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The transonic flow field around a supercritical airfoil is investigated. The objective of
the present paper is to enhance the understanding of the physical mechanics behind
two-dimensional transonic buffet. The paper is composed of two parts. In the first
part, a global stability analysis based on the linearized Reynolds-averaged Navier–
Stokes equations is performed. A recently developed technique, based on the direct
and adjoint unstable global modes, is used to compute the local contribution of the
flow to the growth rate and angular frequency of the unstable global mode. The results
allow us to identify which zones are directly responsible for the existence of the
instability. The technique is firstly used for the vortex-shedding cylinder mode, as a
validating case. In the second part, in order to confirm the results of the first part,
a selective frequency damping method is locally used in some regions of the flow
field. This method consists of applying a low-pass filter on selected zones of the
computational domain in order to damp the fluctuations. It allows us to identify which
zones are necessary for the persistence of the instability. The two different approaches
give the same results: the shock foot is identified as the core of the instability; the
shock and the boundary layer downstream of the shock are also necessary zones while
damping the fluctuations on the lower surface of the airfoil; and outside the boundary
layer between the shock and the trailing edge or above the supersonic zone does not
suppress the shock oscillation. A discussion on the several physical models, proposed
until now for the buffet phenomenon, and a new model are finally offered in the last
section.

Key words: shock waves

1. Introduction
Transonic buffet is a complex aerodynamic instability which can occur on an aircraft

flying at transonic speed. This phenomenon appears for a Mach number M or an
angle-of-attack α above critical values and consists of a self-sustained shock-wave
oscillation synchronized with the thickening/thinning of the detached boundary. Buffet

† Email address for correspondence: edoardo.paladini89@gmail.com
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results in lift and drag variations that greatly affect the aircraft aerodynamics and, as
such, limit the aircraft flight envelope since a margin of 30 % on the lift coefficient
at cruise conditions must be respected by design standards. Moreover, the low value
of the frequency of the shock oscillation can interact with the structural modes of
the wing. Transonic buffet was first observed by Hilton & Fowler (1947) together
with the achievement of transonic speeds by aircraft, and even if several studies have
been published since then, a complete understanding of the physics is still lacking.
More recently, two journal papers have reviewed the developments and achievements
in the understanding of this phenomenon: Lee (2001) and Giannelis, Vio & Levinski
(2017). Lee concluded his paper with a possible explanation of the transonic buffet
phenomenon, presented in the next paragraph, while Giannelis concluded that a unique
mechanism explaining the phenomenon is still lacking but also that several studies
contradict each other.

Transonic buffet is characterized by a low frequency of the shock oscillation, i.e.
the characteristic time scale of the unsteadiness is much larger than the turbulent
ones. This is the reason why simulations based on unsteady Reynolds-averaged
Navier–Stokes (URANS) equations succeeded in the reproduction of the phenomenon
(Barakos & Drikakis 2000; Brunet 2003; Deck 2005; Thierry & Coustols 2006;
Xiao, Tsai & Liu 2006; Grossi, Braza & Hoarau 2014; Sartor, Mettot & Sipp
2015; Memmolo, Bernardini & Pirozzoli 2018). Nevertheless, a turbulence model
is necessary to close the Reynolds-averaged Navier–Stokes (RANS) equations and
Thierry & Coustols (2006) have demonstrated the high sensitivity of the results
to these models. Some authors (Deck 2005; Garnier & Deck 2010; Grossi et al.
2014; Memmolo et al. 2018) have compared results from URANS calculations to
high-fidelity simulations (hybrid RANS/large eddy simulation (LES), LES) to show
that the results are consistent with each other even if the URANS approach does
not resolve medium and high-frequency unsteadiness and can have some delay in
the prediction of the buffet onset. The first model proposed to explain transonic
buffet is the bubble bursting model by Pearcey (1958) and Pearcey & Holder (1962).
In this model buffet onset appears during the burst of a separation bubble when
its expansion reaches the trailing edge (TE). Several recent studies contradict this
model. Nitzsche (2009), Crouch et al. (2009b) and Sartor et al. (2015) did not
find any relation between buffet onset and the separation bubble dynamics in their
numerical results. Another physical model explaining two-dimensional (2-D) transonic
buffet is Lee’s one (Lee 1990, figure 1a). It is the most cited self-sustained loop
model in the literature on buffet. It is based on the coupling between the shock
and the TE through pressure waves. Pressure waves are generated at the shock foot
and propagate downstream, inside the boundary layer, up to the TE where they
are diffracted, travelling back upstream to the shock outside the boundary layer. The
waves impacting the shock create new pressure waves starting again the self-sustained
closed-loop. Lee, Murty & Jiang (1994) performed an analysis of the disturbance’s
propagation through the nonlinear transonic small disturbance equation. Lee et al.
(1994) were able to reconstruct the wavefronts and rays generated by an impulse
source at the TE (see figure 1b); the paths are coherent with the earlier Lee model.
Previous investigation by Spee (1966) with a graphical method showed that the waves
generated downstream can penetrate the supersonic region upstream. Deck (2005)
validated numerically the buffet period from Lee’s model and found numerically that
the downstream pressure waves are hydrodynamic in nature while upstream waves
are acoustic. Jacquin et al. (2009) experimentally found the presence of upstream
traveling waves on the lower side of the airfoil and linked these fluctuations with a
possible alternative path of a self-sustained closed-loop.
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FIGURE 1. (a) Lee’s model of self-sustained shock oscillation (Lee 1990); (b) the
schematic of wavefronts and rays emanating from source disturbances at TE of airfoil
(Lee et al. 1994).

More recently, in a numerical study, Garnier & Deck (2010) pointed out that the
buffet period computed using Lee’s model was not in agreement with their simulation.
Hartmann, Feldhusen & Schröder (2013) and Feldhusen et al. (2014) proposed another
model which can be considered as an extension of Lee’s one. It suggests that the
shock movement is totally driven by the change of the sound pressure level of the
waves at the TE, which are in turn linked to the strength of the vortical structures
convected from the shock foot to the TE. Memmolo et al. (2018) studied the link
between the propagation of acoustic waves (both on the pressure and the suction
sides) and the low-frequency dynamics. They concluded that the buffet mechanism is
strongly localized around the shock or linked to the separation bubble dynamics.

Further explanation of the transonic buffet phenomenon comes from linear stability
analysis. Crouch, Garbaruk & Magidov (2007) were the first to perform a global
linear stability analysis of the transonic buffet phenomenon. They demonstrated
that transonic buffet is an unstable global mode and, furthermore, showed that the
perturbations are travelling upward downstream of the shock (Crouch et al. 2009a,b).
This finding appears to be in contrast with Lee’s model where the loop is closed by
the waves impacting the shock and moving down towards the shock foot. Crouch
et al. (2009b) considered an NACA0012 airfoil at fixed Mach and Reynolds numbers
(M = 0.76 and Re = 107). The buffet onset was found in the range α = 3.1–3.2◦.
Figure 2 shows the pressure fluctuation during a limit cycle of the lift oscillation.
The linear stability analysis was then considered again by Iorio, Gonzalez & Ferrer
(2014), Guiho (2015) and Sartor et al. (2015). Sartor et al. (2015) was the first to
show a complete spectra of the global buffet mode from onset to exit. Iorio (2015)
furthermore performed a stability analysis of an NACA0012 in buffet conditions over
a computational domain of reduced size. She showed that a reduction of the domain
up to a radius of two chords around the airfoil does not have a significant impact on
the unstable buffet mode. This result suggests a local behaviour of the buffet mode.

An important question in the framework of global stability analysis is the definition
of a method to find the regions in space where the instability develops. The first to
introduce this idea were Huerre & Monkewitz (1990). They introduced the concept
of a wavemaker as the region where the instability waves are intrinsically generated
for globally unstable flows. The interpretation by Koch (1985) of global instability
uses a similar idea. Today, the most accepted definition of the wavemaker comes
from Giannetti & Luchini (2007): it is a structural sensitivity that quantifies how an
eigenvalue is affected by the introduction of localized forcing. Then the concept was
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FIGURE 2. Contours of the pressure fluctuation at eight steps during the oscillation cycle
for the conditions M = 0.76, α = 3.2◦, Re= 107 (Crouch et al. 2009b).

extended to nonlinear global modes by way of Floquet theory (Luchini, Giannetti &
Pralits 2008). Marquet, Sipp & Jacquin (2008) investigated the sensitivity with respect
to localized modifications of the base flow which is more relevant for flow control.

