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This paper investigates the properties of the mean momentum balance (MMB)
equation in the azimuthal φ direction of a turbulent Taylor–Couette flow (TCF).
The MMB-φ equation is integrated to determine the properties of the Reynolds shear
stress. An approximation is developed for the Reynolds shear stress in the core region
of a turbulent TCF, and the dependence of the peak Reynolds shear stress location
on the Reynolds number and the gap geometry is revealed. The properties of the
global integral of the turbulent Coriolis force are also revealed. For a turbulent TCF
with a small gap or at high Reynolds numbers, the global integral of the turbulent
Coriolis force is found to be only weakly influenced by the rotation ratio of the
cylinders. Two controlling non-dimensional numbers are derived directly from the
scaling analysis of the MMB-φ equation. The first is a geometry Atwood number
At

def
= δ/rctr to characterize the gap geometry, where δ is the gap half-width, and rctr is

the mid-gap radial location. The second is the friction Reynolds number Reτ ,i defined
as Reτ ,i

def
= δuτ ,i/ν, where ν is the kinematic viscosity and uτ ,i is the friction velocity

at the inner cylinder. A new three-layer structure is proposed for the inner half of a
turbulent TCF at sufficiently high Reynolds number, based on the force balance in
the MMB-φ equation. Layer I is an inner layer, where the force balance is between
the viscous force and the Reynolds shear force: Fvisc ≈ −Fturb. Layer III occupies
the core of the gap, where the force balance is between the turbulent Coriolis force
and the Reynolds shear force: Fcori ≈ −Fturb. In Layer II, all three forces contribute
to the balance. An inner scaling is developed for Layer I, and an outer scaling is
developed for Layer III. The inner and outer scalings are verified against direct
numerical simulation data. Similarities and differences between the turbulent TCF
and a pressure-driven turbulent channel flow are elucidated.

Key words: Taylor–Couette flow

1. Introduction
Rotating flow in the gap between two concentric cylinders, commonly known as

Taylor–Couette flow (TCF), is a classic example of a simple system with complex
and rich stability properties. On the practical side, TCF occurs in astrophysical

† Email address for correspondence: tie.wei@nmt.edu
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FIGURE 1. Geometry and coordinate system of a Taylor–Couette flow. The inner and outer
cylinders can rotate in either direction, independently. Also shown are plane Couette flow
and Rayleigh–Bénard convection. Gap half-width is denoted as δ= 0.5(ro− ri), analogous
to the channel half-height in PCF, or half-height in RBC.

accretion discs, turbines and journal bearings. Flow in the gap between two concentric
cylinders was first studied by Couette (1890) and Mallock (1896). The history of
early developments in the area is given by Donnelly (1991). A tutorial review
of TCF is given by Fardin, Perge & Taberlet (2014). A recent review paper by
Grossmann, Lohse & Sun (2016) lists research areas of particular current interest
in TCF including instability, nonlinear dynamics, spatio-temporal chaos, pattern
formation and turbulence. While TCF has been well studied, however, much remains
to be learned about the physics involved.

As sketched in figure 1, TCF is controlled by six parameters: the kinematic viscosity
of the fluid ν, the inner cylinder radius ri, the outer cylinder radius ro, the cylinder
height L, the angular velocity of the inner cylinder Ωi and that of the outer cylinder
Ωo. Dimensional analysis suggests that TCF is governed by four non-dimensional
numbers, and a variety of forms have been proposed for defining the non-dimensional
numbers, especially the Reynolds number. One commonly used set of non-dimensional
numbers is

Π1 =Πr
def
=

ri

ro
; (1.1a)

Π2 = Γ
def
=

L
2δ
; (1.1b)

Π3 = Rei
def
=
(ro − ri)ri|Ωi|

ν
; (1.1c)

Π4 =ΠΩ
def
=
Ωi

Ωo
. (1.1d)

For brevity, the gap half-width is denoted as δ=0.5(ro− ri), analogous to the channel
half-width in a plane Couette flow (PCF) or the half-height in a Rayleigh–Bénard
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convection (RBC) cell. The first non-dimensional number Π1 is a measure of the gap
geometry; Π2 is a measure of the gap height to its width, commonly called the aspect
ratio Γ ; Π3 is a definition of the Reynolds number; Π4 is a measure of the relative
rotation of the two cylinders; ΠΩ = 0 is the special case in which only the outer
cylinder rotates and ΠΩ = ∞ is the special case in which only the inner cylinder
rotates; ΠΩ < 0 is counter-rotating and ΠΩ > 0 is co-rotating.

Dubrulle et al. (2005) introduced an alternative set of non-dimensional control
parameters, based on dynamic rather than geometric considerations. The development
of these new control parameters was motivated by the need to compare flows that do
not share identical geometry. For a TCF, Dubrulle et al. (2005) chose the gap width
2δ as the unit length, the inverse of a typical shear S as the unit time and

√
riro as

a typical radius.
Over the past three decades, TCF has been extensively studied experimentally

by several research groups, including, for example, Professor Egbers’s group at
Brandenburg University of Technology Cottbus-Senftenberg (see Merbold, Brauckmann
& Egbers 2013), Professor Lathrop’s group at the University of Maryland (see
Zimmerman, Triana & Lathrop 2011), Professor Lohse’s group at the University of
Twente (see van Gils et al. 2011), Professor Mutabazi’s group at the Université du
Havre (see Martínez-Arias et al. 2014), Professor Swinney’s group at the University
of Austin (see Andereck, Liu & Swinney 1986) and Professor Westerweel’s group
at Delft University of Technology (see Ravelet, Delfos & Westerweel 2010). Their
experimental studies have greatly increased our understanding of various aspects of
TCF, developed important experimental methods and provided important data sets.

Over the past twenty years, and in particular the past ten years, direct numerical
simulation (DNS) has become an important tool in the investigation of TCF. The
Reynolds number range achievable in DNS is still lower than that in experimental
studies, but DNS can provide detailed data on flows that are challenging to measure
experimentally. The analysis in the present work requires the second-order spatial
derivative of the mean velocity and the first-order spatial derivative of the Reynolds
shear stress, and DNS offers the high resolution and high accuracy to compute those
derivatives. Here, several DNS studies are briefly reviewed to provide the simulation
parameters and their main findings.

Dong (2007) simulated a TCF system with ri/ro= 0.5 and the outer cylinder fixed,
covering four Reynolds numbers: Rei = (2δri|Ωi|)/ν = 1000, 3000, 5000, 8000. Dong
(2007) reported the average axial spacing of the streaks caused by Görtler vortices,
and presented flow dynamics and statistics. Dong (2008) simulated a counter-rotating
TCF system with ri/ro = 0.5 and documented the statistical features in detail. Dong
(2008) demonstrated the effects of the Coriolis force on the mean flow between the
standard TCF system (rotating inner cylinder and fixed outer cylinder) and the counter-
rotating TCF system.

Pirro & Quadrio (2008) simulated a small-gap TCF with the outer cylinder at rest.
In their simulation, the friction Reynolds number based on the friction velocity at the
inner cylinder uτ ,i is Reτ ,i

def
= δuτ ,i/ν= 189.3 for the inner cylinder half and the friction

Reynolds number based on the friction velocity at the outer cylinder uτ ,o is Reτ ,o
def
=

δuτ ,o/ν = 167.7 for the outer cylinder half. They reported the profiles of the mean
azimuthal velocity, and the variance of velocity fluctuations in the radial, azimuthal
and axial directions.

Ostilla–Monico and collaborators (Ostilla-Mónico et al. 2013, 2014; Ostilla-Mónico,
Verzicco & Lohse 2015) have performed extensive DNS studies to examine the effect
of computational domain size and radial ratio. To save simulation time, some of
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their simulations used a quarter of the domain, employing rotational symmetry of
order four (Ostilla-Mónico et al. 2013). They examined the mean and fluctuation
velocities, as well as autocorrelations and velocity spectra. The smallest domain size
was found to accurately reproduce the torque and mean azimuthal velocity profiles of
the larger domain, but produced smaller values of fluctuations than the larger domain
size simulation.

Brauckmann & Eckhardt (2013) performed DNS of TCF using a spectral code
with periodic boundary conditions in the axial direction and aspect ratio Γ = 2.
They found a maximum in the angular velocity transport for the counter-rotation
with −Ωo/Ωi ≈ 0.4. Tanaka, Kawata & Tsukahara (2018) performed a series of
simulations of a counter-rotating TCF system with relatively small radius ratios
ri/ro = 0.2–0.5. They investigated the effect of radius ratio on the flow state. Tanaka
et al. (2018) observed that at small radius ratio, the Reynolds shear stress on the
outer side remained approximately zero, but the intensity of the velocity fluctuations
was comparable to that of the Taylor-vortex flow in the central region.

