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We consider the elliptic system

−∆u + λa1(x)u = α1u + βv +
2p

p + q
|u|p−2u|v|q , x ∈ R

N ,

−∆v + λa2(x)v = βu + α2v +
2q

p + q
|v|q−2v|u|p, x ∈ R

N ,

where N � 4, λ > 0, α1, α2, β ∈ R, p, q > 1, p + q = 2∗ = 2N/(N − 2) and a1(x),
a2(x) � 0 have potential well. By using variational methods and the category theory,
we establish the existence of least energy and multiplicity of solutions.

1. Introduction

We are concerned with the following elliptic system

−∆u + λa1(x)u = α1u + βv +
2p

p + q
|u|p−2u|v|q, x ∈ R

N ,

−∆v + λa2(x)v = βu + α2v +
2q

p + q
|v|q−2v|u|p, x ∈ R

N ,

⎫⎪⎪⎬
⎪⎪⎭ (1.1)

where N � 4, λ > 0, α1, α2, β ∈ R, p, q > 1, p + q = 2∗ = 2N/(N − 2). For i = 1, 2,
we assume the potential ai(x) satisfies the following conditions:

(A1) ai(x) ∈ C(RN , [0,∞)); Ωi := int a−1
i (0) is a non-empty bounded set with

smooth boundary; Ω̄i := a−1
i (0); Ω := Ω1 ∩ Ω2 is a non-empty set;

(A2) there exists Mi > 0 such that the set Fi := {x ∈ R
N , ai(x) � Mi} has finite

Lebesgue measure.

There exists an extensive literature on the study of elliptic systems with criti-
cal nonlinearities on bounded domains (see, for example, [1, 8] and the reference
therein). Alves et al . [1] generalized the corresponding results in [3] to the following
elliptic system:

−∆u = α1u + βv +
2p

p + q
|u|p−2u|v|q, x ∈ Ω,

−∆v = βu + α2v +
2q

p + q
|v|q−2v|u|p, x ∈ Ω,

⎫⎪⎪⎬
⎪⎪⎭ (1.2)
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u > 0, v > 0, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

}
(1.2 cont.)

They showed that there is at least one solution of (1.2) if N � 4, β � 0, 0 < ν1 �
ν2 < µ1(Ω) and p + q = 2∗, where ν1, ν2 denote the real eigenvalues of the matrix

B :=
(

α1 β

β α2

)

and satisfy ν1|U |2 � (BU, U)R2 � ν2|U |2 for some U = (u, v); µ1(Ω) is the first
eigenvalue of the eigenvalue problem (−∆, H1

0 (Ω)).
Elliptic systems in unbounded domains with subcritical nonlinearities have re-

ceived much attention recently (see, for example, [2, 5–7, 9, 10]). The existence and
multiplicity of solutions for a coupled elliptic system with subcritical nonlinearities
have been proved in [6,9], where the potentials are bounded below by some positive
constants. In [5], Costa proved the existence of a non-trivial solution for a class
of semilinear elliptic systems under the coercivity of the potentials and a non-
quadratic condition on the nonlinearity. We also mention the recent paper [7] in
which Furtado et al . studied the existence, multiplicity and asymptotic behaviour
of solutions for the coupled elliptic system (1.1) with α1 = α2 = β = 0 and
p + q < 2∗. As far as we know, there are few results for system (1.1) with critical
nonlinearities.

The main aim of the present paper is to study the existence and multiplicity of
solutions for the elliptic system (1.1) with critical nonlinearities. We do not assume
any positive lower bound or coercivity for the potentials. Motivated by [4], we shall
show in some sense that problem (1.2) is a limit problem for (1.1) as µ1(Ω) small
enough and λ → ∞.

In order to state our results, we define by

Ei =
{

u ∈ H1(RN ) :
∫

RN

ai(x)u2 dx < ∞
}

the Hilbert space endowed with the norm

‖u‖Ei
=

(
‖u‖2

H1 +
∫

RN

ai(x)u2 dx

)1/2

.

