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This paper is concerned with the spatial dynamics of a monostable delayed age-structured

population model in a 2D lattice strip. When there exists no positive equilibrium, we prove

the global attractivity of the zero equilibrium. Otherwise, we give some sufficient conditions

to guarantee the global attractivity of the unique positive equilibrium by establishing a

series of comparison arguments. Furthermore, when those conditions do not hold, we show

that the system is uniformly persistent. Finally, the spreading speed, including the upward

convergence, is established for the model without the monotonicity of the growth function.

The linear determinacy of the spreading speed and its coincidence with the minimal wave

speed are also proved.

Key words: population model in 2D lattice strip; global attractivity; spreading speed; travel-

ling waves; linear determinacy

1 Introduction

It is well known that many species, such as mammals, exhibit distinct age stages. To study

the evolution of such populations, it is natural to take into account the age structure

which, in many situations, can influence population size and growth in a significant way.

In the past two decades, there has been great progress in modelling and investigating

dynamical behaviour of population systems with age structure. We refer to Al-Omari and

Gourley [1], Cheng et al. [3], Gourley and Kuang [8], Kyrychko et al. [13], Smith and
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Thieme [21], So et al. [22], Weng et al. [27], Weng [28] and Weng and Zhao [29] for more

information.

In [21], Smith and Thieme developed an approach to derive an age-structured popula-

tion model with two age classes (i.e. immature and mature) and fixed maturation delay.

Their approach is mainly based on the Fourier transform and the technique of integra-

tion along characteristics. Following this approach, many population models with two

age classes and fixed or distributed maturation delay have been derived. These resulting

models for the mature population are delayed nonlocal reaction–diffusion equations when

the spatial domain is continuous (see Al-Omari and Gourley [1], Gourley and Kuang [8],

So et al. [22] and Weng and Zhao [29]) or delayed lattice differential systems with global

interaction when the spatial domain consists of discrete patches (see Cheng et al. [3],

Kyrychko et al. [13], and Weng et al. [27]).

More recently, Weng [28] derived a population model in a two-dimensional (2D) lattice

strip with two age classes and maturation delay. We sketch the outline of the derivation to

illustrate the Smith–Thieme’s approach. Consider a single species population distributed

over a 2D lattice strip (i, j) ∈ Ω := [1, N]� × �, where [1, N]� := {1, . . . , N} and N is a

positive integer. Let v(i, j, t, a) denote the density of the population on the (i, j)-th patch

and at time t � 0 with age a � 0. Assuming that the spatial diffusion occurs only at the

nearest neighbourhood along the horizontal and vertical directions, and is proportional

to the difference of the densities of the population at adjacent patches, u is governed by

{ ∂v(i,j,t,a)
∂t

+ ∂v(i,j,t,a)
∂a

= D(a)Δv(i, j, t, a) − d(a)v(i, j, t, a)

v(0, j, t, a) = v(1, j, t, a), v(N, j, t, a) = v(N + 1, j, t, a),
(1.1)

where i ∈ [1, N]�, j ∈ �, t > 0, a � 0, D(a) and d(a) are the age-dependent diffusion rate

and death rate, respectively, and

Δv(i, j, t, a) = v(i+ 1, j, t, a) + v(i− 1, j, t, a)

+ v(i, j + 1, t, a) + v(i, j − 1, t, a) − 4v(i, j, t, a). (1.2)

Note that, in equation (1.1), a boundary value condition is imposed to restrict the move-

ment of individuals on the boundary of the strip.

If τ � 0 is the maturation time for the species, then the total matured population at

location (i, j) and time t is given by

u(i, j, t) =

∫ ∞

τ

v(i, j, t, a) da,

and satisfies, under the biologically realistic assumption v(i, j, t,∞) = 0, that

du(i, j, t)

dt
= v(i, j, t, τ) +

∫ ∞

τ

[
D(a)Δv(i, j, t, a) − d(a)v(i, j, t, a)

]
da. (1.3)

To proceed further, we assume that the diffusion and death rates for the mature population

are age independent, i.e. D(a) = Dm and d(a) = dm for a � τ, where Dm and dm are
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constants. Then, it follows from equation (1.3) that

du(i, j, t)

dt
= DmΔu(i, j, t) − dmu(i, j, t) + v(i, j, t, τ). (1.4)

To obtain a closed system for u(i, j, t), we need to evaluate v(i, j, t, τ) : the maturation

rate at location (i, j) and time t. Assume that only the matured individuals can reproduce.

Then, v(i, j, t, 0) = b(u(i, j, t)), where b(·) is the birth function. Applying the discrete Fourier

transform and the technique of integration along characteristics, they derived

v(i, j, t, τ) = μ

N∑
i1=1

+∞∑
j1=−∞

G(i, i1, j, j1, α)b
(
u(i1, j1, t− τ)

)
. (1.5)

In equation (1.5), μ = exp { −
∫ τ

0 d(z) dz}, α =
∫ τ

0 D(z) dz, and

G(i, i1, j, j1, α) = G1(i, i1, α)βα(j − j1), βα(k) =
1

2π

∫ π

−π

ekωi−4α sin2 ω
2 dω,

where i is the imaginary unit, and G1(i, i1, t) is the Green function of the boundary value

problem {
dU(i,t)
dt

= U(i+ 1, t) +U(i− 1, t) − 2U(i, t), i ∈ [1, N]�, t > 0,

U(0, t) = U(1, t), U(N, t) = U(N + 1, t), t � 0.
(1.6)

Therefore, the model for the mature population finally becomes⎧⎨
⎩

du(i,j,t)
dt

= DmΔu(i, j, t) − dmu(i, j, t)

+ μ
∑N

i1=1

∑+∞
j1=−∞ G(i, i1, j, j1, α)b

(
u(i1, j1, t− τ)

)
,

u(0, j, t) = u(1, j, t), u(N, j, t) = u(N + 1, j, t).

(1.7)

It is easy to explain each term in equation (1.7) naturally. The growth rate of the mature

population at location (i, j) and time t is the balance of the spatial diffusion, the death rate

and the maturation rate. It should be mentioned that although the patches are connected

only locally through nearest neighbourhood dispersal, the mature population is governed

by a delayed lattice differential system with a global interaction term.

An important issue in population dynamics is the stability of equilibria. There have

been many significant results on the stability of equilibria for various equations defined

on bounded domains, see e.g. Al-Omari and Gourley [1], Gourley and Ruan [9], Wu and

Zhao [31] and Yang and So [33], and the references therein. However, it seems that little

has been done for this aspect of equations defined on unbounded domains. Kyrychko

et al. [13] derived a delayed stage-structured population model on an isolated lattice

and studied the stability of the positive equilibrium. Recently, Wang and Li [26] further

extended the method in Kyrychko et al. [13] to a delayed non-local reaction–diffusion

equation in �n.

Motivated by the works of Kyrychko et al. [13] and Wang and Li [26], the first purpose

of this paper is to study the stability of equilibria of equation (1.7) in a 2D lattice strip

Ω with monotone or non-monotone birth functions. We first prove the positivity and

boundedness of the solutions for the Cauchy-type problem of equation (1.7) provided
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that the initial value is non-negative and bounded. When no positive equilibrium exists,

we show that the zero equilibrium is globally attractive. Otherwise, under monostable

assumptions (see assumptions (A1) and (A3)), we give some sufficient conditions to

guarantee the global attractivity of the unique positive equilibrium by establishing a series

of comparison arguments. Finally, when those conditions do not hold, we prove that the

system is uniformly persistent by constructing a “lower” auxiliary equation. Biologically,

the persistence of a population model means that the species survive in the long term. On

the rigorous definition of persistence, we refer to Freedman and Ruan [6].

In addition to the stability of the equilibria, two other important issues are the spreading

speed and travelling wave solutions. A travelling wave solution of an evolution system

is a special solution which travels without change of shape (see Definition 4.1). It can

describe spatial spread/invasion of the species. In recent years, this topic has attracted

much attention from the mathematical and biological community and has resulted in

many significant research papers, see e.g. [3–5, 7, 8, 14–17, 19, 24, 25, 27–30, 32, 36] and the

references therein. The spreading speed is a threshold constant c∗ > 0 which gives an

important description of the long time behaviour for a population system either for

c ∈ (0, c∗) or c ∈ (c∗,∞) (see Definition 4.2). Since the introduction of this concept by

Aronson and Weinberger [2], it has been developed and applied to various of evolution

systems. See [4, 10, 16, 24, 25, 27–29] and the references therein.

When equation (1.7) has only two equilibria 0 and K > 0 and the birth function b is

non-decreasing on [0, K], Weng [28] obtained the spreading speed and its coincidence

with the minimal wave speed of monotone travelling wave solutions of equation (1.7) by

applying the theory for monotone semiflows developed by Liang and Zhao [16]. However,

the birth functions, such as logistic and Ricker type, may not be monotone in general

(see Fang and Zhao [5], Hsu and Zhao [10], Li et al. [15] and Ma [17]). When b is

not monotone in [0, K], equation (1.7) is a non-quasi-monotone system. In this case, the

solution semiflow generalized from equation (1.7) may not be monotone and Liang and

Zhao’s theory for monotone semiflows cannot be applied directly to establish the results

on the travelling waves and spreading speed.

The second purpose of this paper is to consider the spreading speed and travelling

waves for equation (1.7) with monostable nonlinearity and without the quasi-monotone

condition. To overcome the difficulty for the non-quasi-monotone equations, we shall

introduce two auxiliary quasi-monotone equations to “trap” equation (1.7). The method

has been used by many researchers for various non-monotone evolution equations, see

e.g. Fang et al. [4], Fang and Zhao [5], Hsu and Zhao [10], Li et al. [15], Ma [17],

Wang [25] and Wu and Liu [30]. Based on a comparison theorem for solutions of the

Cauchy problems of the three systems, the spreading speed c∗ is established and the

non-existence of travelling waves with speed less than c∗ is also obtained. By constructing

a profile set in a suitable Banach space via the monotone travelling waves of the auxiliary

systems and applying Schauder’s fixed-point theorem, we then establish the existence

and asymptotic behaviour of travelling waves with speed c > c∗. Finally, the existence

of travelling waves with speed c = c∗ (minimal waves for short) is obtained by using a

limiting process. It turns out that the spreading speed is linearly determinate and coincides

with the minimal wave speed of travelling waves for this class of non-quasi-monotone

delayed lattice dynamical systems.
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We would like to mention that it is not easy to obtain the upward convergence

of the spreading speed and travelling waves, as well as the downward convergence

of the minimal wave due to the non-quasi-monotone nonlinearity. We shall establish

some sufficient conditions to ensure the upward convergence of the spreading speed

by using a fluctuation method. This method was developed by Thieme and Zhao [23]

for a non-local delayed and diffusive predator-prey model and was used in [4, 5, 10]

to prove the upward convergence of the spreading speed for various non-monotone

evolution systems. The upward convergence of the travelling waves are then obtained. The

downward convergence of the minimal wave is also obtained by proving its integrability on

(−∞, 0].