The global stability analysis is useful for determining the temporal stability of
non-parallel flows, i.e. flows exhibiting large variations in several directions of
space (Theofilis 2003, 2011). However, it does not provide further information
for understanding the feedback mechanisms at the origin of self-sustained (global)
instability. Two feedback mechanisms are often invoked to explain global instabilities
arising in hydrodynamic flows: a local hydrodynamic-feedback and a non-local
pressure-feedback (Chomaz, Huerre & Redekopp 1988). The local hydrodynamic
feedback is responsible for the global instability in wake flows behind bluff bodies,
for instance circular cylinder flow (Jackson 1987), while the non-local pressure
feedback is responsible for the global instability in cavity flows (Sipp & Lebedev
2007). The existence of local hydrodynamics feedback in cylinder flow has first
been identified with local stability analysis and was connected to the appearance of
an absolute instability in the wake flow. Giannetti & Luchini (2007) first proposed
identifying local feedback mechanisms in global eigenmodes using a structural
sensitivity analysis of the eigenvalue problem.

In summary, several authors studied the problem of the instability localisation but
always in the context of a sensitivity analysis. Here an alternative technique is used,
which does not target the eigenvalue variation but the eigenvalue itself. This technique,
introduced by Marquet & Lesshafft (2015), allows in particular distinguishing between
the contribution to the growth rate and to the angular frequency.

The paper is organized as follows: § 2 presents the various concepts (base flows,
direct and adjoint global modes) and the various approaches made to analyse the
importance of various regions in the dynamics of an unstable global mode. In § 3,
the different concepts of additive and multiplicative localized damping sensitivities are
applied to the case of the cylinder. In § 4, the same methodology is applied to the
transonic buffet case. The selective frequency damping (SFD) algorithm is then used
to confirm the localization of the areas contributing to the global instability. In § 5, all
the physical models presented in the introduction are discussed in light of the results
from §§ 2 and 4. Section 6 concludes the paper with a summary of the main findings.
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2. Identification of active regions in unstable global modes
After briefly recalling the concepts of base flow and global stability analysis (§ 2.1),

the various concepts used to identify active regions in unstable global modes are
presented: firstly (§ 2.2) the classical structural sensitivity analysis and the wavemaker
region introduced in Giannetti & Luchini (2007), secondly (§ 2.3) a localized additive
perturbation analysis, thirdly (§ 2.4) a localized multiplicative sensitivity analysis
introduced by Marquet & Lesshafft (2015) and lastly (§ 2.5) a discretized version
of Marquet & Lesshafft (2015) technique which we interpret as a decomposition of
the unstable eigenvalue λ into a sum of local contributions. A final section (§ 2.6)
provides a summary of the various approaches and how they relate to each other.

2.1. Governing equations, base flow, direct and adjoint global modes
The governing equations are considered in a general way as

dq
dt
=R(q), (2.1)

where R is the spatially discretized residual and q the state variable containing, for
example in the case of compressible equations the velocity components, the density
and temperature fields. In the following, it is considered to have p variables at all
points of the mesh. For example, in the case of two-dimensional flows, p= 3 in the
case of incompressible flow fields, p= 4 if the flow is compressible and p= 5 if the
flow is compressible and a Spalart–Allmaras model used to define an eddy-viscosity.

The steady solution q0 of the equations, also called base flow, is a solution of

R(q0)= 0. (2.2)

The dynamics of small amplitude perturbations q′(t) = q̂ exp(λt) is analysed in the
vicinity of q0 by considering the eigenproblem associated with the Jacobian matrix

Jq̂= λq̂, Jkl =
∂Rk

∂ql

∣∣∣∣
q=q0

, (2.3a,b)

where J is the Jacobian matrix associated with R around the base flow, Rk the kth
component of the residual and ql the state variable at a given location. The quantity
λ describes the temporal behaviour of the perturbation; its real part σ is the growth
rate and its imaginary part ω the angular frequency.

The adjoint eigenvalue problem associated with (2.3) is introduced in the following.
Let us consider an inner product based on a real symmetric positive definite matrix
V such that 〈a, b〉V = a∗Vb, where a and b are arbitrary vectors and the superscript ∗
refers to the transconjugate. In the following, the matrix V is chosen so that 〈a, a〉V
represents the square of the function L2 norm. Also in the following, V is a diagonal
matrix for which the terms Vk correspond to the volume of each cell, as is the case
in a finite-volume discretization. The adjoint matrix J̃ is defined as

〈a, Jb〉V = 〈J̃a, b〉V . (2.4)

It is straightforward to show that

J̃ = V−1J∗V . (2.5)
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It follows that the eigenvalues of J̃ are the complex conjugates of those of J. Given
an eigenvalue/eigenvector pair (λ, q̂), the associated adjoint global mode q̃ is solution
of the eigenproblem

J̃q̃= λ∗q̃. (2.6)

An important property used in the following is the bi-orthogonality of the two bases
composed by the entire sets of eigenvectors of J and J̃ with respect to the defined
inner product

〈q̃n, q̂j〉V = q̃∗nV q̂j = δnj, (2.7)

where δnj is the Kronecker symbol. It means also that the inner product of a direct
eigenvector with its adjoint is normalized to be equal to one.

2.2. Structural sensitivity and wavemaker analysis
The classical way to identify flow regions responsible for a global instability is to
perform the wavemaker analysis introduced by Giannetti & Luchini (2007). This
analysis is derived from a structural sensitivity analysis. The Jacobian is perturbed by
an arbitrary matrix δJ and the eigenproblem (2.3) is modified to (Schmid & Brandt
2014)

(J + δJ)(q̂+ δq̂)= (λ+ δλ)(q̂+ δq̂), (2.8)

where δλ and δq̂ denote the eigenvalue and eigenvector variations, respectively.
Assuming these variations are small, the eigenvalue variation is straightforwardly
obtained through

δλ= q̃∗VδJq̂. (2.9)

To identify spatial regions of the flow where local feedback is at play in the instability,
Giannetti & Luchini (2007) considered an arbitrary matrix in the form

δJ = Ik, (2.10)

where Ik is a diagonal block matrix with all diagonal blocks equal to zero except for
the kth cell where it is equal to Ip,p, the p × p identity matrix. This choice induces
the eigenvalue variation

δλk = q̃∗kVkq̂k, (2.11)

where Vk is the volume of cell k, q̂k and q̃k are (p, 1) vectors equal to q̂ and q̃ at
cell k. The magnitude of the eigenvalue variation is bounded by

|δλk|6 Vkwk where wk = ‖q̃k‖ ‖q̂k‖. (2.12)

The notation ‖ · ‖ designates the p-Euclidian vector norm and wk is the so-called
wavemaker function. The wavemaker allows us to identify regions where local
feedback gives the largest eigenvalue variations.
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2.3. Additive localized damping perturbation analysis
In order to better identify active regions of a global mode in terms of growth-rate and
frequency contribution, Sipp et al. (2010) proposed perturbing the Jacobian matrix by
a localized damping term −χ IS where χ is a positive real specifying the strength of
the damping and IS a diagonal matrix that allows us to select the damping region. Its
diagonal coefficients are equal to 1 (respectively 0) if the corresponding variable is
inside (respectively outside) the damping region. The modified eigenproblem is

(J − χ IS)q̂
a
χ = λ

a
χ q̂a

χ , (2.13)

where the perturbed eigenvalue and eigenmode are respectively denoted by λa
χ and q̂a

χ ,
the superscript a refers to the additive perturbation of the matrix, δJ =−χ IS. In the
present additive case, the perturbation corresponds to a damping term proportional to
the eigenmode, which can be thought of as a localized sponge region.

In the following, the case of small damping (χ � 1) is first considered (§ 2.3.1).
Then (§ 2.3.2), for a given region IS the critical value of the damping term χc that may
lead to marginal stability of the perturbed problem is introduced, and finally § 2.3.3
provides a convenient way to obtain χc from a slightly modified SFD algorithm. From
a physical point of view, the activity of region IS will be related to the value of χc:
if χc is finite, then the region is active (the instability survives to a freezing of the
mode in the damping region); if χc is infinite, then it is inactive (the perturbed system
remains unstable if the perturbation is fully frozen in the damping region).

2.3.1. Sensitivity study
For small values of the damping coefficient χ , the expression (2.9) can again be

used to obtain the eigenvalue variation

δλa
χ =−χ q̃∗VISq̂. (2.14)

When the damping is restricted to the kth cell, the diagonal matrix reduces to IS = Ik
and the eigenvalue variation may be expressed as

(δλa
χ)k

Vk
=−χ(q̃∗k q̂k) (2.15)

where the eigenvalue variation has been divided by the cell volume Vk in order to have
a quantity that is independent of the chosen mesh. The resulting quantity corresponds
to the local contribution to the eigenvalue variation. The additive growth rate and
frequency variations are then obtained by taking the real and imaginary parts of the
above expression, yielding

(δσ a
χ )k

Vk
=−χ Re(q̃∗k q̂k) and

(δωa
χ)k

Vk
=−χ Im(q̃∗k q̂k). (2.16a,b)

2.3.2. Additive localized perturbation analysis and activity of a given damping
region IS

Given a damping region IS, an additive perturbation of the form −χ IS generally
leads to a decrease of the growth rate σ a

χ , since freezing perturbations in some regions
usually leads to damping. Hence, if the global mode is initially unstable, that is
σ = σ a

χ=0 > 0, then there may (or may not) exist a critical value of χc such that

σ a
χc
= 0. (2.17)
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If this critical value exists, then it can be stated that the chosen damping region IS is
a dynamically important region of the unstable global mode since the unstable global
does not survive a freezing of the perturbation in the damping region. On the other
hand, if zero amplification rate is never achieved for any χ > 0 (χc=∞), then it can
be concluded that IS is not a dynamically important region, since the unstable global
mode survives with frozen perturbations in the region IS.