Let E := E1 × E2 be endowed with the norm

‖(u, v)‖ =
(

‖u‖2
H1 + ‖v‖2

H1 +
∫

RN

(a1(x)u2 + a2(x)v2) dx

)1/2

,

which is clearly equivalent to the norm

‖(u, v)‖λ =
(

‖u‖2
H1 + ‖v‖2

H1 + λ

∫
RN

(a1(x)u2 + a2(x)v2) dx

)1/2
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for each λ > 0. We say that (u, v) ∈ E is a weak solution of system (1.1) if, for any
(φ, ϕ) ∈ E, the following holds:∫

RN

(∇u∇φ + ∇v∇ϕ + λa1(x)uφ + λa2(x)vϕ) dx

−
∫

RN

(α1uφ + βuϕ + βvφ + α2vϕ) dx

− 2p

p + q

∫
RN

|u|p−2u|v|qφ dx − 2q

p + q

∫
RN

|v|q−2v|u|pϕ dx = 0. (1.2)

We shall search for the critical points of the functional

Jλ(u, v) = 1
2

∫
RN

(|∇u|2 + |∇v|2 + λa1(x)u2 + λa2(x)v2) dx

− 1
2

∫
RN

(α1u
2 + 2βuv + α2v

2) dx − 2
p + q

∫
RN

|u|p|v|q dx

on the space E. Clearly, Jλ ∈ C1(E, R). Define

Sp,q := inf
(u,v)∈H1(RN )×H1(RN )\(0,0)

∫
RN

(|∇u|2 + |∇v|2) dx

( ∫
RN

|u|p|v|q dx

)2∗/2

.

(1.3)
By [1, theorem 5], we get

Sp,q =
[(

p

q

)q/2∗

+
(

p

q

)−p/2∗]
S, (1.4)

where S is the best constant of the embedding D1,2(RN ) ↪→ L2∗
(RN ).

Set µ1 := min{µ1(Ω1), µ1(Ω2)}. Our main results are the following.

Theorem 1.1. Assume (A1) and (A2) hold and β � 0. Then, for 0 < ν1 � ν2 < µ1,
there exists λ1 > 0 such that for λ > λ1 the problem (1.1) has a least energy solution.

Theorem 1.2. Assume (A1) and (A2) hold and β � 0. Then for 0 < ν1 � ν2 < µ1,
every sequence of solutions (un, vn) of (1.1) such that λn → ∞ with

Jλn(un, vn) → cλn <
2
N

(
Sp,q

2

)N/2

concentrates at a solution of the following elliptic system in H1(RN ) × H1(RN ):

−∆u = α1u + βv +
2p

p + q
|u|p−2u|v|q, x ∈ Ω1,

−∆v = βu + α2v +
2q

p + q
|v|q−2v|u|p, x ∈ Ω2,

u ∈ H1
0 (Ω1), v ∈ H1

0 (Ω2).
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Theorem 1.3. Assume (A1) and (A2) hold and β � 0. Then for 0 < ν2(< µ1)
small enough, there exist λ2 > 0 and

0 < cλ <
2
N

(
Sp,q

2

)N/2

such that if λ > λ2, (1.1) has at least cat(Ω) solutions with Jλ � cλ.

Let a1(x) = a2(x) = a(x), α1 = α2 = µ, β = 0, p = q = 2∗/2, u = v. Then
system (1.1) reduces to the Schrödinger equation:

−∆u + λa(x)u = µu + |u|2∗−2u, x ∈ R
N . (1.5)

In [4], Clapp et al . established the existence and multiplicity of positive solutions for
(1.5) which localize near the potential well for µ small and λ large under conditions
(A1) and (A2). To obtain the multiplicity of solutions, by using the concentration-
compactness principle for elliptic systems and the category theory we prove that
problem (1.1) has at least cat(Ω) solutions, where cat(Ω) denotes the Lyusternik–
Schnirelmann category of Ω̄ in itself [12].

The paper is organized in the following way. In § 2 we present some technical
results which will be used throughout the work. We prove theorems 1.1 and 1.2
in § 3. Finally, § 4 is devoted to the proof of theorem 1.3.

2. Preliminaries

Lemma 2.1. Let λn � 1 and (un, vn) ∈ E be such that λn → ∞ and ‖(un, vn)‖2
λn

<
K. Then there exists a (u, v) ∈ H1

0 (Ω1) × H1
0 (Ω2) such that, up to a subsequence,

(un, vn) ⇀ (u, v) in E and (un, vn) → (u, v) in L2(RN ) × L2(RN ).