The rest of the paper is organized as follows. In Section 2, we consider the positivity

and boundedness of solutions for equation (1.7). Section 3 is devoted to the stability

of the equilibria. In Section 4, we first state some known results on spreading speed

and travelling waves for equation (1.7) with monotone growth function b. Then by using

the squeezing method combined with two auxiliary systems, we obtain the minimal

wave speed and spreading speed of equation (1.7) with a non-monotone growth function,

the linear determinacy of the spreading speed as well as the coincidence in between

the minimal wave speed and spreading speed. In Section 5, we present two illustrative

examples.

2 Positivity and boundedness of solutions

Throughout this paper, we always make the following basic assumption:

(A1) b ∈ C1(�+,�), b(0) = 0, and b(u) > 0 for u > 0.

Other assumptions which will be needed later are listed as follows.

(A2) b(·) is non-decreasing on [0,+∞).

(A2)
′ There exists a number umax > 0 such that b(u) is non-decreasing for 0 < u < umax

and decreasing for u > umax.

(A3) There exists a constant K > 0 such that μb(K) = dmK , and μb(u) > dmu for

u ∈ (0, K), μb(u) < dmu for u > K .

(A3)
′ dmu > μb(u) for u > 0.

It is easy to see that if (A1) and (A3) hold, then the reaction system of equa-

tion (1.7) has an unstable equilibrium 0 and a stable equilibrium K . In this case,

equation (1.7) is a monostable system. The monostable assumptions will be needed in

studying the global attractivity of the positive equilibrium, travelling waves and spreading

speeds.

We remark that the following two specific functions

b1(u) =
pu

1 + αu
and b2(u) = pue−αu with p > 0 and α > 0,

which have been widely used in the mathematical biology literature, satisfy the conditions

(A1) and either (A2) or (A2)
′, respectively. For a wide range of parameters p, μ, α and dm,

https://doi.org/10.1017/S0956792514000333 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792514000333


66 S.-L. Wu et al.

they also satisfy either (A3) or (A3)
′. We also mention that the function b3(u) = pu2e−αu,

with p > 0 and α > 0, satisfies (A1) and (A3)
′ provided that dmae > μp.

To investigate the existence, positivity and boundedness of solutions for equation (1.7),

consider an initial value of equation (1.7):

u(i, j, s) = ϕ(i, j, s), (i, j, s) ∈ Ω × [−τ, 0]. (2.1)

For convenience, we introduce the following notation.

(1) We define

X := {φ : Ω → �| φ = {φ(i, j)}(i,j)∈Ω is bounded},
X+ := {φ ∈ X|φ(i, j) � 0 for (i, j) ∈ Ω},

A(φ)(i, j) := Δφ(i, j), ∀φ ∈ X,

T (t)[φ](i, j) := e−dmt
N∑
i1=1

+∞∑
j1=−∞

G(i, i1, j, j1, Dmt)φ(i1, j1), ∀φ ∈ X, t > 0.

Clearly, X+ is a closed cone of X under the partial ordering induced by X+.

(2) We equip X with a compact open topology, and the accompanied norm is expressed

as ‖ · ‖X . Then X is a Banach lattice, and T (t) : X → X is a linear C0-semigroup with

T (t)X+ ⊆ X+ for t > 0.

(3) Let C = C([−τ, 0], X) be the Banach space of continuous functions from [−τ, 0] into

X with the supremum norm ‖ · ‖C. For any given K̃ > 0, we define the following

spaces:

C+ := {ϕ ∈ C|ϕ(s) ∈ X+, s ∈ [−τ, 0]},
C[0,K̃] := {ϕ ∈ C|ϕ(i, j, s) ∈ [0, K̃], ∀(i, j, s) ∈ Ω × [−τ, 0]}.

Clearly, C+ is a closed (positive) cone of C.

(4) As usual, we identify an element ϕ ∈ C as a function from Ω× [−τ, 0] into � defined

by ϕ(i, j, s) = ϕ(s)(i, j). For any continuous function u : [−τ, b) → X, b > 0, we define

ut ∈ C, t ∈ [0, b) by ut(s) = u(t+ s), s ∈ [−τ, 0]. Then t → ut is a continuous function

from [0, b) to C.

(5) Define F : C → X by

F(ϕ)(i, j) := μ

N∑
i1=1

+∞∑
j1=−∞

G(i, i1, j, j1, α)b
(
ϕ(i1, j1,−τ)

)
.

Using this notation, the initial value problem for equation (1.7) can be rewritten as{
u′(t) = DmAu− dmu(t) + F(ut), t > 0,

u0 = ϕ ∈ C+.
(2.2)

Since G(i, i1, j, j1, Dmt) is the Green function of the boundary value problem{
dU(i,j,t)
dt

= DmΔU(i, j, t), i ∈ [1, N]�, j ∈ �, t > 0,

U(0, j, t) = U(1, j, t), U(N, j, t) = U(N + 1, j, t), j ∈ �, t � 0,

https://doi.org/10.1017/S0956792514000333 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792514000333


Spatial dynamics of a lattice population model 67

one can see that equation (2.2) is equivalent to the integral problem (see Weng [28]):

{
u(t) = T (t)ϕ(0) +

∫ t
0
T (t− s)F(us) ds, t > 0,

u(s) = ϕ(s), s ∈ [−τ, 0].
(2.3)

Then, we have the following result on the existence, positivity and boundedness of

solutions of equation (1.7) with monotone or non-monotone birth functions.

Theorem 2.1 Under the assumption (A1), for any ϕ ∈ C+, equation (1.7) has a unique

solution u(i, j, t;ϕ) on [0,+∞) such that

0 � u(i, j, t;ϕ) � K̄ for any (i, j, t) ∈ Ω × [0,+∞), (2.4)

where M := maxs∈[−τ,,0] sup(i,j)∈Ω ϕ(i, j, s) and

K̄ :=

⎧⎨
⎩

max {μb(umax)/dm,M}, if (A2)
′ holds;

max {K,M}, if (A2) and (A3) hold;

M, if (A3)
′ hold.

(2.5)

Furthermore, if ϕ(0) ∈ IntX+, then u(t) ∈ IntX+ for t � 0 and ut ∈ IntC+ for t > τ.

Proof The existence and non-negativity of the solutions follow directly from the method

of steps, see e.g. Smith [20, Chapter 5]. We now prove that u(i, j, t;ϕ) � K̄ for any (i, j, t) ∈
Ω × [0,+∞).

If (A2)
′ holds, then for any (i, j) ∈ Ω and t > 0, we have

u(i, j, t;ϕ) = T (t)ϕ(0)(i, j) +

∫ t

0

T (t− s)F(us)(i, j) ds

� Me−dmt + μb(umax)

∫ t

0

e−dm(t−s) ds

= Me−dmt + μb(umax)(1 − e−dmt)/dm

� max {μb(umax)/dm,M}.

If (A2) and (A3) hold, we consider two subcases: M � K and M > K. If M � K , then

for any (i, j) ∈ Ω and t ∈ [0, τ], we have

u(i, j, t;ϕ) = T (t)ϕ(0)(i, j) +

∫ t

0

T (t− s)F(us)(i, j) ds

� Me−dmt + μb(M)

∫ t

0

e−dm(t−s) ds

� Ke−dmt + μb(K)(1 − e−dmt)/dm = K.

Thus, for (i, j) ∈ Ω and t ∈ [τ, 2τ], we have

u(i, j, t;ϕ) � Ke−dmt + μb(K)

∫ t

0

e−dm(t−s) ds � K.

https://doi.org/10.1017/S0956792514000333 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792514000333


68 S.-L. Wu et al.

Inductively, we can prove that u(i, j, t;ϕ) � K = max {K,M} for any (i, j, t) ∈ Ω× [0,+∞).

If M > K , then dmM > μb(M) and hence for any (i, j) ∈ Ω and t ∈ [0, τ], we have

u(i, j, t;ϕ) � Me−dmt + μb(M)(1 − e−dmt)/dm � M.

By an inductive argument, we can prove that u(i, j, t;ϕ) � M = max {K,M} for any

(i, j, t) ∈ Ω × [0,+∞).

If (A3)
′ holds, then for (i, j) ∈ Ω and s ∈ [0, τ],

F(us)(i, j) �
N∑
i1=1

+∞∑
j1=−∞

G(i, i1, j, j1, α)dmu(i1, j1, s− τ) � dmM.

Thus, for (i, j) ∈ Ω and t ∈ [0, τ], we have

u(i, j, t;ϕ) � Me−dmt + dmM

∫ t

0

e−dm(t−s)ds = M.

Inductively, we can prove that u(i, j, t;ϕ) � M for any (i, j, t) ∈ Ω × [0,+∞). Therefore,

u(i, j, t;ϕ) � K̄ for any (i, j, t) ∈ Ω × [0,+∞).

From the boundedness of solutions and the assumption b ∈ C1(�+,�), it is easy to

prove the uniqueness of the solution by using the Gronwall’s inequality. We omit it here.

If ϕ(0) ∈ IntX+, it then follows from the fact

u(i, j, t;ϕ) � T (t)ϕ(0)(i, j) � e−dmt inf
(i,j)∈Ω

ϕ(i, j, 0)

that u(t) ∈ IntX+ for t � 0 and ut ∈ IntC+ for t > τ. This completes the proof. �

3 Global attractivity

This section is devoted to the stability of the equilibria for equation (1.7). We first show

that when no positive equilibrium exists, the trivial equilibrium is globally stable regardless

of the monotonicity of the birth function b. Then, in Subsection 3.1, we shall prove the

stability of the positive equilibrium when the birth function b is non-decreasing. A similar

problem with b being non-monotone will be discussed in Subsection 3.2.

