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Abstract

Configuration is a complex task generally involving varying measures of constraint satisfaction, optimization, and the
management of soft constraints. Although many successful systems have been developed, these are often difficult to
maintain and to generalize in rapidly changing domains. In this paper, we consider building intelligent knowledge-
based systems with maintainability well to the fore in our requirements for such systems. We introduce two case stud-
ies: the initial proof of concept, which was in the domain of computer configuration, and a further field-tested study, the
configuration of compressors. Central to our approach is the use of the proof planning technique, and the clean sepa-
ration of different kinds of knowledge: factual, heuristic, and strategic.
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1. INTRODUCTION e A submodel of sharingexpresses conditions under
which a component can satisfy more than one set of

1.1. Configuration requirements. There can be exclusive use, limited shar-
ing, unlimited sharing, serial reusability and measured

The configuration task is generally perceived as a problem
of assembling elements of a system together in such a way
that no internal logical constraints are violated, or so that Formalizing a domain in logic, Najmann and Stein

the extent of violation is minimal. Stefi 993 defines four (1992 define configurations as mathematical structures with
key elements: components:

capacity.

e A specification language The nature of the environ- e a set of objects
ment and the use of the system are reflected here. A « a set of properties for each objedunctionality—
specification language may include optimization crite- value pair$
ria. e a set of functionalities
« A submodel of partsrepresents a catalogue of com- « for each functionality, a set of values, an addition op-
ponent parts. This submodel also describes the mutual  erator, and a test
interdependencies. Hence when a particular compo- « a set of demandgunctionality—value pairs
nent is configured, there are links to all the other com-
ponents needing to be considered. According to this model, the configuration process is a
o A submodel for spatial arrangementsspecifies the finite sequence of compositions of objects while a solution
means of describing spatial arrangements of the comis a configuration object which the tests show satisfies the
ponents and thus defines what combinations of comdemands.
ponents are allowed. Some authors have given a logic-based description of con-
figuration tasks, for example, Kleifl996. The develop-

_ , ment of logical formalisms guarantees soundness of resulting
Reprint requests to: Helen Lowe, Department of Computer Studies, Glas-

gow Caledonian University, Cowcaddens Road, Glasgow, Scotland. E—maiﬁOIUtiolnS' The particglar constructive type theory of con-
H.Lowe@gcal.ac.uk. figuration developed in Low€1993bh goes further in that
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sound configuration objects are synthesized from the spedias the benefit of facilitating maintenance, in a domain which
ification of such an objectsee Section 2)2We see that traditionally has been bedevilled by maintenance over-
this view is very strongly related to that of constraint-basedheads. In our configuration systems this separation is both
approachessee, e.g., Faltings & Weigel, 1994Ve shall  strict and explicit. We shall show how object-level knowl-
see that, although it is not explicitly a constraint-based sysedge may be extracted and formally represented in such a
tem, our approach may be viewed as “constraints as typesiyay as to allow the utilization of techniques analogous to
where many of the constraints are satisfied by allowing onlyprogram synthesis, to perform tasks such as synthesizing
objects of the correct type to be synthesized. computer configurations which meet specifications. Such
However, while this takes care of some classes of conan approach makes the task of maintaining knowledge bases
straint, those remaining tend to be more difficult to man-more tractable and reliable.
age. The difficulty, certainly in the domains we have looked
at, is that the problem is essentiallpderconstrainedit is 1.2.2. Compressor configuration
more akin to design, of which, in fact, configuration is one  we followed up our initial proof of concept with a fur-
componen{Brown, 1996. The user wishes to explore the ther experiment. CompAir Reavell Ltd, a member of the
design space. How to preseénnly) essentially differende-  Sjebe group, manufactures high-pressure gas compressors
signs for perusal, rather than a whole host of similar ones, iﬁnainly for the naval, NGV, and breathing air markets. Our
a major control problem. We uggoof planning(see Sec- objective was to produce an automatic configurer for spec-
tion 2) to represent and generate Strategies for eXp'Oringfying compressors in an engineer-and-made-to-order
the design space in an efficient manner. These strategies aggntext. The system was required to present a logically se-
expressed explicitly, and separately, from other kinds ofjuenced order of questions, together with all legal options,
knowledge. to the user. The system should then price the solution, cre-
Many authorgsee, e.g., Steels & McDermott, 1938ve  ate the construction description number, and set up the final
pointed out the maintenance problems faced when managpuotation document.
ing systems in which product information changes often. unlike the previous case study, the client wanted an in-
Mannisto et al.(1996 propose a generic structure model teractive system, with the user presented with legal choices
to support different views and classifications of the sameat each of the main stages. The system was to present an
components evolving over time. In our view, the problemappropriate and logically sequenced series of questions, com-
he mentions, that the original engineers may not understanglemented with a set of all the legal options, in order to fa-
the way the products are described in the system, is a cofilitate the global product specification. There are two main
sequence of mixing different kinds of knowledge. Our ap-clusters of decision process to consider. Firstly, there are
proach, demonstrated in the two case studies described geveral components that constitute a basic solution; once
this paper, necessitates a clean separation of object-levehese have been configured, it is possible to attach a ball-
heuristic, and contro(strategi¢ knowledge, which could park figure for the final cost of the compressor. Budget-
be separately maintained with the aid of appropriate usefelated reasoning should be carried out at this stage. The
interfaces. rest of the configuration, namely customer-specific settings
and the addition of optional accessories, should be elabo-
rated afterwards, and the cost refined component by com-
1.2. Two configuration case studies ponent from that point_
. . Given the problem of rapidly changing product lines, a
We how mtr_oduce the problem domains o_fourtyvo case Swdbrime goal wgs for the sysFt)em to be readﬁy maintainable.
ies |IIu_strat|ng_ our approach to th_e conflgurapon task, foI—LOWe (1994 claimed that the proof planning methodology
lowed in Section .1'4 by an overview of the different typesshould facilitate maintenance: now we had a chance to test
of knowledge wh|ch .must be represented and the maintey, g hypothesis in the field. We hoped that the particular for-
hance problems arising from these. malism chosen, expressed in logic and implemented in Pro-
i i log, with its separation of knowledge and control, would
1.2.1. Computer configuration facilitate the maintenance of all types of knowledge in
As an initial proof of concept, we looked at the problem the system. To this end, a prototype system was built and

