof plan, which will
be applied if possible, means that there is not a random choice
of methods which could lead to legal but “unnatural” con-
figurations being generated; moreover, backtracking in or-
der to seek alternative solutions does not lead first merely
to plans which contain the same methods, but applied in
a different order—in other words, to trivially different
solutions—but to configurations which are significantly
different.

Various strategies have been developed, such as the con-
straint relaxation strategies referred to earlier. Another is the
strategy employed in configuring computers to comply with
cost guidelines. Here, the configuration objects referenced
by methods are annotated so as to keep a running check on
the approximate cost of the configuration. This cuts down
on much unnecessary search, as branches leading to over-
expensive non-solutions are pruned early from the search.

Again, this explicit representation of strategies means that
we can have the benefit of efficiency whilst retaining a de-
clarative, transparent system. The control knowledge does
not have to be “hard-wired” deep in the program.

3. THE CLEM CONFIGURATION SYSTEM

3.1. Implementation

The main task addressed in designing the architecture
of the prototype computer configuration system was how
to separate control information~how to go about the con-
figuration task, using heuristics if possible! from the
object-level knowledge~ensuring that the configurations
synthesized are always legal!.

This system was implemented in around 5500 lines of
Quintus Prolog, and runs on a SUN workstation. It consists
of an object-level knowledge base~components, attributes,
etc.! together with heuristic knowledge, tactics, methods

~specifications for tactics!, and a planning mechanism to
guide inference in the system.

Examples of strategic and heuristic management knowl-
edge have been given in Section 2. We now explain the ra-
tionale behind the various design decisions that we took in
designing the types and object-level rules for an automated
configuration system.

3.2. Types

Adopting a hierarchical structure for storing knowledge
seems initially attractive. However, in a field which is chang-
ing rapidly ~as computer technology is! this gives rise to
considerable problems when attempting to fit new devices
into a rigid framework. It is a common problem in artificial
intelligence that initial classifications within frame-based
systems and the like break down when new objects are in-
troduced which defy the original classifications, or if the
information is put to a different use. This leads to rethink-
ing either the classification or the properties attached to slots
or both; or else to messy exception-handling procedures. The
problem in the computer hardware domain is that we can-
not predict the course that technology will take. New prod-
ucts might cut across existing divisions: maintenance of the
system would mean not simply updating the product data
but also maintaining the structure. This would add an un-
necessary overhead onto an already onerous task. Our aim
was to make maintenance as straightforward as possible so
that the knowledge base part of the system could be up-
dated by people who currently maintain product infor-
mation—people who do not necessarily have the expertise
needed to maintain a structure tree for the knowledge base.
We wanted to avoid the situation whereby, unless all future
products conformed to the existing structure, the addition of
just one “revolutionary” component would cause problems.

Our solution, therefore, was to adopt a fairly “flat”’ type
system. Individual components~processors, memory mod-
ules, terminals, disk drives, tape drives, printers, channels,
cables, card cages, etc.! were represented as atomic types.
There are two ways in which this knowledge may be
maintained:

1. New components of existing types may be added~or
old ones deleted!.

2. New types are added~and old ones, which have no
members left, deleted!.

The first is done by adding the component to the knowledge
base: the name of the component, together with its type;
and its attributes as appropriate~e.g., for a disk, this would
include its capacity!. The second arises when a newkindof
device is added. Inevitably there will be at least one mem-
ber of the type. Each new component, together with its type,
is added to the knowledge base in the normal way, but other
information is also needed, such as how more complex terms
may be built up using this type.
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Other compound types used are list types~typically lists
of objects needing to be grouped together in the configura-
tion!, and pairs, which we have already seen.

An object of type configuration is a member of a com-
plex type, of the form

processorlist 3 memorylist 3 devicelist

3 connectorslist 3 connectionslist

Note that a simple interface would allow non-AI-expert peo-
ple to add domain knowledge, which can then be validated,
although this was never implemented for this prototype.

3.3. Object-level rules

Object-level rules can take the form of facts as shown in
Section 1.3.1 and are represented by simple Prolog ground
clauses. Others can be regarded as axioms of the domain.
As an example, let us consider the rules concerning the fact
that, in any configuration, all interface cards must be con-
figured in a card cage. So the definition of a legal configu-
ration ~or what it means forc to be a member of the type
configuration! includes the conjunct

;ch:channel{'cc:cardcage{connected-via~ch! 5 cc.