For convenience, we write

C+
δ,M := {ϕ ∈ C+ : ‖ϕ‖C � M and inf

(i,j)∈Ω
ϕ(i, j, 0) � δ}

for any given constants δ > 0 and M > 0. In the following, we also write ‖φ‖ =

sup(i,j)∈Ω |φ(i, j)| for any φ ∈ X.

Theorem 3.1 Assume that (A1) and (A3)
′ are satisfied. Then for any δ > 0 and M > 0,

limt→∞ ‖u(·, t;ϕ)‖ = 0 uniformly for ϕ ∈ C+
δ,M .
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Proof From Theorem 2.1, we have δe−dmt � u(i, j, t;ϕ) � M for any (i, j, t) ∈ Ω × [0,+∞)

and ϕ ∈ C+
δ,M . Since b(u) > 0 = b(0) for u > 0, the function b is either non-decreasing on

[0,∞) or non-monotone on [0,∞). We first consider the case where b is non-decreasing

on [0,∞). Let v(t) solve the following problem

{
dv(t)
dt

= −dmv(t) + μb(v(t− τ)), t > 0,

v(s) = M, s ∈ [−τ, 0].

Since b is non-decreasing on [0,∞), by the comparison method (see Lemma 3.2 in

Subsection 3.1), we have

0 � u(i, j, t;ϕ) � v(t) for (i, j) ∈ Ω and t � 0. (3.1)

Thus, to prove the assertion of this theorem in the monotone case, it is sufficient to show

that limt→∞ v(t) = 0. We first prove that limt→∞ v(t) exists. If this is not true, then

α =: lim sup
t→∞

v(t) > lim inf
t→∞

v(t) � 0.

Applying the Fluctuation lemma (see e.g. Wu and Zou [32, Lemma 2.2]), there exists a

sequence {tj} with tj → ∞ as j → ∞ such that limj→∞ v
′(tj) = 0 and limj→∞ v(tj) = α. Set

vj = sup{v(t) : t � tj − τ}. Then, we have

v′(tj) = −dmv(tj) + μb(v(tj − τ)) � −dmv(tj) + μb(vj).

Letting j → ∞ in the above inequality, we obtain 0 � μb(α) − dmα < 0. This contradiction

implies that limt→∞ v(t) exists. Moreover, it is easy to see that limt→∞ v(t) = 0 since

dmu > μb(u) for all u > 0.

Now, we consider the case where b is non-monotone on [0,∞). We construct a monotone

system to control the original system. Define

b+(u) := max
v∈[0,u]

b(v), u ∈ [0,∞). (3.2)

It is easy to see that b+(0) = 0, b+(u) is non-decreasing on [0,∞), b+(u) � b(u) for any

u � 0, and μb+(u) < dmu for any u > 0. Let u+(t;M) be the solution of the following

auxiliary system:

{
du+(t)
dt

= −dmu+(t) + μb+(u+(t− τ)), t > 0,

u+(s) = M, s ∈ [−τ, 0].
(3.3)

Since b+(u) is non-decreasing on [0,∞) and μb+(u) < dmu for any u > 0, from the

proof of the first case, we have limt→∞ u
+(t;M) = 0. Thus, it suffices to show that

u(i, j, t;ϕ) � u+(t;M) for (i, j) ∈ Ω and t � 0. Let

w(i, j, t) = u(i, j, t;ϕ) − u+(t;M) for (i, j) ∈ Ω and t � −τ.
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Then, w(i, j, s) � 0 for (i, j) ∈ Ω and s ∈ [−τ, 0]. Moreover, for (i, j) ∈ Ω and t ∈ (0, τ], we

have

dw(i, j, t)

dt
= DmΔw(i, j, t) − dmw(i, j, t) + μb(u(i, j, t− τ;ϕ)) − μb+(u+(t− τ))

� DmΔw(i, j, t) − dmw(i, j, t) + μb+(u(i, j, t− τ;ϕ)) − μb+(u+(t− τ))

� DmΔw(i, j, t) − dmw(i, j, t),

which implies that

w(i, j, t) � e−dmt
N∑
i1=1

+∞∑
j1=−∞

G(i, i1, j, j1, Dmt)w(i1, j1, 0) � 0.

Thus, u(i, j, t;ϕ) � u+(t;M) for (i, j) ∈ Ω and t ∈ [0, τ]. Inductively, we can prove that

u(i, j, t;ϕ) � u+(t;M) for (i, j) ∈ Ω and t � 0. This completes the proof. �

Theorem 3.1 guarantees that when no positive equilibrium exists, the trivial equilibrium

is globally stable regardless of the monotonicity of the birth function b. In the following,

we shall consider the stability of the unique positive equilibrium of equation (1.7) with

monotone or non-monotone birth function b.

3.1 Monotone birth function

Assume that the birth function is non-decreasing. We first introduce the following com-

parison lemma.

Lemma 3.2 Assume that (A1) and (A2) are satisfied. Let ū(i, j, t) and u(i, j, t) be such that

ū(i, j, s) � u(i, j, s) for all (i, j, s) ∈ Ω × [−τ, 0] and

⎧⎨
⎩

dū(i,j,t)
dt

� DmΔū(i, j, t) − dmū(i, j, t) + μ
∑N

i1=1

∑+∞
j1=−∞ G(i, i1, j, j1, α)

×b
(
ū(i1, j1, t− τ)

)
, (i, j) ∈ Ω, t > 0,

ū(0, j, t) = ū(1, j, t), ū(N, j, t) = ū(N + 1, j, t), j ∈ �, t � 0,

and ⎧⎨
⎩

du(i,j,t)
dt

� DmΔu(i, j, t) − dmu(i, j, t) + μ
∑N

i1=1

∑+∞
j1=−∞ G(i, i1, j, j1, α)

×b
(
u(i1, j1, t− τ)

)
, (i, j) ∈ Ω, t > 0,

u(0, j, t) = u(1, j, t), u(N, j, t) = u(N + 1, j, t), j ∈ �, t � 0.

Then, ū(i, j, t) � u(i, j, t) for (i, j) ∈ Ω and t > 0.

The proof of the above lemma is similar to that of Weng [28, Lemma 3.3] and is omitted.

Theorem 3.3 Assume that (A1)–(A3) are satisfied. Then for any δ > 0 and M > 0,

limt→∞ ‖u(·, t;ϕ) −K‖ = 0 uniformly for ϕ ∈ C+
δ,M .

https://doi.org/10.1017/S0956792514000333 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792514000333


Spatial dynamics of a lattice population model 71

Proof If (A3) holds, then from Theorem 2.1, we have δe−dmt � u(i, j, t;ϕ) � K̄ =

max{K,M} for any (i, j, t) ∈ Ω × [0,+∞) and ϕ ∈ C+
δ,M . Let ū(t) and u(t) solve the

following problems

{
dū(t)
dt

= −dmū(t) + μb(ū(t− τ)), t > τ,

ū(s) = K̄, s ∈ [0, τ],

and {
du(t)
dt

= −dmu(t) + μb(u(t− τ)), t > τ,

u(s) = δe−dmτ, s ∈ [0, τ],

respectively. It then follows from Lemma 3.2 that

u(t) � u(i, j, t;ϕ) � ū(t) for (i, j) ∈ Ω and t � τ. (3.4)

Moreover, using Theorem 9.1 in Kuang [12, page 159], we have

lim
t→∞

u(t) = lim
t→∞

ū(t) = K,

and hence the assertion follows. This completes the proof. �

3.2 Non-monotone birth function

In this subsection, we consider the stability of the positive equilibrium for the non-

monotone case.

We first establish the following comparison theorem for general birth functions.

Lemma 3.4 Assume that (A1) holds, and that there exists M̄ > 0 such that 0 � u−(i, j, t) �
u+(i, j, t) � M̄ for (i, j, t) ∈ Ω × [−τ,+∞) satisfying: for any function φ with u−(i, j, t) �
φ(i, j, t) � u+(i, j, t) � M̄ for (i, j, t) ∈ Ω × [−τ,∞), we have

⎧⎪⎨
⎪⎩

du+(i,j,t)
dt

� DmΔu+ − dmu
+(i, j, t) + μ

∑N
i1=1

∑+∞
j1=−∞ G(i, i1, j, j1, α)

×b
(
φ(i1, j1, t− τ)

)
, (i, j) ∈ Ω, t > 0,

u+(0, j, t) = u+(1, j, t), u+(N, j, t) = u+(N + 1, j, t), j ∈ �, t � 0,

and

⎧⎨
⎩

du−(i,j,t)
dt

� DmΔu− − dmu
−(i, j, t) + μ

∑N
i1=1

∑+∞
j1=−∞ G(i, i1, j, j1, α)

×b
(
φ(i1, j1, t− τ)

)
, (i, j) ∈ Ω, t > 0,

u−(0, j, t) = u−(1, j, t), u−(N, j, t) = u−(N + 1, j, t), j ∈ �, t � 0.

Then for any function ϕ with

u−(i, j, s) � ϕ(i, j, s) � u+(i, j, s) � M̄ for (i, j, s) ∈ Ω × [−τ, 0],
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we have

u−(i, j, t) � u(i, j, t;ϕ) � u+(i, j, t) for all (i, j) ∈ Ω and t > 0,

where u(i, j, t;ϕ) is the solution of equation (1.7) with the initial value ϕ ∈ C+, and u− and

u+ are called a pair of sub- and super-solutions of equation (1.7).

Proof Define w(i, j, t) = u+(i, j, t) − u(i, j, t;ϕ) for (i, j) ∈ Ω and t � −τ. Then it is easy to

see that

⎧⎨
⎩

dw(i,j,t)
dt

� DmΔw(i, j, t) − dmw(i, j, t) + μ
∑N

i1=1

∑+∞
j1=−∞ G(i, i1, j, j1, α)

×
[
b
(
φ(i1, j1, t− τ)

)
− b

(
u(i1, j1, t− τ)

)]
, (i, j) ∈ Ω, t > 0,

w(0, j, t) = w(1, j, t), w(N, j, t) = w(N + 1, j, t), j ∈ �, t � 0,

(3.5)

for all φ with u−(i, j, t) � φ(i, j, t) � u+(i, j, t) for (i, j, t) ∈ Ω × [−τ,+∞). Note that

u(i, j, s;ϕ) = ϕ(i, j, s) for (i, j, s) ∈ Ω × [−τ, 0]. Take φ(i, j, s) = ϕ(i, j, s) for (i, j, s) ∈
Ω × [−τ, 0]. It follows from equation (3.5) that

{
dw(i,j,t)
dt

� DmΔw(i, j, t) − dmw(i, j, t), (i, j) ∈ Ω, t ∈ (0, τ],

w(0, j, t) = w(1, j, t), w(N, j, t) = w(N + 1, j, t), j ∈ �, t � 0.
(3.6)

Recalling the definition of the operator T , equation (3.6) implies that

w(i, j, t) � T (t)w(0)(i, j) � 0, (i, j) ∈ Ω, t ∈ (0, τ].