of how to synthesize a configuration which meets a speciunderwent field-testing at CompaAir, including tests for
fication of a computer system, using data and domain eXmaintainability.

pertise from personnel at Hewlett Packart, Bristol. This
synthesis should result in a term representing all the com-
ponents needed, together with details of the connections.3. Classification of knowledge
between them.
As we shall show in Section 1.4, the careful separation oft-3.1. Object-level knowledge
object-level knowledge from meta-level control and heuris- Our first kind of knowledge i$actual We represent these
tic knowledge is an important feature of our approach. Itfacts asobject level axiomsThey include attributes of par-
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ticular components, general configuration rules, and limitssider any more breaches. So the strategy can be expanded
For example, as follows:

1. No more than six devices may be connected to a com- 1. Try to find a configuration which obeys all heuristic

ponentexample-channdbf type channe); limits.

2. No morte éhtan.tfour objects of tymsk-drivemay be 2. If not possible, ignore the heuristic: No more than three
connected to It . objects of typechannelo be configured in aex-card

3. No more than four components of typerd-cagein a cage but try to find a configuration which meets both
configuration; the other heuristics.

4. No more than four objects of tymhannelto be con- 3. Otherwise, just try to find a legal configurati¢per-

figured in them. haps optimal with respect to price

Each of these four limits is hard constraint in that they
may never be relaxed. Any object not conforming to them
is not legal.

Apart from managing heuristics, there are other types of
control knowledge. For example, when configuring devices
on channels, it pays to configure the most restricted devices
1.3.2. Heuristics first, that is, devices which may not share channels with cer-
tain other devices in the configuration. On a more global

Secondly, we havaeuristicknowledge. Suppose that it ; :

has been discovered that configuring the maximum numbelfvel’ there are advantages to performlng the task n a par

of components legally possible in a configuratimaylead ticular ord.er. Therg may be no un!versally appropriate or-

to an inefficiently running computer system. Suppose in theder’ but,.glven part!cular specifications, there may be away
f ordering the various subtasks so as to cut out excessive

examples of object-level knowledge above, these heuristicg h. Th trateai b q ol
amount to more stringent limits as follows: search. These stralegles can be expressed as prootf plans.

