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ON EXTENSIONS OF PARTIAL ISOMORPHISMS

MAHMOOD ETEDADIALIABADI AND SU GAO

Abstract. In this paper we study a notion of HL-extension (HL standing for Herwig–Lascar) for a
structure in a finite relational language L. We give a description of all finite minimal HL-extensions of a
given finite L-structure. In addition, we study a group-theoretic property considered by Herwig–Lascar
and show that it is closed under taking free products. We also introduce notions of coherent extensions
and ultraextensive L-structures and show that every countable L-structure can be extended to a countable
ultraextensive structure. Finally, it follows from our results that the automorphism group of any countable
ultraextensive L-structure has a dense locally finite subgroup.

§1. Introduction. Let C1, C2 be two structures in a given relational language L.
A partial isomorphism from C1 into C2 is an isomorphism of a substructure of C1

onto a substructure of C2. A partial automorphism (or a partial isomorphism) of
an L-structure C is an isomorphism between two (possibly different) substructures
of C.

Definition 1.1. Let C be a class of L-structures (containing both finite and
infinite structures). C is said to have the extension property for partial automorphisms
(EPPA) if wheneverC1 andC2 are structures in C,C1 is finite,C1 is a substructure of
C2, and every partial automorphism of C1 extends to an automorphism of C2, then
there exist a finite structureC3 inC which extendsC1 and every partial automorphism
of C1 extends to an automorphism of C3.

Hrushovski [4], was one of the first papers to consider the question of whether a
certain class of structures has the EPPA. More precisely, he showed that the class
of simple graphs has the EPPA, that is, every finite graph G can be extended to
another finite graph, H, such that every partial isomorphism of G extends to an
automorphism of H. Herwig–Lascar [3], generalized the result of Hrushovski to
finite relational structures.

Definition 1.2. If M is an L-structure and T a set of L-structures, we say that
M is T -free if there is no structure T ∈ T and homomorphism h : T →M.

Here we use the same definition of a homomorphism as in [3]. That is, if M and
N are L-structures, a homomorphism from M to N is a map h :M → N such that,
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ON EXTENSIONS OF PARTIAL ISOMORPHISMS 417

if n is an integer, R is an n-ary relation symbol of L, and a1, a2, ... , an are elements
of M withM � R(a1, a2, ... , an), then N � R(h(a1), h(a2), ... , h(an)).

Theorem 1.3 (Herwig–Lascar [3]). Let L be a finite relational language and T a
finite set of finite L-structures. Then the class of all finite T -free L-structures has the
EPPA.

Inspired by the Herwig–Lascar theorem, we define the following notions. Let L
be a finite relational language and C be an L-structure. An HL-extension of C is
a pair (D,φ), where D is an L-structure extending the structure C, and φ is a map
from the set of all partial isomorphisms of C into the set of all automorphisms of
D such that φ(p) extends p. With this notion, the Herwig–Lascar theorem can be
restated as: Every finite T -free L-structure has a finite T -free HL-extension.

If C is an L-structure and (D,φ) is an HL-extension of C, then we say (D,φ) is
minimal if for all b ∈ D, there are partial isomorphisms p1, ... , pn of C and a ∈ C
such that

b = φ(p1) ···φ(pn)(a).

Our first main result of the paper is a description of all finite T -free, minimal HL-
extensions of a given finite T -free L-structure. To do this, we describe a canonical
collection of finite T -free, minimal HL-extensions from the original construction of
Herwig–Lascar [3], and show that every other finite T -free, minimal HL-extension
is a homomorphic image of one of the canonical extensions.

Our next result is regarding a group-theoretic property in the profinite topology
considered by Herwig–Lascar in [3]. We call it the HL-property. For comparison,
we say that a group G has the RZ-property (RZ standing for Ribes–Zalesskii) if any
finite product of finitely generated subgroups of G is closed in the profinite topology.
Every group with the RZ-property is residually finite. Ribes–Zalesskii [6] proved the
RZ-property for finitely generated free groups. Herwig–Lascar [3] introduced the
HL-property as a strengthening of the RZ-property, and showed that the Herwig–
Lascar theorem is essentially equivalent to the HL-property for finitely generated
free groups. Coulbois [1] gave a characterization of the RZ-property in terms of
extensions of partial isomorphisms and used it to show that the RZ-property is
preserved under taking free products. Rosendal [7] gave a characterization of the
RZ-property in terms of extensions of partial isometries for finite metric spaces.
Here we give a similar characterization for the HL-property of groups, and show
that the HL-property is also preserved under taking free products.