DNS data have been used to explore various aspects of TCF. However, a systematic
scaling analysis of the mean momentum balance equation in TCF is still lacking,
and this is the motivation of the present work. The rest of this paper is organized
as follows. In § 2, the governing equations of the TCF are presented. For a fully
developed turbulent TCF, the Reynolds averaged equations in the radial and azimuthal
directions are presented. The properties of the Reynolds shear stress and the turbulent
Coriolis force are revealed by integrating the mean momentum equation. In § 3, a
layer structure is proposed for a turbulent TCF based on the characteristics of the
force balance. The scaling analysis leads to new non-dimensional numbers for Π1 and
Π3. An outer scaling and an inner scaling are developed for the outer layer and inner
layer, respectively. In § 4, the limitations of the analysis, along with areas for future
investigation, are discussed. Section 5 summarizes the work.

2. Governing equations
The continuity equation and Navier–Stokes equations in a cylindrical coordinate

system are (Townsend 1980; Landau & Lifshitz 1987; Schlichting & Gersten 2016)

0=
∂ ũr

∂r
+

ũr

r
+

1
r
∂ ũφ
∂φ
+
∂ ũx

∂x
; Continuity (2.1a)

∂ ũr

∂t
+
∂(ũrũr)

∂r
+

1
r
∂(ũφ ũr)

∂φ
+
∂(ũxũr)

∂x
+

ũrũr − ũφ ũφ
r

=−
∂

∂r

(
p̃
ρ

)
+ ν

{
∂2ũr

∂r2
+

1
r
∂ ũr

∂r
−

ũr

r2
+

1
r2

∂2ũr

∂φ2
+
∂2ũr

∂x2
−

2
r2

∂ ũφ
∂φ

}
; NS-r (2.1b)

∂ ũφ
∂t
+
∂(ũrũφ)
∂r

+
1
r
∂(ũφ ũφ)
∂φ

+
∂(ũxũφ)
∂x

+
2ũrũφ

r

=−
1
r
∂

∂φ

(
p̃
ρ

)
+ ν

{
∂2ũφ
∂r2
+

1
r
∂ ũφ
∂r
−

ũφ
r2
+

1
r2

∂2ũφ
∂φ2
+
∂2ũφ
∂x2
+

2
r2

∂ ũr

∂φ

}
; NS-φ

(2.1c)
∂ ũx

∂t
+
∂(ũrũx)

∂r
+

1
r
∂(ũφ ũx)

∂φ
+
∂(ũxũx)

∂x
+

ũrũx

r

=−
∂

∂x

(
p̃
ρ

)
+ ν

{
∂2ũx

∂r2
+

1
r
∂ ũx

∂r
+

1
r2

∂2ũx

∂φ2
+
∂2ũx

∂x2

}
. NS-x (2.1d)
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Here, r is the radial direction, φ is the azimuthal direction and x is the axial
direction; ρ is the fluid density. Note that the continuity (2.1a) is used to present the
momentum equations (2.1b)–(2.1d) in a conservation form, for the convenience of
performing the Reynolds averaging operation. In the present work, the instantaneous
variable is denoted by a tilde, an upper case letter denotes its mean and a lower case
letter denotes its fluctuation. For example, in ũφ = Uφ + uφ , ũφ is the instantaneous
azimuthal velocity, Uφ is the mean azimuthal velocity and uφ is the azimuthal velocity
fluctuation.

The present work assumes that the turbulent TCF is statistically homogeneous in the
axial x direction. In other words, it is assumed that the height of the cylinders is much
larger than the gap width or Γ �10 (see Chouippe et al. 2014). For a fully developed
turbulent TCF, the only non-zero component of mean velocity is in the azimuthal
φ direction, and the mean values depend only on the radial location: Ur = Ux = 0,
∂/∂φ = 0 and ∂/∂x= 0 (Townsend 1980).

For Navier–Stokes equations in a cylindrical coordinate system, the viscous shear
stress is (see Taylor 1936; Landau & Lifshitz 1987)

τrφ =µ

(
1
r
∂Ur

∂φ
+
∂Uφ

∂r
−

Uφ

r

)
. (2.2)

For a fully developed turbulent TCF, the first term on the right side of (2.2) is zero.
In the present work, the positive φ direction is defined such that dUφ/dr is negative.
For example, if only the inner cylinder is rotating, the positive azimuthal direction is
the direction of rotation. If only the outer cylinder is rotating, the positive azimuthal
direction is the direction opposite the direction of rotation. Under such a coordinate
system, the mean azimuthal velocity decreases in the radial direction and the Reynolds
shear stress is negative.

Using the convention commonly followed for turbulent wall-bounded flows (see
Tennekes & Lumley 1972), the friction velocities at the inner cylinder and outer
cylinder, respectively, are defined as

uτ ,i
def
=

√
|τrφ|r=ri

ρ
=

√
ν

∣∣∣dUφ

dr
−

Uφ

r

∣∣∣
r=ri

; (2.3a)

uτ ,o
def
=

√
|τrφ|r=ro

ρ
=

√
ν

∣∣∣dUφ

dr
−

Uφ

r

∣∣∣
r=ro

. (2.3b)

The moment (or torque) at the inner cylinder is Mi= (2πrLτrφr)r=ri , and the moment
(or torque) at the outer cylinder is Mo= (2πrLτrφr)r=ro . Substituting the definitions of
the friction velocities in (2.3a) and (2.3b), the moment at the inner cylinder can be
expressed as |Mi|= 2πr2

i Lρu2
τ ,i, and the moment at the outer cylinder can be expressed

as |Mo| = 2πr2
oLρu2

τ ,o.
For a TCF system in a statistical steady state, global moment (or torque) balance,

analogous to the force balance in a plane Couette flow, dictates Mi =−Mo or

2πr2
i Lρu2

τ ,i = 2πr2
oLρu2

τ ,o. (2.4)

Hence, the friction velocity at the inner cylinder and outer cylinder are related to each
other as uτ ,i

uτ ,o
=

ro

ri
. (2.5)
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Therefore, the wall shear stress or friction velocity at the inner cylinder is always
larger than at the outer cylinder, regardless of which cylinder is rotating or the rotation
ratio. In the sketch of mean azimuthal velocity in figure 1, the velocity profile is
steeper near the inner cylinder than near the outer cylinder.

For a steady state turbulent TCF, Reynolds averaging is both time averaging
and plane averaging in the φ–x plane. Applying Reynolds averaging, the mean
momentum balance equation in the r direction (MMB-r) and φ direction (MMB-φ)
can be expressed as

0=−
d
dr

(
P
ρ

)
︸ ︷︷ ︸

Fpres

+
dRrr

dr︸︷︷︸
Fturb-r

+
UφUφ + Rrr − Rφφ

r︸ ︷︷ ︸
Fcent

; MMB-r (2.6a)

0= ν
{

d2Uφ

dr2
+

1
r

dUφ

dr
−

Uφ

r2

}
︸ ︷︷ ︸

Fvisc

+
dRrφ

dr︸︷︷︸
Fturb-φ

+
2Rrφ

r︸︷︷︸
Fcori

, MMB-φ (2.6b)

where Rrr = −〈urur〉 and Rφφ = −〈uφuφ〉 are the kinematic Reynolds normal stresses
in the r and φ directions, respectively. Here, Rrφ =−〈uruφ〉 is the kinematic Reynolds
shear stress. Angle brackets 〈 〉 denote Reynolds averaging.

The MMB-r equation (2.6a) represents the balance of three forces in the radial
r direction: a pressure force Fpres, a Reynolds normal force Fturb-r and a centrifugal
force Fcent. The pressure force and the Reynolds normal forces are analogous to those
in the wall-normal direction of a turbulent pipe or channel flow. The centrifugal
force consists of two parts: one from the mean flow (UφUφ)/r and another from the
turbulence (Rrr − Rφφ)/r. The MMB-r equation (2.6a) can be used to determine the
mean pressure distribution in the TCF system. In the present work, we will focus on
the properties of the mean momentum balance equation in the azimuthal direction,
which is analogous to the streamwise direction in a turbulent pipe or channel flow.

The MMB-φ equation (2.6b) represents the balance of three forces in the φ

direction: a viscous force Fvisc, a Reynolds shear force Fturb-φ and a turbulent Coriolis
force Fcori. In the present work, the MMB-φ equation (2.6b) is analysed to reveal
the properties of the Reynolds shear stress, the turbulent Coriolis force and the layer
structure of a turbulent TCF. A multiscaling analysis of the MMB-φ equation (2.6b)
is then developed and verified by DNS data.

2.1. Properties of the Reynolds shear stress

Multiplying the MMB-φ equation (2.6b) by r2, simple mathematical manipulation
gives

0=
d
dr

(
r2ν

(
dUφ

dr
−

Uφ

r

))
+

d(r2Rrφ)

dr
. (2.7)

Equation (2.7) is equivalent to (9.2.1.) in Townsend (1980), and is also essentially the
same as (3.3) in Eckhardt, Grossmann & Lohse (2007).