1. No more than five devices should be connected to an )
1.4. Knowledge and the maintenance problem

ex-channel
2. No more than three objects of typesk-driveshould  geparating different kinds of knowledge into classes en-
be connected to aex-channel ables us to manage them separately. In the case of computer
3. No more than foucard-cagesn a configuration(no  configuration, it is very often the case that the price list and
change from the aboye the product list changes rapidly, whereas knowledge of how
4. No more than three objects of typeannelto be con-  t0 configure solutions stays unchanged for a long time.
figured in anex-card cage This separation enables each type of knowledge to be en-

codeddeclarativelyif we so wish. This is important if we
The changes from the previously given limits represent reare to be able to check that the formalism given accords
laxed,soft limits that is, these limits are desirable for some with our understanding of the semantics, and this is impor-
reason and in some sense, but objects not conforming t@nt from the maintainability aspect. We need to be able to

them may still be legal. check, separately and independently: That the facts rep-
Soft compatibility constraints are often discovered dur-resented are “true”, or at least what we int¢ady., the rules
ing the lifetime of a component. of configuration. (2) That procedures are captured correctly.
1.3.3. Control knowledge e Itis clear that object level knowledge must be updated
Thirdly, we havecontrolknowledge, for example, knowl- as new products come into being and others become
edge about the order in which subtasks should be carried obsolete.
out. An example of top-level strategy might be e Heuristic knowledge is, or should be, changing with
time and circumstance; for instance, the fact that par-
1. Try to find a configuration which obeys all heuristic ticular configurations lead to inefficiency may only be
limits. learned from experience of actual running configura-
2. Ifnot possible, try to find a configuration which breaks tions. Conversely, it may be rendered obsolete as prod-
as few heuristics as possible. ucts improve.

o Explicitly and separately held control knowledge en-
Here, we are treating all heuristics as equally important.  ables us to update the configuration as whole struc-
However, this leads to us “preferring” breaches of the tures or new kinds of products are added or altered.
channel-per-card cageeuristic, since one breach here gives This may mean that the system can be generalized if
us a “breathing space” while we load devices on to the “ex-  sales policy changes, or if it is required to be used for
tra” channel up to heuristic limits before we have to con- other, similar tasks.

https://doi.org/10.1017/50890060498124071 Published online by Cambridge University Press


https://doi.org/10.1017/S0890060498124071

348 H. Lowe, M. Pechoucek, and A. Bundy

If the three kinds of knowledge are inextricably inter- tween the input and the output of a program as $pgaut,
mixed, the configuration task becomes unacceptably hardutput), then an algorithm may be synthesized by finding a
A system based on a clean separation is easier to maintaiopnstructiveproof of the theorem:
because knowledge is encoded declaratively. We cannot
make the claim that our systems will be easily maintainable Vinput- 3 output- spedinput,output),
in the face of all future developments as this could involve
sea-changes in technology. However, it seems more likelnd from this extracting the algoritheig such that
that we will be able to salvagemethingn the face of tech-
nological innovation, provided it is not too extreme. For ex- Vinput- sped (input alg(input)].
ample, if there is a radical change in storage methods and . o )
components, then it will not affect the top-level architec- We use an analogous technique for synthesizing config-
ture. Methods of generating partial configurations which arérations. Suppose we have a specificatispedc), for a

not affected by the changes to affected components will alsGOMPUter configurationc. For example, the specification
remain unscathed. might statgtranslated into informal languag#hat the con-

figuration should have a certain number of terminals for run-
ning particular applications, that it should have at least a

2. PROOF PLANNING certain amount of disk storage, that it should have printers

2.1. Introduction to proof planning capable of certain speeds, tasks, etc. The synthesstealild

A proof plan is a means of expressing the commonality be- , Qpey the explicit terms of the specification—have the
tween members of the same “family” of proofs while allow- correct number and type of terminals, printers, disk
ing sufficient flexibility and adaptability to prove a large drives, etc.

number of different theorems. Proof plans provideean e Be alegal configuration—function correctly, obeying
plicit expression of strategies for automated reasoning by e general laws for configurations, that is, possess a
describing tactics in terms of the preconditions under which processor of sufficient power, enough memory, backup
they are applicable and their effects if applied. This speci- devicesetc In addition, all devices must be correctly

fication of a tactic in terms of preconditions and effects is connected up. These laws may be formalized as a gen-
called a method, and methods provide a basis for combin-  grg) theory of configuration.

ing tactics to form a complete plan—in general, a tree

structure—which, if executed, will carry outareasoning task. - \We synthesize such a configuration from the object-level
Bundy(1987) proposed that this, originally developed for theory by proving the theoretmore properly, the conjec-

use in theorem proving and program synthesis, be extendegre: we could be given an unrealizable specification
to intelligent knowledge-based systerfigss) in general.