The expression (2.14) can be used to obtain a linear approximation of the critical
damping value χc. By setting δσ a

χ = −σ , the linear approximation of the critical
damping coefficient is obtained

χc =
σ

Re(q̃∗VISq̂)
. (2.18)

Yet, one has to keep in mind that the growth-rate σ a
χ may be a strongly nonlinear

function of χ so that linear approximations may not be valid. Note that, when the
damping region is the whole domain (IS= I), the critical coefficient is the growth rate
of the eigenmode χc = σ .

2.3.3. Selective frequency damping methods
The additive damping approach introduced above requires solving eigenvalue

problems. It is proposed here to adapt the SFD algorithm introduced by Åkervik
et al. (2006) in order to determine χc for a given damping region IS and therefore
avoid the resolution of eigenvalue problems.

The following modified version of the SFD algorithm is proposed:
dq
dt
=R(q)− χ IS(q− qf )

dqf

dt
=

q− qf

∆

, (2.19)

where the second equation is the low-pass filter with a cutoff angular frequency 1/∆
and the second equation the initial governing equations with an additional damping
term. This damping term is proportional to the difference between the solution q and
the filtered solution qf : if applied on the full domain IS= I , the initial SFD algorithm
is recovered, it forces the solution to converge towards the steady state. If IS 6= I , the
damping term −χ IS(q− qf ) is only active in the region defined by IS and will only
freeze the perturbations in this region.

It is now shown that applying this algorithm enables us to retrieve the critical
values χc defined in equation (2.17). For this, let us consider the linear dynamics of
perturbations around the fixed point (q, qf )= (q0, q0)+ (q′, q′f ) in the modified SFD
equations

d
dt

(
q′
q′f

)
=

(
J − χ IS χ IS

I/∆ −I/∆

)(
q′
q′f

)
. (2.20)

In the case where ∆→∞, the eigenvalues of the coupled system therefore correspond
to those of J − χ IS and additional zero eigenvalues stemming from the filter. The
modified SFD algorithm therefore enables us to recover the critical values χc of (2.17);
for a given region IS and a given damping term χ , if solving for the coupled system
results in a steady (respectively unsteady) solution, then χc <χ (respectively χc >χ ).

Note that in practice, the SFD algorithm becomes inefficient if ∆ is too large, so
that a compromise needs to be found between very large values of ∆, which are
required for the SFD algorithm to retrieve the critical values χc, and lower values
of ∆, which are required for the SFD algorithm to converge efficiently.
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2.4. Multiplicative localized damping perturbation analysis
In addition to the additive perturbation considered in §§ 2.2 and 2.3, Marquet &
Lesshafft (2015) proposed perturbing the Jacobian matrix by retaining the local
structure of the Jacobian matrix, that is a multiplicative perturbation matrix of the
form

(I − χ IS)Jq̂m
χ = λ

m
χ q̂m

χ , (2.21)

where the perturbed eigenvalue/eigenvector respectively denoted λm
χ and q̂m

χ , depends
on the (real) damping coefficient χ . The diagonal matrix IS is defined as for the
additive case, while the damping coefficient lies in the range 0 6 χ 6 1. The
superscript m refers to the multiplicative perturbation (I − χ IS). Inside this region,
the Jacobian matrix is damped by the factor (1− χ). The modified operator can be
rewritten as (I −χ IS)J = (J −χ ISJ) showing that it corresponds to the additive matrix
perturbation δJ = −χ IS J. This form is convenient for determining the eigenvalue
variation for small values of the damping coefficient χ . Using (2.9), it gives

δλm
χ =−χ q̃∗VISJq̂=−χλq̃∗VISq̂. (2.22)

When the damping is restricted to the kth cell, the diagonal matrix reduces to IS = Ik
and the eigenvalue variation divided by the cell volume may be expressed in the form

(δλm
χ )k

Vk
=−χ dk (2.23)

with
dk = λ(q̃∗k q̂k). (2.24)

The density dk, defined in (2.24), is the discrete counterpart of the so-called
endogeneity field introduced in Marquet & Lesshafft (2015). The multiplicative growth
rate and frequency variations are then obtained by taking the real and imaginary parts
of the above expression, yielding

(δσm
χ )k

Vk
=−χRe(dk),

(δωm
χ )k

Vk
=−χ Im(dk). (2.25a,b)

The expressions (2.23) and (2.15) of the multiplicative and additive eigenvalue
variations are very similar and related to the local density contribution as

−χ dk =
(δλm

χ )k

Vk
= λ

(δλa
χ)k

Vk
. (2.26)

Introducing the polar decomposition of the eigenvalue λ = |λ|eiφ shows that the
additive and multiplicative growth rate and frequency variations are related by

(δσm
χ )k = |λ|Re(eiφ(δλa

χ)k) and (δωm
χ )k = |λ| Im(e

iφ(δλa
χ)k). (2.27a,b)

Close to a bifurcation threshold, the growth rate is nearly equal to zero, and thus
|λ| ≈ Im(λ) and φ ≈π/2. The above relation then simplifies to

(δσm
χ )k ≈−|λ| (δω

a
χ)k and (δωm

χ )k ≈ |λ| (δσ
a
χ )k, (2.28a,b)

which shows that the multiplicative growth rate variation is proportional to the
additive frequency variation, and conversely the multiplicative frequency variation is
proportional to the additive growth rate variation.
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2.5. Local contribution to an eigenvalue based on operator’s decompositions
The analysis developed here aims at identifying contributions to an eigenvalue of
non-overlapping regions localized in space (cells in the discrete framework chosen
here), and whose sum over all these non-overlapping regions (cells) results in the
eigenvalue of interest. We therefore reformulate at the discretized level the previous
analyses of Giannetti & Luchini (2007), Marquet et al. (2008) and Marquet &
Lesshafft (2015), which were based on a structural sensitivity of the eigenvalue
problem and aimed at identifying regions in space yielding the largest eigenvalue
variation, and interpret them in terms of decompositions of the Jacobian matrix,
either into column- or row-matrices. This approach shows how to compute the
contributions from these sub-matrices and provides a unified (simplified) expression
for the two decompositions. This expression is identical to the eigenvalue variation
given in § 2.4 when considering a multiplicative perturbation of the Jacobian matrix.

The Jacobian matrix J is first decomposed into

J =

(
Nc∑

k=1

Ck

)
, (2.29)

where Nc is the total number of cells in the mesh and Ck is the column-matrix
composed of the kth column of the full Jacobian

Ck =



0 · · · 0
∂R1

∂qk
0 · · · 0

... · · · · · ·
... · · · · · ·

...
... · · · · · ·

... · · · · · ·
...

0 · · · 0
∂Rl

∂qk
0 · · · 0

... · · · · · ·
... · · · · · ·

...
... · · · · · ·

... · · · · · ·
...

