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Turbulent mixing by breaking gravity waves
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(Received 4 July 1996 and in revised form 10 July 1998)

The characteristics of turbulence caused by three-dimensional breaking of internal
gravity waves beneath a critical level are investigated by means of high-resolution
numerical simulations. The flow evolves in three stages. In the first one the flow is
two-dimensional: internal gravity waves propagate vertically upwards and create a
convectively unstable region beneath the critical level. Convective instability leads to
turbulent breakdown in the second stage. The developing three-dimensional mixed re-
gion is organized into shear-driven overturning rolls in the plane of wave propagation
and into counter-rotating streamwise vortices in the spanwise plane. The production
of turbulent kinetic energy by shear is maximum. In the last stage, shear production
and mechanical dissipation of turbulent kinetic energy balance.

The evolution of the flow depends on topographic parameters (wavelength and am-
plitude), on shear and stratification as well as on viscosity. Here, only the implications
of the viscosity for the instability structure and evolution in terms of the Reynolds
number are considered. Smaller viscosity leads to earlier onset of convective insta-
bility and overturning waves. However, viscosity retards the onset of smaller-scale
three-dimensional instabilities and leads to a reduced momentum transfer to the mean
flow below the critical level. Hence, the formation of secondary overturning rolls is
sustained by lower viscosity.

The budgets of total kinetic and potential energies are calculated. Although the
domain-averaged turbulent kinetic energy is less than 1% of the total kinetic energy,
it is strong enough to form a patchy and intermittent turbulent mixed layer below
the critical level.

1. Introduction
Breaking gravity waves exert a significant drag on the atmospheric flow. Knowledge

of their locations and magnitude is essential for parameterizing drag in numerical
models predicting weather or climate. Current theoretical and computational studies
of momentum and mass transfer in stably stratified flows focus mainly on provid-
ing useful parameterizations of this effect (see for example Bacmeister et al. 1994;
Kim & Arakawa 1995; Broad 1995; Shutts 1995). In addition, small-scale mixing by
breaking gravity waves in the free atmosphere influences the horizontal and vertical
distributions of constituents, e.g. exhaust gases from high flying aircraft (Schumann
et al. 1995; Schilling & Etling 1996; Dörnbrack & Dürbeck 1998). Furthermore, mi-
crophysical and chemical calculations require a knowledge of the small-scale thermal
and dynamical structure of internal gravity waves that lead to moisture and temper-
ature conditions which promote the nucleation and growth of aerosol particles (Peter
et al. 1995; Carslaw et al. 1998a, b).
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114 A. Dörnbrack

In the present paper, the life-cycle of vertically propagating internal gravity waves
trapped by a critical level is simulated. The high-resolution numerical simulations
are restricted to idealized flow conditions where a linear shear flow over a sinusoidal
surface excites internal gravity waves in a stably stratified flow. The critical level
(the height where the phase speed of a wave equals the mean flow speed) strongly
modifies vertical wave propagation: only very small-amplitude waves are transmitted
beyond the critical level. Booker & Bretherton (1967) used linear inviscid theory to
demonstrate that as a gravity wave propagates through the critical level, its amplitude
is reduced by a factor exp[−2π(Ric − 0.25)1/2], where Ric > 0.25 is the Richardson
number at the critical level. Beneath the critical level wave energy is absorbed by
mean flow. Depending on the wave energy, shear and stratification of the basic
flow, turbulence can be generated which cascades kinetic energy to smaller scales. A
summary of recent theoretical approaches to the critical level problem can be found
in Baines (1995, chapter 4.11).

Worthington & Thomas (1996), who observed the absorption of mountain waves at
critical layers by radar on the west coast of Wales, could identify enhanced turbulence
beneath the critical layer from the broadening of the spectral width of the radar echo.
The wave behaviour below a critical level was studied in the laboratory under well-
defined conditions of shear, stability and wave excitation by Thorpe (1981), Koop &
McGee (1986), and Delisi & Dunkerton (1989). These mostly qualitative observations
are restricted either to flows where the wave energy is small and the flow does not
reach overturning or to conditions where three-dimensional structures begin to evolve.
So far, measurements of three-dimensional mixed layers after overturning have not
been undertaken.

Most numerical investigations of gravity wave–critical layer interaction consider
two-dimensional problems (e.g. Fritts 1982; Winters & d’Asaro 1989; Dunkerton &
Robins 1992; Schilling & Etling 1996). More recently, Winters & d’Asaro (1994),
Dörnbrack, Gerz & Schumann (1995), Fritts, Garten & Andreassen (1996), and
Grubišić & Smolarkiewicz (1997) tackled the problem by three-dimensional numerical
simulations. Although the wave–mean flow interaction is essentially two-dimensional
in its early stage of flow evolution, these latest investigations found fundamently dif-
ferent dynamics of wave instability in three dimensions compared to two-dimensional
ones. Winters & d’Asaro (1994) found three-dimensional instability developing by a
transverse convective instability of the two-dimensional wave. Fritts et al. (1996) drew
special attention to flows where the mean shear is at an angle to the direction of wave
propagation. For this case, the instability structures are aligned with the background
shear flow rather than in the direction of wave propagation. They found less rapid
growth compared to the parallel shear flow case. Grubišić & Smolarkiewicz (1997)
studied the effect of the critical level on the airflow past an isolated mountain and
extended previous studies that were restricted to two-dimensional wave excitation.

Our previous studies have concentrated on two aspects of gravity wave–critical
layer interaction. In Dörnbrack & Nappo (1997), results from a two-dimensional
version of the numerical code used in the present study were successfully compared
with the tank experiment of Thorpe (1981). Because of the limited time of observation
due to the finite length of the tilted tube, only results at the early and quasi-linear
stage of flow evolution could be considered. Therefore, the present study can be
understood as an extension of Thorpe’s tank experiment by means of high-resolution
numerical modelling for times far beyond the point of first instability. In Dörnbrack
et al. (1995), the three-dimensional flow evolution using two different formulations
of viscosity was investigated: constant viscosity in a direct numerical simulation
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Turbulent mixing by breaking gravity waves 115

(DNS) and flow-dependent viscosity as a function of the local shear perturbation and
stability in a large-eddy simulation (LES). Both simulations behave similarly in the
early, almost two-dimensional stage of gravity wave–critical level interaction. When
the flow becomes nonlinear its structure consists of persistent small-scale overturning
waves in the DNS whereas the primary, convectively unstable region collapses rapidly
into three-dimensional turbulence in the LES. These results show that convectively
overturning regions always form in the same way but the details of subsequent
breaking and the resulting structure of the mixed layer depend on the effective
Reynolds number of the flow. With sufficient viscous damping, three-dimensional
turbulent convective instabilities are more easily suppressed than two-dimensional
laminar overturning. From this study it was concluded that the use of a combination
of constant and flow-dependent subgrid-scale viscosity is necessary for a correct
simulation of the transition from two-dimensional wavy motion to three-dimensional
turbulence.