In other words, for each and every interfacech, there is some
card cagecc, such thatch is connected viacc.

4. THE ICON INDUSTRIAL CONFIGURATION
SYSTEM

4.1. Strategy

ICON ~Pechoucek, 1996! was programmed in LPA Prolog
3.1 in the MS-Windows environment, running on a 386 PC
platform or better. Ladder logic was used for formalizing
object-level knowledge about components of a compressor
and attributes of a solution. Proof planning methods cap-
tured the inference knowledge. An ordered set of methods
was used for expressing the decision process carried out by
an expert in the field. The tactics of a method were used for
storing the information about how to create the particular
product number.

Proof planning introduced three phases of inference:

1. Planning stage.

2. Validation stage.

3. Execution stage.

In the planning stage, a user is asked to give as much infor-
mation as possible in order to give a direction to the search
for possible solutions. In the validation stage, the system
offers the best found solution with a complete set of
attributes. The user can either return back to the planning
stage and redo some of his or her decisions, or else let the

solution proceed further to the execution stage. In the ex-
ecution stage the system creates the product number and
the final quotation document. As with CLEM, planning takes
place at the meta-level~user! view, so that the planning space
is small relative to the underlying object-level search space.

4.2. Planning stage

The language of methods, the domain theory, and the sys-
tem of higher level predicates facilitates creating an arbi-
trary planner and thus various planning behaviors. There
were two completely different planners implemented within
ICON in order to illustrate the generality and flexibility of
the system.

TheUser Assisted Plannernavigates the user through the
space of possible attributes and prompts him or her for a
value when necessary. It simulates the behavior of a quota-
tion expert in the field. An example dialogue is shown in
Figure 4 and a quotation in Figure 5.

The Advanced Plannercan handle partially configured
solutions. In such case the system allows the user to specify
the attributes and optimization constraints he or she wish,
and then allows the configurer to check the legality of the
solution presented and to search through the attribute space
in order to create the quotation automatically. It is notable
that a first version of the Advanced Planner was imple-
mented in just a single day.

4.3. Validation stage

In the validation stage, the user decides whether he or she
likes the solution found. Backtracking to the planning stage
is an option. In the case of the advanced planning, the user
may ask for another solution fulfilling the specification in
question. Otherwise the program proceeds to the execution
stage.

4.4. Execution stage

The system is engaged with the job of creating the product
number and the final quotation document. There is a sepa-
rate data base of rules about how to create a product num-
ber and the open output template. All of the text is editable
and can be either printed out or saved in the conventional
manner.

4.5. Object-level formalization

The object-level knowledge has been formalized by means
of ladder logic, a well-known industrial representation. This
formalism was chosen mainly because of its simplicity for
non-experts. A parsing mechanism accepts an arbitrary lad-
der logic expression. Consequently, the knowledge engi-
neer may use as complex an expression as he or she likes.
This sort of freedom is a substantial virtue of the system.
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4.6. Meta-level formalization

As already mentioned, the proof planning methodology in-
troduces a slightly unusual but very efficient meta-level
knowledge orientation. The ordered set of methods repre-
sents, at the meta-level, the decision process in question.
When configuring the compressor, the entire quoting pro-
cess can be viewed as the more or less structured ordering
of the decisions to be made. Each particular decision is rep-
resented by a single method. From the maintenance point of
view, the virtue of proof planning at the meta-level is the
same as the virtue of the ladder logic at the factual level. It
is easy to refine the method language when a new piece of
control knowledge is acquired.

The preconditions of a method are intended to record all
actions that need to be carried out before deciding whether

a particular branch of a subtree suits the properties of a par-
ticular subsolution. Unlike the CLEM case study, where the
user inputs the full specification up front, in ICON we need
a user dialogue to be invoked whenever a decision between
components must be made. Note that this is only activated
in cases where the domain constraints have failed to restrict
the choice to one.

5. TESTING

5.1. CLEM

We have tested the prototype system CLEM~Lowe, 1993a),
and experimented with it over a wide variety of specifica-
tions, using alternative formulation of methods, and by add-

Fig. 4. Sample ICON dialogue.
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ing new strategies. In addition, we successfully added new
component details, to test the maintainability of the object-
level knowledge of the system.