Proof. The proof is similar to that of [4, lemma 4]. For convenience, we give a
sketch here. Since λn � 1, we have ‖(un, vn)‖2 � ‖(un, vn)‖2

λn
< K. Then, we may

assume that (un, vn) ⇀ (u, v) in E and (un, vn) → (u, v) in L2
loc(R

N ) × L2
loc(R

N ).
Set Cm = {x ∈ R

N : |x| � m, a1(x) � 1/m}. For every m ∈ N, we have∫
Cm

u2
n dx � m

∫
Cm

a1(x)u2
n dx � mK

λn
→ 0

as n → ∞. Similarly, set Cj = {x ∈ R
N : |x| � j, a2(x) � 1/j}. For every j ∈ N,

we have ∫
Cj

v2
n dx → 0 as n → ∞.

Therefore, u = 0 for almost every (a.e.) x ∈ R
N \Ω1 and v = 0 for a.e. x ∈ R

N \Ω2.
Since ∂Ω1 and ∂Ω2 are smooth, (u, v) ∈ H1

0 (Ω1) × H1
0 (Ω2). On the other hand,∫

F c
1

u2
n dx � 1

λnM1

∫
F c

1

λna1(x)u2
n dx � K

λnM
→ 0 (2.1)
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as n → ∞. Setting BR = {x ∈ R
N : |x| � R} and choosing r ∈ (1, N/(N − 2)), by

(A2) we have∫
F1∩Bc

R

(un − u)2 dx � |un − u|22r|{x ∈ R
N : x ∈ Bc

R ∩ F1}|1/r′

� c‖(un − u, vn − v)‖2|{x ∈ R
N : x ∈ Bc

R ∩ F1}|1/r′ → 0
(2.2)

as R → ∞, where r′ = r/(r − 1), Bc
R = R

N \ BR. Therefore, combining (2.1)
and (2.2) and noting that un → u in L2

loc(R
N ), we have un → u in L2(RN ).

Similarly, we obtain vn → v in L2(RN ).

For i = 1, 2, set aλ,i := inf σ(−∆ + λai(x)), the infimum of the spectrum of the
self-adjoint operator −∆ + λai(x). Observe that

0 � aλ,i = inf
{ ∫

RN

(|∇u|2 + λai(x)u2) dx : u ∈ H1(RN ),
∫

RN

u2 dx = 1
}

.

Define the functional

Tλ(u, v) :=
∫

RN

(|∇u|2 + |∇v|2 + λa1(x)u2 + λa2(x)v2) dx

−
∫

RN

(α1u
2 + 2βuv + α2v

2) dx.

Lemma 2.2. For any σ ∈ (0, µ1), there exists λ1 > 0 such that

aλ,i � 1
2 (σ + µ1)

for λ � λ1. Moreover,

δ‖(u, v)‖2
λ �

∫
RN

[|∇u|2 + |∇v|2 + (λa1(x) − σ)u2 + (λa2(x) − σ)v2] dx (2.3)

for (u, v) ∈ E and λ � λ1, where δ = (µ1 − σ)/(µ1 + σ + 2). In particular, if
0 < ν1 � ν2 < µ1,

δ‖(u, v)‖2
λ � Tλ(u, v) (2.4)

for (u, v) ∈ E and λ � λ1.

Proof. Assume by contradiction that there exists a sequence λn → ∞ such that
aλn,1 < 1

2 (σ+µ1) for all n and aλn,1 → κ � 1
2 (σ+µ1). We assume that un ∈ H1(RN )

such that ∫
RN

|un| dx = 1

and ∫
RN

[|∇un|2 + (λna1(x) − aλn,1)u2
n] dx → 0.
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Then, for large n, there is C > 0 such that

‖un‖2
λn

=
∫

RN

[|∇un|2 + (λna1(x) − aλn,1)u2
n] dx +

∫
RN

(1 + aλn,1)u2
n dx

� C + 1 + 1
2 (σ + µ1). (2.5)

By the proof of lemma 2.1, there exists u ∈ H1
0 (Ω1) such un ⇀ u in E and un → u

in L2(RN ). Therefore, ∫
Ω1

|u| dx = 1

and ∫
Ω1

(|∇u|2 − κu2) dx � lim inf
n→∞

∫
RN

(|∇un|2 − aλn,1u
2
n) dx

� lim inf
n→∞

∫
RN

[|∇un|2 + (λna1(x) − aλn,1)u2
n] dx → 0.