Hence, u(i, j, t;ϕ) � u+(i, j, t) for all (i, j) ∈ Ω and t ∈ [0, τ]. Similarly, we can show that

u−(i, j, t) � u(i, j, t;ϕ) for all (i, j) ∈ Ω and t ∈ [0, τ].

Now, we choose φ to be any function between u+ and u− such that φ(i, j, t) = u(i, j, t;ϕ)

for (i, j, t) ∈ Ω × [0, τ]. Then, from equation (3.5), we have

{
dw(i,j,t)
dt

� DmΔw(i, j, t) − dmw(i, j, t), (i, j) ∈ Ω, t ∈ (τ, 2τ],

w(0, j, t) = w(1, j, t), w(N, j, t) = w(N + 1, j, t), j ∈ �, t � τ,

which implies that

w(i, j, t) � T (t)w(τ)(i, j) � 0, (i, j) ∈ Ω, t ∈ (τ, 2τ].

Hence, u(i, j, t;ϕ) � u+(i, j, t) for all (i, j) ∈ Ω and t ∈ [τ, 2τ]. Proving that u−(i, j, t) �
u(i, j, t;ϕ) for all (i, j) ∈ Ω and t ∈ [τ, 2τ] is similar.

Inductively, we can obtain u−(i, j, t) � u(i, j, t;ϕ) � u+(i, j, t) for all (i, j) ∈ Ω and t > 0.

This completes the proof. �

In the rest of this section, we always assume that (A1), (A2)
′ and (A3) hold. We shall

consider two cases: K � umax and K > umax.
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3.2.1 The case K � umax.

Theorem 3.5 Assume that (A1), (A2)
′ and (A3) are satisfied. If K � umax, then for any

δ > 0 and M > 0,

limt→∞ ‖u(·, t;ϕ) −K‖ = 0 uniformly for ϕ ∈ C+
δ,M .

Proof Take K̄ = max{M, μ
dm
b(umax)}. From Theorem 2.1, we have

δe−dmt � u(i, j, t;ϕ) � K̄ for any (i, j, t) ∈ Ω × [0,+∞) and ϕ ∈ C+
δ,M .

It is easy to see that the functions u−(i, j, t) = 0 and u+(i, j, t) = V1(t) are a pair of sub-

and super-solutions of equation (1.7), where V1(t) satisfies

{
dV1(t)
dt

= −dmV1(t) + μb(umax), t > τ,

V1(s) = K̄, s ∈ [0, τ].
(3.7)

By Lemma 3.4, we have 0 � u(i, j, t;ϕ) � V1(t) for (i, j, t) ∈ Ω × [0,+∞). Thus,

lim sup
t→∞

sup
(i,j)∈Ω

u(i, j, t;ϕ) � lim
t→∞

V1(t) =
μ

dm
b(umax). (3.8)

In the case where K < umax, we have K � μ
dm
b(umax) < umax. Thus, there exists T > 0

such that

u(i, j, t;ϕ) � V1(t) �
1

2

[ μ
dm
b(umax) + umax

]
< umax

for (i, j) ∈ Ω and t � T . Note that the function b(u) is non-decreasing for u ∈ [0, umax].

Similar to the proof of Theorem 3.3, we can show that limt→∞ ‖u(·, t;ϕ)−K‖ = 0 uniformly

for ϕ ∈ C+
δ,M .

We now consider the case when K = umax. Let b+(·) be defined as in equation (3.2) and

u+(t;M) be the solution of equation (3.3). By Theorem 9.1 in Kuang [12, page 159], we

have limt→∞ u
+(t;M) = K. Then, for any ε ∈ (0, 1), there exists t1 > 0 such that

u(i, j, t;ϕ) � u+(t;M) < K + ε for any t � t1, ϕ ∈ C+
δ,M.

Define

b−
ε (u) = min{b(u), b(K + ε)}, u ∈ [0, K + ε].

It is clear that b−
ε (u) is non-decreasing on [0, K + ε] and μb−

ε (u) = dmu admits a unique

positive solution Kε. Moreover,

0 < K −Kε =
μ

dm

[
b(K) − b−

ε (Kε)
]

=
μ

dm

[
b(K) − b(K + ε)

]
� κε,

where κ := μ
dm

maxu∈[0,K+1] |b′(u)|. Let u−(t) be the solution of the following problem:

{
du−(t)
dt

= −dmu−(t) + μb−
ε (u−(t− τ)), t > t1 + τ,

u−(s) = δe−dm(t1+τ), s ∈ [t1, t1 + τ].
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Note that K + ε > u(i, j, s;ϕ) � δe−dm(t1+τ) = u−(s) for any s ∈ [t1, t1 + τ], (i, j) ∈ Ω and

ϕ ∈ C+
δ,M . Similar to the proof of Theorem 3.1, we can easily prove that

u−(t) � u(i, j, t;ϕ) < K + ε for any t � t1 and (i, j) ∈ Ω.

Since Kε < K+ ε, it is easy to show that limt→∞ u
−(t) = Kε by the similar method used in

the previous paragraph. Then there exists t2 > t1 such that u−(t) > Kε − ε � K − (κ+ 1)ε

for any t � t2 and (i, j) ∈ Ω. Therefore,

K − (κ+ 1)ε < u(i, j, t;ϕ) < K + ε for any t � t2, (i, j) ∈ Ω and ϕ ∈ C+
δ,M .

This completes the proof. �

3.2.2 The case K > umax.

To obtain the global attractivity of K in this case, we further impose the following

assumptions.

(Q) ub(u) is strictly increasing in u ∈
(
0, μ

dm
b(umax)

]
.

(Q)′ μ
dm
b(u)

{
< 2K − u, if u ∈ [umax, K),

� 2K − u, if u ∈ [K, 2K].

Theorem 3.6 Assume that (A1), (A2)
′ and (A3) hold and K > umax. Assume further that

μ

dm
b
(
μb(umax)/dm

)
> umax and (Q) or (Q)′ holds. (3.9)

Then, for any δ > 0 and M > 0,

limt→∞ ‖u(·, t;ϕ) −K‖ = 0 uniformly for ϕ ∈ C+
δ,M .

Proof Let V1(t) be the solution of the problem of equation (3.7) and v1(t) be the solution

of the following problem

{
dv1(t)
dt

= −dmv1(t) + μmin {b(v1(t− τ)), b(V1(t− τ))}, t > τ,

v1(s) = δe−dmτ, s ∈ [0, τ].
(3.10)

Since b(umax) � b(u) for all u � 0, we have

V1(τ) � v1(τ) and
dV1(t)

dt
+ dmV1(t) �

dv1(t)

dt
+ dmv1(t), t > τ.

It is easy to prove that 0 < v1(t) � V1(t) for all t > τ. Moreover, it is not difficult to verify

that v1 and V1 are a pair of sub- and super-solutions of equation (1.7). Thus, we have

0 < v1(t) � u(i, j, t;ϕ) � V1(t) (3.11)
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for any (i, j, t) ∈ Ω × [0,+∞) and ϕ ∈ C+
δ,M . Similar to the proof of [26, Theorem 3.3], we

can prove that

lim
t→∞

v1(t) =
μ

dm
b
(
μb(umax)/dm

)
.

By our assumptions, there exists T2 > 0 such that

umax <
1

2

[ μ
dm
b
(
μb(umax)/dm

)
+ umax

]
� v1(t) � u(i, j, t;ϕ) � V1(t)

for any (i, j, t) ∈ Ω × [T2,+∞) and ϕ ∈ C+
δ,M . Let

δ1 =
1

2

[ μ
dm
b
(
μb(umax)/dm

)
+ umax

]
.

We now construct a sequence of pairs of sub- and super-solutions of equation (1.7):

⎧⎨
⎩

dvn(t)
dt

= −dmvn(t) + μb(Vn−1(t− τ)), t > T2 + τ,
dVn(t)
dt

= −dmVn(t) + μb(vn−1(t− τ)), t > T2 + τ,

vn(s) = δ1, Vn(s) = K̄, s ∈ [T2, T2 + τ],

where K̄ is given by Theorem 2.1. Using Lemma 3.4 and a similar argument to that in

Wang and Li [26, Theorem 3.3] and Kyrychko et al. [13, Theorem 5.3], we can show that

v1(t) � · · · � vn−1(t) � vn(t) < K, u(i, j, t;ϕ)

< Vn(t) � Vn+1(t) � · · · � V1(t) (3.12)

for t > T2 + τ.

By an inductive argument, limt→∞ vn(t) and limt→∞ Vn(t) exist. Set v∗
n = limt→∞ vn(t) and

V ∗
n = limt→∞ Vn(t). Then,

μb(V ∗
n−1) = dmv

∗
n and μb(v∗

n−1) = dmV
∗
n .

Define v∗ = limn→∞ v
∗
n and V ∗

n = limn→∞ V
∗
n . Then we have

μb(V ∗) = dmv
∗ and μb(v∗) = dmV

∗.

Suppose that (Q) holds. Since limt→∞ V1(t) = μ
dm
b(umax), we have v∗ � K � V ∗ �

μ
dm
b(umax). Note that μV ∗b(V ∗) = dmv

∗V ∗ = μv∗b(v∗). Then it must be v∗ = K = V ∗.

On the other hand, if (Q)′ holds, consider two curves U = μ
dm
b(u) and u = μ

dm
b(U) in

the (u,U)-plane. Conditions (A2)
′, (A3) and (Q)′ imply that

μ
dm
b(u) < 2K − u for u ∈ [0, K), and μ

dm
b(u) � 2K − u for u ∈ [K,+∞).