CLEM proved capable of handling all but very patholog-
ical specifications. It could successfully employ strategies
for control and for taking design issues into account. We
tested the maintainability of the system by adding a new
processor and other components. This tested whether the
object-level knowledge could be updated independently of
the rest of the system. Maintainability of control informa-
tion was tested throughout: control information tends to be
learned gradually, and we were able to incorporate such un-
derstanding on an incremental basis, without needing to make
major changes to the rest of the system.

Synthesizing a configuration in this system involves find-
ing a plan, which is a sequence of methods, and then ex-

ecuting the plan, that is, running the corresponding tactics
in the sequence given by the plan. One problem with using
planning, or any kind of meta-level reasoning, is the over-
head incurred. For very simple specifications, leading to
small systems, the overhead is not cancelled out by the sav-
ing in execution time, when we compare the total time of
planning execution with the time taken to find a solution
using the object-level theory unaided. However, this is not
the case when configuring large multi-user systems. In fact,
the configurations do not have to be very large for planning
to pay off ~Lowe, 1993b). So one empirically proven ad-
vantage for this approach is that it is more efficient in find-
ing the first solutions.

This is not the only advantage, however. One feature which
was thought useful was the ability to search the planning
space for alternative solutions, rather than having to ex-

Fig. 5. An example product quotation.
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ecute each such solution before the next plan is found. In
real life, the~human! configurer presents several solutions
for the customer to choose from. The information provided
at the planning level is sufficient for an informed choice to
be made, since this level deals with components at the right
level for the user: in terms of devices and attributes of whole
configurations, rather than in terms of devices, cables, slots,
etc. Only when an acceptable solution has been found at the
planning level does this plan~and this only! need to be ex-
ecuted, to give the full details of the configuration.

Thus, not only does the proof planning approach benefit
system maintenance and ensure sound solutions, it also fa-
cilitates exploration of alternative solutions. It should also
be said that testing the system was also helped by this “two-
stage” approach in which the most detailed information is
presented only on execution, making it easier to check the
top-level details of the synthesized systems at the planning
level first.

5.2. ICON

ICON was warmly welcomed and well appreciated for meet-
ing all specifications in the case of User Assisted Planner
and for a worthwhile initiative in the case of the Advanced
Planner. The knowledge base was tested and after a small
series of refinements it seemed to behave quite like the ex-
perts. As a test case, a set of 20 customer specifications was
used, representative enough to confirm the accuracy of the
configurer. We evaluated

• How easy it was to capture the knowledge needed in
the right form, and how long this took.

• The time taken to design and implement the prototype
system.

• The performance of the system, tested by its potential
users.

• How easy it would be for its users to maintain.

Two weeks were spent at CompAir Reavell carrying out
the knowledge elicitation phase. Afterwards, it took around
8 weeks for one person to completely build and design the
system. Two further weeks were then spent at CompAir, in-
troducing the tool to sales people, quotation and construc-
tion departments, and management.

ICON met all requirements and typically achieved per-
formance levels of reducing 2 d work to 1 min. One addi-
tion requested, however, was for an explanation facility,
which was readily provided, to enhance the sales–customer
relationship. It was thought that, with this facility, the ser-
vice could be provided direct to customersvia the Internet.
Thus, with the explanation facility, the usage of the system
went beyond what was originally envisaged.

A few inconsistencies were found during testing. These
turned out to be easy to correct, for example a redundant
attribute, some misleading vocabulary, incorporation of mea-
surement units, and a couple of rule changes. These are typ-

ical of building such systems, and it is important that they
were found and corrected easily.

For maintenance, a short Prolog tutorial was organized
to explain maintenance of the knowledge base. After the tu-
torial session, the IT staff were asked to refine the global
knowledge base in two ways:

1. Add a new set of compressors~water-cooled!.

2. Add a new attribute~weight! to the set of properties.

This took one of the authors~with his expert knowledge of
Prolog and his own system! 20 min. The CompAir staff av-
eraged 30 min, and carried out the tasks correctly—this was
considered a pleasing result, considering the complexity of
the tasks involved and the inexperience of the staff.

The system code is well structured and self-explanatory.
The openness and flexibility of the object-level formal-
ism, the language of methods, and the lower-level predi-
cates are illustrated by how fast and straightforward was
the development of the Advanced Planner. Due to substan-
tial field-testing, user friendliness, easy maintainability and
enhancability, and overall system flexibility, ICON was suc-
cessfully used at CompAir Reavel and made the quotation
process considerably easier and faster.