0 · · · 0
∂RNc

∂qk
0 · · · 0



, (2.30)

where ∂Rl/∂qk is a p × p matrix representing the p governing equations at cell l
and linearized with respect to the p state variables at cell k. The column-matrix
decomposition (2.29) is introduced into the eigenvalue problem (2.3), yielding

λq̂=

(
Nc∑

k=1

Ck

)
q̂=

Nc∑
k=1

(Ckq̂). (2.31)

The objective of the method is to quantify the contribution of the column-matrices Ck
to the eigenvalue λ associated with the eigenmode q̂. To that aim, the matrix-vector
product of the column-matrix with the eigenmode is expanded onto the non-orthogonal
basis of the eigenmodes following

Ckq̂= λkq̂+ rk, (2.32)

where λk is the projection coefficient of Ckq̂ along the eigenmode q̂ and the residual rk
is non-zero (since q̂ is not an eigenvector of Ck) and belongs to the subspace spanned

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

76
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.761


Analysis of the 2-D transonic buffet instability 627

by all eigenmodes except the eigenmode of interest q̂. In other words, the projection
coefficient λk gives the contribution of the matrix-vector product Ckq̂ in the direction
of the eigenmode. It may straightforwardly be determined from the expression

λk = q̃∗ VCk q̂. (2.33)

obtained by using the bi-orthogonality condition between direct and adjoint global
modes. These projection coefficients can be further interpreted as a contribution
localized to the cell k. Although the vector Ckq̂ may have non-zero coefficients for
cells l 6= k, these coefficients only depend on the values of the eigenmode at cell k.
For that reason, the projection coefficient λk can be viewed as the contribution of the
cell k to the eigenvalue. Moreover, it is easy to verify that

Nc∑
k=1

λk = q̃∗ V

(
Nc∑

k=1

Ck

)
q̂= q̃∗ VJq̂= q̃∗ Vλq̂= λ. (2.34)

This relation clearly shows that the eigenvalue λ is the sum of local contributions λk
originating from cells k. The expression (2.33) requires extracting the column-matrices
Ck to compute the local contributions. As shown in appendix A, this expression may
be further simplified to

λk = Vkλ(q̃∗k q̂k)= Vkdk, (2.35)

remembering that dk has been defined in (2.24). Compared to (2.33), this new
expression is easier to compute since it only involves the local product between the
direct and adjoint eigenmodes. Moreover, it also suggests that the local contribution
λk is not specifically related to the column decomposition (2.29) of the Jacobian
matrix. The latter could also be decomposed as

J =

(
Nc∑

k=1

Lk

)
, (2.36)

where Lk denotes the row-matrix composed of the kth row of the Jacobian J. In
appendix B, it is shown that

λk = q̃∗VLkq̂= Vkλ(q̃∗k q̂k)= Vkdk, (2.37)

which is the row counterpart of (2.33) and (2.35). The coefficient λk may therefore
be interpreted in a different and complementary way: it also corresponds to the
contribution of the p governing equations written at point k to the eigenvalue λ since
Lkq̂ is non-zero only at the kth point. The local contribution λk is a quantity that
depends on the volume Vk of the kth cell (2.33). It is therefore considered that

λk

Vk
= dk (2.38)

so that the integral of the continuous density field d(x) over the computational domain
Ω is equal to the eigenvalue, i.e.

λ=

Nc∑
k=1

λk =

Nc∑
k=1

dkVk '

∫
Ω

d(x) dΩ. (2.39)

The real Re and imaginary Im parts of the complex density dk define the growth rate
and angular frequency densities as

σ =

Nc∑
k=1

Re(dk)Vk and ω=

Nc∑
k=1

Im(dk)Vk. (2.40a,b)
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2.6. Summary
All approaches described above (except the wavemaker) rely on the analysis of two
quantities, the real and imaginary parts of dk defined in (2.24). Following equation
(2.40), these correspond respectively to the growth rate and frequency densities of the
eigenvalue λ = σ + iω. From (2.26) and (2.28), they are also related to the additive
and multiplicative localized sensitivities following

−χRe(dk)=
(δσm

χ )k

Vk
≈−|λ|

(δωa
χ)k

Vk
, (2.41)

−χ Im(dk)=
(δωm

χ )k

Vk
≈ |λ|

(δσ a
χ )k

Vk
. (2.42)

Note that the approximation symbol used here reminds us that the relations are only
valid for nearly marginal systems (σ ≈ 0, ω> 0).

Finally, following § 2.3.2, to determine whether a given region IS is active or not,
one may look for damping values χ that render the additively perturbed Jacobian J −
χ IS stable. This may be achieved in an easy way by time stepping the modified SFD
algorithm, as presented in § 2.3.3.

3. Application to the vortex-shedding cylinder mode

Results of the various analyses introduced in the previous section are first shown for
the circular cylinder flow configuration. A cylinder of diameter D is immersed in an
incompressible flow of uniform upstream velocity U∞; in this section, all the variables
are made non-dimensional using these two quantities. The Reynolds number is thus
defined as Re=U∞D/ν, where ν is the kinematic viscosity. In the governing equations
(2.1), the residual R corresponds to the incompressible Navier–Stokes equations and
the flow variable is defined as q = (U, p), where U is the flow velocity and p is
the pressure field. For this case, the free software FreeFem++ (Hecht 2012), better
adapted for this type of configuration, is used. These equations are discretized with
a finite-element approach onto a triangular mesh composed of approximately 40 000
triangles in a domain of spatial extent 30 in the cross-stream direction (y) and 40 in
the streamwise direction (x).

For the Reynolds number Re = 60 considered in the following, the base flow q0
solution of (2.2) is unstable, since the leading complex eigenvalue λ= 0.052+ 0.787 i
obtained by solving (2.3) has a positive real part (growth rate). The spatial structure
of the eigenmode associated with this eigenvalue is displayed in figure 3(a) with
the real part of the streamwise velocity component. The symmetry of the base flow
in the cross-stream direction is broken and the oscillating pattern in the streamwise
direction explains the vortex-shedding observed in the wake of the circular cylinder.
The largest magnitude of the velocity is obtained in the far wake, as a result of a
spatial amplification of the perturbation. As explained by Chomaz (2005), the region
of maximal velocity amplitude does not correspond to the region of largest local
feedback. The latter is rather identified by considering the wavemaker function wk

defined in (2.12) and shown in figure 3(b) for the vortex-shedding eigenmode. This
figure exactly reproduces the wavemaker function first shown by Giannetti & Luchini
(2007) for the circular cylinder. The isocontours correspond to the magnitudes of the
largest eigenvalue variation |λ| that can be achieved by any local modification of the
Jacobian matrix. The spatial region identified by the wavemaker function is clearly
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FIGURE 3. (Colour online) Circular cylinder flow at Re = 60. (a) Streamwise velocity
of the vortex-shedding eigenmode associated with the most unstable eigenvalue and
(b) wavemaker function wk defined in (2.12). The black curves delimit the recirculation
regions in the base flow.
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FIGURE 4. (Colour online) Local contributions to the unstable eigenvalue corresponding
to the vortex-shedding eigenmode shown in figure 3(a). Density contribution to (a) the
growth rate Re(dk) and (b) the angular frequency Im(dk) defined in (2.24). The black
curves delimit the recirculation regions in the base flow.

not in the far wake, but much closer to the recirculation regions of the base flow,
delimited by the black curves in the figures.

Unlike the wavemaker function wk, the local contribution to the eigenvalue λk

defined in (2.35) allows us to distinguish the contributions to the growth rate
and frequency. The density contributions to the growth rate Re(dk) and frequency
Im(dk) are displayed in figure 4(a,b) for the vortex-shedding eigenmode. In the
growth rate density map, positive values (in red) indicate regions contributing to the
destabilization of the eigenmode, while negative values (in blue) indicate regions
contributing to the stabilization of the eigenmode. The sum over the computational
domain of all these local contributions gives the positive growth rate of the eigenmode
Re(σ )= 0.052. Regions close to the two separation points of the base flow contribute
to the destabilization of the eigenmode. On the other hand, the region immediately
downstream of the cylinder, that is located inside the recirculation region of the base
flow, has a stabilizing contribution to the vortex-shedding eigenmode. Interestingly,
these two regions are not identified by the wavemaker function, that is larger further
downstream, in the region of the base flow shear-layer. The growth rate density map
shows that the upper part of the shear-layer has a stabilizing effect, unlike the lower
part that is destabilizing. The contribution to the frequency, displayed in figure 4(b),
is very similar to the wavemaker map shown in figure 3(b). Unlike for the growth
rate, all positions have a positive contribution to the frequency, in agreement with the
positivity of the frequency.
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FIGURE 5. (Colour online) Additive localized damping approach. (a) Real and
(b) imaginary parts of (2.14), the additive growth rate and frequency variation (weighted
by the local area and divided by χ ) for the vortex-shedding eigenmode.

The attention now turns to the multiplicative perturbation approach presented in
§ 2.4. For a damping region restricted to the kth triangle, the multiplicative growth
rate and frequency variations are defined in (2.25). They are straightforwardly deduced
from the localized contributions displayed in figure 4. Considering the growth rate,
the red (respectively blue) regions seen in figure 4(a) are stabilizing (respectively
destabilizing) and the growth rate variation is given the iso-contour value, multiplied
by the damping coefficient χ . On the other hand, the map shown in figure 4(b)
indicates that a multiplicative localized damping decreases the frequency, for all
positions.

For the additive localized damping approach presented in § 2.3, the growth rate
and frequency variations are defined in (2.16) and plotted in figure 5 for the
vortex-shedding eigenmode. In figure 5(a), it is observed that the additive growth
rate variation is negative for all positions, unlike for the multiplicative approach. This
map is strikingly similar to the multiplicative frequency map displayed in figure 4(b).
The additive frequency map is displayed in figure 5(b), showing that the frequency
increases and decreases in the red and blue regions, respectively. This frequency map
is now very similar to the multiplicative growth rate map shown in figure 4(a). Close
to a bifurcation threshold, the phase φ of an eigenvalue in the polar decomposition
λ = |λ|eiφ , is close to φ = π/2. For the vortex-shedding eigenmode at Re = 60, the
phase is indeed φ = 0.98π/2. Then, as explained in § 2.4, the additive growth rate
variation is proportional to the multiplicative frequency variation, and vice versa.