Hence, ∫
Ω1

|∇u|2 dx � κ � 1
2 (σ + µ1) < µ1 � µ1(Ω1),

which is a contradiction since

µ1(Ω1) �
∫

Ω1

|∇u|2 dx.

Similarly, we can prove aλ,2 � 1
2 (σ + µ1).

In order to find least energy solutions, we shall use the Nehari manifold

Nλ = {(u, v) ∈ E \ (0, 0) : J ′
λ(u, v)(u, v) = 0}.

It is clear that Nλ is radially diffeomorphic to the set

Vλ :=
{

(u, v) ∈ E :
∫

RN

|u|p|v|q dx = 1
}

,

where the diffeomorphism is given by

Vλ → Nλ : (u, v) → 2(2−N)/4T
(N−2)/4
λ (u, v)(u, v).

For u ∈ Nλ, we have

Jλ(u, v) =
Tλ(u, v)

N
.

Therefore,

cλ := inf
(u,v)∈Nλ

Jλ(u, v) =
21−N/2

N
inf

(u,v)∈Vλ

T
N/2
λ (u, v).
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For any bounded domain D ⊂ R
N , we consider the functional

JD(u, v) = 1
2

∫
D

(|∇u|2 + |∇v|2) dx − 1
2

∫
D

(α1u
2 + βuv + 2α2v

2) dx

− 2
p + q

∫
D

|u|p|v|q dx

for (u, v) ∈ H1
0 (D) × H1

0 (D). Similar to the above arguments, its Nehari manifold

ND := {(u, v) ∈ H1
0 (D) × H1

0 (D) \ (0, 0) : J ′
D(u, v)(u, v) = 0}

is radially diffeomorphic to the set

VD :=
{

(u, v) ∈ H1
0 (D) × H1

0 (D) :
∫

D
|u|p|v|q dx = 1

}
.

Set

cD := inf
(u,v)∈ND

JD(u, v) =
21−N/2

N
inf

(u,v)∈VD
T

N/2
D (u, v),

where
TD :=

∫
D

(|∇u|2 + |∇v|2) dx −
∫

D
(α1u

2 + βuv + α2v
2) dx.

Lemma 2.3. Assume that β � 0, 0 < ν1 � ν2 < µ1 and λ � λ1. Then

2
N

(
δSp,q

2

)N/2

� cλ < cΩ <
2
N

(
Sp,q

2

)N/2

.

Proof. By (2.4), δ‖(u, v)‖2
H1 � δ‖(u, v)‖2

λ � Tλ(u, v). Thus, taking infima over
(u, v) ∈ Vλ we get

2
N

(
δSp,q

2

)N/2

� cλ.

Since VΩ ⊂ Vλ and for any (u, v) ∈ VΩ , Tλ(u, v) = TΩ(u, v), it follows that cλ � cΩ .
By [1, lemma 4], we know for β � 0, 0 < ν1 � ν2 < µ1(Ω), that

cΩ <
2
N

(
Sp,q

2

)N/2

and cΩ is obtained by some (u, v) > 0. Finally, if cλ = cΩ , then cλ would also
be achieved at a (u, v) that vanishes outside Ω × Ω, contradicting the maximum
principle.

Lemma 2.4. If ν2 → 0, then

cΩ → 2
N

(
Sp,q

2

)N/2

.

Proof. By the definition of cΩ , we take {(un, vn)} ⊂ VΩ such that

21−N/2

N
T

N/2
Ω (un, vn) → cΩ .
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Then, by the Poincaré inequality, we get∫
Ω

(|∇un|2 + |∇vn|2) dx � C

for ν2 small enough. Therefore, by lemma 2.3,

Sp,q � lim
n→∞

∫
Ω

(|∇un|2 + |∇vn|2) dx

� lim
n→∞

(
TΩ(un, vn) +

∫
Ω

(α1u
2
n + 2βunvn + α2v

2
n) dx

)
� lim

n→∞
TΩ(un, vn) + ν2C

= 21−2/N (NcΩ)2/N + ν2C

< Sp,q + ν2C.