6. RELATED AND FURTHER WORK

Other logic-based approaches~Klein, 1996; Najmann &
Stein, 1992, Searls & Norton, 1990! focus on the object
level. We have identified two other classes of knowledge—
heuristic and strategic—which also benefit from logical for-
malism and separate, explicit representation, avoiding the
traditional production rule systems’ confusion of these
classes with their consequent maintainability problems~Mc-
Dermott, 1982!. Our constructive type theory would seem
to have much in common with various constraint-based ap-
proaches~Faltings & Weigel, 1994; Sabin & Freuder, 1996;
Gelle & Weigel, 1996!. The special class of constraint-
based reasoning in which the configuration is being gradu-
ally refined~see ten Teije et al., 1996! is akin to our approach
of gradually synthesizing a configuration from a specifica-
tion by defining complex types, culminating with thecon-
figuration type, whose slots are eventually fully instantiated
with subparts.

Further refinement of our knowledge classes could
be sought by representing non-type constraints using a
constraint-based system, probably by implementing sys-
tems in a constraint logic programming language rather than
Prolog, as hitherto. Other possibilities would be to see the
remaining constraints as “data type invariants” and to use
VDM-style proof obligations to maintain the integrity of the
synthesized configuration.

We have argued in this paper that proof planning can help
manage complex knowledge bases by separating different
kinds of knowledge, and search through large search spaces
by means of its explicit search strategies. However, we would
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like to test this potential in more sophisticated domains, and
by seeking new tasks within the existing domains requiring
more sophisticated heuristics and strategies. Encapsulating
expert strategies presents strong challenges for any approach.

Another useful extension would be to allow more inter-
leaving between specification and configuration, and to al-
low the replaying of old plans on revised specifications. This
has been more developed in ICON than in CLEM, where
the complete specification had to be given at the start.

7. CONCLUSION

We have developed a formalization of the configuration do-
main in order to apply established theorem-proving tech-
niques to the problem of configuring computers to meet
specifications. This ensures the underlying soundness of the
system, in that all solutions generated will at least be legal
objects. Using this as a basis, we have been able to encap-
sulate the higher-level reasoning, used informally by hu-
man experts, in a more formal way in order to facilitate the
generation of well-designed and natural solutions, and to
generate these solutions as efficiently as possible by guid-
ing search by means of meta-level reasoning techniques. We
would not argue that we have discovered, much less imple-
mented, all strategic knowledge brought to bear on this prob-
lem by human experts. However, the methodology of this
approach enables this to be done incrementally. This is due
to the fact that the meta-level knowledge is captured inde-
pendently of the object-level theory. So not only can we
maintain the system by the addition of new components,
and even new types of components, but we can also ex-
periment with new strategies. Given that human expert
strategies are often opaque at first, there is the added psy-
chological benefit that we can gain new insights into the
process of human reasoning in a complex task. Using the
proof planning methodology, we can carry out these kinds
of modifications and experiments in a principled way which
is easy to track.

Any student of systems analysis knows that maintainabil-
ity is an important criterion for judging the success of a com-
puter system. Usually this question is assessed with regard
to systems which have been in use, in the field, for some
time. This clearly has not been done with CLEM, which is
merely a prototype. However, CLEM was not born, com-
plete and perfectly formed, but evolved over a period of many
months. Its expandability was, therefore, an important is-
sue right from the start, and not simply something to worry
about for the future.

ICON addresses the topic of maintainability and the ease
of further enhancement, the main bottleneck of automated
configuration. The entire system was designed carefully in
this respect. After a short Prolog syntax tutorial and precise
explanation of the system maintenance, ordinary staff from
the IT department in CompAir managed successfully to en-
hance the system in the direction of attributes as well as in
the direction of product types.

This paper advocates the proof planning programming
methodology as an appropriate and convenient approach for
design, development, maintenance, and enhancement of
knowledge-based systems of this particular sort.

Proof planning knowledge orientation makes the
knowledge-acquisition process more natural. Proof plan-
ning eases the development stage and thus considerably
shortens the time needed for implementation. Proof plan-
ning facilitates easy maintenance and enhancement due to
its natural knowledge orientation and natural knowledge
formalization.
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