In [8], Solecki proved the EPPA for the class of finite metric spaces. Furthermore,
Siniora–Solecki [9] proved a stronger version of the Herwig–Lascar theorem. They
showed that for a structure C with an HL-extension one can find an HL-extension
(D,φ) with the property that for every triple (p, q, r) of partial isomorphisms of C
with p = q ◦ r we have φ(p) = φ(q) ◦ φ(r). This property has been referred to as
coherence. A similar concept was considered in [5] and [7].

In this paper we introduce a slightly different notion of coherence between
HL-extensions. If C1 ⊆ C2 are L-structures, (D1, φ1) is an HL-extension of C1,
and (D2, φ2) is an HL-extension of C2, then we say that (D1, φ1) and (D2, φ2) are
coherent if D2 extends D1, φ2(p) extends φ1(p) for every partial isomorphism p
of C1, and the map φ1(p) �→ φ2(p), where p ranges over all partial isomorphisms
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of C1, induces an isomorphism between a subgroup of all automorphisms of D1

and a subgroup of all automorphisms of D2. We will show that, if T is a finite set
of L-structure each of which is a Gaifman clique, then for any C1 ⊆ C2 finite
T -free L-structures and (D1, φ1) a finite T -free HL-extension of C1, there is a
finite T -free HL-extension of C2 coherent with (D1, φ1). In the proof of this result
we use the above-mentioned coherence result of Siniora–Solecki [9]. We should also
mention that Hubička, Konečnỳ, and Nešetřil [5] presented a direct combinatorial
construction of HL-extensions with the same coherence property. The technical
assumption in the theorem about T is necessary and optimal for the proof.

We call an L-structure U ultraextensive if U is ultrahomogeneous, every finite
C ⊆ U has a finite HL-extension (D,φ) where D ⊆ U , and if C1 ⊆ C2 ⊆ U are
finite and (D1, φ1) is a finite minimal HL-extension ofC1 withD1 ⊆ U , then there is
a finite minimal HL-extension (D2, φ2) of C2 such that D2 ⊆ U and (D1, φ1) and
(D2, φ2) are coherent.

Recall that ultrahomogeneity means that any finite partial isomorphism can
be extended to an isomorphism of the entire space. Thus ultraextensiveness is a
strengthening of ultrahomogeneity. We will establish the following results about
ultraextensive L-structures.

Theorem 1.4. Every countable L-structure can be extended to a countable
ultraextensive L-structure. Moreover, if T is a finite set of finite L-structures each
of which is a Gaifman clique, then every countable T -free L-structure can be extended
to a countable T -free ultraextensive L-structure.

Theorem 1.5. If U is an ultraextensive L-structure then every countable substruc-
ture C ⊆ U can be extended to a countable ultraextensive substructure D ⊆ U .

Theorem 1.6. If U is a countable ultraextensiveL-structure then the automorphism
group of U has a dense locally finite subgroup.

The rest of the paper is organized as follows. In Section 2 we give the
characterization of finite T -free, minimal HL-extensions. In Section 3 we study
the HL-property of groups and show that it is preserved under taking free products.
In Section 4 we discuss coherent HL-extensions and ultraextensive structures. The
results in Sections 2 and 4 are analogous to previous work by the authors [2] on
similar concepts in the context of metric spaces.

§2. Minimal HL-extensions.

2.1. HL-extensions. We fix some notation to be used in the rest of the paper.
Throughout this paper let L be a finite relational language. LetC,D be L-structures.
We say that D is an extension of C if C is a substructure of D. Interchangeably, we
use the same terminology when D contains an isomorphic copy of C.

A homomorphism from C to D is a map � : C → D such that for every n-ary
relation R ∈ L and every a1, ... , an ∈ C ,

RC (a1, ... , an) ⇒ RD(�(a1), ... , �(an)).
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An isomorphism from C to D is a bijection � : C → D such that for every n-ary
relation R ∈ L and every a1, ... , an ∈ C ,

RC (a1, ... , an) ⇐⇒ RD(�(a1), ... , �(an)).