This paper considers flow regimes where the excitation is strong enough to overturn
gravity waves and where the net result to be expected is a horizontally homogeneous
mixed layer. The main objective of this study is a detailed description of the dynamics
and energetics of this three-dimensional breaking. The following questions are to be
answered: What are the details of breaking? What is the role of viscosity? What are
the characteristics of turbulence generated by breaking gravity waves? How much
mean flow energy is transferred to waves, how much to turbulence? Finally, the study
should provide fundamental knowledge for the physical understanding of the gravity
wave–critical layer interaction and for its parameterization in large-scale models.

The paper is organized as follows. Section 2 briefly reviews the numerical method,
describes its initial and boundary conditions, and introduces essential parameters. A
detailed description of the gravity wave breaking is given in § 3. Section 4 studies the
implications of viscosity on the instability structure and discusses the spectra for flows
of different Reynolds numbers. Section 5 investigates the energetics and estimates the
mixing efficiency of the breaking process. Similarities and differences between our
results and previous, three-dimensional studies are discussed in § 6.

2. Simulation method
The computational method is described in Dörnbrack et al. (1995) and here only its

essential properties are repeated. The numerical scheme integrates the non-hydrostatic
Boussinesq equations in three dimensions and as a function of time:

∂

∂xd
(
ρ0VG

dquq
)

= 0 , (2.1)

∂

∂t
(Vui) +

∂

∂xd
(
VGdququi

)
= − 1

ρ0

∂

∂xg
(
VGgip

)
− ∂

∂xd
(
Gds (VFis)

)
+ V g

θ

ϑ0

δ3i, i = 1, 2, 3. (2.2)

Additionally, an equation for the temperature fluctuations

∂

∂t
(Vθ) +

∂

∂xd
(
VGdquqθ

)
+ Vu3

dΘ

dx3

= − ∂

∂xd
(
Gdr (VQr)

)
(2.3)

is solved. The governing equations (2.1) to (2.3) are formulated for the Cartesian
coordinates (x, y, z) as a function of curvilinear coordinates (x, y, z) according to the
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Figure 1. Schematic sketch of the computational domain and the model set-up. The critical layer
zcrit is defined by U = 0. The wave amplitude is δ = 0.03125H and the wavelength is λ = 1.5625H .
The velocity and temperature differences across the vertical depth H are chosen in such a manner
that the bulk Richardson number RiB is approximately 1.1 at the beginning.

transformation x = x, y = y, z = η(x, z). The Jacobian of the transformation is
V = Det[Gij]−1 with Gij = ∂xi/∂xj . Here, η(x, z) = H (z − h)/(H − h) maps the
domain above the wavy surface with height h(x) = δ cos kxx, where kx = 2π/λ, and
below a plane top surface at z = H into a rectangular transformed domain. The
wave amplitude is δ = 0.03125H and the wavelength is λ = 1.5625H . These values
are taken from a comparison of our numerical results with the tank experiment of
Thorpe (1981), see Dörnbrack et al. (1995). Figure 1 shows the computational domain
of height H , length λ and width λ/5.

The governing equations are approximated by finite differences on a staggered grid
with (nx, ny, nz) = (150, 30, 96) mesh cells. In the horizontal directions the grid spacing
is equidistant (∆x = ∆y = H/nz). A higher resolution close to the critical level is
achieved by transforming the vertical coordinate η on a non-equidistant grid using

η∗k =
H

2

{
α sinh

[
arcsinh(α−1)

(
2
k − 1

nz
− 1

)]
+ 1

}
, k = 1, 2, . . . , nz + 1. (2.4)

The parameter α = 0.1 is chosen so that the grid spacing is reduced by one order of
magnitude from its surface value to the value at the critical level.

The diffusive fluxes in (2.2) and (2.3) are calculated by means of a first-order closure

VFij = −KM V2Dij , VQi = −KH

∂

∂xr
(
VGriθ

)
, (2.5)

where the deformation tensor Dij in terrain-following coordinates reads

Dij =
1

2

1

V

∂

∂xr
(
VGrjui + VGriuj

)
. (2.6)

The subgrid-scale diffusivities KM and KH are modelled as the sum of a uniform and
a flow-dependent eddy viscosity according to

KM =
1

Re
+ νturb and KH =

1

RePr
+

νturb

P rturb
, (2.7)

with Re = ∆UH/νM and Pr = νM/γ. The velocity difference across the vertical depth
H is ∆U, νM denotes the kinematic viscosity, γ is the thermal conductivity, and Prturb =
1. For this subgrid-scale model different Reynolds numbers Re = 2 × 104, 3 × 104,
and 5 × 104 are tested. For the simulation presented in § 3 we take Re = 5 × 104 as
the flow evolution becomes nearly insensitive to further small changes of Re. Based
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on suggestions by Lilly (1962) and Schumann (1975), the turbulent viscosity

νturb =

{
Λ2|S − S |(1− Ri/Ric)1/2, Ri < Ric = 1
0, otherwise,

(2.8)

is determined by the local values of shear perturbation S ′ = |S − S | and as a function
of the local Richardson number

Ri =
g

ϑ0

∂ϑ/∂z(
∂u/∂z

)2
+
(
∂v/∂z

)2
. (2.9)

The quantity S = (2DijDij)
1/2 denotes the second invariant of the deformation tensor

and S = ∆U/H is the mean vertical shear. The mixing scale Λ is related to the
grid spacings as Λ = 0.1(∆x + ∆y + ∆z)/3. In (2.8), νturb 6= 0 is restricted to regions
of wave–critical layer interaction, i.e. closely beneath the critical layer where the
deformation of U(z) is strongest and where Ri drops significantly below its critical
value Ric. The total temperature

ϑ(x, t) = ϑ0 +Θ(z) + θ(x, t) (2.10)

consists of three components: a constant reference temperature ϑ0, the linear back-
ground stratification according to

Θ(z)

ϑ0

=
∆Θ

ϑ0

(z − 0.5H)

H
, where

∆Θ

ϑ0

=
N2H

g
, (2.11)

and finally the fluctuations θ(x, t). The Brunt–Väisälä frequency N and the mean

shear S are chosen is such a way that the bulk Richardson number RiB = N2/S
2

is
approximately 1.1 at the beginning.

The initial velocity distribution equals U(z) = S (z − 0.5H), i.e. the fluid speed is
zero at z = 0.5H (see figure 1). The flow over the sinusoidal surface excites gravity
waves with zero phase speed and, hence, their critical layer is situated at midheight.
Initially, the flow is disturbed by small random temperature perturbations, otherwise
it would remain two-dimensional for all times. Cyclic boundary conditions are used
in the streamwise (x) direction and in the spanwise (y) direction. The boundaries
at the lower and upper wall are free-slip and adiabatic as described in Dörnbrack
et al. (1995). In the following, all quantities are normalized by the velocity, length,
temperature, density, and time scales ∆U, H , ϑ0, ρ0, and tref = H/∆U, respectively.
The simulations stop at t = 75, where the flow has reached a steady state in the
budget of the turbulent kinetic energy. Details of the numerical implementation can
be found in Krettenauer & Schumann (1992).

3. Flow structure
In this section, we give an overview of the temporal evolution of the breaking

internal gravity waves below a critical level for Re = 5× 104. Tests have shown that
the flow evolution is nearly insensitive to a further increase of Re: this run represents
typical characteristics of the turbulent breakdown. Figure 2 juxtaposes the temporal
evolution of the thermal, figure 2 (a), and dynamical, figure 2 (b), flow structure. Based
on the analyses of the simulation results, the flow development can be divided into
three stages.