In a fully developed turbulent TCF, the moment of the viscous shear stress is

Mvisc = 2πrLτrφr= (2πLρ)r2ν

(
dUφ

dr
−

Uφ

r

)
, (2.8)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

14
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.141


Mean momentum balance in a Taylor–Couette flow 891 A10-7

and the moment of the Reynolds shear stress is

Mturb = 2πrLρRrφr= (2πLρ)r2Rrφ. (2.9)

Hence, equation (2.7) can be presented in the form of moment as

0=
dMvisc

dr
+

dMturb

dr
. (2.10)

Integrating the mean momentum equation (2.7) or (2.10) in the wall-normal
direction from the inner cylinder and applying boundary conditions yields

r2ν

(
dUφ

dr
−

Uφ

r

)
+ r2Rrφ = r2ν

(
dUφ

dr
−

Uφ

r

) ∣∣∣
r=ri

+ (r2Rrφ)
∣∣

r=ri =−r2
i u2
τ ,i. (2.11)

Note that the Reynolds shear stress at the inner cylinder is zero for a turbulent TCF
with smooth walls. As mentioned in the previous section, the coordinate system
is set up such that the mean azimuthal velocity gradient and the Reynolds shear
stress are both negative. Thus, the total moment is also negative. Equation (2.11)
is equivalent to (9.2.2) in Townsend (1980), and is also essentially the same as
the identity equation (3.4) in Eckhardt et al. (2007). Townsend (1980) interpreted
equation (2.11) as follows: ‘the sum of the ‘couples’ transmitted by viscous and
turbulent stress across surfaces of constant radius is independent of the radius’.
Eckhardt et al. (2007) called the constant the angular velocity current. Here, a simple
interpretation of (2.11) is that the total moment (per 2πρL), viscous plus turbulent
Mvisc+Mturb, is a constant, independent of the radial location. The constancy of (2.11)
has been used as a consistency check for DNS simulations, as by Dong (2008).

To establish a turbulent plane Couette flow, one can move the top plate only, or
the bottom plate only or move both plates in the same direction or opposite direction.
However, the total shear stress, viscous plus turbulent τwu+ Rwu, is always a constant
across the channel, regardless of how the top and bottom plates are being moved.
Similarly, equation (2.11) also indicates that the total moment in a turbulent TCF is
always a constant, regardless of ΠΩ or how the inner and outer cylinders are being
rotated.

In turbulent channel or boundary layer flows, viscous shear stress peaks at the wall
and decreases rapidly away from the wall. In a turbulent TCF, the moment of viscous
shear stress also peaks at the wall and decreases rapidly along the wall-normal
direction. Away from the wall, the viscous term in the integrated MMB-φ (2.11)
becomes negligible and the Reynolds shear stress can be approximated as

Rrφ ≈−
r2

i

r2
u2
τ ,i. Core Region (2.12)

Hence, Reynolds shear stress in the core of a highly turbulent TCF decreases in a
1/r2 fashion along the radial direction.

Following the convention commonly followed for turbulent wall-bounded flows, the
Reynolds shear stress normalized by u2

τ ,i is denoted as R+rφ =Rrφ/u2
τ ,i. Equation (2.12)

in the non-dimensional form can be presented as

R+rφ ≈−
(ri

r

)2
=−

 1

1+
δ

ri
z−


2

=−

(
1− At

1− At + Atz−

)2

, (2.13a)
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/r
i)2 

R+ rƒ

(a) (b)

FIGURE 2. (a) Reynolds shear stress in a Taylor–Couette flow. The curve is (2.13a). Data
are from DNS of Dong (2008), with ri/ro = 0.5 or At = 1/3. (b) −(r/ri)

2R+rφ versus the
wall-normal distance scaled by the TCF gap half-width z−. The PCF data are from DNS
of Kawamura, Abe & Shingai (2000) at Reτ = 181.

or
(

r
ri

)2

R+rφ ≈−1. (2.13b)

Here, z− and At are defined as

z− def
=

r− ri

0.5(ro − ri)
=

r− ri

δ
; (2.14a)

At
def
=

δ

rctr
=

0.5(ro − ri)

0.5(ro + ri)
. (2.14b)

Note that, in studies of pressure- or shear-driven turbulent wall-bounded flows, the
wall-normal distance scaled by the channel half-width or the boundary layer height is
typically denoted as η (see, e.g. Tennekes & Lumley (1972)). However, η has been
used in previous studies of TCF to denote the ratio of the cylinder radii. In the present
work, a new notation z− is introduced to denote the wall-normal distance r− ri scaled
by the TCF gap half-width δ.

The definition of At in (2.14b) is analogous to the Atwood number used in the
study of hydrodynamic instability in density stratified flows, such as Rayleigh–Taylor
instability (Glimm et al. 2001; Livescu et al. 2009; Wei & Livescu 2012), see
appendix A. In the present work, therefore, this non-dimensional number is called a
geometry Atwood number.

The approximate equation (2.13a) for the Reynolds shear stress is compared with
DNS data of Dong (2008) in figure 2. The DNS is for the same gap geometry with
At= 1/3, and four different Reynolds numbers. At Reτ ,i= δuτ ,i/ν= 32.7, the Reynolds
shear stress profile in the core of the gap deviates from (2.13a), because at such a low
Reynolds number, turbulence is still not well established and the viscous shear stress
is not negligible in the outer layer. However, at higher Reynolds numbers, Reτ ,i > 74,
DNS data of Reynolds shear stress in the core of the gap agree well with (2.13a),
supporting the validity of the analysis.

In figure 2(b), the approximate equation (2.13b) is compared with the DNS data of
TCF; the Reynolds shear stress in a turbulent PCF is also plotted. The PCF data are
from Kawamura’s group at Reτ = 181.3 (Kawamura et al. 2000; Shingai, Kawamura
& Matsuo 2000; Tsukahara, Kawamura & Shingai 2006). Figure 2(b) displays the
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TCF: At = 0.43
TCF: At = 0.54
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PCF

At →
 0
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At = 0.1

At = 0.333At = 0.43At = 0.54At = 0.667
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FIGURE 3. Effects of geometry Atwood number At on the shape of Reynolds shear stress
in TCF. (a) −R+rφ versus z−. The curve is the approximate equation (2.13a). Data for At=

0.333 are from DNS of Dong (2008). Data for At = 0.43, 0.54 and 0.667 are from DNS
of Tanaka et al. (2018). (b) −(r/ri)

2R+rφ versus z−. For comparison, Reynolds shear stress
of a plane Couette flow is also presented. The data are from DNS of Kawamura’s group
Reτ = 181.3 (Kawamura et al. 2000; Shingai et al. 2000; Tsukahara et al. 2006).

resemblance between the turbulent TCF and PCF, and in particular in the inner half
next to the inner cylinder. Near the outer cylinder, −(r/ri)

2R+rφ is different from the
Reynolds shear stress in a turbulent plane Couette flow, but the difference becomes
smaller as the Reynolds number increases.

In a turbulent plane Couette flow, the Reynolds shear stress is symmetric about the
gap centreline, with a peak at the middle. In a turbulent TCF, the mid-gap is located
at rctr = 0.5(ri + r0), and its Reynolds shear stress can be approximated as

Rrφ|ctr ≈−

(
ri

0.5(ri + ro)

)2

u2
τ ,i =−(1− At)

2u2
τ ,i. (2.15)

Hence, the magnitude of the Reynolds shear stress at the mid-gap of a turbulent
TCF is always smaller than u2

τ ,i or |R+rφ| 6 1. As the geometry Atwood number
approaches zero At → 0 or the small-gap limit, the Reynolds shear stress at the
mid-gap approaches the kinematic wall shear stress at the inner cylinder |Rrφ|ctr ≈ u2

τ ,i,
and the turbulent TCF becomes similar to a turbulent plane Couette flow. However,
at a large geometry Atwood number At → 1, the magnitude of the Reynolds shear
stress is much smaller than u2

τ ,i or |R+rφ| � 1, as shown figure 3(a).
The effect of the geometry Atwood number At on the Reynolds shear stress is

displayed in figure 3. The approximate equation (2.13a) is compared with DNS data
of Tanaka et al. (2018) for three geometry Atwood numbers: At = 0.43, 0.54, 0.667.
Also shown are the DNS data of Dong (2008) for At = 0.333. Curves at At = 0.1 and
At = 0.9 are plotted to illustrate the trend at low and high geometry Atwood numbers.
As At approaches zero, the shape of the Reynolds shear stress becomes similar to that
of a turbulent plane Couette flow. On the other hand, as At approaches 1, Reynolds
shear stress is very small, except within a thin layer next to the inner cylinder.