An isomorphism from C to C is also called an automorphism of C. The set of all
automorphisms of C is denoted as Aut(C ). Under composition of maps, Aut(C )
becomes a group.

A partial isomorphism of C is an isomorphism between two finite substructures
of C. The set of all partial isomorphisms of C is denoted as P(C ). Although P(C )
is not necessarily a group, it is a groupoid and for each p ∈ P(C ) we can speak of
the inverse map p–1, which is still a partial isomorphism.

If D is an extension of C, then every partial isomorphism of C is also a partial
isomorphism of D. In symbols, we have P(C ) ⊆ P(D) if C is a substructure of D.

If p, q ∈ P(C ), we say that q extends p, and write p ⊆ q, if

{(a, p(a)) : a ∈ dom(p)} ⊆ {(a, q(a)) : a ∈ dom(q)}.

We let 1C denote the identity automorphism on C, i.e., 1C (a)=a for all a∈C . Let
PC denote the set of all p∈P(C ) such that p 	⊆1C . We refer to elements of PC as
nonidentity partial isomorphisms of C. Note that if p∈PC then p–1∈PC and p–1 	=p.

The main concept we study in this paper is that of an HL-extension.

Definition 2.1. Let C be an L-structure. An HL-extension of C is a pair (D,φ),
where D is an extension of C, and φ : PC → Aut(D) such that φ(p) extends p for
all p ∈ PC .

Note that if (D,φ) is an HL-extension of C then we can always modify φ so that
for all p ∈ PC , φ(p–1) = φ(p)–1. We will tacitly assume this property for all the
HL-extensions we consider.

Note that an equivalent restatement of Herwig–Lascar theorem (Theorem 1.3) is
that every finite T -free L-structure has a finite T -free HL-extension.

We will need the following notion of homomorphism between HL-extensions.

Definition 2.2. Let C be an L-structure, and let (D1, φ1) and (D2, φ2) be both
HL-extensions of C. A homomorphism from (D1, φ1) to (D2, φ2) is a map � : D1 →
D2 such that� is a homomorphism from the structureD1 toD2,� � C is the identity
map on C, and for all p ∈ PC , � ◦ φ1(p) = φ2(p) ◦ �.

We also define the notion of minimality for an HL-extension as follows.

Definition 2.3. Let C be an L-structure and (D,φ) be an HL-extension of C. We
say that (D,φ) is minimal if for all b ∈ D \ C there are p1, ... , pn ∈ PC and a ∈ C
such that b = φ(p1) ... φ(pn)(a).

2.2. A canonical HL-extension. In this subsection we describe a canonical
construction of an HL-extension that is essentially due to Herwig–Lascar [3]. In
the rest of the paper let T be a fixed finite set of finite L-structures.

First, note that for every finite L-structure C there is a unique partition of C
into substructures {Ci : i = 1, ... , n} such that each Ci is a maximal subset of
C satisfying that for every a, b ∈ Ci , the map that sends a to b (that is, the map
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{(a, b)}) is a partial isomorphism of C. In other words, we partition C into maximal
subsets whose elements satisfy the same unary predicates. We call this partition
with a specific point from each set a natural factorization of C. That is, a natural
factorization of C is of the form {(Ci , ai) : i = 1, ... , n}, where each ai ∈ Ci .

Let C be a finite T -free L-structure. Let {(Ci , ai) : i = 1, ... , n} be a natural
factorization of C. For every 1 ≤ i ≤ n we define

Hi = {g ∈ F(PC ) : g(ai) = ai},

where F(PC ) is the free group with the generating set PC (with the convention that
the inverse of p ∈ PC in F(PC ) coincides with p–1). By g(ai) = ai we mean that if
g = p1 ···pm with p1, ... , pm ∈ PC , then p1(··· (pm(ai)) ··· ) is defined and

p1(··· (pm(ai)) ··· ) = ai .