The link existing between the local contribution to the eigenvalue, the multiplicative
and the additive eigenvalue variations is thus established. The two first approaches
identify the same spatial regions for the growth rate and frequency, while the
latter exchanges the growth rate and frequency maps. The growth rate map in the
additive perturbation approach corresponds to the frequency map in the multiplicative
perturbation approach.

The above results of the multiplicative and additive damping approaches are valid
for damping regions restricted to the size of the cell/triangle and for small values
of the damping coefficient χ . The influence of the damping region’s size and values
of the damping coefficient on the results obtained with the additive approach is now
investigated. The leading eigenvalues λm

χ and λa
χ of the eigenvalue problem (2.21) and

(2.13) are computed for increasing values of the damping coefficient χ and for the
diagonal matrix I s with diagonal coefficients being non-zero inside circles centred on
(xs, ys) of radius rs.
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FIGURE 6. (Colour online) Growth rate as a function of the damping coefficient χ
obtained for (a) multiplicative and (b) additive perturbations of the Jacobian matrix with
circular damping regions centred around (xs, ys) = (2.0, 0.9) of radius rs = 0.05 (black
curve), rs = 0.10 (blue), rs = 0.15 (red) and rs = 0.20 (green).

The investigation is first performed for the specific location (xs, ys) = (2.0, 0.9),
for which the linear localized analysis predicts a large destabilization (respectively
stabilization) of the eigenvalue by a multiplicative (respectively additive) perturbation
of the operator, as seen in figure 4 (respectively figure 5). The growth rates are
depicted as a function of the damping coefficient, in figure 6(a,b) for the multiplicative
and additive damping approach, respectively. The dashed lines correspond to the
linear predictions (λχ = λ + δλm

χ or λχ = λ + δλa
χ ) where the multiplicative and

additive variations are given by (2.41). In both cases, for small values of χ , identical
growth rates to those predicted by the linear approach are obtained, confirming the
validity of the latter. Increasing the radius of the damping region yields an increase
(respectively decrease) of the growth rate for a multiplicative (respectively additive)
damping approach. For larger values of χ , it is observed that the growth rates are not
as increased (respectively decreased) as were predicted by the linear approximations.
Let us examine in more detail results of the additive damping approach in figure 6(b).
For the smaller radius explored here (black curve), the larger value χ = 90 does not
allow stabilization of the eigenvalue. As proposed in § 2.3.2, it could be concluded
that this damping region is not a dynamically important region, since the global
mode is still unstable even for very large values of the damping coefficient. On the
other hand, increasing its size clearly increases its dynamical activity, since for larger
values of the radius, finite values of the damping coefficient allow stabilization of the
eigenvalue (red and green curves). In addition to the position of the damping region,
its size is a crucial parameter in determining the dynamical activity of a region.

The influence of finite values of the damping coefficient is now investigated for
other spatial regions. For the multiplicative approach, figure 7(a,b) depicts the growth
rate and frequency variations, respectively, obtained for the damping coefficient χ =
0.5 and by varying the positions of the damping regions centred around (xs, ys) with
a fixed radius rs = 0.1. Both maps are very similar to the local contribution maps,
displayed in figure 4. In red regions, a multiplicative perturbation gives an increase
of the growth rate, i.e. a destabilisation of the eigenmode. For the additive approach,
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FIGURE 7. (Colour online) (a) Growth rate and (b) frequency variations induced by
multiplicative perturbations of the Jacobian matrix with the damping coefficient χ = 0.5.
The damping regions are circles of radius rs = 0.1 centred around positions (xs, ys) that
vary with spatial steps 1xs = 0.2 and 1ys = 0.2.

0 1 2 3 4 5

2.5(a) (b)
2.0
1.5
1.0
0.5

0
0 1 2 3 4 5

2.5
2.0
1.5
1.0
0.5

0

20
(÷ 10-4)

12
4
-4
-12
-20

10
(÷ 10-4)

6
2
-2
-6
-10

10
(÷ 10-4)

6
2
-2
-6
-10

20
(÷ 10-4)

12
4
-4
-12
-20

0 1 2 3 4 5

2.5(c) (d)
2.0
1.5
1.0
0.5

0
0 1 2 3 4 5

2.5
2.0
1.5
1.0
0.5

0

FIGURE 8. (Colour online) Eigenvalue variations induced by additive localized
perturbations of the Jacobian matrix with damping coefficients (a,b) χ = 1 and
(c,d) χ = 10. The growth rate and frequency variations are displayed in (a,c) and (b,d),
respectively. The damping regions are circles of radius rs = 0.1 centred around positions
(xs, ys) that vary with spatial steps 1xs = 0.2 and 1ys = 0.2.

figures 8(a,b) and 8(c,d) depict the growth rate and frequency variations obtained
for χ = 1 and χ = 10, respectively. Results obtained for the smallest value are very
similar to the maps shown in figure 5 and obtained with the linear localized approach.
When the damping coefficient is larger (χ = 10), those maps are modified as shown in
figure 8(c,d). Note that the ratio 10 between the small and large values of the damping
coefficient is conserved in the isocontour values shown in the figures. It is possible to
see that the growth rate map is barely modified. The same spatial regions are identified
for the two values of the damping coefficient. As noted before for a single damping
position, the growth rate variation is slightly smaller than the linear prediction. The
frequency map is also barely affected. The frequency increase for χ = 10 (red regions)
is also slightly smaller than predicted by the linear variation.

4. Transonic buffet mode
4.1. Configuration and numerical modelling

The second and main application of the paper is the transonic buffet phenomenon. The
airfoil geometry is ONERA’s OAT15A transonic airfoil with a chord length equal to
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0.23 m. The Reynolds number based on the chord length is equal to Reyc= 3.2× 106.
The Mach number is fixed at M∞ = 0.73 in all simulations while the angle-of-attack
α ranges from 3 to 6.5◦.

R is the compressible Reynolds-averaged Navier–Stokes operator. The two-
dimensional reference frame (x, y) is relative to the airfoil. The origin of the reference
frame is at the airfoil leading edge, x is parallel and y perpendicular to the airfoil
chord axis. The vector q represents the set of state variables of the flow

q= (ρ, ρU, ρV , ρE, ρν̃)T, (4.1)

where ρ is the density, (ρU, ρV) the two components of the velocity, E the total
energy of the flow and ν̃ the eddy viscosity. These equations are closed using
the Spalart–Allmaras (SA) turbulence model (Spalart & Allmaras 1992) with the
correction of Edwards & Chandra (1996). The effect of this correction is a reduction
of the eddy viscosity µt in the near-wall regions. It has been shown by Grossi et al.
(2014) that the agreement between URANS simulations and the experimental data
from Jacquin et al. (2009) was improved using the Edwards–Chandra correction of
the SA turbulence model. The airfoil surface is modelled using an adiabatic no-slip
condition.

The computational domain is a C-type structured grid. The mesh contains 72 000
cells with a refinement around the time-averaged shock location. The first mesh point
in the boundary layer is below y+ = 0.9. In the far-stream, a non-reflective boundary
condition is applied.

The governing equations are spatially discretized using a second-order accurate
AUSM+(P) upwind scheme (Edwards & Liou 1998) except for the turbulent equation
for which a first-order Roe scheme with Harten’s correction (Harten & Hyman
1983) is used. For the unsteady simulations, a dual-time stepping method with a
non-dimensional time step 1t(U∞/c) = 1.08 × 10−3 is used (14 285 time steps per
buffet period), achieving a second-order accuracy. The value of the time step yields
a maximum Courant–Friedrichs–Lewy number of approximately 25 in the attached
boundary layer, 50 in the wake and less than 1 in most of the domain.

Numerical simulations are performed using the compressible CFD finite-volume
elsA solver (Cambier, Heib & Plot 2013) owned by ONERA, Safran and Airbus. The
2-D Reynolds-averaged Navier–Stokes equations are solved on multiblock structured
grids.

4.2. Validation of URANS against experimental results
The buffet phenomenon appears inside the range of α between 3 and 6.5◦ with an
angular frequency which increases with α from 75 to 81 Hz. The largest lift amplitude
is found in the middle of the unstable range at α=5◦ for which the buffet frequency is
equal to 79 Hz. Figure 9(b,c) shows two Mach number fields of a URANS simulation,
more precisely the fields with the most downstream (figure 9b) and the most upstream
position (figure 9c) of the shock for α = 5◦. For this angle-of-attack, buffet is well
established and the shock oscillation amplitude is approximately 35 % of the chord.