Figure 3(b) shows that −(r/ri)
2R+rφ in the inner half of a turbulent TCF resembles

the shape of the Reynolds shear stress in a turbulent plane Couette flow, even at large
geometry Atwood numbers. However, in the outer half, −(r/ri)

2R+rφ in a turbulent
TCF is lower than the Reynolds shear stress in a turbulent plane Couette flow. The
difference becomes smaller as the Atwood number decreases.
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ax

(a) (b)
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FIGURE 4. Peak Reynolds shear stress location. (a) Effect of Reynolds number. Open
circles are DNS of TCF by Dong (2008) for At = 0.333, and filled circles are DNS of
TCF by Tanaka et al. (2018) for At = 0.333 and At = 0.668. DNS data of turbulent plane
Poiseuille flow (PPF) are from three independent groups: Kawamura’s group (Kawamura
et al. 2000; Abe, Kawamura & Matsuo 2001), Moser’s group (Lee & Moser 2015) and
Pirozzoli’s group (Pirozzoli, Bernardini & Orlandi 2016). (b) Effect of geometry Atwood
number. Note that inset is plotted in linear–linear axes. Data are from DNS of Tanaka
et al. (2018).

In a turbulent TCF, the peak Reynolds shear stress always occurs in the inner half
(next to the inner cylinder), as shown in figures 2 and 3. The peak location depends
on the Reynolds number and the geometry Atwood number. In figure 4(a), the peak
Reynolds shear stress location z−max is plotted versus the Reynolds number. DNS data
of TCF for At = 0.333 are from independent studies by Dong (2008) (open circles in
the figure) and Tanaka et al. (2018) (filled circles). DNS data at At = 0.667 are from
DNS of Tanaka et al. (2018). At the same Reynolds number, the peak Reynolds shear
stress location moves closer to the inner cylinder as the geometry Atwood number
increases. For the same geometry Atwood number, the peak location moves closer to
the inner cylinder as the Reynolds number increases.

In a pressure-driven turbulent channel or pipe flow or a shear-driven turbulent flow
over a flat plate, the peak Reynolds shear stress location is a geometric mean of the
inner and outer length scales zmax ∼

√
δν/uτ or z−max ∼ 1/

√
Reτ (see Long & Chen

1981; Afzal 1982; Sreenivasan & Sahay 1997; Wei et al. 2005). For comparison,
therefore, DNS data for a pressure-driven channel flow are also plotted in figure 4(a).
The presently available TCF data seem to follow a trend similar to those in a
pressure-driven turbulent channel flow. In other words, the peak Reynolds shear stress
location in a turbulent TCF also occurs at the meso length scale

√
δν/uτ ,i. However,

the Reynolds numbers of the TCF data used in the present work are low to moderate,
and the trend at high Reynolds numbers remains to be investigated.

The effect of the geometry Atwood number At on the peak location of the Reynolds
shear stress is shown in figure 4(b). The DNS data are from Tanaka et al. (2018)
for four geometry Atwood numbers At = 0.333, 0.43, 0.54, 0.667. The data are for
two Reynolds numbers Rei = 2δriΩi/ν = 500 and 4000. The corresponding friction
Reynolds numbers are listed in table 1. Data for z−max at Rei = 4000 are smaller than
those at Rei= 500, showing the effect of Reynolds number as presented in figure 4(a).

As shown in figure 3(a), the peak Reynolds shear stress location z−max becomes
smaller with increasing At, meaning that the peak Reynolds shear stress location
moves closer to the inner cylinder. (In a turbulent TCF, the peak Reynolds shear stress
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Rei =
2δriΩi

ν
= 500 At 0.333 0.43 0.54 0.667

ΠΩ −2 −2.5 −3.33 −5

Reτ ,i =
δuτ ,i
ν

44.6 37.9 35.0 32.8

Rei =
2δriΩi

ν
= 4000 At 0.333 0.43 0.54 0.667

ΠΩ −2 −2.5 −3.33 −5

Reτ ,i =
δuτ ,i
ν

210.6 188.2 174.9 164.6

TABLE 1. Parameters of DNS by Tanaka et al. (2018), shown in figure 4(b).

will never occur in the outer half of the gap, regardless of the Reynolds number, At,
or rotation ratio.) The presently available DNS data are limited to moderate geometry
Atwood numbers, so the functional dependence at At→ 0 or At→ 1 is not clear at
this time. Based on the DNS data at moderate At, however, geometry Atwood number
dependencies can be approximated by a simple power law of z−max ∼ f (Re)/At. The
peak Reynolds shear stress location z−max is bounded between 0 and 1, and the inset
of figure 4(b) indicates that this power law cannot be extrapolated to the At → 0
limit. An asymptotic analysis might uncover the functional dependence at the small
and large Atwood number limits.

Next, the MMB-φ equation will be rearranged and integrated to reveal properties
of the turbulent Coriolis force.

2.2. Property of the turbulent Coriolis force
In previous studies of turbulent TCF, the properties of the turbulent Coriolis force have
not been clear. Here, properties of the turbulent Coriolis force are revealed directly
from the mean momentum balance equation.

The viscous force in the MMB-φ (2.6b) is written as a function of the mean
azimuthal velocity, but it can be written in more than one form, as shown in
appendix B. For example, the MMB-φ equation can also be written as

0= ν
d
dr

(
1
r

d(rUφ)

dr

)
+

dRrφ

dr
+

2Rrφ

r
. (2.16)

Integrating the MMB-φ (2.16) along the radial direction from the inner cylinder to
the outer cylinder yields∫ ro

ri

2Rrφ

r
dr=

{
ν

1
r

d(rUφ)

dr

} ∣∣∣
ri

−

{
ν

1
r

d(rUφ)

dr

} ∣∣∣
ro

+ Rrφ|ri − Rrφ|ro . (2.17)

For a turbulent TCF with smooth walls, the Reynolds shear stress Rrφ is zero at both
the inner and outer cylinders: Rrφ|ri = 0 and Rrφ|ro = 0. The first two terms on the right
side of (2.17) can be arranged as{

ν
1
r

d(rUφ)

dr

} ∣∣∣
ri

= ν
{dUφ

dr
+

Uφ

r

}∣∣∣
r=ri

= ν
{dUφ

dr
−

Uφ

r
+ 2

Uφ

r

}∣∣∣
r=ri

, (2.18a){
ν

1
r

d(rUφ)

dr

} ∣∣∣
ro

= ν
{dUφ

dr
+

Uφ

r

}∣∣∣
r=ro

= ν
{dUφ

dr
−

Uφ

r
+ 2

Uφ

r

}∣∣∣
r=ro

. (2.18b)
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FIGURE 5. Verification of the global integral equation (2.20) for the turbulent Coriolis
force against DNS data. Parameters for the DNS data of Tanaka et al. (2018) are listed
in table 1, and the TCF is counter-rotating with ΠΩ =−1/Πr =−(1+ At)/(1− At). TKT
(500) refers to the data of Tanaka et al. at Rei = 500, and TKT (4000) at Rei = 4000.
DNS of Dong (2007) was for fixed outer cylinder or ΠΩ =∞, Rei = 8000, Reτ ,i = 225
and At = 0.333. The cross symbols are the right side of (2.20). The dashed curve is the
first part on the right side of (2.20).

Note that (Uφ/r)r=ri =Ωi and (Uφ/r)r=ro =Ωo. As mentioned in the previous section,
the coordinate system is set up such that the mean azimuthal velocity decreases in
the radial direction, or dUφ/dr is negative. Thus, the definition of friction velocities
in (2.3a) and (2.3b) leads to ν(dUφ/dr−Uφ/r)r=ri =−u2

τ ,i and ν(dUφ/dr−Uφ/r)r=ro =

−u2
τ ,o.

Substituting the boundary condition (2.18a) and (2.18b) and the boundary conditions
for Rrφ , the global integral equation (2.17) of the turbulent Coriolis force can be
written as ∫ ro

ri

2Rrφ

r
dr= {u2

τ ,o − u2
τ ,i} − {2νΩo − 2νΩi}. (2.19)

Thus, the global integral of the turbulent Coriolis force depends on the wall shear
stresses at the inner and outer cylinders, as well as the rotation speeds of the inner
and outer cylinders.

Normalizing equation (2.19) by u2
τ ,i, the global integral of the turbulent Coriolis

force can be expressed as∫ ro

ri

2R+rφ
r

dr=

[(
1− At

1+ At

)2

− 1

]
−

(
1+ At

1− At
− 1
)(

1
ΠΩ

− 1
)

U+φ,i
Reτ ,i

, (2.20)

where U+φ,i = Uφ,i/uτ ,i is the inner cylinder’s azimuthal velocity normalized by the
friction velocity at the inner cylinder. Equation (2.20) indicates that the global integral
of the turbulent Coriolis force depends on the gap geometry At, rotation ratio ΠΩ ,
Reynolds number Reτ ,i and U+φ,i.

The global integral equation (2.20) for the turbulent Coriolis force is verified by
DNS data in figure 5. As shown in figure 5, the integrated

∫ ro

ri
(2R+rφ/r) dr (open square

or circle) agrees well with the analytical solution (X in the figure). Note that the
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∫ ro

ri

2R+rφ
r

dr

At = 0 0

At→ 1 −1−
(

1+ At

1− At
− 1
)(

1
ΠΩ

− 1
)

U+φ,i
Reτ ,i

ΠΩ = 0

[(
1− At

1+ At

)2

− 1

]

ΠΩ =∞

[(
1− At

1+ At

)2

− 1

]
+

(
1+ At

1− At
− 1
)

U+φ,i
Reτ ,i

TABLE 2. The global integral of the turbulent Coriolis force for limiting cases.

turbulent Coriolis force is negative in the coordinate system, and a negative sign is
multiplied to both sides of (2.20) in figure 5.