The desirable properties of the technique would be Jc-spedc). )

1. Efficiency because the combinatorial explosion is yherec is a well-formed object of typeonfiguration and
avoided, or at least greatly mitigated. spedc) is the specification that must satisfy; it includes

2. Generality because a proof plan may be applicable tothe customer’s inputs as to certain values and properties of
many cases. the resulting system.

3. Maintainability, because the separation of factual An alternative way of thinking about E@1) is to intro-
knowledge from heuristic and control knowledge duce a meta-variabl€ and to prove
means that either may be changed without affecting
the other. specC), 2

4. Explanatory powerbecause control decisions can be
explained at the appropriate level, rather than by gen
erating long chains of low-level choice points in the
inference process.

wherespedC) is a conjunct of goals expressing the re-
quired properties of the configuration.

In proving conjecture, Eq2), Cis instantiated to a well-
formed term. This is a gradual proce$3;starts out as a
These properties are important foryknowledge-based sys- simple meta-variable but acquires some structure early on
tem. Thus, proof plans can provide a useful vehicle for exin the proof; for example,
pressing strategies for problem solving in other domains,
including nonmathematical ones. C=proc::L,

whereproc is instantiated buk is not: read this asC is a
processoproc and some other terms”. Later in the prdof
Bates and Constabl@985 give a method for synthesizing in turn acquires some structure, and by the end of the proof
algorithms from proofs. If we express the relationship be-t is fully instantiated.

2.2. The proofs as programs paradigm
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2.3. Tactics

Name method name
A tactic is a program encapsulating a significant proof step |_input syntactic form of input goal
with its attendant lower level steps. The latter are typically | output syntactic form of output goal
ones of less interest to the user of the system, and corre{ preconditions | ... for method to be applicable
spondingly harder to keep track of. We would prefer these | effects ... of applying tactic
to be taken care of automatically so that we can concentratq tactic program specified by method

on the “interesting” proof steps. For example, let us con-
sider a Prolog tactic to configure a device, shown in Fig-
ure 1. The arguments a@bnfigure-devicare the device to
be configured, an interface chanréC), and the configu-

ration (C) n which thgse oceur. . configuration, as opposed to the “engineer view”, which is

To configure a.de.vlce, we need a caple for it, we need to‘modelled” by actually executing the tactic. This makes de-
connect the dev.|cma the pable to thg Interface,'and the veloping good explanation facilities a realistic possibility.
wh'ole construction—the mterfa(.:e with the deV'Ce'c"’lbleThis is not true of rule- or constraint-based systems which
pair—must be well formed._ In Figure Tonnect-cable3 work at a low level, where the search space is more com-
ensures a cz_iblepnnected-w,ée ta_kes care of the connec- plex and reasons for the choices made may not be readily
tion via the interface, andype/2 is the well-formedness apparent.

check. More importantly from the point of view of maintenance

Reasoning at the level of the tactic facilitates the Seard&onsiderations the use of methods gives an explicit place

for an acceptable solution whilst ensuring that any such S%or us to write control information. For example, the fact

lutions found will be_IegaI; .that 1S, they ensure the Sound'that the tactic to configure an interface channel in a card

ness of the automatic configuration system. cage should only be run if there are spare card cage slots
belongs in the preconditions of tkenfigure-devicenethod.

2 4. Methods The fact that a card cage should not be configured if there

are completely empty card cages already present in the con-
A method is a specification for a tactic. Figure 2 shows thefiguration finds its place in @onfigure-comethod.
general structure of a method.

Methods have slots for method nanieput, which the
input goal must matcigreconditionswhich are conditions 2.5. Proof plans
which must be true of the input if the method is to be ap- i i )
plicable;output which will match the rewritten input goal N the context of configuration, we can think of proof plans
if the method is appliedeffects which are conditions on @S the_ expressions of meta-l_evel strategies. The aimin proof
this output goal if the method is applied; and the specifiecP'a_””'”g is to find a plan_ tailor-made for Fhe specification
tactic: the program to be applied to the goal at this point.Wh'Ch will prove the particular theprem given to us of the
Figure 3 gives the method which specifies tanfigure- form of Eq.(l).Aseq.uence of appllcgble methods is found.
devicetactic we saw earlier. If this sequence, which we call@an, is executed, then ev-

In this method, the goal to be proved must have the fornfY conjunctin the specification is proved and we are guar-
configure( Device, IC, C), and the output of the method is antegq thgt aV\_/eII—fo.rmed c_onflguratlon object meeting the
nil: this applies to alterminating methodwhere no further ~ SPecification will be instantiated as a by-product.
rewriting will be necessary if the tactic is successfully ap- e can go further. High-level strategies for configura-
plied. The preconditions state, in order, that there is a delion can be developed, and encapsulated as proof plans, or
vice to be configured in C, that IC is of tyfiype and that super-methods. For example, Iet_ us con_5|d<_ar the most basic
the number of slots available of the correct type is greateptrategy for computer configuration, which is
than zero. The effect of the method is to reduce the number
of such slots by one.