EachHi is a subgroup of F(PC ).
Let Γ be the L-structure with domain

F(PC )/H1 � ··· � F(PC )/Hn

and such that for every m-ary relation symbolR ∈ L, we haveRΓ(g1Hi1 , ... , gmHim )
iff there are p1, ... , pm ∈ PC and g ∈ F(PC ) such that pj(aij ) is defined for each j =
1, ... , m, (g1Hi1 , ... , gmHim ) = (gp1Hi1 , ... , gpmHim ), andRC (p1(ai1), ... , pm(aim )).

Note that C can be viewed as a substructure of Γ. In fact, consider the map
� : C → Γ defined as

�(a) =
{
Hi, if a = ai ,
pHi , if a 	= ai and p ∈ PC satisfies p(ai) = a,

for a ∈ Ci . It is easy to see that � is well-defined and is indeed an isomorphic
embedding from C into Γ.

Given any � ∈ F(PC ), the map Φ� defined by Φ�(gHi) = �gHi is an automor-
phism of Γ. Thus, (Γ,Φ) is an HL-extension of C with Φ : PC → Aut(Γ) defined as
Φ(p) = Φp. Note that by definition, (Γ,Φ) is a minimal HL-extension of C.

Assume C has a T -free HL-extension (D,φ). Consider the map � : Γ → D
defined by �(gHi) = φ(g)(ai), where φ(g) = φ(p1) ···φ(pm) if g = p1 ... pm. Then
� is a homomorphism. It follows that Γ is also T -free.

2.3. Finite HL-extensions. Let C be a finite T -free L-structure as before. We give
a description of all finite T -free, minimal HL-extensions of C. For this we first
describe a finite T -free, minimal HL-extension by replacing each group Hi in the
above canonical Γ with a larger group of the form NiHi , where Ni is a normal
subgroup of F(PC ) of finite index.

Let N1, ... , Nn � F(PC ) be normal subgroups of finite index. We define

Γ �N = F(PC )/N1H1 � ··· � F(PC )/NnHn.

The structure on Γ �N is defined analogously to the structure on the canonical HL-
extension Γ. More precisely, to define the structure on Γ �N , let R ∈ L be an m-ary
relation symbol. Then RΓ �N (g1Ni1Hi1 , ... , gmNimHim ) iff there are p1, ... , pm ∈ PC
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and g ∈ F(PC ) such that pj(aij ) is defined for each j = 1, ... , m,

(g1Ni1Hi1 , ... , gmNimHim ) = (gp1Ni1Hi1 , ... , gpmNimHim ),

and RC (p1(ai1 ), ... , pm(aim )).
Consider the map � �N : C → Γ �N defined by

� �N (a) =
{
NiHi , if a = ai ,
pNiHi , if a 	= ai and p ∈ PC satisfies p(ai) = a,

for a ∈ Ci . Then � �N is well-defined. Under suitable assumptions (that will be
discussed in Theorem 2.4), � �N becomes an isomorphic embedding. In this case
� �N (C ) is an isomorphic copy of C as a substructure of Γ �N .

We define Φ �N : PC → Aut(Γ �N ) by letting

Φ �N (p)(gNiHi) = pgNiHi .

Assuming the above map � �N is an isomorphic embedding, and noting that there is
a canonical surjective homomorphism from Γ to Γ �N , it follows from the minimality
of (Γ,Φ) that (Γ �N ,Φ �N ) is also a minimal HL-extension of C.

We are now ready to describe any finite T -free, minimal HL-extension of C as
a homomorphic image of some (Γ �N ,Φ �N ), which is itself a finite T -free, minimal
HL-extension of C.

Theorem 2.4. Let C be a finite T -free L-structure and (D,φ) be a finite T -
free, minimal HL-extension of C. Then, there are N1, ... , Nn � F(PC ) of finite index
such that (Γ �N ,Φ �N ) is a finite T -free, minimal HL-extension of C and there is a
homomorphism from (Γ �N ,Φ �N ) onto (D,φ).

Proof. For each i = 1, ... , n, let Di = {φ(g)(ai) : g ∈ F(PC )}. We define

Ni = {g ∈ F(PC ) : φ(g)(a) = a for every a ∈ Di}.