In general, U+φ,i/Reτ ,i becomes smaller as the Reynolds number increases. Thus,
at high Reynolds numbers, the last part on the right side of (2.20) becomes less
important, and the global integral can be approximated by the first part only,
represented by the dashed curve in figure 5. The DNS data of Tanaka et al. (2018)
at Rei = 500 deviate from the dashed curve as shown in figure 5, meaning that
rotation ratio is important in the global integral of the turbulent Coriolis force. At a
higher Reynolds number of Rei = 4000, the DNS data of Tanaka et al. (2018) move
closer to the dashed curve, especially for small Atwood numbers.

Using (2.20), the global integral of the turbulent Coriolis force under four limiting
cases is determined and listed in table 2. For the limiting case of a small gap (ri≈ ro

or At→0), the global integral of the turbulent Coriolis force approaches zero, meaning
that the Coriolis force is not important for a small-gap TCF. In other words, in the
limit of At→ 0, a turbulent TCF becomes a turbulent plane Couette flow. On the other
hand, for a turbulent TCF with a large gap or At→ 1, the effect of rotation ratio can
become significant because (1+At)/(1−At) approaches infinity. At the large-gap limit
(At = 1), the global integral of the turbulent Coriolis force

∫ ro

ri
(2R+rφ/r) dr approaches

−1 or
∫ ro

ri
(2Rrφ/r) dr approaches −u2

τ ,i.
For the case of only the outer cylinder rotating (ΠΩ = 0), the last part in (2.20)

is zero because the azimuthal velocity of the inner cylinder is zero or U+φ,i = 0. For
the case of inner cylinder rotating only (ΠΩ = ∞), the term (1/ΠΩ − 1) in (2.20)
becomes −1.

3. Scaling analysis of the MMB-φ equation

The variables in the MMB equation (2.6b) can be scaled in a number of ways (Fife
et al. 2005; Fife 2006). All versions are mathematically equivalent, but only some of
them reflect naturally the behaviour of the actual functions Uφ and Rrφ . In this section,
a general form of normalization is first presented, then the general form will be used
to develop an inner scaling and an outer scaling.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

14
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.141


891 A10-14 T. Wei

To be general, the length in the spatial derivation dr and the radial location r are
scaled by different length scales

dr∗ def
=

dr
lref
; r∗ def

=
r

rref
. (3.1a,b)

A superscript asterisk denotes a normalized variable; lref is a reference length for the
spatial variation in the radial direction dr, and rref is a reference scale for the radial
location that is involved in the turbulent Coriolis force.

In previous studies of TCF, the length in the spatial derivative dr in the velocity
gradient and the radial location r in the turbulent Coriolis force have often been
normalized by the same reference length scale, commonly the gap width 2δ. For
the velocity gradient dUφ/dr or the Reynolds shear stress gradient dRrφ/dr, the
velocity or the Reynolds shear stress varies spatially between ri and ro. Hence, it is
reasonable to use the gap width 2δ or half-width δ as a reference length scale for
the wall-normal distance. For example, the wall-normal location normalized by δ will
vary between 0 and 1 from the inner cylinder to the mid-gap. In contrast, the radial
location r in the turbulent Coriolis force varies from ri to ro. Normalized by δ, the
radial location r in the turbulent Coriolis force varies between ri/δ and ro/δ. For a
TCF with a small gap ri� δ, then ri/δ� 1 and ro/δ� 1. For a TCF with a large
gap δ� ri, then ri/δ� 1 and ro/δ ∼ o(1).

The mean azimuthal velocity and Reynolds shear stress are normalized as

U∗φ
def
=

Uφ

Uφ,ref
; R∗rφ

def
=

Rrφ

Rrφ,ref
, (3.2a,b)

where Uφ,ref is a reference velocity scale, and Rrφ,ref is a reference scale for the
Reynolds shear stress.

Substituting the normalized variables in (3.1) and (3.2) into the MMB-φ (2.6b), a
general form of the non-dimensional MMB-φ equation can be expressed as

0=

[
ν

lref Uφ,ref

U2
φ,ref

Rrφ,ref

]
d

dr∗

(
1
r∗

d
dr∗

(r∗U∗φ)
)
+

dR∗rφ
dr∗
+

[
lref

rref

]
2R∗rφ

r∗
. (3.3)

Pressure-driven turbulent wall-bounded flows, such as pipe or channel flow, or shear-
driven turbulent flow over a flat plate can be divided into several layers. (This concept
can be dated back to Prandtl in 1904, see, for example, Tennekes & Lumley (1972).)
The characteristic length scale and velocity scale are different in different layers of
the flow. Proper scaling of the flow and the equation require determining appropriate
length and velocity scales for the different layers. Next, therefore, a new three-layer
structure is proposed for a turbulent TCF and proper length and velocity scales are
determined for the inner and outer layers. Equation (3.3) will be used to present an
inner and an outer scaling of the MMB-φ equation.

3.1. Layer structure of a turbulent TCF
One way to describe the layered structure of a turbulent flow is through the
characteristic of the force balance in the mean momentum balance equation. This
approach has been used to reveal the layer structure in pressure- or shear-driven
turbulent wall-bounded flows (Wei et al. 2005; Klewicki et al. 2007). A similar
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FIGURE 6. Three forces in the MMB-φ (2.6b). The data are from the DNS of
Tanaka et al. (2018). The case is a counter-rotating TCF with ri/r0 = 0.5 or At = 1/3.
The Reynolds number of the simulation is (2δri|Ωi|)/ν = (2δro|Ωo|)/ν = 4000. The
corresponding friction Reynolds numbers are Reτ ,i= δuτ ,i/ν≈ 165 and Reτ ,o= δuτ ,o/ν≈ 82.
The magnitudes of the forces are not shown in the figure, for they depend on the method
of normalization.

approach has been applied to uncover the layer structure of passive scalar transport
in a turbulent channel flow (Wei 2018) and buoyancy-driven turbulent flow and heat
transfer in a differentially heated vertical channel (Wei 2019).

For a turbulent TCF, the typical shapes of the three forces in the MMB-φ (2.6b) are
illustrated in figure 6. The magnitudes of the forces are not shown in the figure, for
they depend on the method of normalization, but the shapes and relative magnitudes
do not depend on the normalization. Adjacent to the inner cylinder, the viscous force
is positive, or a driving force, and the turbulent force is negative, or a drag force. The
directions of the forces are reversed adjacent to the outer cylinder, where the turbulent
force is a driving force and the viscous force is a drag force.

Starting from zero at the inner cylinder wall, the viscous force rises sharply to
a peak value, then decreases sharply away from the wall. In the meantime, the
Reynolds shear force starts from zero at the inner cylinder and decreases sharply to
a minimum, then rises sharply away from the inner cylinder. Adjacent to the inner
cylinder the force balance is between the viscous force and the Reynolds shear force.
In the core of the gap, the viscous force is essentially zero and the Reynolds shear
force is positive, but the magnitude is much smaller than that adjacent to the inner
cylinder. Approaching the outer cylinder, the force balance is again balanced by the
viscous force and Reynolds shear force. Thus, the force balance in the MMB-φ (2.6b)
undergoes a series of transitions at the intersections of the different layers.

One way to assess the contributions of different forces to the balance of the
MMB-φ (2.6b) is by plotting the ratio of two forces (Wei et al. 2005; Klewicki et al.
2007; Wei 2018, 2019). The ratio between the viscous force and the turbulent force
Fvisc/Fturb in a TCF is shown in figure 7(a). For comparison, the force ratio Fvisc/Fturb
in a pressure-driven turbulent channel flow is shown figure 7(b).

In a pressure-driven turbulent channel flow, the Reynolds shear force is zero near the
channel wall, where the force balance is between the pressure force and the viscous
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FIGURE 7. (a) Ratio between the viscous force and Reynolds shear force Fvisc/Fturb in the
MMB-φ (2.6b) for a TCF. Data are from DNS of Tanaka et al. (2018) for ri/ro=0.5 (At=

0.33) and (ro − ri)ri|Ωi|/ν = 500 and 4000. (b) Ratio of Fvisc/Fturb in a pressure-driven
plane channel flow. Here z is the wall-normal distance, and δ is the channel half-width.
Data are from DNS by Kawamura’s group (Kawamura et al. 2000; Shingai et al. 2000;
Tsukahara et al. 2006).

force. Thus, the force ratio Fvisc/Fturb in a turbulent channel flow starts from a large
negative value at the channel wall. In a turbulent TCF, the turbulent Coriolis force is
zero near the inner cylinder, where the force balance is between the viscous force and
Reynolds shear force. Thus, the force ratio Fvisc/Fturb in a turbulent TCF is −1 at the
inner cylinder. At sufficiently high Reynolds numbers, the inner half of a TCF exhibits
a structure similar to that in the lower or upper half of a turbulent channel flow. The
flow structure in a turbulent channel flow is symmetric about the channel centreline,
but the flow structure in a TCF is not symmetric, because the friction velocity at the
inner cylinder is different from that at the outer cylinder.