One nice feature of specifying tactics by methods in this

Fig. 2. Method structure.

way is that it models the “user” or “customer view” of | Name configure-device
input configure(Device, IC, C)
output nil
preconditions | Device is a device of C
. . . and IC : Type
configure-device(Device, IC, C):- and Device needs slot of type Type
connect-cable(Device, Cable, C), and the number of slots available of type T is s(n)
connected-via(Device, IC, C), effects the number of slots available of type T is n
type([Device, Cable, IC], ) tactic configure-device(Device, IC, C)
Fig. 1. An example tactic. Fig. 3. An example method.
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1. Decide an appropriate processor from information in(specifications for tactigs and a planning mechanism to
the specification. guide inference in the system.

Examples of strategic and heuristic management knowl-
edge have been given in Section 2. We now explain the ra-
tionale behind the various design decisions that we took in
3. Attend to explicit user needs as given by the specifi-gesigning the types and object-level rules for an automated

cation. configuration system.

4. Add essential components not explicitly specified.

2. Each processor fixes a kind of “template” configura-
tion: set this upvia matching.

e . 3.2. Types
Within this strategy, we might also want to control the order

of configuration of devices, as it can be shown that sométdopting a hierarchical structure for storing knowledge
sequences aréﬂieuristica”g better than others. Super- seems |n|t|a||y attractive. However, in a field which is chang—
methods are distinguished from other methods in that thejnd rapidly (as computer technology)ishis gives rise to
call other methodéor super-method€rom within their ef- considerable problems when attempting to fit new devices
fects slots. Some methods are iterators: for example, we md§to a rigid framework. It is a common problem in artificial
want to call a method to Configure a device until there arénte”igence that initial classifications within frame-based
no devices so far left unconfigured. systems and the like break down when new objects are in-
Within the overall guidance given by this pian, there istrOduced which defy the Original classifications, or if the
sufficient flexibility to cater for a variety of specifications. information is put to a different use. This leads to rethink-
At the same time, the existence of a proof plan, which willing either the classification or the properties attached to slots
be applied if possible, means that there is not a random choic® both; or else to messy exception-handling procedures. The
of methods which could lead to legal but “unnatural” con- Problem in the computer hardware domain is that we can-
figurations being generated; moreover, backtracking in ornot predict the course that technology will take. New prod-
der to seek alternative solutions does not lead first merelyiCts might cut across existing divisions: maintenance of the

to plans which contain the same methods, but applied igystem would mean not simply updating the product data
a different order—in other words, to trivially different but also maintaining the structure. This would add an un-

solutions—but to configurations which are significantly necessary overhead onto an already onerous task. Our aim
different. was to make maintenance as straightforward as possible so
Various strategies have been developed, such as the cotfat the knowledge base part of the system could be up-
straint relaxation strategies referred to earlier. Another is thélated by people who currently maintain product infor-
strategy employed in configuring computers to comply withmation—people who do not necessarily have the expertise
cost guidelines. Here, the configuration objects referencefeeded to maintain a structure tree for the knowledge base.
by methods are annotated so as to keep a running check e wanted to avoid the situation whereby, unless all future
the approximate cost of the Configuration_ This cuts downorOdUCtS conformed to the eXiSting structure, the addition of
on much unnecessary search, as branches leading to ovéi#st one “revolutionary” component would cause problems.
expensive non-solutions are pruned early from the search. Our solution, therefore, was to adopt a fairly “flat” type
Again, this explicit representation of strategies means tha¢ystem. Individual componentgrocessors, memory mod-
we can have the benefit of efficiency whilst retaining a de-ules, terminals, disk drives, tape drives, printers, channels,
clarative, transparent system. The control knowledge doe&ables, card cages, etovere represented as atomic types.

not have to be “hard-wired” deep in the program. There are two ways in which this knowledge may be
maintained:
3. THE CLEM CONFIGURATION SYSTEM 1. New components of existing types may be adeed
old ones deleted
3.1. Implementation 2. New types are adde@nd old ones, which have no

members left, deleted
The main task addressed in designing the architecture

of the prototype computer configuration system was howThe firstis done by adding the component to the knowledge
to separate control informatiofihow to go about the con- base: the name of the component, together with its type;
figuration task, using heuristics if possiblérom the and its attributes as appropridgg., for a disk, this would
object-level knowledgdensuring that the configurations include its capacity The second arises when a nkind of
synthesized are always legal device is added. Inevitably there will be at least one mem-