As already mentioned, the numerical results from URANS simulations are validated
by comparison with an experimental database. Figure 10 shows the comparison of
the numerical results with the experimental investigation of Jacquin et al. (2009)
for two cases: before buffet onset at α = 3◦ and in a buffet case at α = 3.5◦.
Figure 10(a) shows a steady flow, while figure 10(b) shows the time-averaged
pressure coefficient. Both cases are in good agreement on the pressure side of the
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FIGURE 9. (Colour online) Mach number field at α = 5◦. (a) The RANS steady-state
solution, (b) most downstream and (c) upstream shock position during one buffet period
of the URANS solution.
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FIGURE 10. Comparison of CFD results (lines) with experimental (points) investigation
of Jacquin et al. (2009). (a) Pressure coefficient for the steady state solution at α = 3◦,
(b) time-averaged pressure coefficient for the unsteady state at α = 3.5◦.

airfoil, the supersonic zone and close to the TE while a difference is found for
the shock position. The numerical simulations, both RANS and URANS, predict a
shock position approximately 5 % chord downstream of the experimental one. This
difference in the shock position is common and typical of RANS simulations with
the SA turbulence model (Brunet 2003; Deck 2005; Grossi et al. 2014; Sartor et al.
2015). The results are satisfying and an improvement in the simulations in comparison
with Sartor et al. (2015) is found thanks to the Edwards–Chandra correction in the
SA model.

4.3. Global stability analysis
The base flow solution may be obtained by a local time-stepping method, for which
a first-order backward-Euler scheme is used. In our computations, it was possible to
obtain residuals close to zero machine precision even when the base flow was unstable.
Figure 9(a) shows the RANS unstable steady-state solution for α = 5◦.

The details of the numerical computation of the eigenvalues and eigenvectors of
the direct and adjoint Jacobian matrices are omitted here and just the results are
presented in the following. More details can be found in Beneddine et al. (2016). It
is interesting to underline that all the state variables in equation (2.1) are perturbed,
including the turbulent variable. Crouch et al. (2009b) already showed that without
perturbations on the turbulent variable (frozen µt model, Reynolds & Hussain (1972)),
the unstable buffet mode does not appear in the spectrum. This result underlines the
key role of turbulence in transonic buffet.
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FIGURE 11. (Colour online) Evolution of angular frequency (a) and temporal growth rate
(b) with the angle-of-attack for M = 0.73 for both results of URANS simulations and
stability analysis.

Results of the global stability analysis are presented below with an emphasis
on the evolution of the most unstable mode as a function of the angle-of-attack
α for a fixed value of the Mach number M = 0.73. The buffet mode is the only
unstable global mode in the considered hypothesis and range of parameters. Figure 11
compares angular frequencies and growth rates from URANS simulations and linear
stability analysis from buffet onset to buffet exit and shows a good agreement. The
frequency increases with α in the range of frequencies 75-82 Hz, or in the range
of non-dimensional frequencies (Strouhal number St = fL/U) 0.07–0.075, where f is
the frequency of the phenomenon and U and L, the reference velocity and length –
here the free-stream velocity and the chord of the airfoil, respectively. Figure 11(b)
highlights the angle of attacks where the buffet mode is marginally stable: α = 3.5◦
and α = 6.0◦.

Interesting information comes from the structure of the buffet mode. Both direct and
adjoint modes have been computed. Figure 12 shows the real and imaginary parts of
both direct and adjoint modes for the ρE component. Direct modes exhibit high values
at the shock position and in the detached boundary layer; while adjoint modes have
high values along the descending characteristic line to the shock foot and the boundary
layer upstream of the shock. The present results of global stability analysis agree with
Crouch et al. (2007, 2009a,b) and Sartor et al. (2015).

4.4. Structural sensitivity and decomposition results
The approaches presented above are now applied to the transonic buffet unstable
mode. Figure 13(a,b) shows the density maps of the angular frequency and growth
rate for buffet mode at α = 5◦ and Mach number 0.73. For these values of α and
M, the flow field is in a regime of well-established buffet. The supersonic zone
(solid line) and the detached boundary layer (dashed line) of the steady-state solution
are also shown in order to compare these density maps with the physics of the
flow field. Both growth rate and angular frequency exhibit maximum values around
107 at the shock foot (note that the colour maps are exponential). The zoom in
figure 13 shows that the region of maximum value is inside the lambda shape of the
shock foot where the boundary layer detaches. Lower values of the density maps,
around 105, are found along the shock and in the boundary layer. The zone near
the shock, above the detached boundary layer and in the wake, exhibits values of
growth rate and frequency density of approximately 103. All the other zones have
values lower than 102, i.e. 4 to 6 orders of magnitude lower than the values at the
shock foot. In summary buffet instability appears strongly localized at the shock foot
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FIGURE 12. (Colour online) The ρE component of the buffet mode at α = 5◦ and
M = 0.73. (a) Real and (b) imaginary parts of the direct buffet mode. (c) Real and
(d) imaginary parts of the adjoint buffet mode. Solid and dashed lines are, respectively,
the supersonic region and the boundary layer thickness of the steady state solution.

with a smaller contribution of the shock and the separated boundary layer. These
results suggest the existence of several zones, even close to the airfoil (for example,
the pressure side), that do not impact the physical mechanism at the origin of the
transonic buffet. Further investigations are presented here for the density maps of the
growth rate. Indeed positive values contribute to the unstable behaviour of the mode
while negative values are stabilising. The shock foot always appears with a strongly
unstable behaviour while the shock always exhibits a stable behaviour. The detached
boundary layer may have either a stable or an unstable behaviour depending on the
location in space and the values of the angle-of-attack.

Figures 14(a)–14(c) show the growth rate density maps before buffet onset at α=3◦,
in a well-established buffet regime at α = 4.5◦ and after buffet exit at α = 7◦. These
three maps show three different regimes of the flow but the summation of all the
contributions to the growth rate for figure 14(a,c) is close. Figure 14(b) gives the
opposite, strong values of total growth rate. It is now interesting to analyse locally the
space distribution of the growth rate for figure 14(a,c). They both show a detached
boundary layer with negative values of the density growth rate while figures 14(b)
and 13(a), in a condition of well-established buffet, show an area with positive values
completely inside the detached boundary layer. In a certain way if the summation of
the local contribution is performed by considering only the values inside the detached
boundary layer, the result is a negative value for the case in figure 14(a,c) while
it is positive for figures 14(b) and 13(a). The analysis of the density maps of the
growth rate at different angles of attack suggest that the detached boundary layer has
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FIGURE 13. (Colour online) (a) Growth rate and (b) angular frequency density maps for
the buffet mode at M= 0.73 and α= 5◦, with a zoom on the shock foot. Solid and dashed
lines respectively depict the supersonic region and the boundary layer of the steady state
solution.
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FIGURE 14. (Colour online) Growth rate density maps for the buffet mode at M = 0.73
and (a) α= 3◦, (b) 4.5◦ and (c) 7◦. Solid and dashed lines are, respectively, the supersonic
region and the boundary layer of the steady state solution.

an important role on the buffet instability scenario. At buffet onset the behaviour, in
terms of contribution to the growth rate, of the detached boundary layer changes with
the appearance of destabilising zones (which disappear at buffet exit) and it can be
explained as the active key of buffet instability.

Once the local contributions to the unstable eigenvalue are defined, the other
decomposition are now analysed. The multiplicative perturbation approach presented
in § 2.4 is straightforwardly deduced from the localized contributions, as for the
vortex shedding mode. The multiplicative localized damping maps are deduced from
the local contribution by multiplying both maps by the negative scalar −χ . The
result for the growth rate is a strong stabilising damping effect at the shock foot,
destabilising on the shock and both effects in the boundary layer. The frequency,
as for the vortex shedding mode, is mainly reduced by the multiplicative localized
damping.

The attention is now focused on the additive localized damping approach, which
could also be deduced from the localized contributions but it will be independently
computed and then the link discussed. Figure 15 shows the additive localized damping
maps for the buffet mode. As already seen on the vortex shedding mode, these maps
are very similar to the local contribution maps, and consequently to the multiplicative
localized damping maps as well. The reason could be found in the rate between real
and imaginary parts of the eigenvalue, respectively, the growth rate and the frequency.
Indeed, near the threshold the frequency of an unstable mode is much higher than
its growth rate and the phase of the mode in polar coordinate is close to π/2. This
is true in the full range of instability for the buffet mode: the lowest value of the
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FIGURE 15. (Colour online) Additive localized damping approach on (a) the growth rate
and on (b) the frequency for the buffet mode at M = 0.73 and α = 5◦, with a zoom on
the shock foot. Solid and dashed lines respectively depict the supersonic region and the
boundary layer of the steady state solution.

phase of the mode in polar coordinates is 0.94π/2 (which corresponds to the highest
growth rate). Consequently there is a shift of the maps’ density between the local
contribution and the multiplicative localized damping in comparison with the additive
localized damping.