In the first stage (0 < t < 17) vertically propagating gravity waves are formed. At
t = 0, the ϑ-segments are horizontal and equidistant and are only slightly disturbed
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Figure 2. For caption see facing page.
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Figure 2. (a) Instantaneous temperature field ϑ in a vertical plane y = 0 as function of time.
The thickness of the black segments is 0.002∆Θ. Broader segments indicate reduced, thinner ones
enhanced, thermal stability. (b) Streamwise velocity component u at the same times as in (a).
Negative values are denoted by dashed lines, positive ones by solid lines, the increment is 0.05 ∆U.
Superimposed are (u, w)-vectors with a maximum vector length of 0.25 ∆U.
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120 A. Dörnbrack

by random perturbations (see figure 2 a). Cold fluid is in the trough and the fluid
temperature becomes warmer with increasing height. For t > 0, the mean flow over
the sinusoidal corrugations creates gravity waves. At t = 8, figure 2 (a) reveals two
types of waves: evanescent waves with contour lines in phase with the underlying
orography for z < 0.25 and internal gravity waves with tilted phase lines above that
altitude and below the critical level.

Linear wave theory (e.g. Smith 1979; Gill 1982) can explain this behaviour in
terms of the wavenumber ratio γ = kx/`(η), where ` = N/|u(η)| is the local Scorer
parameter (see Scorer 1949 or Eliassen & Palm 1960). If γ > 1, i.e. if the intrinsic
frequency ukx (the phase speed of the excited waves relative to the topography is zero)
is large compared to the Brunt–Väisälä frequency N, buoyancy has little effect on the
flow and the streamlines remain in phase with the topography. These waves are called
evanescent since their amplitude vanishes exponentially with height. For increasing
stability, or similarly for decreasing flow speed, the ratio γ becomes less than one,
i.e. the intrinsic frequency ukx is less than N, and the waves are able to propagate
vertically. These waves are called internal gravity waves. For the parameters of the
present simulation, internal gravity waves can exist for heights z > 0.2 in agreement
with results at t = 8 shown in figure 2 (a).

The amplitude of the upward travelling waves increases with height (up to nearly
3 δ) but falls to zero just below the critical level. No wavy motion is found above this
level which suppresses the transmission of gravity waves. Regions of reduced thermal
stratification (characterized by a widening of marked segments) are located above
the trough of the surface wave. Over the crest, the vertical temperature gradient
becomes large, the black and white segments are thinner and adjacent segments
narrow. Due to the interaction of the internal gravity wave with its critical level, the
plane u = 0 descends to the right of the trough (x > λ/2) and rises to the left of it (see
x < λ/2 in figure 2 b). This creates stagnant regions of diminished thermal stability
above the trough and a zone of enhanced shear where the thermal stratification is
large. The deviation of the instantaneous (u, w)-field from its initial state obviously
indicates the change of the flow structure by the wave–mean flow interaction (see
figure 3 a). The largest increase of u and w occurs above the trough and below the
critical level. A similar structure (maximal shear at locations of stable stratification
and zero shear at locations of unstable stratification) was found by Winters & Riley
(1992). They used WKB-analysis to determine the approximate form of an internal
gravity wave approaching its critical level in a shear flow. Generally, the flow remains
two-dimensional in this early stage.

In the second stage (17 < t < 44), gravity waves gradually raise cold fluid into
formerly warm regions just above the trough while warm fluid sinks down into
cold regions above the crest of the corrugated surface (figure 2 a). The lifted colder
fluid moves over warmer fluid in the positive x-direction by wave-induced advec-
tion below the critical level. At lower levels, the mean flow slides warm fluid under
colder fluid. This process can be understood by inspecting the wavy motion com-
ponents shown in figure 3 (b) (for a definition of the averages see the Appendix).
Gravity waves transfer either positive horizontal momentum upwards (ũ > 0 and
w̃ > 0) or negative momentum downwards (ũ < 0 and w̃ < 0). Altogether, the
deposit of horizontal momentum accelerates the mean flow above the trough and
its removal decelerates the flow above the crest of the surface wave. The long last-
ing momentum transfer to and from the mean flow generates regions of stagnant
fluid in the convectively unstable zone and regions of enhanced shear (‘braid’-like
zones) above the surface crest. Convective instability occurs suddenly by spontaneous
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Figure 3. Vertical cross-sections of (u, w)-vectors at t = 8 (left-hand column) and t = 44 (right-hand
column): (a) deviation of instantaneous velocity field from its initial state (U(z), 0), (b) wavy velocity
components (ũ, w̃) (see Appendix for the definition of the average), and (c) turbulent velocity
components (u′′, w′′). Contour lines of the instantaneous streamwise velocity field are superimposed
on each plane. The maximum vector lengths are 0.2 (a), 0.1 (b), 0.015 ∆U (c).

and explosive breakdown of heavier, i.e. cold, fluid in the region upstream of the
surface trough. Approximately three Brunt–Väisälä periods were required for the
growth of instability and the transition into three-dimensional motions at t ≈ 17.
Vortical motions with axis in the spanwise direction (rolls) were produced by the
convective breakdown (see t = 20 in figure 2 a). The flow above the breaking region
is slightly disturbed by spluttering cold fluid parcels. At later times, the restoring
force of buoyancy suppresses these disturbances. They do not influence the further
flow evolution. Below the critical level, the mean flow advects the mixed region into
the negative x-direction, creating a horizontally expanding mixed layer. Moreover,
downstream and at its lower edge, a shear layer forms small-scale overturning rolls
(see t = 32 in figure 2). These shear-induced, secondary rolls continuously entrain
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Figure 4. Horizontally averaged profiles of the vertical flux of horizontal momentum τ = u′w′

(top) and of the horizontal velocity variances u′2 (middle) and v′2 (bottom) as function of the
vertical coordinate η. The three columns comprise curves at different times as shown in the table at
lower-left. The colums (a), (b) and (c) are arranged according to the three stages of flow evolution.

colder and higher momentum fluid from below and mix it with warmer upper-level
fluid. Thus, the mixed layer spreads over a deep vertical range beneath the critical
level.

A quasi-steady state of mixing is reached in the last stage (t > 44). The mixed
layer consists of shear-induced, small-scale overturning rolls that are advected by
the mean flow (see figure 3). In the core of each of these isolated overturning rolls,
the local Ri is negative which leads to the final patchiness and intermittency of
turbulence (see figure 3 c). Furthermore, the flow consists of organized structures,
namely counter-rotating streamwise vortices which will be discussed below.
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For each stage of flow evolution, figure 4 shows the momentum flux τ = u′w′

and the horizontal velocity variances arranged in three columns. The momentum
flux τ is positive and vertically uniform up to η ≈ 0.4 in the first stage. Above this
altitude, τ decreases sharply and is zero at the critical level. The positive divergence
−∂τ/∂η in this layer results in the acceleration ∂u/∂t > 0 of the mean flow and the
advection of lifted cold fluid over warmer fluid. The u′-variance grows with height, is
maximum at η ≈ 0.4 and falls to zero towards the critical level. In this period of flow
evolution, the u′-variance grows temporally. The absence of the v′-variance indicates
the two-dimensionality of the flow in the first stage. In the second stage, both the
u′- and the v′-variances increase rapidly in time and the mixed layer evolves towards
full three-dimensionality. The height of maximum variance descends. The flow in the
gradually sinking mixed layer is highly anisotropic as the r.m.s. values of v are one
order of magnitude smaller than those of u. During the breaking, the momentum flux
τ decreases significantly at all levels. In regions of high turbulence τ even becomes
negative, i.e. momentum is transported downward (compare figure 12). For t > 44,
the momentum flux as well as the horizontal velocity variances change only slightly
in time exhibiting the quasi-steady state of flow evolution.