This system was implemented in around 5500 lines ober of the type. Each new component, together with its type,
Quintus Prolog, and runs on a SUN workstation. It consistss added to the knowledge base in the normal way, but other
of an object-level knowledge bageomponents, attributes, information is also needed, such as how more complex terms
etc) together with heuristic knowledge, tactics, methodsmay be built up using this type.
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Other compound types used are list tyfigpically lists  solution proceed further to the execution stage. In the ex-
of objects needing to be grouped together in the configuraecution stage the system creates the product number and

tion), and pairs, which we have already seen. the final quotation document. As with CLEM, planning takes
An object of type configuration is a member of a com- place at the meta-lev@lise) view, so that the planning space
plex type, of the form is small relative to the underlying object-level search space.

processollist X memonylist X devicelist
4.2. Planning stage
X connectordist X connectiondist
The language of methods, the domain theory, and the sys-

Note that a simple interface would allow non-Al-expert peo-tem of higher level predicates facilitates creating an arbi-
ple to add domain knowledge, which can then be validatedtrary planner and thus various planning behaviors. There
although this was never implemented for this prototype. were two completely different planners implemented within
ICON in order to illustrate the generality and flexibility of
the system.

TheUser Assisted Planneravigates the user through the
Object-level rules can take the form of facts as shown inspace of possible attributes and prompts him or her for a
Section 1.3.1 and are represented by simple Prolog groundilue when necessary. It simulates the behavior of a quota-
clauses. Others can be regarded as axioms of the domaition expert in the field. An example dialogue is shown in
As an example, let us consider the rules concerning the fadtigure 4 and a quotation in Figure 5.
that, in any configuration, all interface cards must be con- The Advanced Plannecan handle partially configured
figured in a card cage. So the definition of a legal configu-solutions. In such case the system allows the user to specify
ration (or what it means foc to be a member of the type the attributes and optimization constraints he or she wish,

3.3. Object-level rules

configuration includes the conjunct and then allows the configurer to check the legality of the
solution presented and to search through the attribute space
Vchichannel 3cc.cardcage connecteebia(ch) = cc. in order to create the quotation automatically. It is notable

) ] that a first version of the Advanced Planner was imple-
In other words, for each and every interfatethere is some  ented in just a single day.

card cageec, such thathis connected viac.

4. THE ICON INDUSTRIAL CONFIGURATION 4.3. Validation stage

SYSTEM In the validation stage, the user decides whether he or she
likes the solution found. Backtracking to the planning stage
4.1. Strategy is an option. In the case of the advanced planning, the user

ICON (Pechoucek, 1998vas programmed in LPA Prolog May ask for another solution fulfilling the specification in
3.1 in the MS-Windows environment, running on a 386 pcauestion. Otherwise the program proceeds to the execution
platform or better. Ladder logic was used for formalizing St29€-

object-level knowledge about components of a compressor

and attribgtes of a solution. Proof planning methods capy 4 Execution stage

tured the inference knowledge. An ordered set of methods

was used for expressing the decision process carried out byhe system is engaged with the job of creating the product
an expert in the field. The tactics of a method were used fonumber and the final quotation document. There is a sepa-
storing the information about how to create the particularrate data base of rules about how to create a product num-

product number. ber and the open output template. All of the text is editable
Proof planning introduced three phases of inference: and can be either printed out or saved in the conventional
manner.

1. Planning stage.
2. Validation stage.

_ 4.5. Object-level formalization
3. Execution stage.

The object-level knowledge has been formalized by means
In the planning stage, a user is asked to give as much infoief ladder logic, a well-known industrial representation. This
mation as possible in order to give a direction to the searclfiormalism was chosen mainly because of its simplicity for
for possible solutions. In the validation stage, the systemmon-experts. A parsing mechanism accepts an arbitrary lad-
offers the best found solution with a complete set ofder logic expression. Consequently, the knowledge engi-
attributes. The user can either return back to the planningeer may use as complex an expression as he or she likes.
stage and redo some of his or her decisions, or else let thEhis sort of freedom is a substantial virtue of the system.
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pef320:

frame Portable, Crash
drive Digsel Engine

press 300 bar

sient no

capacity 7081 25cmf 42m
control rmanual start & stop
drainage manval start & stop

price 14473

Fig. 4. Sample ICON dialogue.