So, for ν2 → 0, we obtain

cΩ → 2
N

(
Sp,q

2

)N/2

.

3. Proof of theorems 1.1 and 1.2

In this section, for M := min{M1, M2}, we take λ1 large such that λM − ν2 � 0
for all λ � λ1.

Lemma 3.1. Assume that 0 < ν1 � ν2 < µ1 and λ � λ1. Then Jλ satisfies the
Palais–Smale (PS)c condition for all

c <
2
N

(
Sp,q

2

)N/2

.

Proof. Assume that {(un, vn)} is a (PS)c sequence. Since

Jλ(un, vn) − J ′
λ(un, vn)(un, vn)

2∗ =
1
N

Tλ(un, vn) (3.1)

and

Jλ(un, vn) − J ′
λ(un, vn)(un, vn)

2
=

2
N

∫
RN

|un|p|vn|q dx, (3.2)

then, combining (3.1) and (3.2), we get

lim
n→∞

Tλ(un, vn) = 2 lim
n→∞

∫
RN

|un|p|vn|q dx = Nc. (3.3)

By (2.4) and (3.3), δ‖(un, vn)‖2
λ � Tλ(un, vn) = Nc+o(1). So, {(un, vn)} is bounded

in E. We may assume that (un, vn) ⇀ (u, v) in E, (un, vn) → (u, v) in L2
loc(R

N ) ×
L2

loc(R
N ) and (un, vn) → (u, v) almost everywhere x ∈ R

N . A standard argument
shows that (u, v) is a weak solution of (1.1).
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Let ωn = un − u, ψn = vn − v. Since |un − tu|p−2(un − tu)|vn − tv|q is uniformly
bounded in L2∗/(2∗−1)(RN ) for t ∈ [0, 1] and |un − tu|p−2(un − tu)|vn − tv|q →
(1 − t)2

∗−1|u|p−1|v|q almost everywhere (t, x) ∈ [0, 1] × R
N , we have∫

RN

(|un|p|vn|q − |ωn|p|ψn|q) dx

= −
∫

RN

∫ 1

0

d
dt

(|un − tu|p|vn − tv|q) dt dx

= p

∫
RN

∫ 1

0
u|un − tu|p−2(un − tu)|vn − tv|q dt dx

+ q

∫
RN

∫ 1

0
v|vn − tv|q−2(vn − tv)|un − tu|q dt dx

→ p

∫
RN

∫ 1

0
(1 − t)2

∗−1|u|p|v|q dt dx

+ q

∫
RN

∫ 1

0

∫
RN

(1 − t)2
∗−1|v|q|u|p dt dx

=
∫

RN

|u|p|v|q dx. (3.4)

Since J ′
λ(un, vn)(un, vn) → 0, J ′

λ(u, v)(u, v) = 0 and by the Brézis–Lieb lemma, we
have

J ′
λ(ωn, ψn)(ωn, ψn) = Tλ(ωn, ψn) − 2

∫
RN

|ωn|p|ψn|q dx → 0. (3.5)

Thus, by (3.5), we may assume

Tλ(ωn, ψn) → b,

∫
RN

|ωn|p|ψn|q dx → 1
2b � Nc < 2( 1

2Sp,q)N/2.

By (2.2) and note that (un, vn) → (u, v) in L2
loc(R

N ) × L2
loc(R

N ), we have∫
F1

ω2
n dx → 0,

∫
F2

ψ2
n dx → 0.