Based on the characteristics of the force ratio presented in figure 7, the inner half
of a turbulent TCF can be divided into at least three layers:

(i) Layer I, an inner layer where the force balance is between the viscous force and
the Reynolds shear force: |Fvisc| ≈ |Fturb|.

(ii) Layer II, a meso layer centred around the peak Reynolds shear stress location.
(iii) Layer III, an outer layer where the viscous force is negligible and the force

balance is between the Reynolds shear force and the turbulent Coriolis force:
|Fcori| ≈ |Fturb|.

The three-layer structure for the inner half of a turbulent TCF is sketched in
figure 8.

We note that the DNS data used in this work are limited to relatively moderate
Reynolds number. In particular, the friction Reynolds number for the outer half of a
TCF, Reτ ,o= δuτ ,o/ν, is small. Thus, for the two cases shown in figure 7(a) the friction
Reynolds numbers for the outer half are Reτ ,o= 16.5, and 82.5. In the DNS of Tanaka
et al. (2018), the lowest Reynolds number case, Reτ ,i = 33 and Reτ ,o = 16.5, has not
achieved a fully developed turbulent state yet, and the flow in the outer half is more
laminar like. For their highest Reynolds number case of Reτ ,i= 165 and Reτ ,o= 82.5,
the inner half displays a well-established three-layer structure, but the layer structure
of the outer half is very different.

The thickness of Layers I, II and III will depend on the Reynolds number,
the geometry Atwood number and likely the rotation ratio ΠΩ . More DNS data
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FIGURE 8. Sketch of the layer structure in the inner half of a turbulent TCF. The data
points are from DNS of Tanaka et al. (2018) for Rei=4000 and At=0.333 (Reτ ,i=164.6).

are required to determine the thickness and the dependencies on the controlling
non-dimensional numbers.

3.2. Scaling for Layer III of the inner half
In the outer Layer III shown in figure 8, a natural length scale for the spatial variation
in the radial direction dr is the gap half-width, lref = δ. A reasonable length scale for
the radial location is the mid-gap location rref = rctr= 0.5(ri+ ro). The friction velocity
uτ ,i is used as a reference velocity scale Uφ,ref = uτ ,i, as in pressure- or shear-driven
turbulent wall-bounded flows. The Reynolds shear stress at the TCF mid-gap is used
as a reference scale for the Reynolds shear stress Rrφ,ref =|Rrφ|ctr. The scaled variables
for Layer III are denoted as follows

z− def
=

r− ri

δ
; dz− def

=
dr
δ
; r∗ def

=
r

rctr
; U+φ

def
=

Uφ

uτ ,i
; R∗rφ

def
=

Rrφ

|Rrφ|ctr
. (3.4a−e)

Substituting the outer-scaled variables into (3.3), the outer-scaled MMB-φ equation
can be presented as

0=
[

u2
τ ,i

|Rrφ|ctr

1
Reτ ,i

]
d

dz−

(
1
r∗

d
dz−

(r∗U+φ )
)
+

dR∗rφ
dz−
+ At

2R∗rφ
r∗

. (3.5)

For a small gap with ri ≈ ro or At ≈ 0, |Rrφ|ctr ≈ u2
τ ,i as shown above. Hence, a

proper outer scaling for a turbulent TCF at small geometry Atwood number is

0=
[

1
Reτ ,i

]
d

dz−

(
1
r∗

d
dz−

(r∗U+φ )
)
+

dR+rφ
dz−
+ At

2R+rφ
r∗

. (3.6)

This outer-scaled MMB-φ equation involves two non-dimensional numbers: At and
a friction Reynolds number Reτ ,i = δuτ ,i/ν. An advantage of using u2

τ ,i instead of
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FIGURE 9. Mean azimuthal velocity in outer scaling. Data are from DNS of Dong (2008)
with At = 1/3. (a) U+φ versus z−. (b) r∗U+φ versus z−. PCF data are from DNS of
Kawamura et al. (2000) at Reτ = 181. PPF data are from Moser, Kim & Mansour (1999)
at Reτ = 180.

|Rrφ|ctr, from a practical perspective, is that uτ ,i can be directly obtained from the
measurement of the mean torque at either the inner cylinder or the outer cylinder.
Based on dimensional analysis, |Rrφ|ctr is a function of At and Reτ ,i and ΠΩ . Therefore,
for simplicity, u2

τ ,i will be used as a reference scale for the Reynolds shear stress, even
when |Rrφ|ctr is much smaller than u2

τ ,i, when At is not small.
Figure 9 presents the DNS data of the mean azimuthal velocity for the same At and

ΠΩ , but different Reynolds numbers. In figure 9(a), the DNS data are presented as the
inner-scaled mean azimuthal velocity U+φ versus the outer-scaled wall-normal distance
z−. In figure 9(b), the DNS data are presented as the normalized angular momentum
r∗U+φ versus the outer-scaled wall-normal distance z−. Figure 9 shows that the data at
Reτ ,i = 33 deviate from the higher Reynolds number data. This deviation is the low
Reynolds number effect, as in canonical turbulent channel or pipe flows (Tennekes &
Lumley 1972).

In a turbulent plane Couette flow or a turbulent plane Poiseuille flow, the coordinate
system is typically set up so the mean velocity at the wall is 0 and the scaling of
the mean velocity for the outer layer is usually the so-called mean velocity deficit:
Uctr − U. In a TCF, the mean azimuthal velocity at the inner cylinder is usually set
as Uφ,i = riΩi. Hence, the profile of Uφ in a TCF is analogous to the mean velocity
deficit in a plane Couette flow. For comparison, the mean velocity deficit U+ctr − U+
for a pressure-driven turbulent channel flow and a turbulent plane Couette flow are
also presented in figure 9.

In figure 9, the mean velocity deficits for PCF and PPF are multiplied by an
empirical factor of 1/3, to demonstrate the similar trend between TCF and PCF or
PPF. The multiplying factor is related to the pre-factor in the viscous force term in
(3.5): u2

τ ,i/|Rrφ|ctr ≈ 1/(1− At)
2 > 1. Compared with PCF or PPF, the core region of

a turbulent TCF is better mixed and the mean velocity gradient is smaller. For a
small Atwood number At→ 0, the mean azimuthal velocity in a turbulent TCF will
approach the mean velocity deficit in a turbulent plane Couette flow.

In a pressure-driven turbulent channel flow, the mean velocity is symmetric about
the channel centreline. In a shear-driven turbulent plane Couette flow, on the other
hand, the mean velocity is anti-symmetric about the channel centreline. In either case,
the mean velocity deficit will be exactly zero at the channel centreline z−= 1. Notably,
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in a turbulent TCF, the mean flow is not anti-symmetric about the mid-gap. As shown
in figure 9, Uφ in general is not zero at z− = 1.

In pressure- or shear-driven turbulent wall-bounded flows, the Reynolds shear stress
profiles from different Reynolds numbers collapse well (see Pope 2001), and as shown
in figure 2, R+rφ from different Reynolds numbers also collapse reasonably well versus
z− for a turbulent TCF. The outer layer scaling for a turbulent TCF and pressure- or
shear-driven turbulent wall-bounded flows are similar.

3.3. Scaling for Layer I of the inner half
In Layer I of the inner half shown in figure 8, the force balance is between the viscous
force and the Reynolds shear force, similar to the inner layer in a pressure-driven
turbulent channel or pipe flow. The mean azimuthal velocity will be scaled by uτ ,i,
and the Reynolds shear stress will also be scaled by u2

τ ,i. The distance from the wall
z= r− ri will be scaled by the viscous length scale ν/uτ ,i. The inner scaled variables
are denoted as

z= r− ri; dz+ def
=

dr
ν/uτ ,i

; U+φ
def
=

Uφ

uτ ,i
; R+rφ

def
=

Rrφ

u2
τ ,i
; r∗ def

=
r

rctr
. (3.7a−e)

Substituting the inner-scaled variables into (3.3), the inner-scaled MMB-φ equation
can be expressed as

0=
d

dz+

(
1
r∗

d
dz+

(r∗U+φ )
)
+

dR+rφ
dz+
+

At

Reτ ,i

2R+rφ
r∗

. (3.8)

The inner-scaled mean azimuthal velocity profiles are presented in figure 10(a).
The data are presented as the difference between the mean azimuthal velocity and
the inner cylinder velocity (the data are from the DNS of Dong (2008) for four
Reynolds numbers). For comparison, the mean streamwise velocity in a turbulent
plane Poiseuille flow and a turbulent plane Couette flow are also presented. As
Reynolds number increases, the mean velocity U+ in PPF or PCF exhibits a layer
with a logarithmic-like growth. The so-called log layer extends outwards as the
Reynolds number increases. The mean relative velocity U+φ,i−U+φ in a turbulent TCF
also exhibits a logarithmic-like growth away from the inner cylinder, but the additive
constant in the logarithmic function varies with the Reynolds number, as shown in
figure 10(a).