The development of streamwise vortices is displayed in figure 5 by a series of lateral
cross-sections of the (v, w)-velocities and the local Richardson number Ri at five
horizontal locations xα (α = 1, . . . , 5). Early on, the overturning creates an elongated
convectively unstable layer that is seen as a laterally coherent layer of negative Ri
(t = 21.5 in figure 5 a). Its vertical depth depends on x and does not exceed 0.2H .
Above the crest (x5 = λ), this layer appears as an elevated, vertically compressed
but laterally essentially homogeneous region. Only weak wave-like disturbances and
isolated patches of Ri < 0 (due to the eruptive breaking at earlier times) disturb
the lateral homogeneity. Downstream, the region of instability thickens and descends
(see x3 = 0.6 λ and x4 = 0.8 λ). In this layer, the shear vanishes and the amplitudes
of the three-dimensional velocity components grow rapidly in time. In this way,
the lateral homogeneity is no longer sustained and the downward motion of lifted
cold fluid leads to adjacent regions of negative and positive vertical velocity and
finally to the generation of a pair of counter-rotating vortices. The production of
streamwise vorticity is spatially restricted to the locations inside the convective layer
(see positions x2, x3, and x4 at t = 21.5 and 28.5). Hence, the mechanism of generating
streamwise vortices is dominated by buoyancy at this stage of flow evolution. The
resulting vortices are aligned in the direction of mean shear and wave propagation.
Their magnitude is small compared to that of the spanwise overturning rolls.

At t = 28.5, the streamwise vortices have been advected downstream (figure 5 b).
The most interesting process occurs near x2 = 0.4 λ where the streamwise vortices
enter a region of strong vertical transport of horizontal momentum. At this location,
overturning rolls entrain high-momentum fluid from below (as discussed in figure 2 for
t = 32). The penetration through this momentum-flux barrier retards the horizontal
expansion of the mixed region. Vertical components of the flow field are produced
resulting in a lifting of the mixed layer (figure 5 b). As a result, streamwise vorticity
is created and the three-dimensional mixing extends vertically. In contrast to the
downstream advection of counter-rotating streamwise vortices, the wave-induced
advection below the critical level to the right of the trough transports vortices in the
opposite direction. Above the crest (see positions x4 and x5), these vortices narrow
and the vertical extent of the unstable layer is significantly reduced.

At later times (see t = 41.5, figure 5 c), the vertical shear over the crest and at
the lower edge of the mixed layer is the main mechanism for generating streamwise
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Figure 5. For caption see facing page.

vortices. Figure 5 (c) reveals a turbulent mixed layer extending horizontally over
the entire domain. The strongest streamwise vortices appear at positions above the
trough. The previously coherent mixed layer has broken up into isolated, tiny patches
of negative Richardson number leading to its intermittent character in the late stage.

High-resolution time-series of the instantaneous, unaveraged velocity components
u and w, and of the temperature θ represent virtual measurements at every timestep
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Figure 5. Instantaneous velocity field (v, w) (left) and local Richardson number Ri (right) in
spanwise sections at xα = 0.2λ, 0.4λ, 0.6λ, 0.8λ and λ (from left to right) at (a) t = 21.5, (b) t = 28.5,
(c) t = 41.5. The green contour line indicates Ri = 0, the dashed one Ri = 0.25, and the red lines
denote negative Ri.
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Figure 6. For caption see facing page.

by a spatially fixed observer. The results are displayed in figure 6 for two vertical
levels at y = 0 and at x = 0.2 λ, 0.6 λ, 0.8 λ. At early times, the horizontal velocity
is slightly negative just beneath the critical level (η ≈ 0.46) due to the initial profile
U(z) (see figure 6 a). Through the momentum transfer by the wave the local flow is
accelerated to the right of the surface trough (at x = 0.6 λ and 0.8 λ) whereas it is
decelerated at x = 0.2 λ. The maximum velocity increase δU is approximately 0.07
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Figure 6. (a) Time-series of local and instantaneous values of the streamwise and vertical velocity
u and w, and of the temperature θ. Data are taken every timestep of the numerical model at three
x-positions in the plane y = 0 and at η ≈ 0.46. The respective z-positions of the three curves are
x/λ = 0.2: ———– at z = 0.462; x/λ = 0.6: – – – – at z = 0.4894; x/λ = 0.8: – · – · – at z = 0.462.
(b) As (a) but for η ≈ 0.21: x/λ = 0.2: ———– at z = 0.232; x/λ = 0.6: – – – – at z = 0.205;
x/λ = 0.8: – · – · – at z = 0.232.
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at this vertical level. It reaches larger values at lower altitudes, up to δU = 0.12 at
η ≈ 0.38. At t ≈ 10, the horizontal velocity at x = 0.2 λ also increases because the
region of strong vertical transport of horizontal momentum has been shifted in the
negative x-direction. At the same horizontal position, u undergoes large-amplitude
oscillations during the period (t ≈ 35–50) when the momentum-flux barrier has been
penetrated by streamwise vortices and turbulence production has become maximum
underneath. Similar temporal oscillations occur in the thermal field: strong negative
temperature fluctuations arise simultaneously with large u-values indicating the small-
scale shear-induced secondary overturning rolls. In the late stage, the u-time-series at
this vertical level show wave-like oscillations around the level u = 0 caused by the
advection of overturning rolls at lower altitudes. The most distinct signal in the w-
and θ-fields is the strong oscillation in the primary unstable layer (x = 0.8 λ) due to
the convective instability. Figure 6 (a) also displays an abrupt temperature change at
t = 16.5 due to the spontaneous and explosive breaking. Afterwards, the temperature
fluctuation increases rapidly but smoothly. However, it is disrupted again at t = 17
by another eruption from the convectively unstable flow. The vertical velocity field
changes smoothly and follows the temperature field temporally. At later times, the
large-amplitude oscillations caused by the breaking are damped but are excited again
when turbulence is produced at lower levels.