Then Ni � F(PC ). Since D is finite, each Ni is of finite index.
Let Γ �N and � �N : C → Γ �N be defined as above. We claim that � �N is an isomorphic

embedding. To see this, let a, a′ ∈ Ci with a 	= a′. Let p, p′ ∈ PC with p(ai) = a
and p′(ai) = a′. We show that p′–1pHi ∩Ni = ∅, which implies pNiHi 	= p′NiHi .
For this, let g ∈ Hi . Since

φ(p′–1pg)(ai) = φ(p′–1)φ(p)φ(g)(ai ) = φ(p′)–1p(ai) 	= ai ,

we have that p′–1pHi ∩Ni = ∅. This shows that � �N is injective. It is easy to see that
� �N is an isomorphism between the structures C and � �N (C ).

Now we define � �N : Γ �N → D by � �N (gNiHi) = φ(g)(ai). Note that � �N is well-
defined since if g–1

1 g2 ∈ NiHi then by definition ofNi,Hi we have φ(g–1
1 g2)(ai) = ai

and therefore φ(g1)(ai) = φ(g2)(ai).� �N is onto since D is minimal. It is also easy to
verify that � �N is a homomorphism. It follows that Γ �N is T -free, and thus (Γ �N ,Φ �N )
is a finite T -free, minimal HL-extension of C.

Finally, it is routine to check that for every p ∈ PC , φ(p) ◦ � �N = � �N ◦ Φ �N (p).
Thus � �N is a homomorphism from (Γ �N ,Φ �N ) onto (D,φ). �
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§3. The HL-property of a group. In this section we consider a property for a group
G analogous to the existence of HL-extensions for free groups.

3.1. The HL-property. First, we need the following definitions.

Definition 3.1 Herwig–Lascar [3]. Let G be a group and let H1, ... , Hn ≤ G .
A left system of equations on H1, ... , Hn is a finite set of equations with variables
x1, ... , xm and constants g1, ... , gl such that each equation is of the form

xiHj = gkHj or xiHj = xrgkHj,

where 1 ≤ i, r ≤ m, 1 ≤ k ≤ l and 1 ≤ j ≤ n.

Definition 3.2. Let G be a group. We say that G has the HL-property if for every
finitely generated H1, ... , Hn ≤ G and left system of equations on H1, ... , Hn that
does not have a solution, there exist normal subgroups of finite indexN1, ... , Nn �G
such that the same left system of equations on N1H1, ... , NnHn does not have a
solution.

By results of [3], Section 3, the Herwig–Lascar theorem (Theorem 1.3) implies
the HL-property for all free groups with finitely many generators. Our results below
will imply that they are actually equivalent.

Recall that we say a group G has the RZ-property if for any finitely generated
subgroups H1, ... , Hn ≤ G , H1 ···Hn is closed in the profinite topology of G.
Equivalently, a group G has the RZ-property iff for any finitely generated
H1, ... , Hn ≤ G and g /∈ H1 ···Hn there exist a normal subgroup N �G of finite
index, such that gN ∩H1 ···Hn = ∅. Ribes–Zalesskii [6] proved the RZ-property
for free groups with finitely many generators. As noted in [3], the HL-property is
a strengthening of the RZ-property, and therefore the Herwig–Lascar theorem is a
strengthening of the Ribes–Zalesskii result.

Rosendal in [7] considered the RZ-property and showed that it is equivalent to
a statement about extensions of partial isometries for finite metric spaces which
he called finite approximability. Earlier, Coulbois [1] gave a characterization of the
RZ-property in terms of extensions of partial isomorphisms of finite structures, and
used it to show that the RZ-property is closed under taking finite free products.
Below we give a characterization of the HL-property also in terms of extensions
of partial isomorphisms of finite structures. Our characterization is analogous to
Rosendal’s notion of finite approximability.

To state the theorem, we need the following notions. Let G be a group acting
on sets X and Y and let A ⊆ X and F ⊆ G be arbitrary subsets. An F-map from
A to Y is a function � : A→ Y such that for all g ∈ F and x ∈ A, if g(x) ∈ A,
then �(g(x)) = g(�(x)). Moreover, if X and Y are L-structures, then � is called an
F-embedding if � is an injective F-map that is an isomorphism between A and �(A).

An L-structure C is called a Gaifman clique if for every a, b ∈ C there is a relation
symbol R ∈ L with arity m ≥ 2 and c1, ... , cm ∈ C with a, b ∈ {c1, ... , cm} and
RC (c1, ... , cm).