Therefore,

Sp,q( 1
2b)2/2∗

= Sp,q lim
n→∞

( ∫
RN

|ωn|p|ψn|q dx

)2/2∗

� lim
n→∞

∫
RN

(|∇ωn|2 + |∇ψn|2) dx

� lim
n→∞

[ ∫
RN

(|∇ωn|2 + |∇ψn|2) dx

+
∫

F c
1

(λa1 − ν2)ω2
n dx +

∫
F c

2

(λa2 − ν2)ψ2
n dx

]

https://doi.org/10.1017/S0308210510001526 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510001526


208 Y. Wang and W. Zou

� lim
n→∞

Tλ(ωn, ψn) + ν2

∫
F1

ω2
n dx + ν2

∫
F2

ψ2
n dx

= b. (3.6)

If b �= 0, we get b � 2( 1
2Sp,q)N/2, which contradicts the fact that b < 2( 1

2Sp,q)N/2.
Thus, b = 0. Hence, (ωn, ψn) → (0, 0) in E.

Proof of theorem 1.1. Let {(un, vn)} ⊂ Nλ be a minimizing sequence for Jλ, By
Ekeland’s variational principle [12], we may assume that it is a Palais–Smale se-
quence. By lemmas 2.3 and 2.4, there exists a subsequence of {(un, vn)} that con-
verges to a least energy solution (u, v) of problem (1.1).

Proof of theorem 1.2. Let {(un, vn)} be a sequence of solutions of problem (1.1)
such that β � 0, 0 < ν1 � ν2 < µ1, λn → ∞ and

Jλn
(un, vn) → c <

2
N

(
Sp,q

2

)N/2

.

By lemmas 2.1 and 2.2, there exists a (u, v) ∈ H1
0 (Ω1)×H1

0 (Ω2) such that (un, vn) ⇀
(u, v) in E and (un, vn) → (u, v) in L2(RN ) × L2(RN ). Therefore, for any (φ, ϕ) ∈
H1

0 (Ω1) × H1
0 (Ω2),∫

RN

(∇un∇φ + ∇vn∇ϕ) dx −
∫

RN

(α1unφ + βunϕ + βvnφ + α2vnϕ) dx

=
2p

p + q

∫
RN

|un|p−2un|vn|qφ dx +
2q

p + q

∫
RN

|vn|q−2vn|un|pϕ dx. (3.7)

Letting n → ∞ in (3.7), we get
∫

RN

(∇u∇φ + ∇v∇ϕ) dx −
∫

RN

(α1uφ + βuϕ + βvφ + α2vϕ) dx

=
2p

p + q

∫
RN

|u|p−2u|v|qφ dx +
2q

p + q

∫
RN

|v|q−2v|u|pϕ dx. (3.8)

Thus, (u, v) is a solution of (1.2). To show (un, vn) → (u, v) in H1(RN ) × H1(RN ),
we set ωn = un − u and ψn = vn − v. Then, since (un, vn) ∈ Nλ and (u, v) satisfies
(3.8), analogously to the arguments in lemma 2.4, we have

Tλ(ωn, ψn) − 2
∫

RN

|ωn|p|ψn|q dx = o(1).

We claim that ∫
RN

|ωn|p|ψn|q dx → 0.

Assume by contradiction that∫
RN

|ωn|p|ψn|q dx → a > 0.

https://doi.org/10.1017/S0308210510001526 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510001526


On a class of Schrödinger systems with critical exponents 209

Then,

Sp,q

( ∫
RN

|ωn|p|ψn|q dx

)2/2∗

�
∫

RN

(|∇ωn|2 + |∇ψn|2) dx

� Tλn(ωn, ψn) + o(1)

= 2
∫

RN

|ωn|p|ψn|q dx. (3.9)

It follows from (3.4) that

Sp,q � 2
( ∫

RN

|ωn|p|ψn|q dx

)1−2/2∗

+ o(1) � 2
( ∫

RN

|un|p|vn|q dx

)1−2/2∗

+ o(1).

So, (
Sp,q

2

)N/2

� lim
n→∞

∫
RN

|un|p|vn|q dx =
Nc

2
<

(
Sp,q

2

)N/2

,

which is a contradiction. Therefore,∫
RN

|ωn|p|ψn|q dx → 0 and Tλn(ωn, ψn) → 0.

Thus, we get

lim
n→∞

Tλn(un, vn) = TΩ(u, v). (3.10)

Since (un, vn) = (ωn, ψn) in R
N \ Ω1 × R

N \ Ω2, a1(x) = 0 in Ω1 and a2(x) = 0 in
Ω2, we have∫

RN

a1(x)u2
n dx �

∫
RN

λna1(x)u2
n dx =

∫
RN

λna1(x)ω2
n dx � Tλn(ωn, ψn) → 0.