In contrast to η ≈ 0.46, the time series at lower altitude η ≈ 0.21 show turbulence
after a wavy period lasting up to t ≈ 35 (see figure 6 b). In the following, the discussion
will be confined to the curve x = 0.2 λ because the other horizontal positions behave
similarly. Initially, the local velocity u is negative (u ≈ −0.27). The smaller deposit of
wave momentum causes a smaller rate of velocity change at this level compared to
η ≈ 0.46. During the early stage, periodic oscillations with a nearly constant period
T ≈ 3.1 or a frequency of ω = 2 appear as the dominant signal in all curves. For a fluid
at rest, the maximum frequency allowed for internal gravity waves is the Brunt–Väisälä

frequency N = Ri
1/2
B ≈ 1. However, at the bottom surface, perturbations of frequency

kxU ≈ 2 are excited as seen in the time-series. Therefore, the observed frequency
is just twice N. The intrinsic frequency of the gravity waves is ω̂ = ω − kxu(η). At
η ≈ 0.21 and for all heights where γ < 1, ω̂ is less than N, as expected. The amplitude
of the velocity and temperature oscillations is large compared to the level η ≈ 0.46.
Interestingly, the magnitude of the temperature amplitude alternates periodically in
time up to t = 20 (see figure 6 b). The period between the respective maxima is
approximately 6. If we take a mean velocity U0 = −0.26 at this level and if we assume
that the whole flow structures remain unchanged in time, then they return at a fixed
position every λ/U0 = 1.5625 /0.26 ≈ 6. Hence, the origin of these returning patterns
is simply their advection by the mean flow. During the breaking, the time-series
are characterized by intermittent high-frequency oscillations and smooth (laminar)
periods. The occurrence of the turbulent periods is caused by the isolated regions of
negative Richardson number in the cores of the overturning rolls.

4. Reynolds number influence
In Dörnbrack et al. (1995) it was shown that for sufficient viscous damping three-

dimensional turbulent convective instabilities are more easily suppressed than two-di-
mensional overturning. Using only constant diffusivities instead of the subgrid-scale
model of (2.7), no turbulent motions were found. Mixing takes place as a quasi-
periodic rolling-up of isentropes and the flow permanently contains overturning rolls.
On the other hand, in runs where νM = 0 and νturb 6= 0, overturning waves immediately
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Figure 7. Thermal structure of flows at Reynolds numbers Re = 2× 104 (a) and Re = 3× 104 (b).
The contour line spacing is as in figure 2 (a).

break down into three-dimensional turbulence after reaching the point of instability.
Mixing processes occur much faster than in the former case. In this section, the effect
of changing the Reynolds number is investigated using the subgrid-scale viscosity
introduced by (2.7). To this end, figure 7 juxtaposes the flow evolutions of numerical
experiments for the choice of Re = 2 × 104 and Re = 3 × 104. Besides the shorter
simulation time of 50 dimensionless time units and the Reynolds number, all other
parameters remain unchanged.

The formation of an essentially convectively unstable layer is revealed in both
simulations at t ≈ 20. Whereas the isentropes remain smooth for Re = 2 × 104,
the onset of the convective breakdown wrinkles the previously smooth contours
for the lower viscosity case. At earlier times, the local flow below the critical level
increases by the same value δU ≈ 0.06 for all Reynolds numbers considered in
this study. However, only turbulent velocity components exist for Re > 3 × 104

because the reduced viscosity allows for the growth of three-dimensional instabilities.
Sensitivity studies revealed that the impetus of explosive wave breakdown depends on
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Figure 8. Temporal evolution of the ratio νturb/νM for (a) Re = 5 · 104 and (b) Re = 3 × 104.
The curves are averages over horizontal planes of constant η = 0.35 (———–), 0.39 (- - - - - -), 0.42
(– · – · –), 0.45 (– · · · – · · · –), 0.47 (— — —).

the Prandtl number: temperature fluctuations initiated by the convective breakdown
become larger as a result of a reduced thermal conductivity 1/RePr.

At later times (t > 20), the flow remains essentially two-dimensional for higher
viscosity and approaches an equilibrium state where the convectively unstable re-
gion is maintained without turbulence production. This structure resembles the two-
dimensional findings of Winters & d’Asaro (1989) who observed that wave overturn-
ing persists for more than ten buoyancy periods without breaking. The low-viscosity
case produces a horizontally extended turbulent mixed layer as described for case
Re = 5× 104 in § 3. Note, that the acceleration for positions to the left of the trough
(x < λ/2) depends strongly on Re. For Re = 5× 104 the local flow accelerates up to
δU ≈ 0.22 whereas for Re = 2× 104 it reaches only δU ≈ 0.12 at t = 45. Hence, the
lower the viscosity, the higher the momentum transfer to the local mean flow and,
finally, the earlier the breakdown and the transition to a turbulent mixed layer.

The flow-independent part νM dominates the total viscosity as shown in figure 8.
There, the ratio of horizontally averaged turbulent to kinematic viscosity νturb/νM
is shown for Re = 3 × 104 and 5 × 104 at selected altitudes up to the critical level.
Although the ratio is much smaller for Re = 3 × 104 compared to Re = 5 × 104,
their temporal behaviours are similar. The turbulent viscosity νturb is different from
zero only when the local Richardson number drops below the critical value and
if the shear perturbation S ′ has grown in the region below the critical level. The
retarded increase of the ratio at different vertical levels shows the downward spread
of the mixed region. The ratio νturb/νM never exceeds 6%, i.e. the additional turbulent
contribution enhances the total viscosity only slightly. However, during a breaking
event, instantaneous values of νturb attain 20% to 30% of νM . These are restricted to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

98
00

28
33

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112098002833


Turbulent mixing by breaking gravity waves 131

(a)  η = 0.05

–4

–6

–8

–10
30010030103

(b)  η = 0.35

–4

–6

–8

–10
30010030103

(b)  η = 0.47

–4

–6

–8

–10
30010030103

Re =

2 ×
104

–4

–6

–8

–10
30010030103

–4

–6

–8

–10
30010030103

–4

–6

–8

–10
30010030103

3 ×
104

–4

–6

–8

–10
30010030103

–4

–6

–8

–10
30010030103

–4

–6

–8

–10
30010030103

5 ×
104

k k k

Figure 9. Spectra of the perturbation kinetic energy Φ(k) as function of the horizontal wavenumber
k = nkx with 1 6 n 6 nx/2 where kx = 2π/λ = 4.02. The spectra are averages at different vertical
levels (a) η = 0.05, (b) 0.35, (c) 0.47 and they comprise both wavy and turbulent motion components.
The Reynolds numbers are 2× 104 (top), 3× 104 (middle), and 5× 104 (bottom). The curves denote
the times t = 2 (———–), 14 (- - - - - -), 26 (– – – –), 38 (– · – · –), 44 (— — —), and 50 (— · — · —).
The long dashed line marks the k−5/3-slope of the inertial subrange.

regions of intense turbulent mixing in the inner part of overturning waves. Hence, the
overall flow evolution is not sensitive to the formulation of νturb in (2.8).

Figure 9 shows the power spectra of kinetic energy as a function of the horizontal
wavenumber k. For all Reynolds numbers, the spectra are essentially the same near
the bottom surface. There most of the kinetic energy is at the smallest wavenumber
kx = 4.02 due to the forcing by the sinusoidal terrain. At later times, higher modes
are excited but their spectral amplitude remains three orders of magnitude below the
dominating mode at kx.