In figure 10(b), the relative angular momentum is plotted as the form in (3.8). DNS
data from different Reynolds numbers but the same At are seen to collapse reasonably
well in the inner region. The relative angular momentum r∗(U+φ,i −U+φ ), for At = 1/3,
is below the mean velocity profile in a turbulent PPF or PCF. At the small-gap limit or
At→0, the relative angular momentum r∗(U+φ,i−U+φ ) in a turbulent TCF will approach
the mean velocity distribution of a turbulent channel or Couette flow. On the other
hand, for the large-gap limit, the relative angular momentum will become even smaller,
as indicated by the arrow for At. For a fixed At, the relative angular momentum also
exhibits a layer with a logarithmic-like growth, and this log layer extends outwards as
the Reynolds number increases, indicated by the arrow for Re. More DNS simulations
are required to study the effect of Atwood number, Reynolds number and rotation
ratio.
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FIGURE 10. Scaling of the mean azimuthal velocity for Layer I of inner half. (a) Inner-
scaled mean azimuthal velocity relative to the inner cylinder velocity versus the inner-
scaled wall-normal distance z+. (b) Inner-scaled mean angular momentum versus z+. Data
are from DNS of Dong (2008) for At= 1/3. For comparison, DNS data of turbulent plane
Couette flow at Reτ = 181 by Kawamura et al. (2000), and DNS data of turbulent channel
flow at two Reynolds numbers Reτ = 180 and 590 by Moser et al. (1999) are also plotted.

Note that the boundary condition at the inner cylinder wall can be presented as∣∣∣∣dU+φ
dz+

∣∣∣∣
r=ri

−
U+φ |r=ri(

1
At
− 1
)

Reτ ,i

∣∣∣∣= 1. (3.9)

If U+φ |r=ri = 0 (inner cylinder fixed, outer cylinder rotating), the inner-scaled mean
azimuthal velocity gradient is 1, similar to that in a turbulent channel or Couette
flow. However, if the inner cylinder is not fixed, the inner-scaled mean azimuthal
velocity gradient at the wall will be smaller than 1. The difference is minor for small
Atwood numbers and/or high Reynolds numbers. This explains why the TCF data in
figure 10(a) are slightly below the curve of U+ = z+ (dashed curve in the figure).

DNS data for the inner scaling of the Reynolds shear stress are presented in
figure 11. For the same At and rotation ratio, the inner-scaled Reynolds shear stress
profiles from different Reynolds numbers collapse reasonable well in the inner layer.
For comparison, the Reynolds shear stress for a turbulent channel flow at Reτ = 180
is shown in figure 11(a). The inner-scaled Reynolds shear stress in a turbulent TCF
displays a trend in Layer I that is similar to the Layer I of a pressure-driven turbulent
channel flow.

In figure 11(b), the DNS data of −(r/ri)
2R+rφ in a TCF are plotted, along with the

Reynolds shear stress for a turbulent plane Couette flow at Reτ =181. The inner-scaled
Reynolds shear stress data for TCF at different Reynolds numbers collapse reasonably
well. The deviation at Reτ ,i = 33 is caused by the low Reynolds number effect.

4. Discussion

In a plane Couette flow, there is only one controlling non-dimensional number: Reτ .
In contrast, there are four controlling parameters in a turbulent TCF: Γ , ΠΩ , At and
Reτ ,i. For sufficiently long cylinders (Γ � 10), the flow is statistically homogeneous
in the axial direction. Experimental and numerical simulation data show that the peak
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FIGURE 11. Scaling of the Reynolds shear stress for the inner layer. (a) −R+rφ versus z+.
The TCF data are from DNS of Dong (2008) with counter-rotating cylinder and At=0.333.
The turbulent plane channel flow data are from DNS of Moser et al. (1999) at Reτ = 180.
(b) −(r/ri)

2R+rφ versus z+. The turbulent plane Couette data are from DNS of Kawamura
et al. (2000) at Reτ = 181.

Reynolds shear stress location and value are strongly influenced by At and Reτ ,i. The
effect of ΠΩ on the location and value of peak Reynolds shear stress remains to be
investigated.

In the inner half of a turbulent TCF, Reynolds shear stress rises sharply from zero to
a peak value, then decreases gradually to zero at the outer cylinder. In comparison, in
a pressure-driven turbulent channel flow, Reynolds shear stress rises sharply from zero
at the wall and decreases almost linearly to zero at the channel centreline (Tennekes
& Lumley 1972). The similarities and differences between a turbulent channel flow
and a turbulent TCF can be explained by the mean momentum balance equation in
the streamwise direction for the two flows

0=
d2U+

dz+2︸ ︷︷ ︸
Fvisc

+
dR+wu

dz+︸ ︷︷ ︸
Fturb

+
1

Reτ︸︷︷︸
Fpres

. Turbulent Channel Flow (4.1a)

0=
d

dz+

(
1
r∗

d
dz+

(r∗U+φ )
)

︸ ︷︷ ︸
Fvisc

+
dR+rφ
dz+︸︷︷︸
Fturb

+
At

Reτ ,i

2R+rφ
r∗︸ ︷︷ ︸

Fcori

. Turbulent TCF (4.1b)

In (4.1a), the mean momentum balance for a turbulent channel flow, x is the
streamwise direction, and z is the wall-normal direction; U+ = U/uτ denotes the
mean streamwise velocity normalized by the friction velocity, R+wu =−〈wu〉/u2

τ is the
kinematic Reynolds shear stress normalized by the square of the friction velocity and
the last term comes from the mean pressure force (see Tennekes & Lumley 1972;
Pope 2001).

In the outer layer of a turbulent TCF, the turbulent Coriolis force Fcori = 2Rrφ/r
is a driving force of the flow (see figure 6), similar to the mean pressure gradient
−d(P/ρ)/dx = u2

τ/δ in a turbulent channel flow. In a turbulent channel flow, the
pressure force is a constant, but in a turbulent TCF, Fcori is not a constant (see
figure 6).

It is observed that in a pressure- or shear-driven turbulent wall-bounded flow, flow
transitions to a turbulent state if the friction Reynolds number Reτ = δuτ/ν & O(100).
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In a TCF, on the other hand, the friction Reynolds number for the inner half
Reτ ,i = δuτ ,i/ν is always larger than for the outer half Reτ ,o = δuτ ,o/ν, regardless of
the rotation ratio ΠΩ , because uτ ,o/uτ ,i = (ri/ro) = (1 − At)/(1 + At). In a turbulent
channel or Couette flow, the channel half-width is typically used as the height of the
boundary layer, but flow in a turbulent TCF is not symmetric about the mid-gap, and
the border between the inner part and the outer part is not known a priori.

For a turbulent TCF with a small Atwood number, Reτ ,i is not much larger than
Reτ ,o, but at a large Atwood number, the friction Reynolds numbers can be very
different. For example, for Reτ ,i = 1000, a relatively large Reynolds number, the
friction Reynolds number for the outer half will be Reτ ,o = 52.6 for At = 0.9 and
Reτ ,o = 5 for At = 0.99. It is reasonable to speculate that for this case the inner part
will be highly turbulent, but the outer part cannot sustain a turbulent state and will
remain a laminar-like state.

If Reτ ,o is sufficiently high, the scaling of the mean momentum balance equation
and the flow structure in the outer half of a TCF gap will be similar to that of
the inner half. More specifically, the Reynolds shear stress will have a peak next to
the outer cylinder. This peak Reynolds shear stress location will be the centre of a
meso-layer (Layer II) for the outer half. The Reynolds shear stress peak near the
outer cylinder will be smaller than that near the inner cylinder, and the peak location
and peak value depend on the Reynolds number, the geometry Atwood number and
perhaps also the rotation ratio as well.

The effect of the rotation ratio ΠΩ on the layer structure and multiscaling analysis
of the mean momentum balance equation is not clear at this stage. However, the
rotation ratio ΠΩ appears only in the boundary conditions, and is not directly involved
in the mean momentum balance equation.

Analysing a Nusselt-style non-dimensional angular velocity flux Nuω, Van Gils
et al. (2012) found that the angular velocity transfer is affected by the cylinder
rotation ratio. For a gap with Πr = 0.716 or At = 0.165, Van Gils et al. (2012)
observed a very pronounced maximum of Nuω at ΠΩ ≈ −3, indicating an optimal
angular velocity transport from the inner to the outer cylinder at that angular velocity
ratio. The optimal number was refined by Huisman et al. (2014) to be ΠΩ =−2.78.
Ostilla-Mónico et al. (2014) investigated the effect of radius ratio on the optimal
Taylor–Couette flow, and defined two regimes: a co- and weakly counter-rotating
regime, and a strongly counter-rotating regime. Grossmann et al. (2016) have shown
that the angular velocity profile and flow structures in the bulk of a TCF are strongly
influenced by the rotation ratio. As an issue for future research on TCF, they pointed
out that a rigorous theoretical understanding of the dependence of an optimal rotation
ratio and the gap radius ratio is still missing.