Since the curve u = μ
dm
b(U) is the reflection of the curve U = μ

dm
b(u) about the line U = u

and the line U = 2K − u is symmetric with respect to the line U = u, the two curves

u = μ
dm
b(U) and U = μ

dm
b(u) have only one positive intersection point (K,K). Hence, we

have v∗ = K = V ∗. It then follows from equation (3.12) that limt→∞ ‖u(·, t;ϕ) − K‖ = 0

uniformly for ϕ ∈ C+
δ,M . This completes the proof. �
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When K > umax, if the condition (3.9) does not hold, then we can prove that system

(1.7) is uniformly persistent. For convenience, we define

b(u) =

{
minv∈[u,K0] b(v), u ∈

[
0, K0

]
,

b(u), u > K0,

where K0 = μ
dm
b
(
umax

)
+1. It is clear that there exists K∗ ∈ (0, K) such that μb(K∗) = dmK∗,

μb(u) > dmu for u ∈ (0, K∗) and μb(u) < dmu for u > K∗. Moreover, b(u) � b(u) for all

u � 0.

Theorem 3.7 Assume that (A1), (A2)
′ and (A3) hold and K > umax. Then, for any ϕ ∈ C+

with inf(i,j)∈Ω ϕ(i, j, 0) > 0,

K∗ � lim inf
t→∞

inf
(i,j)∈Ω

u(i, j, t;ϕ) � lim sup
t→∞

sup
(i,j)∈Ω

u(i, j, t;ϕ) �
μ

dm
b
(
umax).

Proof Let V0(t) and v0(t) be the solutions of the following problems:

{
dV0(t)
dt

= −dmV0(t) + μb(umax), t > τ,

V0(s) = max
{
μb(umax)/dm, sup(i,j,r)∈Ω×[−τ,0] ϕ(i, j, r)

}
, s ∈ [0, τ],

and

{
dv0(t)
dt

= −dmv0(t) + μmin {b(v0(t− τ)), b(V0(t− τ))}, t > τ,

v0(s) = min {K∗, e
−dmτ inf(i,j)∈Ω ϕ(i, j, 0)}, s ∈ [0, τ],

respectively. We can verify that v0 and V0 are a pair of sub- and super-solutions of

equation (1.7) and it follows from Theorem 2.1 that v0(t) � u(i, j, t;ϕ) � V0(t) for (i, j, t) ∈
Ω × [0, τ]. Using Lemma 3.4, we obtain

v0(t) � u(i, j, t;ϕ) � V0(t) for (i, j, t) ∈ Ω × [τ,∞). (3.13)

It is clear that limt→∞ V0(t) = μb(umax)/dm. To prove the assertion of this theorem, it

suffices to show that lim inf t→∞ v0(t) � K∗. From equation (3.13), there exists T3 > 0 such

that 0 < v0(t) � μb(umax)/dm + 1
2

for t � T3. Consider the following problem:

{
dṽ(t)
dt

= −dmṽ(t) + μb(ṽ(t− τ)), t > T3 + τ,

ṽ(s) = min {K∗, mint∈[T3 ,T3+τ] v0(t)}, s ∈ [T3, T3 + τ].

Noting that b(u) � b(u) for all u � 0 and b(u) is non-decreasing on [0, K0], it is easy to

show that

limt→∞ ṽ(t) = K∗ and v0(t) � ṽ(t) for t > T3 + τ.

Thus, lim inf t→∞ v0(t) � K∗. This completes the proof. �
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4 Travelling waves and spreading speed

In this section, we consider the travelling waves and spreading speed. In addition to (A1)

and (A3), we also need the following strictly sublinear assumption:

(B1) b
′′(0) exists and b(γu) > γb(u) for γ ∈ (0, 1) and u ∈ (0,+∞).

From (B1), we see that b(u) � b′(0)u for all u � 0. Furthermore, this fact together with

the assumption (A3) implies that μb′(0) � μb(K
2
) 2
K
> dm.

4.1 Preliminaries

We first state some results on spreading speed and travelling waves for equation (1.7) with

a monotone growth function b:

(B2) b
′(u) � 0 for all u ∈ [0, K].

The definitions of the spreading speed and travelling waves of equation (1.7) are de-

scribed as follows, see e.g. [4, 16, 24].

Definition 4.1 A travelling wave solution of equation (1.7) refers to a solution with the form

u(i, j, t) = Φi(j+ct), (i, j) ∈ Ω, where c > 0 is the wave speed. Moreover, we say that cm > 0

is the minimal wave speed if system (1.7) has a travelling wave with speed c if and only if

its speed c � cm.

Definition 4.2 A function u : Ω × �+ → �+ is said to have a spreading speed c∗ > 0 if

there exists a constant ε > 0 such that

lim
t→∞,|j|�tc

u(i, j, t) = 0 for all c > c∗, and lim
t→∞,|j|�tc

u(i, j, t) � ε for any c ∈ (0, c∗).

All these limits are uniformly for i ∈ [1, N]�.

According to Definition 4.2, we see that c∗ and ε depend on the function u. However, if

all solutions of a system with initial functions having compact supports share the same

c∗ and ε, then we call such c∗ the spreading speed of the system.

For the sake of simplicity, we write 0 = (0, . . . , 0) ∈ �N and K = (K, . . . , K) ∈ �N .

Letting ξ = j+ct, then the profile function of the travelling wave solution of equation (1.7)

is Φ(ξ) = (Φ1(ξ), . . . , ΦN(ξ)). It is obvious that the profile function Φ(ξ) of the travelling

wave solution satisfies the following equation:

⎧⎪⎪⎨
⎪⎪⎩
cΦ′

i(ξ) = Dm[Φi+1(ξ) + Φi−1(ξ) − 2Φi(ξ)]

+Dm[Φi(ξ + 1) + Φi(ξ − 1) − 2Φi(ξ)] − dmΦi(ξ)

+ μ
∑N

i1=1

∑+∞
j1=−∞ G1(i, i1, α)βα(j1)b

(
Φi1 (ξ − j1 − cτ)

)
,

Φ0(ξ) = Φ1(ξ), ΦN(ξ) = ΦN+1(ξ).

(4.1)

Since
∑+∞

j1=−∞ βα(j1)e
−λj1 = e2α(cosh λ−1) (see Weng [28, Lemma 2.1]), it is clear that the

characteristic problem for equation (4.1) with respect to the trivial equilibrium can be
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represented by

⎧⎪⎪⎨
⎪⎪⎩
M(λ)vi = Dm[vi+1 + vi−1 − 2vi] + [2Dm(cosh λ− 1) − dm]vi

+ μb′(0)e−M(λ)τe2α(cosh λ−1)
∑N

i1=1 G1(i, i1, α)vi1 ,

i ∈ [1, N]�, λ ∈ �,
v0 = v1, vN = vN+1.

(4.2)

From Weng [28], we know that equation (4.2) has a positive principal eigenvalue M(λ)

with strictly positive eigenfunction v(λ) = {vi(λ)}i∈[1,N]� . Moreover, there exist c∗ > 0 and

λ∗ > 0 such that

c∗ =
M(λ∗)

λ∗
= inf

λ>0

M(λ)

λ
, (4.3)

and for any c > c∗, there exists a unique λ1 := λ1(c) ∈ (0, λ∗) such that M(λ1) = cλ1, and

M(λ) < cλ for any λ ∈ (λ1, λ∗).

Under the assumptions (A1), (A3), (B1) and (B2), Weng [28] showed that the number c∗
is the minimal wave speed of monotone travelling waves connecting 0 and K as well as the

spreading speed of equation (1.7) by employing Liang and Zhao’s theory for monotone

semiflows (see Liang and Zhao [16]). In fact, using the technique of monotone iteration

schemes coupled with the method of sub-super solutions, one can further obtain the

asymptotic behaviour of the wave tail for travelling wave fronts as c > c∗. The following

result summarizes the above stated results which will be used in the coming subsections

for proving the existence and asymptotic behaviour of the travelling wave solutions.

Proposition 4.3 ([28, Theoerems 5.2–5.3]) Assume that (A1), (A3), (B1) and (B2) are satis-

fied. Then the following statements hold.

(1) For each c > c∗, system (1.7) has a non-increasing travelling wave solution Φ(ξ) =

(Φ1(ξ), . . . , ΦN(ξ)), ξ = j + ct satisfying Φ(−∞) = 0 and Φ(+∞) = K. Moreover,

Φ′(ξ) � 0, lim
ξ→−∞

Φ(ξ)e−λ1(c)ξ = v(λ1(c)) and Φ(ξ) � eλ1(c)ξv(λ1(c))

for all ξ ∈ �.

(2) For any c ∈ (0, c∗), system (1.7) has no travelling wave solution Φ(ξ) connecting 0 and

K.

(3) For any c > c∗, if ϕ ∈ C[0,K] with 0 � ϕ � K , and ϕ(i, j, ·) = 0 for i ∈ [1, N]� and j

outside a bounded interval, then limt→∞,|j|�ct u(i, j, t;ϕ) = 0 uniformly for i ∈ [1, N]�.

(4) For any 0 < c < c∗, if ϕ ∈ C[0,K] with ϕ(·, 0) � 0, then limt→∞,|j|�ct u(i, j, t;ϕ) = K

uniformly for i ∈ [1, N]�.

Remark 4.4 From equations (4.2) and (4.3), it is easy to see that the spreading speed

c∗ depends on the maturation delay τ. Moreover, from equation (4.2), we can see that

M(λ) is decreasing with respect to τ on [0,∞). Thus, due to the definition of c∗, it is

a decreasing function of τ, that is, the maturation time delay will slow the spreading

speed. A similar phenomenon has been observed by some researchers for various spatially
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continuous reaction–diffusion equations with delay, see e.g. Zou [36], Li et al. [14] and

Ou and Wu [19].

In what follows, we shall extend the results in Proposition 4.3 to the case of non-

monotone growth function b. We replace the monotone condition (B2) by the following

assumption.

(B2)
′ There exist constants K± with K+ � K � K− > 0 and two continuous and piecewise

continuously differentiable functions b± : [0, K+] → �+ such that

(i) μb±(K±) = dmK
± and μb±(u) > dmu for u ∈ (0, K±);

(ii) b′(0) = (b±)′(0), (b±)′′(0) exist, b±(u) are non-decreasing on [0, K+] and

0 � b−(u) � b(u) � b+(u) � b′(0)u for u ∈ [0, K+].