At η = 0.35, the spectral characteristic changes dramatically with Re and in time.
For Re = 2 × 104, the peak value at kx increases in time by an order of magnitude
and, simultaneously, higher modes are supplied with energy. However, their spectral
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amplitude remains negligibly small compared to that of kx. The temporal change of
Φ(k) for Re = 3 × 104 reveals a gradual energy injection at smaller scales so that
the dominant scale of disturbances is larger than 0.2 λ. In the period t = 44–50,
the spectral energy grows rapidly at small scales due to small-scale overturning and
turbulence.

A dramatic increase in the energy for wavenumbers larger than k ≈ 10 (or wave-
lengths less than 0.4 λ) characterizes the spectra for Re = 5 × 104 during the period
t = 14–26. For t > 38, a classical turbulence profile is obtained at this vertical
level: most of the kinetic energy is contained in scales between 0.15 λ and 0.35 λ
(k ≈ 10–30). This scale roughly corresponds to the diameter of the energetic secondary
rolls. The spectral amplitude of Φ(k) slopes according to k−5/3 for the wavenumber
30 < k < 200 (scales down to 0.02 λ). For smaller scales (k > 200), dissipation
dominates the k−x-slope, where x > 7. The turbulent Reynolds number is defined as
Returb = (Lturb/ηturb)

4/3. In the mixed layer the integral scale Lturb and the microscale
ηturb of turbulence can be estimated from the spectra in figure 9. Lturb is the scale
of energy injection into the inertial subrange (≈ 0.2 λ) and ηturb ≈ 0.016 λ is the
scale where Φ(k) becomes proportional to k−7, i.e. the turbulent Reynolds number of
the flow is estimated to be Returb ≈ 30. Subsequently, the dissipation range expands
towards smaller wavenumbers (up to k = 100) while the large-scale peak of the in-
ertial subrange remains at k ≈ 10–30. Consequently, the turbulent Reynolds number
decreases to Returb ≈ 10 during the latter stage of flow evolution.

In order to complete the picture, Φ(k)-spectra on the plane η = 0.47 are displayed
in figure 9(c). Initially, this plane is located directly beneath the critical level. For times
when the critical level has descended below η = 0.47, spectral amplitude decreases.
The spectra are similarly shaped but their amplitude is about an order of magnitude
smaller compared to those at the lower level η = 0.35.

5. Energetics and mixing efficiency
The budgets of domain-averaged total energy per unit mass ET and of turbulent

kinetic energy E ′′K for case Re = 5× 104 were computed. At t = 0, the total potential
energy is set to zero and only deviations in E ′P from this equilibrium state are
considered. Then, the total initial energy can be estimated by the kinetic energy from
the prescribed velocity field U(z) alone:

ET (0) = EK(0) ≈ 1

2

∫ 1

0

U2(z) dz =
1

2

∫ 1

0

(z − 0.5)2, dz =
1

24
. (5.1)

For t > 0, the total kinetic energy per unit mass EK = 0.5
V

u2
i (

V

f(t) denotes the
domain average of a quantity f) can be divided into three parts according to (A 3)
in the Appendix: EK = EM

K + ẼK + E ′′K , where the mean kinetic energy EM
K and the

wavy and turbulent parts are calculated by means of

EM
K = 1

2

V

ui
2, ẼK = 1

2

V

ũi
2, E ′′K = 1

2

V

u′′2, (5.2)

where E ′K = ẼK + E ′′K . By analogy, the potential energy perturbation E ′P can be

divided into available potential energy ẼP = 1
2
RiB

V

ϑ̃2 and into the potential energy

E ′′P = 1
2
RiB

V

ϑ′′2 associated with turbulent mixing. Table 1 lists instantaneous values

of EM
K , E ′K , E ′P and of the accumulated energy loss by mechanical dissipation L. The
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t EM
K /10−2 E ′K/10−4 E ′P /10−4 L/10−4 µ =

∆E ′′P
∆EK

(%)
E ′′P
E ′′K

ET − ET (0)

ET (0)
(%)

2 4.130 1.74 0.76 0.005 0.0 0.00 −0.28
8 4.125 2.24 1.12 0.054 0.0 0.00 −0.18

20 4.109 2.64 1.28 0.390 1.2 0.11 −0.35
32 4.082 3.47 1.46 1.285 1.8 0.15 −0.54
44 4.047 3.53 0.94 3.549 3.7 0.24 −0.96
56 4.008 2.81 0.83 5.397 0.9 0.19 −1.66
68 3.986 2.62 0.69 6.469 0.6 0.22 −2.03
74 3.976 2.53 0.64 6.908 0.4 0.18 −2.20

Table 1. Instantaneous values of the mean kinetic energy EM
K , the perturbation kinetic and potential

energy E ′K and E ′P , of the accumulated energy loss L, the mixing efficiency µ, the ratio of E ′′P to
E ′′K , and the relative error of the numerical model.

accumulated energy loss is estimated by

L(t = n∆t) =

n∑
j=1

V

ε′K(j∆t)∆t, n = 1, . . . , 150, (5.3)

where n is number of time steps and ∆t = 0.5 is the time step. The dissipation rate is
calculated by

ε′K = (νM + νturb)
1

V 2

(
∂

∂xr
VGdr u′d

)2

. (5.4)

Ideally the total energy of the fluid in the computational domain ET (t) = EK +E ′P +L
should remain constant throughout the calculations. The last column of table 1 lists
the relative difference between the actual total energy ET (t) and its initial value
ET (0). The 2% loss of energy up to t = 74 is caused by numerical and thermal
dissipation which are not accounted for in estimating L. Nevertheless, the numerical
code preserves energy fairly well.

The mean kinetic energy EM
K of the flow decreases by 5% up to t = 74 because the

accelerated flow beneath the critical level reduces both the magnitude of the negative
u-velocity and ui

2 itself. This mean kinetic energy EM
K (t) − EK(0) is transferred into

perturbed motions, i.e. into E ′K and E ′P , and finally into the energy loss by dissipation
(see table 1). During the first stage of flow evolution, the vertical displacements
of isentropes from their initial horizontal configuration increase the total available
potential energy ẼP and kinetic energy ẼK . Therefore, the time-series of ẼK and ẼP
(which are identical to E ′K and E ′P in this period, respectively) are dominated by
periodic oscillations where maxima in E ′K correspond to minima in E ′P (see figure 10).
The perturbation energies E ′K and E ′P continue to increase until t ≈ 35 when mixing
becomes dominant. At this time, approximately 30% of EM

K (t) − EK(0) has been
transferred into perturbation kinetic energy (20% in the wavy, 10% in the turbulent
component), 10% into perturbation potential energy, and the rest has been dissipated.
Subsequently, the perturbation energies decrease and remain constant up to the end
of the simulation.

During the second stage of flow evolution, the turbulent energy E ′′K as well as the
dissipation (the slope of L is proportional to ε′K) increase due to turbulent mixing
beneath the critical level. In contrast to ẼK and ẼP , the time histories of E ′′K and
E ′′P increase monotonically and possess no temporal oscillations. The ratio of E ′′P to
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Figure 10. Time-series of volume-averaged perturbation kinetic and potential energies E ′K = ẼK+E ′′K
and E ′P = ẼP +E ′′P for Re = 5× 104. The wavy motion components are marked by dotted lines, the
turbulent components by dashed lines. The accumulated loss of kinetic energy through mechanical
dissipation is denoted by L.

the turbulent kinetic energy E ′′K becomes maximum 24% during the intense mixing
period (see table 1).