Due to the limitations on the available DNS data on TCF with different ΠΩ , the
effect of the rotation ratio on the layer structure is not explored in the present work.
It will be very interesting to study the effect of ΠΩ on the distribution of the mean
azimuthal velocity Uφ and the angular momentum rUφ . It will also be very interesting
to study the effect of ΠΩ on the distribution of the Reynolds shear stress Rrφ and the
turbulent Coriolis force 2Rrφ/r. Systematic DNS studies are required. For a TCF with
fixed At, one could perform a series of simulations at the same Reτ ,i but with different
ΠΩ , covering both co-rotating and counter-rotating conditions.

5. Summary
The present work investigated the properties of the mean momentum balance

equation for a fully turbulent TCF, and in particular the MMB equation in the
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azimuthal φ direction. The integrated MMB-φ equation confirms that the sum of
the moment (or torque) from the viscous shear stress and the Reynolds shear stress
is a constant, as was first found by Townsend (1980) and Eckhardt et al. (2007).
At a sufficiently high Reynolds number, the viscous shear stress is negligible in
the core of a turbulent TCF, and the Reynolds shear stress can be approximated as
|Rrφ| ≈ (ri/r)2u2

τ ,i. It is found that the peak Reynolds shear stress location always
occurs near the inner cylinder, and it is strongly influenced by the geometry Atwood
number At and the Reynolds number. The peak Reynolds shear stress location moves
closer to the inner cylinder with increasing At, and also moves closer to the inner
cylinder as the Reynolds number increases. For a fixed At, the dependence of the
peak Reynolds shear stress location on the Reynolds number is very similar to that
in a pressure-driven turbulent channel flow, that is, the peak Reynolds shear location
is a meso length scale.

The MMB-φ equation is rearranged and integrated to obtain an analytical solution
for the global integral of the turbulent Coriolis force. The analytical solution is
verified by the DNS studies. It is found that the global integral of the turbulent
Coriolis force depends on At, ΠΩ , Reτ ,i and U+φ,i. At the small-gap limit (At → 0),
the global integral approaches zero

∫ ro

ri
(2R+rφ/r) dr → 0 or

∫ ro

ri
(2Rrφ/r) dr → 0. In

other words, the turbulent TCF at the small-gap limit approaches the turbulent
plane Couette flow. At the large-gap limit (At → 1), the global integral approaches∫ ro

ri
(2R+rφ/r) dr→−1 or

∫ ro

ri
(2Rrφ/r) dr→−u2

τ ,i. At high Reynolds numbers, the global
integral of the turbulent Coriolis force is only weakly influenced by the rotation ratio
ΠΩ . The effect of the rotation ratio ΠΩ also becomes smaller for At→ 0.

A three-layer structure is proposed for the inner part of a turbulent TCF, based on
the characteristics of force balance in the MMB-φ equation: an inner Layer I, a meso
Layer II and an outer Layer III. In the inner layer, the force balance is between the
viscous force and the Reynolds shear force. In the outer layer, the force balance is
between the turbulent Coriolis force and the Reynolds shear force. In the meso-layer,
all three forces contribute to the force balance. A three-layer structure will also emerge
for the outer part of the TCF gap if Reτ ,o is sufficiently high.

The similarities and differences between a turbulent TCF and a pressure-driven
turbulent channel flow are elucidated. The turbulent Coriolis force plays a role similar
to that of the pressure force in a turbulent channel flow. However, the pressure force
in a fully developed channel flow is a constant, but the turbulent Coriolis force in a
turbulent TCF varies in the radial (or wall-normal) direction.

An outer scaling is developed for the outer layer in a fully developed turbulent TCF.
In the outer layer, the TCF gap half-width δ is proposed as a proper length scale
for the spatial variation in the radial direction dr. A proper length scale for r in the
turbulent Coriolis force is the TCF mid-gap location rctr = 0.5(ri + ro). The friction
velocity uτ ,i is proposed as a velocity scale for the mean azimuthal velocity, and u2

τ ,i
is proposed as a scale for the kinematic Reynolds shear stress. Two non-dimensional
numbers emerge from the outer-scaled MMB-φ equation: a friction Reynolds number
Reτ ,i and a geometry Atwood number At.

An inner scaling is developed for the inner Layer I of a fully developed turbulent
TCF. In Layer I, the viscous length scale ν/uτ ,i is proposed as a length scale for the
spatial variation in the radial direction dr. Friction velocity uτ ,i is used to scale the
mean azimuthal velocity and the kinematic Reynolds shear stress.

The inner scaling and outer scaling for a turbulent TCF are similar to those in a
pressure-driven turbulent channel flow, as summarized in table 3. The characteristic
scales for length, velocity and Reynolds shear stress are also listed in table 3.
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Taylor–Couette flow Turbulent channel flow

MMB 0= ν
{

d2Uφ

dr2
+

1
r

dUφ

dr
−

Uφ

r2

}
+

dRrφ

dr
+

2Rrφ

r
0= ν

d2U
dz2
+

dRwu

dz
+

u2
τ

δ

Inner
scaling

z+ =
r− ri

ν/uτ ,i
; r∗ =

r
rctr
;U+φ =

Uφ

uτ ,i
; R+rφ =

Rrφ

u2
τ ,i

z+ =
z

ν/uτ
;U+ =

U
uτ
; R+wu =

Rwu

u2
τ

0=
d

dz+

(
1
r∗

d
dz+

(r∗U+φ )
)
+

dR+rφ
dz+
+

At

Reτ ,i

2R+rφ
r∗

0=
d2U+

d(z+)2
+

dR+wu

dz+
+

1
Reτ

Outer
scaling

z− =
r− ri

δ
; r∗ =

r
rctr
;U+φ =

Uφ

uτ ,i
; R+rφ =

Rrφ

u2
τ ,i

z− =
z
δ
;U+ =

U
uτ
; R+wu =

Rwu

u2
τ

0=
1

Reτ ,i

d
dz−

(
1
r∗

d
dz−

(r∗U+φ )
)
+

dR+rφ
dz−
+ At

2R+rφ
r∗

0=
1

Reτ

d2U+

d(z−)2
+

dR+wu

dz−
+ 1

TABLE 3. Comparison of inner scaling and outer scaling for the mean momentum balance
equation in the streamwise direction for a turbulent Taylor–Couette flow and a turbulent
channel flow. For the turbulent channel flow, x is the streamwise direction and z is the wall-
normal direction. U is the mean streamwise velocity, and Rwu is the kinematic Reynolds
shear stress. Mean pressure gradient is −d(P/ρ)/dx= u2

τ/δ (see Tennekes & Lumley 1972;
Pope 2001).

The proposed inner scaling and outer scaling are verified against available DNS data
of the mean azimuthal velocity Uφ and Reynolds shear stress Rrφ . The currently
available DNS data are still limited in the parameter space of At, ΠΩ and Reτ ,i,
and in particular, the Reynolds number Reτ ,o is in general too small to establish a
three-layer structure in the outer part. More DNS simulations are required to check
the validity of the analysis.

TCFs are found in many and varied applications and fields of research. While
experimental and theoretical work over the last century has offered considerable
insights and data, many questions remain unanswered. The present paper demonstrates
a methodology that is shown to be applicable to turbulent flow under different driving
mechanisms and geometries. In specific, the present work proposed a three-layer
structure, and inner and outer scalings, opening up a pathway for future work on the
understanding of the underlying physics in a turbulent TCF.
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Appendix A. Geometry Atwood number
In studies of Rayleigh–Taylor instability (Glimm et al. 2001; Livescu et al. 2009;

Wei & Livescu 2012), an Atwood number is defined to characterize the density
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difference between two fluids

Aρ
def
=
ρheavy − ρlight

ρheavy + ρlight
, (A 1)

where ρheavy is the density of the heavy fluid, and ρlight is the density of the light
fluid; Aρ , bounded between 0 and 1, is found to be a very important parameter
in the analysis of the Rayleigh–Taylor instability. In the present work, At is a
non-dimensional ratio of the cylinder radii, and is called the geometry Atwood number.
Like the Atwood number in Rayleigh–Taylor instability, the geometry Atwood number
is bounded between 0 6 At 6 1

At→ 0 if ri→ ro; (A 2a)
At→ 1 if ri� ro. (A 2b)

Appendix B. Viscous force in the MMB-φ equation
The viscous force term in (2.6b) can also be written in the following forms:

Fvisc = ν
d
dr

(
1
r

d
dr
(rUφ)

)
(B 1a)

= ν
d
dr

(
dUφ

dr
+

Uφ

r

)
(B 1b)

=
1
r2
ν

d
dr

(
r2

(
dUφ

dr
−

Uφ

r

))
. (B 1c)

In (B 1a), rUφ is the angular momentum. In (B 1c), ν(dUφ/dr−Uφ/r) is the viscous
shear stress.
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