The analysis of these maps from the linear stability results in some important
contributions to the final definition of the scenario of the physical mechanism behind
transonic buffet. The shock foot appears to be the core of the instability and the
zone where the unsteadiness arises. The shock has a stabilising behaviour during the
unstable phenomenon which can be interpreted as a stiffness (a section of the field
that is sustained by, and tends to damp, the shock foot motion). Finally, the detached
boundary layer changes its stabilising/destabilising/stabilising behaviour during the
stable/unstable/stable phenomenon and consequently it appears to be linked with the
onset and exit of buffet. In order to confirm the influence of the different zones in the
buffet phenomenon resulting from stability density maps, the local selective filtering
method is used in the following.

4.5. Selective frequency damping
Based on the results obtained in the previous section, eight flow regions are
investigated in applying the damping term. They are depicted in figure 16: the
suction side of the airfoil (zone 1), the shock foot excursion and beginning of the
separated boundary layer (zone 2), the suction side TE area and wake (zone 3), from
the superior half of the supersonic zone to the end of the domain (zone 4) above
the supersonic zone (zone 4′), the airfoil wake (zone 5), the path between the TE
and the shock above the boundary layer (zone 6) and finally the pressure side of
the airfoil (zone 7). Lift fluctuation amplitudes are used as global criteria for the
persistence of the buffet instability. Steady state is defined by zero machine levels
of residuals while probes are used locally to verify that unsteady signals are well
damped. When lift continues to oscillate and the standard deviations of the signals
in the filtered zone tend to zero it is possible to state that the related zone is not
necessary for the buffet instability to develop, consequently there is not a critical
value of χ . To choose the SFD parameters, Åkervik et al. (2006) state that large χ
and ∆ would make the evolution of the system very slow but the SFD would in
every case converge to a steady-state. Furthermore, the SFD parameter values are
linked to the flow dynamics. The temporal cutoff frequency 1/∆ should be lower
than the frequency of the unstable dynamics by at least a factor two. The control
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FIGURE 16. Zones of the computational domain where SFD is locally activated. Solid
and dashed lines are respectively the supersonic zone and the separated boundary layer
of the steady state solution. Black points are the probe positions, (a) zone 1, (b) zone 2,
(c) zone 3, (d) zone 4, (e) zone 4′, ( f ) zone 5, (g) zone 6, (h) zone 7.

parameter χ usually has a value close or higher than the growth rate of the unstable
flow dynamics but can take higher values in order to increase the convergence rate
of the simulation towards the steady-state. In most cases the unstable dynamics is
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unknown a priori and several studies proposed different techniques to choose suitable
parameters (Jordi, Cotter & Sherwin 2015; Cunha, Passaggia & Lazareff 2015). In
the present work the unstable dynamics is well known and the analysis procedure is
the following: eight URANS simulations are performed with SFD for each filtered
zone in figure 16, the value of the cutoff frequency is fixed at 13 rad · s−1, which
ensures an efficient convergence for the SFD algorithm and χc ≈ σ when IS = I . The
dependence of χc with respect to the choice of ∆ has also been investigated but is
not presented here since only small effects on χc have been observed.

As for the implementation of the modified SFD algorithm, the ‘encapsulated’
formulation, described in Jordi, Cotter & Sherwin (2014), is used. It is based on the
splitting of the system (2.19) to cope with the industrial CFD solver elsA.

4.5.1. Results
The results from the application of SFD in the different zones are presented

in this section. The numerical parameters of the URANS simulations have been
described in § 2.1. The configuration analysed is the same as in § 4.4: (Re,M, α)=
(3.2 × 106, 0.73, 5◦). As already said, the effect of a particular zone on the global
instability is assessed through two criteria: a global one based on the lift oscillation
amplitude and a local one based on the standard deviation of signals from probes
which quantifies how much unsteady signals are damped in the zones where SFD is
locally activated.

Once the local SFD is activated, there are two types of results. In the first case a
steady-state is reached, residuals decrease towards zero machine values. In the second
case a steady-state is not reached. It is then possible to force the convergence towards
the steady-state solution by increasing the control parameter χ , but the achievement of
the converged solution depends on the zone where the SFD is activated. Figure 17(a)
shows the lift oscillation amplitude for increasing values of the control parameter
χ , for the application of SFD in the entire computational domain and three cases
of local application (zones 2, 3 and 4). When χ = 0, the lift oscillation amplitude
corresponds to the URANS one without SFD. For increasing values of χ , the lift
oscillation amplitude decreases towards zero, with a slope depending on the zone
where SFD is activated. When 1Cl=0 (corresponding to χc) the residuals’ values tend
to zero machine levels while intermediate points, in the range 0<χ <χc, correspond
to non-physical solutions of the URANS dynamical system coupled with SFD that
did not reach convergence. The application of the SFD on the full domain results in
a value of χc= 55, while χc is always higher when SFD is applied on a limited zone
of the domain. Figure 17(a) shows the regions in which the application of a local
SFD allows it to reach a steady-state, for a certain value of χ . Table 1 shows the χc
values for the configurations in figure 16. Here ‘N/A’ is used when a value of χc is
not found, i.e. when SFD damps the entire unsteady signals of the zone where it is
activated but the lift still oscillates. A steady-state is reached by application of local
SFD only for three zones: shock (zone 4), suction side TE area and wake (zone 3)
and shock foot with the beginning of the boundary layer (zone 2) which is the most
efficient area to damp. These zones correspond exactly to the higher values of the
maps presented in figures 13 and 15. It is interesting to note the low value of χc for
zone 2 even though the application area of the SFD is very small and that χc for zone
1 is very close to the value found when SFD is applied on the entire computational
domain.

The local criterion based on the standard deviation, sd, for the streamwise
momentum, ρu, is presented for zone 4 in figure 17(b). The same slope is found
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FIGURE 17. (a) Amplitude of lift coefficient oscillation as a function of the control
parameter χ for SFD activated on the entire domain and three local applications, (b) the
standard deviation of the streamwise momentum ρu as function of the control parameter
χ for the SFD activated on zone 4; for the probes’ location see figure 16(d).

Zone Full domain 1 2 3 4 4′ 5 6 7

χc 55 56 105 325 225 N/A N/A N/A N/A

TABLE 1. Minimal value of the control parameter χ to reach a steady state for the
different zones where SFD is activated.

for all other state variables. For zones 1, 2 and 3, the standard deviation of the
state variables decreases constantly while increasing χ , until χc (figure omitted).
Four different probes are used in zone 4, two above the supersonic zone and two
inside the area swept by the shock. Figure 16(d) shows the location of all the
probes. Figure 17(b) shows that the standard deviation of ρu drastically decreases
when SFD is activated for the probes outside the supersonic zone (probes C and D)
while remaining on a plateau and then strongly decreasing to zero for the probes
inside the supersonic zone (probes A and B). The results in figure 17(b) suggest
that the flow field converges towards a steady state as soon as SFD is activated,
except for the shock which continues to oscillate. Damping the perturbations around
the shock does not suppress the oscillation. Consequently, the perturbations around
the supersonic zone are considered more a consequence than a cause of the buffet.
Now, by considering the low value of χc for the shock foot, it is possible to give an
explanation of the behaviour of the shock in the global instability. It is in a certain
way entrained by the core of the instability, the shock foot, but at the same time it
has a role in the buffet scenario (it is indeed possible to suppress the instability with
a high value of χc). To conclude, the shock is a slave zone but behaves as a stiffness
on the instability phenomenon. If some part of the shock is prevented from moving,
the rest of the shock, even if it is free to move, has a harder time doing it.

The analysis continues with zones where it is not possible to suppress buffet
instability by local SFD. This is the case for zones 4′, 5, 6 and 7. Figure 18(a)
shows the global criterion based on the lift oscillation amplitude as a function of
the control parameter χ for zone 7. For χ = 6400 the shock still oscillates even
if the lift coefficient amplitude is reduced by approximately 25 %. At the same
time, figure 18(b) shows the local criterion based on the standard deviation for the
streamwise momentum, ρu, at the point depicted in figure 16(h); it is decreased
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FIGURE 18. Amplitude of (a) the lift coefficient oscillation and (b) standard deviation of
the state variable ρu, as function of the control parameter χ for the SFD activated on
zone 7; for the probes’ location see figure 16(h).

by 98 % for the same value of χ . This indicates that the SFD technique effectively
suppresses fluctuations in the region where the filter is applied but the buffet instability
is still present. The same conclusion was found in Memmolo et al. (2018) by freezing
the URANS solution on the same zone. To freeze a solution is equivalent to using
SFD with a control parameter χ =∞. Results for the other zones are not presented
because they are very similar to the ones of zone 7. For example zone 6 at χ = 4000
shows a reduction of 22 % in lift coefficient amplitude with a reduction of 98.5 % in
the standard deviation of ρu.