Similarly, we get ∫
RN

a2(x)v2
n dx → 0.

Thus, by (3.10), (un, vn) → (u, v) in H1(RN ) × H1(RN ).

4. Proof of theorem 1.3

Proposition 4.1. Assume p + q = 2∗. Let {(un, vn)} ⊂ D1,2(RN ) × D1,2(RN ) be
a sequence such that

(un, vn) ⇀ (u, v) in D1,2(RN ) × D1,2(RN ),

(un, vn) → (u, v) almost everywhere on R
N ,

|∇(un − u)|2 + |∇(vn − v)|2 ⇀ µ in M(RN ),

|un|p|vn|q ⇀ ν in M(RN ),
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where M(RN ) denotes the space of finite measures on R
N . Define

µ∞ := lim
R→∞

lim sup
n→∞

∫
|x|>R

(|∇un|2 + |∇vn|2) dx,

ν∞ := lim
R→∞

lim sup
n→∞

∫
|x|>R

|un|p|vn|q dx.

Then it follows that

‖ν‖2/2∗ � S−1
p,q‖µ‖, ν2/2∗

∞ � S−1
p,qµ∞,

lim sup
n→∞

∫
RN

(|∇un|2 + |∇vn|2) dx =
∫

RN

(|∇u|2 + |∇v|2) dx + ‖µ‖ + µ∞,

lim sup
n→∞

∫
RN

|un|p|vn|q dx =
∫

RN

|u|p|v|q dx + ‖ν‖ + ν∞.

Moreover, if (u, v) = 0 and ‖ν‖2/2∗
= S−1

p,q‖µ‖, then ν and µ are concentrated at a
single point.

Proof. By the definition of (1.3), the proof can follow step by step from the proof
of [12, lemma 1.40]. We refer to the detailed proof in [8].

For r > 0 small enough, we consider the sets

Ω+
2r = {x ∈ R

N : dist(x, Ω) < 2r}

and

Ω−
r = {x ∈ Ω : dist(x, ∂Ω) > r}.

Define the map

γ(u, v) :=
∫

Ω

|u|p|v|qxdx.

Assume that Br ⊂ Ω, Then

cΩ < cBr <
2
N

(
Sp,q

2

)N/2

.

We have the following result.

Lemma 4.2. For ν2 → 0, λ � λ2 and all (u, v) ∈ VΩ with

TΩ(u, v) � 21−2/N (NcBr
)2/N < Sp,q, γ(u, v) ∈ Ω+

r .

Proof. Assume that, by contradiction, for ν2 → 0, there exists {(un, vn)} ⊂ VΩ

with TΩ(un, vn) � 21−2/N (NcBr )
2/N such that γ(un, vn) �∈ Ω+

r . It is easy to see
that ∫

Ω

(|∇un|2 + |∇vn|2) dx
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is bounded. Moreover,

Sp,q � lim
n→∞

∫
Ω

(|∇un|2 + |∇vn|2) dx

� lim
n→∞

(
TΩ(un, vn) +

∫
Ω

(α1u
2
n + 2βunvn + α2v

2
n) dx

)
� 21−2/N (NcBr

)2/N + ν2C < Sp,q + ν2C. (4.1)

Up to a subsequence, we assume that

(un, vn) ⇀ (u, v) in D1,2(RN ) × D1,2(RN ),
(un, vn) → (u, v) almost everywhere on Ω,

|∇(un − u)|2 + |∇(vn − v)|2 ⇀ µ in M(RN ),

|un|p|vn|q ⇀ ν in M(RN ).

Since Ω is bounded, by proposition 4.1 and (4.1), for ν2 small enough, we have

Sp,q =
∫

Ω

(|∇u|2 + |∇v|2) dx + ‖µ‖, 1 =
∫

Ω

|u|p|v|q dx + ‖ν‖

and

‖ν‖2/2∗ � S−1
p,q‖µ‖,

( ∫
Ω

|u|p|v|q dx

)2/2∗

� S−1
∫

Ω

(|∇u|2 + |∇v|2) dx.