According to the assumption (B2)
′, we introduce two auxiliary monotone equations to

“trap” the equation (1.7):

⎧⎨
⎩

du(i,j,t)
dt

= DmΔu(i, j, t) − dmu(i, j, t)

+ μ
∑N

i1=1

∑+∞
j1=−∞ G(i, i1, j, j1, α)b

−(
u(i1, j1, t− τ)

)
,

u(0, j, t) = u(1, j, t), u(N, j, t) = u(N + 1, j, t),

(4.4)

and ⎧⎨
⎩

du(i,j,t)
dt

= DmΔu(i, j, t) − dmu(i, j, t)

+ μ
∑N

i1=1

∑+∞
j1=−∞ G(i, i1, j, j1, α)b

+
(
u(i1, j1, t− τ)

)
,

u(0, j, t) = u(1, j, t), u(N, j, t) = u(N + 1, j, t).

(4.5)

For simplicity, we define K± = (K±, . . . , K±) ∈ �N . Note that if b is non-decreasing on

[0, K], then b± = b and K± = K . If there exists a number umax > 0 such that b(u) is non-

decreasing for 0 < u < umax and decreasing for u > umax, then b±(·) can be constructed as

follows:

b+(u) := max
v∈[0,u]

b(v) and b−(u) := min
v∈[u,K+]

b(v), u ∈ [0, K+],

where K+ = μb(umax)/dm.

In the following subsections, we always assume that (A1), (A3), (B1) and (B2)
′ are

satisfied.

4.2 Spreading speeds and non-existence of travelling waves

We shall consider the spreading speed and the non-existence of travelling waves for

equation (1.7) with non-monotone growth function b. Similar to Theorem 2.1, it is easy

to show that for any ϕ ∈ C[0,K+], equation (1.7) admits a unique solution u(i, j, t;ϕ) on

[0,+∞) such that u(i, j, s;ϕ) = ϕ(i, j, s) and 0 � u(i, j, t;ϕ) � K+ for (i, j) ∈ Ω, s ∈ [−τ, 0]

and t � 0.
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To obtain the spreading speed of equation (1.7) in the non-monotone case, we need to

establish a comparison theorem for solutions to systems (1.7), (4.5) and (4.4). Its proof is

similar to that of Zhao et al. [35, Lemma 4.2] and is omitted here.

Lemma 4.5 Assume that ϕ,ϕ+ ∈ C[0,K+] and ϕ− ∈ C[0,K−] with

ϕ−(i, j, s) � ϕ(i, j, s) � ϕ+(i, j, s) for (i, j, s) ∈ Ω × [−τ, 0].

Let u−(i, j, t;ϕ−), u(i, j, t;ϕ) and u+(i, j, t;ϕ+) be the unique solutions of systems (4.4), (1.7)

and (4.5) through ϕ−, ϕ and ϕ+, respectively. Then,

u−(i, j, t;ϕ−) � u(i, j, t;ϕ) � u+(i, j, t;ϕ+) for (i, j) ∈ Ω and t � 0.

Applying the comparison Lemma 4.5, we have the following results on the spreading

speed for system (1.7) with non-monotone growth function b.

Theorem 4.6 The following statements hold:

(1) For any c > c∗, if ϕ ∈ C[0,K+] with 0 � ϕ � K+, and ϕ(i, j, ·) = 0 for i ∈ [1, N]� and j

outside a bounded interval, then limt→∞,|j|�ct u(i, j, t;ϕ) = 0 uniformly for i ∈ [1, N]�.

(2) For any 0 < c < c∗, if ϕ ∈ C[0,K+] with ϕ(·, 0) � 0, then

K− � lim inf
t→∞,|j|�ct

u(i, j, t;ϕ) � lim sup
t→∞,|j|�ct

u(i, j, t;ϕ) � K+

uniformly for i ∈ [1, N]�. Moreover, if, in addition, one of the following holds:

(i) (A2)
′ holds and K � umax;

(ii) b(u)/u is strictly decreasing for u ∈ [K−, K+] and b(u) has the property (P) that for

any u, v ∈ [K−, K+] satisfying v � K � u, dmv � μb(u) and dmu � μb(v), we have

u = v,

then limt→∞,|j|�ct u(i, j, t;ϕ) = K uniformly for i ∈ [1, N]�.

Proof For any ϕ ∈ C[0,K+], define ϕ̃ ∈ C[0,K−] by ϕ̃(i, j, t) = min{ϕ(i, j, t), K−}. It follows

from Lemma 4.5 that

u−(i, j, t; ϕ̃) � u(i, j, t;ϕ) � u+(i, j, t;ϕ) for (i, j) ∈ Ω and t � 0.

Since b′(0) = (b±)′(0), it is clear that equation (4.2) is also the characteristic problem of

equations (4.5) and (4.4) with respect to the trivial equilibrium 0. Further, by Proposition

4.3, we see that c∗ is the spreading speed of solutions for both auxiliary quasi-monotone

systems (4.4) and (4.5), which together with the above inequalities implies that c∗ satisfies

the statement (1) and the first part of (2). That is, c∗ is the spreading speed of system

(1.7).

Now, we prove the upward convergence in the property of spreading speeds. In the

case where (i) holds, we see that b±(·) = b(·) and K± = K , and the upward convergence

follows.
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In the case where (ii) holds, we shall use a fluctuation method which was developed

by Thieme and Zhao [23] and used in [4, 5, 10] to prove the upward convergence of the

spreading speed for various non-monotone systems. Since the process is very similar, we

only sketch the outline here. Define h ∈ C(�2
+,�) by

h(u, v) =

{
minw∈[u,v] b(w), if u � v,

maxw∈[v,u] b(w), if v � u.

Clearly, h(u, v) is non-decreasing in u and non-increasing in v, and h(u, u) = b(u). For

simplicity, we denote u(i, j, t;ϕ) by u(i, j, t). For β ∈ (0, c∗), we set

V∗(β) = min
i=1,...,N

lim inf
t→∞,|j|�βt

u(i, j, t) and V ∗(β) = max
i=1,...,N

lim sup
t→∞,|j|�βt

u(i, j, t).

Then there exists a sequence {tj} ⊂ (0,∞) such that |j| � βtj , tj → ∞ as j → ∞ and

limj→∞ u(i, j, tj) = V∗(β) for some i ∈ {1, . . . , N}.
Rewrite equation (1.7) in the following way:

u(i, j, t) = e−κtu(i, j, 0) + Dm

∫ 0

−t
eκs[u(i+ 1, j, t+ s)

+ u(i− 1, j, t+ s) + u(i, j + 1, t+ s) + u(i, j − 1, t+ s)]ds

+ μ

∫ 0

−t
eκs

N∑
i1=1

+∞∑
j1=−∞

G1(i, i1, α)βα(j1)

× h
(
(u(i1, j − j1, s− τ), (u(i1, j − j1, t+ s− τ)

)
ds, (4.6)

where κ = 4Dm + dm. Let γ ∈ (β, c∗). Then, for any given s ∈ � and k ∈ �, there holds

|j − k| � γ(tj + s) when j is sufficiently large. Using Fatou’s lemma, it then follows from

equation (4.6) that

V∗(β) �
4Dm
κ
V∗(γ) +

μ

κ
h(V∗(γ), V

∗(γ)).

Set

W∗(c, γ) = inf
c<β<γ

V∗(β) and W ∗(c, γ) = sup
c<β<γ

V ∗(β).

Then, we obtain

W∗(c, γ) �
4Dm
κ
W∗(c, γ) +

μ

κ
h(W∗(c, γ),W

∗(c, γ)),

which implies that

W∗(c, γ) �
μ

dm
h(W∗(c, γ),W

∗(c, γ)). (4.7)

Similarly, we have

W ∗(c, γ) �
μ

dm
h(W ∗(c, γ),W∗(c, γ)). (4.8)

By the definition of function h, we can find u, v ∈ [W∗(c, γ),W
∗(c, γ)] ⊂ [K−, K+] such
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that

h(W∗(c, γ),W
∗(c, γ)) = b(u) and h(W ∗(c, γ),W∗(c, γ)) = b(v).

Hence,

μ

dm
b(u) � W∗(c, γ) � u, v � W ∗(c, γ) �

μ

dm
b(v), (4.9)

which yields that

μ

dm

b(u)

u
� 1 =

μ

dm

b(K)

K
�

μ

dm

b(v)

v
.

This, together with the strict monotonicity of b(u)/u on [K−, K+], implies that v � K � u.

By equation (4.9) and the property (P), we obtain u = v. Hence, u = v = K . It then follows

from equation (4.9) that W∗(c, γ) = W ∗(c, γ) = u = v = K . Consequently,

K = W∗(c, γ) � V∗(γ) � V ∗(γ) � W ∗(c, γ) = K,

which implies that limt→∞,|j|�ct u(i, j, t;ϕ) = K uniformly for i ∈ [1, N]�. This completes

the proof. �

Remark 4.7 As pointed out by Fang et al. [4], Fang and Zhao [5] and Hsu and Zhao [10],

either of the following two conditions is sufficient for (P) to hold:

(P1) ub(u) is strictly increasing for u ∈ [K−, K+], or

(P2) b(u) is non-increasing for u ∈ (K,K+] and b( μ
dm
b(u))/u is strictly decreasing for

u ∈ (0, K].

The non-existence of travelling waves is a consequence of the result on the spreading

speed. Its proof is similar to that of Thieme and Zhao [24, Theorem 3.5], see also

Wang [25, Theorem 2.1]. We omit it here.

Theorem 4.8 For any 0 < c < c∗, equation (1.7) does not admit a travelling wave solution

Φ(ξ) with lim infξ→∞ Φ(ξ) � 0 and Φ(−∞) = 0.

4.3 Existence of travelling waves

In this Subsection, we shall prove the existence of the travelling waves (Φ, c) for system

(1.7) with a non-monotone growth function b and c � c∗. For the case c > c∗, we

shall employ the Schauder’s fixed-point theorem and construct a suitable profile set in a

Banach space by using the travelling fronts of the lower auxiliary system (4.4). Such a

construction of the profile set has the merit that we can obtain the asymptotic behaviour

of the travelling waves at −∞ (see equation (4.10) below).

Note that system (4.4) has the characteristic problem (4.2). From Proposition 4.3, we

have the following result on the travelling fronts for the lower auxiliary system (4.4).
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Proposition 4.9 For any c > c∗, system (4.4) has a non-increasing travelling wave solution

Φ−
c (ξ) which satisfies Φ−

c (−∞) = 0 and Φ−
c (+∞) = K−. Moreover,

d

dξ
Φ−
c (ξ) � 0, lim

ξ→−∞
Φ−
c (ξ)e−λ1(c)ξ = v(λ1(c)) and Φ−

c (ξ) � eλ1(c)ξv(λ1(c))

for all ξ ∈ �.