Theorem 3.3. Let G be a group. Then the following are equivalent:

(i) G has the HL-property;
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(ii) LetL be a finite relational language with unary relation symbolsS1, ... , Sn ∈ L.
Let T be a finite set of finite L-structures. Let D be a T -free L-structure
such that {SD1 , ... , SDn } is a partition of the domain of D. Let C be a
finite substructure of D. Let F be a finite subset of G. Suppose that G acts
faithfully by isomorphisms on D and that G acts transitively on each SDi for
i = 1, ... , n. Then there exists a finite T -free L-structure D′ on which G acts
by isomorphisms, and an F-embedding from C to D′;

(iii) Clause (ii) with the additional assumption that every structure T ∈ T is a
Gaifman clique.

The next two subsections are devoted to a proof of Theorem 3.3. We will show
(i)⇒(ii)⇒(iii)⇒(i). Since (ii)⇒(iii) is obvious, we focus on showing (i)⇒(ii) and
(iii)⇒(i).

3.2. Proof of Theorem 3.3 (i)⇒(ii). We assume G has the HL-property. Let C ⊆
D be T -free L-structures, where C is finite. For 1 ≤ i ≤ n, let Di = SDi and Ci =
SCi . Then {Di : 1 ≤ i ≤ n} is a partition of D and {Ci : 1 ≤ i ≤ n} is a partition
of C. Without loss of generality, assume Di 	= ∅ for every 1 ≤ i ≤ n. Then, by
extending C, we may assume that Ci 	= ∅ for every 1 ≤ i ≤ n. Let {(Ci , ai) : 1 ≤
i ≤ n} be a natural factorization of C. Since G acts transitively on eachDi , we have
Di = G(ai). By minimizing the structure on D, we may also assume that for any
m-ary relation symbol R ∈ L and for any d1, ... , dm ∈ D, we have RD(d1, ... , dm)
iff there are c1, ... , cm ∈ C and g ∈ G such that RC (c1, ... , cm) and (d1, ... , dm) =
(g(c1), ... , g(cm)).

Define � : G → P(C ) by letting, for any g ∈ G and c ∈ C , �(g)(c) = g(c), if
g(c) ∈ C ; �(g)(c) is undefined otherwise. Since G acts by isomorphisms on D, if
c ∈ Ci for some 1 ≤ i ≤ n and �(g)(c) is defined, then �(g)(c) ∈ Ci . Since C is
finite, the set �(G) ∩ PC = {�(g) ∈ PC : g ∈ G} is finite.

Let F ⊆ G be finite. Since the action of G on D is faithful, by extending C with
finitely many points, we may assume that �(F \ {1C }) ⊆ PC . Pick a finite K ⊆ G
such that F ⊆ K , K–1 = K and �(K \ {1C }) = �(G \ {1C }) ∩ PC . Define

Hi = {p1 ···pl : p1, ... , pl ∈ K and �(p1)(··· �(pl )(ai) ··· ) = ai}.
Since C and K are finite,Hi is finitely generated. To see this, consider an edge-labeled
directed graph on C defined as follows: there is an edge from c1 to c2 labeled by p
if p ∈ K is such that p(c1) = c2. Note that this graph can have multiple edges and
loops. The generators of Hi are precisely those p1 ···pl that give a minimal cycle
from ai back to ai .

Let Γ be theL-structure with domainG/H1 � ··· �G/Hn such that for i = 1, ... , n,
SΓ
i = G/Hi , and for any m-ary relation symbol R ∈ L and for any g1, ... , gm ∈ G ,
RΓ(g1Hi1 , ... , gmHim ) iff there are p1, ... , pm ∈ K and g ∈ G such that pj(aij ) ∈ Cij
for each j = 1, ... , m, RC (p1(ai1 ), ··· , pm(aim )), and

(g1Hi1 , ... , gmHim ) = (gp1Hi1 , ... , gpmHim ).

G acts on Γ by left multiplication. Consider the map � : C → Γ defined as

�(c) =
{
Hi, if c = ai ,
pHi , if c ∈ Ci , c 	= ai , and p ∈ K with p(ai) = c.
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Since G acts transitively on each Di , � is well-defined. We claim that � is an
isomorphic embedding of C into Γ. In fact, � is injective because of the following
fact:

(C1) For every p, q ∈ K and 1 ≤ i ≤ n, if p(ai), q(ai) ∈ Ci and p(ai) 	= q(ai),
then p–1q /∈ Hi .