It follows that ∫
Ω

|u|p|v|q dx

and ‖ν‖ are equal either to 0 or to 1. Since S is never attained in any bounded
domain, by (1.4), Sp,q is also never attained in any bounded domain. So, (u, v) =
(0, 0). We then deduce from proposition 4.1 that ν is concentrated at a single point
y ∈ Ω̄ and

γ(un, vn) →
∫

Ω

xdν = y ∈ Ω̄,

a contradiction.

Choose R > 0 such that Ω̄ ∈ BR and define

γ0(u, v) :=
∫

Ω

|u|p|v|qξ(|x|)xdx, (4.2)

where ξ(t) = 1 if 0 � t � R and ξ(t) = R/t if t � R.

Lemma 4.3. There exists λ2 > λ1 such that for ν2 → 0 and all (u, v) ∈ Vλ with
Tλ(u, v) � 21−2/N (NcBr )

2/N < Sp,q, γ0(u, v) ∈ Ω+
2r.

Proof. Assume, by contradiction, that for ν2 small there is a sequence (un, vn) such
that (un, vn) ∈ Vλn

, λn → ∞, Tλn
(un, vn) � 21−2/N (NcBr

)2/N and γ0(un, vn) �∈
Ω+

2r. By lemma 2.1, (un, vn) ⇀ (u, v) in E and (un, vn) → (u, v) in L2(RN )×L2(RN )
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for some (u, v) ∈ H1
0 (Ω1)×H1

0 (Ω2). Let ωn = un −u and ψn = vn −v. Analogously
to the arguments of the proof of lemma 3.1, we get∫

RN

|un|p|vn|q dx →
∫

RN

|u|p|v|q dx.

Therefore, γ0(un, vn) → γ(u, v). However, since

TΩ(u, v) � lim
n→∞

Tλn
(un, vn) � 21−2/N (NcBr )

2/N ,

it follows from lemma 4.2 that γ(u, v) ∈ Ω+
r . This contradicts γ0(un, vn) �∈ Ω+

2r.

To prove theorem 1.3, we need the following result [4].

Proposition 4.4. Let I : M → R be an even C1-functional on a complete sym-
metric C1,1-submanifold M ⊂ V \ {0} of some Banach space V and set Ib := {z ∈
M : I(z) � b}. Assume that I is bounded below and satisfies (PS)c for all c � b.
Further, assume that there are maps

X
ι−→ Ib γ−→ Y,

whose composition γ · ι is a homotopy equivalence, and that γ(z) = γ(−z) for
all z ∈ M ∩ Ib. Then I has at least cat(X) pairs {z,−z} of critical points with
I(z) = I(−z) � b.

Now, we begin to prove theorem 1.3.

Proof of theorem 1.3. Set

T̃λ :=
21−N/2

N
T

N/2
λ , T̃Ω :=

21−N/2

N
T

N/2
Ω .

Let (ur, vr) be a non-negative radial minimizer of T̃Br
on VBr with T̃Br = cBr [11].

Define
ι : Ω−

r → Vλ ∩ T̃
cBr

λ , ι(x) = (ur(· − x), vr(· − x)),

and γ0 : Vλ ∩ T̃
cBr

λ → Ω+
2r as in (4.2). By lemma 4.3, γ0 is well defined. Since

ι(x) = (0, 0) in R
N \ Ω for every x ∈ Ω−

r , it follows that ι(x) ∈ Vλ and that
T̃λ(ι(x)) = T̃Br (ι(x)) = cBr

. Moreover, T̃λ(−u, −v) = T̃λ(u, v) and γ0(−u, −v) =
γ0(u, v) for (u, v) ∈ E \ {(0, 0)}. By [1, lemma 4], we get

cBr
<

2
N

(
Sp,q

2

)N/2

.

So, by the expression of cλ and lemma 2.4, T̃λ satisfies (PS)c for all cλ � cBr . It
follows from lemma 4.3 and proposition 4.4 that T̃λ has at least cat(Ω) critical
points, that is, Jλ has at least cat(Ω) critical points with

Jλ <
2
N

(
Sp,q

2

)N/2

.
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(Issued 17 February 2012 )

https://doi.org/10.1017/S0308210510001526 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510001526