5. Discussion on the physical mechanism behind transonic buffet
The physical mechanisms presented in the introduction are now discussed in the

light of the results from the present work and a model for the explanation of the
global buffet instability is proposed. The topology of the active and passive zones is
discussed looking at the different models of transonic buffet proposed in the literature.

The numerical results have shown that some zones close to the airfoil are
not directly connected to the buffet instability: the pressure side of the airfoil
(figure 16h), the region above the supersonic zone (figure 16e), the airfoil wake
(figure 16f ) and the path between the TE and the shock above the boundary layer
(figure 16g). The unsteady signals found by Jacquin et al. (2009) on the lower
surface of the airfoil are not at the origin of the buffet instability but can help
to strengthen it. Some self-sustained mechanisms of transonic buffet are based
on perturbations circumventing the supersonic zone, such as Crouch’s observation
(figure 2) and the mechanism highly localized around the shock (Memmolo et al.
2018) suggesting acoustic rays (Lee et al. 1994; Spee 1966). Figure 17(b) suggests
that the perturbations around the supersonic zone are more a consequence than a cause
of the buffet phenomenon. Conclusions suggest that these models and observations
do not focus on the origin of the buffet but rather on additional mechanisms that can
intensify it. The last zone to look at is probably the most important one: the path
between the TE and the shock above the boundary layer (figure 16g). It is indeed the
key zone involved in several models to close the self-sustained loop with backward
acoustic waves impacting the shock. The present results show that the unsteady signals
in this zone are not necessary for buffet instability. The unsteady signals in Lee’s
model (Lee 1990), in Hartmann’s model (Hartmann et al. 2013) and in the model
based on acoustic rays originating from TE and passing through zone 6 (Lee et al.
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1994; Spee 1966) contribute weakly to the buffet mechanism. However, the emission
of acoustic waves resulting from the diffraction at the TE can be superimposed on
the buffet phenomenon. Indeed, the flow is also the seat of convective instabilities
(developing spatially but globally stable) in the shear layers from the separated
zone and along the wake. These disturbances are unstable over a wide range of
frequencies and can diffract with the trailing edge, generating acoustic waves that
can interact with the shock wave. This is the reason why unsteady simulations (Deck
2005) observe such acoustic emissions although they are not directly involved in the
generation of the buffet phenomenon.

In view of our results, the identification of the shock foot as the origin of the
unsteadiness seems confirmed. However, two other areas play a vital role in the
development of buffet instability: the separated zone and the shock. These are
necessary in the transmission of the disturbance but not in the generation of the
phenomenon. This transmission mechanism is clearly observed in Deck (2005) where
the presence of traveling waves is detected in the separated boundary layer. Despite
this, the physical mechanism responsible for a self-sustained mode remains to be
determined. A comparison can be done with other cases of shock-wave/boundary-layer
interaction (Sartor et al. 2015; Guiho, Alizard & Robinet 2016). The latter do not
have self-sustaining dynamics (globally stable) but have a comparable frequency
selectivity when the flow is forced. These results show that the existence of a
massive separation and/or a trailing edge can change the nature of the mode allowing
the emergence of a self-sustained dynamic although the origin of the phenomenon is
located at the shock foot in all these examples of interaction.

6. Conclusions

Transonic buffet is a phenomenon widely studied during the last 70 years but
which is still not yet fully understood. Several studies have contributed to the
understanding of this complex phenomenon. Experimental data, powerful modern CFD
tools and techniques based on stability analysis have produced a lot of information
on the physical mechanism behind transonic buffet. Today there are many different
hypotheses and physical models to explain buffet. The purpose of the present work
was to improve the understanding of the phenomenon by the definition of the
regions in the flow field necessary for the persistence of the buffet instability. For
this, a technique which aims at quantifying the local contributions in space to the
stability quantities has been used. The results have been compared with URANS
simulations locally filtered with an SFD technique, showing a good consistency of
results. Conclusions have been compared with the literature trying to discuss and
update the physical mechanisms proposed until now. It is possible to summarise the
conclusions as follows:

(i) Zones which are not strictly necessary for the instability (not at the origin, at
best a consequence): the zone on the lower side of the airfoil, on the upper side
above the shock, downstream of the boundary layer and the path between the TE
and the shock outside the boundary layer.

(ii) Zones which are absolutely necessary for the instability: the shock and the
separated boundary-layer. More precisely, the shock wave appears as a slave
zone with a stiffness effect while the separated boundary-layer has a more active
role in the buffet mechanism scenario.

(iii) The core of the instability: the shock foot.
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Finally, in light of these results a possible explanation of transonic buffet has been
proposed: a modification of the self-sustained closed loop model from Lee with a
feedback path inside the separated boundary layer.

The present work gives a contribution to the understanding of the mechanism
behind the transonic buffet and opens at the same time the path for several
analyses. First of all, further investigations are necessary to confirm the proposed
mechanism. Experiments to better identify and quantify the down-stream and
up-stream perturbations inside the boundary layer are suggested.

Appendix A. Simplification of the expression for λk

The column decomposition of the Jacobian matrix (2.28) is introduced into the V -
weighted adjoint eigenvalue problem (2.6)

λ∗q̃= V−1

(
Nc∑

k=1

Ck

)∗
V q̃=

Nc∑
k=1

(VCkV−1)∗q̃, (A 1)

where the matrix-vector product (VCkV−1)∗q̃ is equal to

(VCkV−1)∗q̃=

[
0, . . . ,

Nc∑
l=1

[
Vl
∂Rl

∂qk
V−1

k

]∗
q̃l, 0 . . .

]T

. (A 2)

This is a vector of zeros except for the kth component. Now, by identification of the
left- and right-hand sides in the equality (A 1), it gives that

(VCkV−1)∗q̃= λ∗[0, . . . , q̃k, 0 . . .]T. (A 3)

Reformulating (2.33) as λk = ((VCkV−1)∗q̃)∗ V q̂ and inserting the above expression
yields a simplified expression for λk in the form

λk = λVk(q̃∗k q̂k). (A 4)

Appendix B. Row-decomposition of the Jacobian matrix
The adjoint eigenvalue problem (2.6) is rewritten with a decomposition of the

Jacobian matrix into rows

λ∗q̃= V−1

(
Nc∑

k=1

Lk

)∗
V q̃=

Nc∑
k=1

(VLkV
−1)∗q̃, (B 1)

where Lk denotes the row-matrix of the Jacobian at the kth cell

Lk =



0 · · · · · · 0 · · · · · · 0
... · · · · · ·

... · · · · · ·
...

0 · · · · · · 0 · · · · · · 0
∂Rk

∂q1
· · · · · ·

∂Rk

∂ql
· · · · · ·

∂Rk

∂qNc

0 · · · · · · 0 · · · · · · 0
... · · · · · ·

... · · · · · ·
...

0 · · · · · · 0 · · · · · · 0


. (B 2)
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The matrix-vector product (VLkV−1)∗q̃ is now expanded onto the basis of non-
orthogonal adjoint eigenmodes as

(VLkV
−1)∗q̃= ϕ∗k q̃+ r̃k, (B 3)

where ϕ∗k is the coefficient along the unstable adjoint eigenmode q̃ and r̃k the residual
vector. Multiplying this equation on the left by q̂∗V and taking the conjugate, it gives

ϕk = q̃∗VLkq̂. (B 4)

Summing all contributions

Nc∑
k=1

ϕk =

Nc∑
k=1

q̃∗VLkq̂= q̃∗V

(
Nc∑

k=1

Lk

)
q̂= q̃∗VJq̂= λ. (B 5)

Now this equation is simplified to establish a link between ϕk and λk.
The direct eigenmode problem is considered

λq̂=

(
Nc∑

k=1

Lk

)
q̂=

Nc∑
k=1

(Lkq̂), (B 6)

where the matrix-vector product Lkq̂ is equal to

Lkq̂=

[
0, . . . ,

Nc∑
l=1

[
∂Rk

∂ql

]
q̂l, 0 . . .

]T

. (B 7)

Now, by identification of the left- and right-hand sides in the equality (B 6), it gives
that

Lkq̂= λ[0, . . . , q̂k, 0, . . .]T. (B 8)

Inserting this expression in (B 4) recovers (2.35)

ϕk = λVk(q̃∗k q̂k). (B 9)

Finally, row and column decompositions result in the same values of local
coefficients of the eigenvalue

λk = q̃∗ VCk q̂= q̃∗VLkq̂= λVk(q̃∗k q̂k). (B 10)
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