4.6. Meta-level formalization a particular branch of a subtree suits the properties of a par-
As already mentioned. the proof plannina methodolo ir]_ticularsubsolution. Unlike the CLEM case study, where the
y ' b P g YN ser inputs the full specification up front, in ICON we need

troduces a slightly unusual but very efficient meta-level . ) .
. . a user dialogue to be invoked whenever a decision between
knowledge orientation. The ordered set of methods repre: L .
components must be made. Note that this is only activated

sents, at the meta-level, the decision process in question. . . . .
S . . in cases where the domain constraints have failed to restrict
When configuring the compressor, the entire quoting pro- .
. - the choice to one.

cess can be viewed as the more or less structured ordering

of the decisions to be made. Each particular decision is rep-

resented by a single method. From the maintenance point@f TESTING

view, the virtue of proof planning at the meta-level is the

same as the virtue of the ladder logic at the factual level. I 1 cLEM

is easy to refine the method language when a new piece of

control knowledge is acquired. We have tested the prototype system CLHMwe, 1993),
The preconditions of a method are intended to record aland experimented with it over a wide variety of specifica-

actions that need to be carried out before deciding whethdions, using alternative formulation of methods, and by add-
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pcf32D
General model properties:

Four Stage Air Cooled Compressor
Frame wit Belt Dive & Guard

Safety Valves on all stages
2nd & 3rd Stage 01l & Moisture Separator

Suction Filter with snorkel on engine set
Charging Pressure Gauges

Air Purity to BS4275/DIN3188

Filtration Pressure Gauges

Hours Run Meter

High Air Temperature Switch

Low 0il Pressure Switch

Resilient Mount

Drive specification:
Power 18.5kW, Four stroke air Cooled Diesel Engine with Fuel Tank
Starting Handle and 12 volts DC Electric Start.

Specific model properties:

drive d_5409

rounds 1800

frame Portable, Crash

drive Diesel Engine

press 300 bar

capacity 7081 25cmf 42m

control manual start & stop

drainage manual start & stop

hoses 4 XXX

output 200/300 bar XXX

panel remote

connector aga

filtration rsl

portability handles XXX

contains DemisterVessel XXX
Total price is: XXXXX
Product Identification Number: pf25d8rr631hd

Fig. 5. An example product quotation.

ing new strategies. In addition, we successfully added nevecuting the plan, that is, running the corresponding tactics
component details, to test the maintainability of the object4in the sequence given by the plan. One problem with using
level knowledge of the system. planning, or any kind of meta-level reasoning, is the over-
CLEM proved capable of handling all but very patholog- head incurred. For very simple specifications, leading to
ical specifications. It could successfully employ strategiessmall systems, the overhead is not cancelled out by the sav-
for control and for taking design issues into account. Weing in execution time, when we compare the total time of
tested the maintainability of the system by adding a newplanning execution with the time taken to find a solution
processor and other components. This tested whether thesing the object-level theory unaided. However, this is not
object-level knowledge could be updated independently ofhe case when configuring large multi-user systems. In fact,
the rest of the system. Maintainability of control informa- the configurations do not have to be very large for planning
tion was tested throughout: control information tends to beo pay off (Lowe, 199®). So one empirically proven ad-
learned gradually, and we were able to incorporate such unsantage for this approach is that it is more efficient in find-
derstanding on an incremental basis, without needing to makieg the first solutions.
major changes to the rest of the system. This is not the only advantage, however. One feature which
Synthesizing a configuration in this system involves find-was thought useful was the ability to search the planning
ing a plan, which is a sequence of methods, and then exspace for alternative solutions, rather than having to ex-
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ecute each such solution before the next plan is found. lical of building such systems, and it is important that they
real life, the(humar configurer presents several solutions were found and corrected easily.

for the customer to choose from. The information provided For maintenance, a short Prolog tutorial was organized
at the planning level is sufficient for an informed choice to to explain maintenance of the knowledge base. After the tu-
be made, since this level deals with components at the righttrial session, the IT staff were asked to refine the global
level for the user: in terms of devices and attributes of wholeknowledge base in two ways:

configurations, rather than in terms of devices, cables, slots,

etc. Only when an acceptable solution has been found atthe 1. Add a new set of compressamater-coolegl.

planning level does this plaind this only need to be ex- 2. Add a new attributéweight to the set of properties.
ecuted, to give the full details of the configuration.