The potential energy E ′′P increases because turbulent mixing takes place beneath
the critical level. The ratio of the potential energy increase ∆E ′′P to the kinetic energy
loss ∆EK during the mixing event determines the mixing efficiency µ, i.e. the amount
of mean kinetic energy that has been spent to modify the basic-state stratification
irreversibly. The kinetic energy loss during the breaking period is estimated by
∆EK = EK(t)−EK(0). As expected, the mixing efficiency is zero during the first stage
(up to t ≈ 17) when only wave-like motions exist in the fluid. When wave breaking
occurs, µ increases up to 4%. This implies that just this amount of mean kinetic
energy is released to increase the potential energy.

The budget of the domain-averaged turbulent kinetic energy (TKE) reads

∂

∂t
E ′′K + ADV = SP + BP + DIFF− ε, (5.5)

where ADV, SP, BP, DIFF and ε denote the advection, the shear production, the
buoyancy production, the diffusion, and the dissipation, respectively:

ADV =
1

V

V

∂

∂xd
(
VGdjujE

′′
K

)
,

DIFF =
1

V

V

∂

∂xd
(
GdjVJj

)
where Jj =

V

u′′j
(
E ′′K + p′′/ρ0

)
,

SP = −u′′i u′′j
1

V

V

∂

∂xd
(
VGdjuj

)
,

BP = RiB
V

w′′θ′′,

ε = (νturb + νM)
1

V 2

V

∂

∂xr
(
VGdru′′d

)2
.



(5.6)

Time-series of the individual terms of (5.5) are plotted in figure 11. Except for the
residual determination of (∂/∂t)E ′′K , all other terms are calculated directly according
to (5.6). As expected, advection and diffusion equal zero. In terms of TKE and in
accordance with results of § 3, the flow regime can be characterized in three stages.
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Figure 11. Time-series of the volume-averaged terms of the balance equation of the turbulent kinetic
energy for Re = 5 × 104. The individual curves denote: local change ∂E ′′K/∂t (———–), advection
(· · · · · ·), diffusion (- · · · - · · · -), shear production (- - - - - -), buoyancy production (— — —), and
dissipation −ε (— · — · —). All terms are calculated directly except ∂E ′′K/∂t which is residual.
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Figure 12. Vertical profiles of (a) u′′2, (b) E ′′K , (c) u′′w′′, and (d) w′′θ′′. The profiles are averages over
planes η = const. and the different lines at times t = 17 (———–), 25 (- - - - - -), 36.5 (– – – –), and
43.5 (– · – · –).

In the first, essentially two-dimensional stage, the TKE is zero. TKE grows rapidly
in the second phase, initially by buoyancy and later by shear production. At the
end of the simulation, the positive shear production and the negative contributions
due to mechanical dissipation and destruction by buoyancy are balanced and the
temporal change of TKE is almost zero. The turbulent statistics is shown in figure 12.
Generally, the magnitude of the turbulent variances and fluxes is much smaller than
the total perturbation moments (see figure 4). For example, the ratio u′′2max/u′2max is
approximately 0.05 and u′′w′′max/u′w′max is about 0.09. The main contributions to E ′′K
are due to streamwise and vertical velocity fluctuations. The lateral velocity variance
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Figure 13. Co-spectra of the vertical heat flux Φw′θ′ (k) in an early (a, c) and a late period (b, d) of
wave breaking. As in figure 9, the individual curves are averages over planes η = const. The lines
are for different times: ———: 16.5 (a, c), 44 (b, d); - - - - - -: 17 (a, c), 50 (b, d); – – – –: 17.5 (a, c),
56 (b, d); – · – · –: 18 (a, c), 62 (b, d).

v′′2 ≈ v′2 is approximately a factor 2 smaller than u′′2. The turbulent momentum flux
is always negative and counteracts the positive flux of the wave motion. This leads to
a reduction of the total momentum flux down to about z = 0.2 as shown in figure 4.

The vertical turbulent heat flux is always negative except during the early stage of
wave breaking. A negative heat flux implies that (on average) upward motions cause
cooling and downward motions heating. In a thermally stably stratified environment,
a positive heat flux is counter-gradient to the mean temperature gradient dϑ/dz.

However, this flux occurs initially in a vertically limited layer of negative dϑ/dz,

hence −w′′θ′′ is aligned with the mean temperature gradient and downgradient. As
the Φw′θ′-spectra show pronounced maxima at high wavenumbers, small-scale motions
must be responsible for the occurrence of positive w′′θ′′ (see figure 13 a,b). Note that
the spectra Φw′θ′ comprehend both wavy and turbulent velocity components. However,
their dominating modes are spectrally separated at this stage. The contributions of the
wavy components are at small wavenumbers and appear either positive or negative
depending on the respective vertical level and time. Figure 13 (c,d) shows Φw′θ′-spectra
in the turbulent stage of flow evolution. There, the spectra are taken from lower
altitudes than those in figure 13 (a,b). Averaged over all wavenumbers, the heat
flux w′θ′ is negative. The main contribution to this flux stems from overturning
rolls at wavenumbers between k = 10 and 30. The pronounced minima of Φw′θ′
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appear at the same horizontal wavenumber as the maximum of Φ(k). Although the
spectra show a positive maxima at k ≈ 30, the turbulent contributions occurring
at higher wavenumbers are nearly zero in the inertial subrange. Thus, the large
eddies (overturning rolls), which are resolved in the simulation, are very efficient in
downgradient transport of heat.

6. Discussion and conclusions
The three-dimensional breaking of internal gravity waves beneath a critical level

has been investigated by means of high-resolution numerical simulations. For this
purpose, the flow evolution of a stably stratified Boussinesq fluid confined between a
wavy bottom and a plane top surface, both frictionless and adiabatic, was studied. The
parameters used in the model are similar to those of Thorpe’s (1981) tank experiment.

The simulation of the transition from two-dimensional wave motions to three-
dimensional turbulence requires a fine spatial resolution in regions of wave insta-
bility. Therefore, the incompressible finite difference scheme using terrain-following
coordinates (Krettenauer & Schumann 1992) was improved by increasing the vertical
resolution near the critical level (see (2.4)). Moreover, the subgrid-scale viscosities KM

and KH were modelled by the sum of a uniform and a flow-dependent part according
to (2.7). Various Reynolds numbers have been tested to find the highest Re for which
the simulation results become insensitive to further Re-changes and which minimally
damp the energy at small scales. For the detailed study of the turbulent breakdown
of overturning internal gravity waves Re ≈ 5× 104 was chosen.

What are the details of breaking?

The simulated flow evolution occurs in three stages. During the first stage, the flow
remains two-dimensional. The flow over the fixed wavy surface induces stationary
gravity waves with respect to topography. Above the critical level, no or very small-
amplitude damped wavy disturbances are observed. Below the critical level, the main
effect is the persistent acceleration of the mean flow in the positive x-direction. This
acceleration is opposite to the direction of U(z) for z < 0.5. The perturbed mean
flow lifts heavier fluid over lighter fluid directly beneath the critical level, whereas
the mean advection in the negative x-direction at lower altitudes moves lighter fluid
under heavier. Between these levels, the fluid stagnates and a convectively unstable
region is formed that extends over almost one wavelength λ and has a thickness of
about 0.1 the layer depth.