Now, we state the main result in this subsection.

Theorem 4.10 For each c > c∗, equation (1.7) admits a travelling wave Φ(ξ) =

(Φ1(ξ), . . . , ΦN(ξ)) such that 0 � Φ(ξ) � K+ for ξ ∈ �, Φ(−∞) = 0,

K− � lim inf
ξ→∞

Φ(ξ) � lim sup
ξ→∞

Φ(ξ) � K+,

and

lim
ξ→−∞

Φ(ξ)e−λ1(c)ξ = v(λ1(c)). (4.10)

Moreover, if, in addition, one of the following holds:

(i) (A2)
′ holds and K � umax;

(ii) b(u)/u is strictly decreasing for u ∈ [K−, K+] and b(u) has the property (P),

then limξ→∞ Φ(ξ) = K.

Proof The proof of the first assertion is similar to those of [17, Theorem 1.1] and [10,

Theorem 3.1]. So, we only sketch the outline in the following three steps.

Step 1. Define the operator H = (H1, . . . , HN) : C(�, [0, K+]N) → C(�,�N) by

Hi[Ψ ](ξ) := Dm[ψi+1(ξ) + ψi−1(ξ) + ψi(ξ + 1) + ψi(ξ − 1)]

+ μ

N∑
i1=1

+∞∑
j1=−∞

G1(i, i1, α)βα(j1)b
(
ψi1 (ξ − j1 − cτ)

)
. (4.11)

We also define H+ and H− by replacing b with b+ and b− in equation (4.11), respect-

ively. Since b±(u) are non-decreasing for all u ∈ [0, K+], H±(·) are non-decreasing in

C(�, [0, K+]N). Furthermore, we define T = (T1, . . . , TN) : C(�, [0, K+]N) → C(�,�N)

by

Ti(Ψ )(ξ) =
1

c

∫ ξ

−∞
e− μ0

c
(ξ−s)Hi(Ψ )(s)ds, (4.12)

where μ0 = 4Dm+dm. Similarly, we define T+ and T− by replacing H with H+ and H− in

equation (4.12), respectively. It is clear that T±(Ψ ) are non-decreasing in C(�, [0, K+]N),

and

T−(Ψ ) � T (Ψ ) � T+(Ψ ) for any Ψ ∈ C(�, [0, K+]N).
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Step 2. Define Φ̃+(ξ) = (Φ̃+
1 (ξ), . . . , Φ̃+

N(ξ)) by

Φ̃+
i (ξ) = min {K+, vi(λ1(c))e

λ1(c)ξ}, i = 1, . . . , N.

Using the assumption b+(w) � b′(0)w for all w ∈ [0, K+], it is easy to show that

T+(Φ̃+)(ξ) � Φ̃+(ξ) for ξ ∈ �.

For a given λ ∈ (0, λ1(c)), let

Xλ =
{
Ψ = (ψ1, . . . , ψN) ∈ C(�,�N) : sup

ξ∈�
‖Ψ (ξ)‖e−λξ < +∞

}

with ‖ Ψ ‖λ= supξ∈� ‖Ψ (ξ)‖e−λξ. Then (Xλ, ‖ · ‖λ) is a Banach space. It is easy to see that

Φ−
c , Φ̃

+ ∈ Xλ.

Define a subset Y ⊂ Xλ by Y = {Ψ ∈ Xλ : Φ−
c � Ψ � Φ̃+}. Then, Y is a convex and

closed subset of Xλ and for any Ψ ∈ Y,

Φ−
c = T−(Φ−

c ) � T−(Ψ ) � T (Ψ ) � T+(Ψ ) � T+(Φ̃+) � Φ̃+,

which implies that T : Y → Y.

Step 3. We show that T is compact on Y. We first show that T is continuous on Y.

For any Φ = (φ1, . . . , φN), Ψ = (ψ1, . . . , ψN) ∈ Y, we have

|Hi(Φ)(ξ) −Hi(Ψ )(ξ)|e−λξ

� Dm
[
|φi+1(ξ) − ψi+1(ξ)| + |φi−1(ξ) − ψi−1(ξ)|

]
e−λξ

+ Dm
[
|φi(ξ + 1) − ψi(ξ + 1)| + |φi(ξ − 1) − ψi(ξ − 1)|

]
e−λξ

+ μ

N∑
i1=1

+∞∑
j1=−∞

G1(i, i1, α)βα(j1)

× |b
(
φi1 (ξ − j1 − cτ)

)
− b

(
ψi1 (ξ − j1 − cτ)

)
|e−λξ

� ‖Φ−Ψ‖λ
[
Dm(3 + eλ) + μL1

N∑
i1=1

+∞∑
j1=−∞

G1(i, i1, α)βα(j1)e
−λj1

]

=: L2‖Φ−Ψ‖λ, i = 1, . . . , N,

where L1 = maxu∈[0,K+] |b′(u)|, which implies that

|Ti(Φ)(ξ) − Ti(Ψ )(ξ)|e−λξ �
L2

cλ+ μ0
‖Φ−Ψ‖λ, i = 1, . . . , N.

Hence, T is continuous on Y.

Next, we show that T (Y) is compact Xλ. For any Ψ ∈ Y and ξ ∈ �, it is easy to see

that

|Hi(Ψ )(ξ)| � 4DmK
+ + μ max

u∈[0,K+]
|b(u)| =: L3, i = 1, . . . , N,

which implies that |Ti(Ψ )(ξ)| � L3/μ0, i = 1, . . . , N. Noting that

Ti(Ψ )′(ξ) = −μ0

c
Ti(Ψ )(ξ) +

1

c
Hi(Ψ )(ξ),
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we have |Ti(Ψ )′(ξ)| � 2L3/c, i = 1, . . . , N. Therefore, T (Y) is a family of uniformly

bounded and equi-continuous functions on �. Further, using the method as in Fang

et al. [4] and Hsu and Zhao [10], we can show that T (Y) is compact in Xλ.

Therefore, using the Schauder’s fixed-point theorem, we know that the operator T has

a fixed point Φ in Y which is a travelling wave solution of equation (1.7) for c > c∗. Since

0 � Φ−
c (ξ) � Φ(ξ) � Φ̃+(ξ) for ξ ∈ �, it is easy to see that 0 � Φ(ξ) � K+ for ξ ∈ �.

Moreover, Φ(−∞) = 0, limξ→−∞ Φ(ξ)e−λ1(c)ξ = v(λ1(c)), and

K− � lim inf
ξ→∞

Φ(ξ) � lim sup
ξ→∞

Φ(ξ) � K+.

When (A2)
′
holds and K � umax, b

±(·) = b(·) and K± = K. Hence limξ→∞ Φ(ξ) = K. In

the case where (ii) holds, by using the upward convergence in the property of spreading

speeds, the proof of the limit limξ→∞ Φ(ξ) = K is very similar to that of [10, Theorem

2.3], see also [4, Theorem 4.1]. We omit it here. This completes the proof. �

Using a limiting process, we can obtain the existence of travelling waves Φ∗ with the

minimal wave speed c∗. Moreover, we can show that Φ∗(−∞) = 0 and give some sufficient

conditions to ensure the upward convergence of the minimal wave. In fact, we have the

following result.

Theorem 4.11 For c = c∗, equation (1.7) admits a nonconstant travelling wave solution Φ∗ =

(Φ∗
1, . . . , Φ

∗
N) such that Φ∗(−∞) = 0 and

K− � lim inf
ξ→∞

Φ∗(ξ) � lim sup
ξ→∞

Φ∗(ξ) � K+. (4.13)

Moreover, if, in addition, one of the following holds:

(i) (A2)
′ holds and K � umax;

(ii) b(u)/u is strictly decreasing for u ∈ [K−, K+] and b(u) has the property (P);

then limξ→∞ Φ(ξ) = K.

Proof Since
∑+∞

j1=−∞ βα(j1) = 1 and μb′(0) > dm, there exists M1 > 0 such that

b′(0)μ+ dm

2

∑
|j1|�M1

βα(j1) − dm > 0.

In addition, there exists δ0 > 0 such that

b(u) � b′(0)+dm/μ
2

u =: ρ1u for all u ∈ [0, δ0].

We first show that for any vector σ ∈ �N with σ � 0, equation (1.7) admits a

nonconstant travelling wave solution Φ∗ = (Φ∗
1, . . . , Φ

∗
N) such that 0 � Φ∗(ξ) � K+ for

ξ ∈ �, and Φ∗(ξ) � σ for ξ � M1. Choosing a sequence {cj} ⊂ (c∗,+∞) such that

limj→∞ cj = c∗. According to Theorem 4.10, there exists a travelling wave (Φ(j), cj) of
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equation (1.7) for each j such that

K− � lim inf
ξ→∞

Φ(j)(ξ) � lim sup
ξ→∞

Φ(j)(ξ) � K+.

Given any vector σ ∈ �N with σ � 0. Since Φ(j)(ξ + h), h ∈ �, is also such a solution,

Φ(j)(−∞) = 0, we can assume that Φ(j)(ξ) � σ for ξ � M1. Similar to the proof of

Theorem 4.10, we can prove that {Φ(j)(ξ)}∞
j=1 is an equi-continuous and uniformly bounded

sequence of functions on �. By Arzera–Ascoli’s theorem and a nested subsequence

argument, there exists a subsequence of {cj}, still denoted by {cj}, such that Φ(j)(ξ)

converges uniformly on every bounded interval, and hence pointwise on � to a function

Φ∗(ξ) := (Φ∗
1(ξ), . . . , Φ

∗
N(ξ)). Note that Φ(j)(ξ) = T (Φ(j))(ξ), ξ ∈ �, where

Ti(Φ
(j))(ξ) =

1

c

∫ ξ

−∞
e− μ0

c
(ξ−s)Hi(Φ

(j))(s)ds, i = 1, . . . , N.

Letting j → ∞ in the above equation and using the dominated convergence theorem,

we get Φ∗(ξ) = T (Φ∗)(ξ), ξ ∈ �, Φ∗(ξ) � σ for ξ � M1, and K− � lim infξ→∞ Φ
∗(ξ) �

lim supξ→∞ Φ
∗(ξ) � K+.