Thus, not only does the proof planning approach benefifl his took one of the authofsvith his expert knowledge of
system maintenance and ensure sound solutions, it also f&rolog and his own systemi20 min. The CompAir staff av-
cilitates exploration of alternative solutions. It should alsoeraged 30 min, and carried out the tasks correctly—this was
be said that testing the system was also helped by this “twosonsidered a pleasing result, considering the complexity of
stage” approach in which the most detailed information isthe tasks involved and the inexperience of the staff.
presented only on execution, making it easier to check the The system code is well structured and self-explanatory.
top-level details of the synthesized systems at the planninghe openness and flexibility of the object-level formal-
level first. ism, the language of methods, and the lower-level predi-

cates are illustrated by how fast and straightforward was
the development of the Advanced Planner. Due to substan-
5.2. ICON tial field-testing, user friendliness, easy maintainability and

ICON was warmly welcomed and well appreciated for meetnhancability, and overall system flexibility, ICON was suc-
ing all specifications in the case of User Assisted Plannef€ssfully used at CompAir Reavel and made the quotation
and for a worthwhile initiative in the case of the Advanced Process considerably easier and faster.

Planner. The knowledge base was tested and after a small

series of refinements it seemed to behave quite like the X5 RELATED AND FURTHER WORK

perts. As a test case, a set of 20 customer specifications was

used, representative enough to confirm the accuracy of th@ther logic-based approachéslein, 1996; Najmann &
configurer. We evaluated Stein, 1992, Searls & Norton, 199@cus on the object

level. We have identified two other classes of knowledge—
o How easy it was to capture the knowledge needed irheuristic and strategic—which also benefit from logical for-

the right form, and how long this took. malism and separate, explicit representation, avoiding the
 The time taken to design and implement the prototypedraditional production rule systems’ confusion of these
system. classes with their consequent maintainability problékies-
« The performance of the system, tested by its potentiaPermott, 1982 Our constructive type theory would seem
users. to have much in common with various constraint-based ap-
e How easy it would be for its users to maintain. proachegFaltings & Weigel, 1994; Sabin & Freuder, 1996;

Gelle & Weigel, 1996. The special class of constraint-

Two weeks were spent at CompAir Reavell carrying outbased reasoning in which the configuration is being gradu-
the knowledge elicitation phase. Afterwards, it took aroundally refined(see ten Teije et al., 199& akin to our approach
8 weeks for one person to completely build and design thef gradually synthesizing a configuration from a specifica-
system. Two further weeks were then spent at CompAir, intion by defining complex types, culminating with tieen-
troducing the tool to sales people, quotation and construdigurationtype, whose slots are eventually fully instantiated
tion departments, and management. with subparts.

ICON met all requirements and typically achieved per- Further refinement of our knowledge classes could
formance levels of reducin2 d work to 1 min. One addi- be sought by representing non-type constraints using a
tion requested, however, was for an explanation facility,constraint-based system, probably by implementing sys-
which was readily provided, to enhance the sales—customéems in a constraint logic programming language rather than
relationship. It was thought that, with this facility, the ser- Prolog, as hitherto. Other possibilities would be to see the
vice could be provided direct to customeia the Internet.  remaining constraints as “data type invariants” and to use
Thus, with the explanation facility, the usage of the systeniVDM-style proof obligations to maintain the integrity of the
went beyond what was originally envisaged. synthesized configuration.

A few inconsistencies were found during testing. These We have argued in this paper that proof planning can help
turned out to be easy to correct, for example a redundannhanage complex knowledge bases by separating different
attribute, some misleading vocabulary, incorporation of meakinds of knowledge, and search through large search spaces
surement units, and a couple of rule changes. These are typy means of its explicit search strategies. However, we would
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like to test this potential in more sophisticated domains, and This paper advocates the proof planning programming
by seeking new tasks within the existing domains requiringmethodology as an appropriate and convenient approach for
more sophisticated heuristics and strategies. Encapsulatirgesign, development, maintenance, and enhancement of
expert strategies presents strong challenges for any approaémowledge-based systems of this particular sort.

Another useful extension would be to allow more inter- Proof planning knowledge orientation makes the
leaving between specification and configuration, and to alknowledge-acquisition process more natural. Proof plan-
low the replaying of old plans on revised specifications. Thisning eases the development stage and thus considerably
has been more developed in ICON than in CLEM, whereshortens the time needed for implementation. Proof plan-
the complete specification had to be given at the start.  ning facilitates easy maintenance and enhancement due to

its natural knowledge orientation and natural knowledge
7 CONCLUSION formalization.
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