During the second stage, explosive convective instability leads to the first turbulent
breakdown. Approximately three Brunt–Väisälä periods are required for the devel-
opment of three-dimensional motions. The developing mixed layer is organized in
spanwise, shear-driven overturning rolls and in counter-rotating streamwise vortices.
At first, streamwise vortices derive their energy mainly from buoyancy; later shear
dominates. The temporal order of instabilities found in this study agrees with pre-
dictions from linear perturbation theories by Winters & Riley (1992) and by Lin
et al. (1993) and with numerical results of Winters & d’Asaro (1994). In contrast,
Scinocca (1995) found that shear instability occurs before convective instability for
mixed layers produced in overturning Kelvin–Helmholtz billows. The present results
confirm Schowalter, Van Atta & Lasheras’s (1994) finding that buoyancy forces con-
tribute to an additional mechanism for the generation of streamwise vortices in the
presence of stratification.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

98
00

28
33

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112098002833


138 A. Dörnbrack

The flow in the mixed layer is random, containing vortices on a wide range of
scales. The typical horizontal scale of a spanwise secondary roll is 0.2λ–0.3 λ; the scale
of the streamwise vortices is less than 0.15 λ. Caulfield & Peltier (1994) investigating
stratified shear layers also found the scale of streamwise streaks of vorticity to be much
smaller than the wavelength of the primary overturning structures. The lateral scale of
counter-rotating streamwise vortices is smaller than the width of the computational
domain and their size appears to be unaffected by it.

The final stage of flow evolution is characterized by a quasi-steady equilibrium
between shear production and mechanical dissipation of turbulent kinetic energy. The
final mixed layer consists of shear-induced, small-scale overturning rolls and counter-
rotating streamwise vortices leading to isolated patches of turbulence embedded in a
smooth flow.

What is the role of viscosity?

The results of § 4 have shown that (i) the smaller νM is, the earlier breaking occurs in
the convectively unstably stratified regions. The flow becomes fully three-dimensional.
Secondly, the smaller the viscosity, the larger the momentum deposited beneath the
critical level by gravity waves and the more likely is the formation of secondary rolls
and turbulent breaking by shear instability. These findings agree with results of Fritts
et al. (1996) who found viscosity retarding instability.

What are the characteristics of turbulence generated by breaking gravity waves?

Turbulence is primarily produced by shear in the mixed layer. There, the power
spectra of perturbation kinetic energy resemble classical spectra from turbulence
theory. The spectral amplitude slopes according to k−5/3 for scales smaller 0.2 λ and
down to 0.02 λ. For scales less than 0.02 λ, the spectral amplitude decreases according
to k−x, where x > 7 (dissipation range). Based on estimates of the integral scale
and microscale of turbulence, the turbulent Reynolds number is computed to be
approximately 30. Another remarkable result is the apparent sinking of the mixed
layer due to entrainment of cold and high-momentum fluid at its lower edge. Sinking
of thin turbulent layers has also been observed by radar in the free atmosphere (Sato
& Woodman 1982).

How much energy of the mean flow is transferred to waves, how much to turbulence?

Although the separation into wavy and turbulent parts is controversial (see Hol-
loway 1988; Winters et al. 1995), it does aid in determining the essential sources of
instability energy. The mean kinetic energy of the flow decreases temporally by 5%
up to t = 74. This mean kinetic energy is converted into perturbation kinetic and
potential energy. Finally it is lost by dissipation. By the time that the flow reaches
its quasi steady-state, approximately 30% of this energy has become perturbation
kinetic energy (20% in the wavy, 10% in the turbulent component), 10% has become
perturbation potential energy, and the remainder has been dissipated. As a check
of numerical accuracy, the budget of the total kinetic energy has been computed;
approximately 2% of the total energy was lost by thermal dissipation and by nu-
merical diffusion. For internal gravity waves, the relevant dissipation process is their
unstable breakdown via convective and dynamical instabilities. The mixing efficiency
was calculated to be approximately 4%. Thus this small amount of mean kinetic
energy is converted to potential energy and into an irreversible change of the initial
thermal stratification.
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Although Winters & d’Asaro (1994) and Fritts et al. (1996) investigated similar
problems to ours, their numerical approaches (integration method, background con-
ditions, wave forcing, and subgrid-scale modelling) are different. Winters & d’Asaro
(1994), using a pseudospectral method, investigated the overturning of an initially pre-
scribed, two-dimensional internal wave packet in an incompressible Boussinesq fluid.
The ambient flow possessed constant stability and a depth-dependent shear flow with
a critical level in the essentially linear segment of U(z). The bulk Richardson number
of 25 is higher and the spatial resolution lower compared to the present simulations.
Furthermore, the classic diffusion operator was replaced by a sixth-order derivative.
Fritts et al. (1996) investigated and compared the two- and three-dimensional break-
ing by integrating the compressible Eulerian equations using a spectral collocation
method. Specifically, the instability structure subject to shear components transverse
to the direction of wave propagation was investigated. The gravity waves were forced
by a time-dependent body force that yields a wave packet containing many different
frequencies and vertical wavenumbers. The viscous and diffusive effects are repre-
sented spectrally by a method described by Andreassen et al. (1994). In order to
achieve a finer resolution at the locations of instability, Fritts et al. (1996) decom-
posed the model vertically into two domains and Winters & d’Asaro (1994) used up
to 200 vertical levels. The instability growth and the structures of the breaking waves
in this study agree fairly well with these other different numerical approaches.

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) in the
framework of the Schwerpunktprogramm “Grundlagen der Auswirkungen der Luft-
und Raumfahrt auf die Atmosphäre”.

Appendix
The classical Reynolds decomposition splits an arbritrary field f into a mean part

f and a fluctuating part f′ according to f = f + f′. Usually, in numerical studies,
the mean part of the discrete field fi,j,k(t) is defined as average over horizontal planes
according to

fk(z, t) =
1

nx ny

nx,ny∑
i,j=1

fi,j,k(t). (A 1)

Additionally, temporal averages can be used when the flow has reached a steady state.
In the present study, the fluctuating part f′ is split diagnostically into a wavy (f̃) and
a turbulent (f′′) component. A phase average (here, just over one wavelength)

〈f〉p(x, z, t) =
1

ny

ny∑
j=1

fi,j,k(t) (A 2)

can be used to extract the wavy component f̃ from f according to f̃(x, η, t) = 〈f〉p−f.
This sort of averaging is appropriate as long as the gravity wave excitation is
homogeneous in y and the resulting flow structures are shorter than λ. Finally, the
total field f consists in a mean part f, a wavy (f̃), and a turbulent (f′′) part according
to

f = f + f̃ + f′′ where f′′(x, y, z, t) = f − f − f̃. (A 3)

This sort of decomposition was introduced by Hussain & Reynolds (1970) and
has been formerly used inter alia by Fritts, Isler & Andreassen (1994) and Fritts
et al. (1996).
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