Next, we show that Φ∗(−∞) = 0. It suffices to show that Φ∗(−∞) exists. We first prove

that ∫ 0

−∞
Φ∗
i (ξ)dξ < +∞, i = 1, . . . , N.

Note that Φ∗(ξ) � σ for any ξ � M1. Choose σ � 0 with ‖σ‖ � δ0. Then, for any

i ∈ {1, . . . , N}, ξ � 0 and |j1| � M1, Φ
∗
i (ξ− j1 − cτ) � δ0, and hence for any ξ � 0, we have

N∑
i=1

N∑
i1=1

+∞∑
j1=−∞

G1(i, i1, α)βα(j1)b
(
Φ∗
i1
(ξ − j1 − cτ)

)

�
N∑
i=1

N∑
i1=1

∑
|j1|�M1

G1(i, i1, α)βα(j1)b
(
Φ∗
i1
(ξ − j1 − cτ)

)

� ρ1

N∑
i=1

N∑
i1=1

∑
|j1|�M1

G1(i, i1, α)βα(j1)[Φ
∗
i1
(ξ − j1 − cτ) − Φ∗

i1
(ξ)]

+ ρ1

N∑
i=1

N∑
i1=1

∑
|j1|�M1

G1(i, i1, α)βα(j1)Φ
∗
i1
(ξ)

= ρ1

N∑
i=1

N∑
i1=1

∑
|j1|�M1

G1(i, i1, α)βα(j1)[Φ
∗
i1
(ξ − j1 − cτ) − Φ∗

i1
(ξ)]

+ ρ1

N∑
i=1

∑
|j1|�M1

βα(j1)Φ
∗
i (ξ).
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It follows from equation (4.1) that

c

N∑
i=1

d

dξ
Φ∗
i (ξ) � Dm

N∑
i=1

[Φ∗
i+1(ξ) + Φ∗

i−1(ξ) − 2Φ∗
i (ξ)]

+ Dm

N∑
i=1

[Φ∗
i (ξ + 1) + Φ∗

i (ξ − 1) − 2Φ∗
i (ξ)] − dm

N∑
i=1

Φ∗
i (ξ)

+ μρ1

N∑
i=1

N∑
i1=1

∑
|j1|�M1

G1(i, i1, α)βα(j1)[Φ
∗
i1
(ξ − j1 − cτ) − Φ∗

i1
(ξ)]

+ μρ1

N∑
i=1

∑
|j1|�M1

βα(j1)Φ
∗
i (ξ)

= Dm

N∑
i=1

[Φ∗
i (ξ + 1) + Φ∗

i (ξ − 1) − 2Φ∗
i (ξ)]

+ μρ1

N∑
i=1

N∑
i1=1

∑
|j1|�M1

G1(i, i1, α)βα(j1)[Φ
∗
i1
(ξ − j1 − cτ) − Φ∗

i1
(ξ)]

+

N∑
i=1

[
μρ1

∑
|j1|�M1

βα(j1) − dm

]
Φ∗
i (ξ). (4.14)

Define ρ2 = μρ1

∑
|j1|�M1

βα(j1) − dm > 0. Integrating (4.14) over [y, 0], we obtain

c

N∑
i=1

[Φ∗
i (0) − Φ∗

i (y)]

� Dm

N∑
i=1

∫ 0

y

[Φ∗
i (ξ + 1) + Φ∗

i (ξ − 1) − 2Φ∗
i (ξ)]dξ + ρ2

N∑
i=1

∫ 0

y

Φ∗
i (ξ) dξ

+ μρ1

N∑
i=1

N∑
i1=1

∑
|j1|�M1

G1(i, i1, α)βα(j1)

∫ 0

y

[Φ∗
i1
(ξ − j1 − cτ) − Φ∗

i1
(ξ)] dξ. (4.15)

Direct computation shows that

∣∣∣ ∫ 0

y

[Φ∗
i (ξ + 1) + Φ∗

i (ξ − 1) − 2Φ∗
i (ξ)] dξ

∣∣∣
=

∣∣∣ ∫ 1

0

Φ∗
i (ξ)dξ −

∫ 0

−1

Φ∗
i (ξ)dξ −

∫ y+1

y

Φ∗
i (ξ)dξ +

∫ y

y−1

Φ∗
i (ξ) dξ

∣∣∣ � 4K+,

and

∣∣∣ N∑
i=1

N∑
i1=1

∑
|j1|�M1

G1(i, i1, α)βα(j1)

∫ 0

y

[Φ∗
i1
(ξ − j1 − cτ) − Φ∗

i1
(ξ)] dξ

∣∣∣
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=
∣∣∣ N∑
i=1

N∑
i1=1

∑
|j1|�M1

G1(i, i1, α)βα(j1)

∫ 0

y

∫ 1

0

(j1 + cτ)[(Φ∗
i1
)′(ξ − (j1 + cτ)θ)dθ dξ

∣∣∣
=

∣∣∣ N∑
i=1

N∑
i1=1

∑
|j1|�M1

G1(i, i1, α)βα(j1)(j1 + cτ)

×
∫ 1

0

[Φ∗
i1
(−(j1 + cτ)θ) − Φ∗

i1
(y − (j1 + cτ)θ)] dθ

∣∣∣
� 2K+N

∑
|j1|�M1

βα(j1)(|j1| + cτ).

Therefore, from equation (4.15), we obtain that
∫ 0

y
Φ∗
i (ξ)dξ (i = 1, . . . , N) is bounded on

(−∞, 0], and hence
∫ 0

−∞ Φ
∗
i (ξ)dξ < +∞, i = 1, . . . , N. By using the uniform boundedness

of (Φ∗)′ and the proof by contradiction, it is easy to verify that Φ∗(−∞) exists. Therefore,

Φ∗(−∞) = 0.

The proof of the upward convergence Φ∗(+∞) = K is similar to that of Theorem 4.11

and omitted. This completes the proof. �

5 Discussions

In this paper, we have studied the spatial dynamics of a monostable age-structured

population model for the dynamics of growth of a single species on a 2D lattice strip with

Neumann boundary conditions. We have given some sufficient conditions for the stability

of the equilibria and the persistence of the model with monotone or non-monotone birth

functions. We have also considered the spreading speed and the traveling wave solutions,

including the upward convergence, for the model without the monotonicity of the birth

function. Our result implies that the spreading speed is linearly determinate and coincides

with the minimal wave speed of travelling waves for this class of non-quasi-monotone

lattice differential systems. Our main methods are based on the comparison argument,

the constructions of two auxiliary quasi-monotone systems, the Schauder’s fixed-point

theorem and the fluctuation method.

Now, we present illustrative examples by choosing two types of birth functions from

population biology.

First, we consider the Holling-II type function b(u) = pu
1+αu

with p, α > 0. It is clear that

this function is non-decreasing on [0,∞) and (A1) and (A2) hold. Moreover, if pμ/dm > 1,

then system (1.7) has a unique positive equilibrium K := (pμ− dm)/(dmα) and (A3) holds.

By Theorems 3.1 and 3.3, we have the following result.

Example 5.1 Let b(u) = pu
1+αu

with p, α > 0. Then, the following statements are valid:

(1) If 0 < pμ
dm

� 1, then the zero equilibrium 0 is globally attractive.

(2) If pμ
dm
> 1, the positive equilibrium K is globally attractive.

Next, we consider the Ricker type function b(u) = pue−αu with p, α > 0. Clearly, b(u) is

non-decreasing on [0, umax] while non-increasing on [umax,∞), where umax := α−1. When
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pμ/dm > 1, system (1.7) has a unique positive equilibrium K := α−1 ln pμ
dm

. Moreover, if

pμ/dm > e, then K > umax and the condition (3.9) equals to

2 ln μp
dm

− μp
dme

− 1 > 0 and pμ
dm

� e2.

It is easy to see that the above first inequality holds for e < pμ
dm

� e2. Therefore,

equation (3.9) is equivalent to e < pμ
dm

� e2. By Theorems 3.1, 3.5, 3.6 and 3.7, we have the

following result.

Example 5.2 Let b(u) = pue−αu with p, α > 0. Then, the following statements hold:

(1) If 0 < pμ
dm

� 1, then the zero equilibrium 0 is globally attractive.

(2) If 1 < pμ
dm

� e, then K � umax and the positive equilibrium K is globally attractive.

(3) If e < pμ
dm

� e2, then K > umax and the positive equilibrium K is globally attractive.

(4) If pμ
dm
> e2, then C[K∗ ,K∗] is a global attractor, where

K∗ = μ
dm
b
(
pμ
dmαe

+ 1
)

and K∗ = pμ
dmαe

.

In addition, the conclusions of Theorems 4.6, 4.10 and 4.11 are valid, that is, the spreading

speed for equation (1.7) with the Ricker type birth function is linearly determinate and

coincides with the minimal wave speed of travelling wave solutions. In particular, it is easy

to verify that (P2) holds in the case where e < pμ
dm

� e2. Hence, the upward convergence

of the spreading speed and travelling waves holds provided that 1 < pμ
dm

� e2.

We mention that the monostable assumptions are needed in studying the global at-

tractivity of the positive equilibrium, travelling waves and spreading speeds; while they

are not needed in the results on the global attractivity of the zero equilibrium. Let’s

consider equation (1.7) with the birth function b(u) = pu2e−αu with p, α > 0. Obviously,

b(u) is non-decreasing on [0, umax] and non-increasing on [umax,∞), where umax := 2/α.

Moreover,

(i) if dm >
pμ
αe

, then 0 is the only equilibrium for equation (1.7);

(i) if dm = pμ
αe

, then system (1.7) admits a unique positive equilibrium K1 and dmu > μb(u)

for any u ∈ (0, K1);

(iii) if dm <
pμ
αe

, then system (1.7) has two positive equilibria (i.e. bistable case).

It is easy to see that (A1) and (A3)
′ hold provided that dm >

pμ
αe

. From Theorem 3.1, if

dm >
pμ
αe

, then the zero equilibrium is globally attractive. However, when dm � pμ
αe

, one can

see that (A3) does not hold. Hence, for b(u) = pu2e−αu with dm � pμ
αe

, our main results

on the global attractivity of positive equilibrium, travelling waves and spreading speed

cannot be applied. We conjecture that the saddle-point behaviour may occur for the case

when dm <
pμ
αe

, see e.g. Jiang et al. [11].
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