Furthermore, � is an isomorphism between C and �(C ) because of the following
fact:

(C2) For any p1, ... , pm, q1, ... , qm ∈ K such that for all j = 1, ... , m,

pj(aij ), qj(aij ) ∈ Cij

for some 1 ≤ i1, ... , im ≤ n, if

RC (p1(ai1), ... pm(aim )) and ¬RC (q1(ai1), ... qm(aim )),

then there does not exist g ∈ G such that

(p1Hi1 , ... , pmHim ) = (gq1Hi1 , ... , gqmHim ).

(C2) is true since otherwise in D we would have

RD(p1(ai1 ), ... , pm(aim )) and ¬RD(q1(ai1), ... , qm(aim ))

and yet (p1(ai1), ... , pm(aim )) = (gp1(ai1), ... , gpm(aim )), violating that g is an
isomorphism of the structure D.

Consider the map � : Γ → D defined by �(gHi) = g(ai). Then � is a homomor-
phism from the structure Γ onto the structure D. Since D is T -free, so is Γ. Thus,
we also have the following

(C3) For every structure T ∈ T there is no homomorphism from T into Γ.

Next we demonstrate that conditions (C1)–(C3) can all be equivalently expressed
as certain left systems of equations on H1, ... , Hn not having solutions. To do this,
we first establish some general lemmas.

Lemma 3.4. Let G be a group and H ≤ G. For any �, � ∈ G, �–1� /∈ H iff the
following left system with variable x does not have a solution

xH = �H
xH = �H. (3.1)

Proof. It is equivalent to state the lemma as �–1� ∈ H iff the left system (3.1)
has a solution. Now it is obvious that (3.1) has a solution iff �H = �H, which is
equivalent to �–1� ∈ H. �

Lemma 3.5. Let G be a group and H1,Hm ≤ G. For any �1, ... , �m, �1, ... , �m ∈ G,
the following are equivalent:

(i) There does not exist g ∈ G such that (�1H1, ... , �mHm) = (g�1H1, ... , g�mHm);
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(ii) The following left system with variables x, x1, ... , xm does not have a solution

x1H1 = �1H1

x1H1 = x�1H1

··· ···
xmHm = �mHm
xmHm = x�mHm.

(3.2)

Proof. Again we prove the contrapositives. First, assume that there is g ∈ G such
that (�1H1, ... , �mHm) = (g�1H1, ... , g�mHm). Thus we have m equations

�1H1 = g�1H1

... ...
�mHm = g�mHm.

Each equation above, which is of the form �iHi = g�iHi , is equivalent to there
existing xi such that

xiHi = �iHi
xiH = g�iHi ,

similar to the proof of Lemma 3.4. Thus the totality of these m equations is equivalent
to there existing solutions for the 2m equations in (3.2). Conversely, if (3.2) has a
solution, then each pair of equations involving xi give rise to an equation of the
form �iHi = x�iHi . The solution for x witnesses the existence of the desired element
g ∈ G in clause (i). �

We are now ready to argue that conditions (C1)–(C3) can be equivalently
expressed as certain left systems of equations on H1, ... , Hn ≤ G not having
solutions. For (C1), simply apply Lemma 3.4 to the appropriate Hi, p, q. Then
p–1q /∈ Hi is equivalent to the following system not having a solution

xHi = pHi
xHi = qHi .

(3.3)

Since K is finite, there are only finitely many such systems. To summarize, there
are finitely many left systems on H1, ... , Hn such that (C1) holds iff each of the left
systems does not have a solution.

For (C2), apply Lemma 3.5. The left system correspondent to the condition is

x1Hi1 = p1Hi1
x1Hi1 = xq1Hi1
··· ···
xmHim = pmHim
xmHim = xqmHim .

(3.4)

Again, since K is finite, there are only finitely many such systems, and (C2) holds iff
each of these left systems does not have a solution.

For (C3), we consider any T ∈ T . Enumerate the elements of T as t1, ... , tl .
Introduce variables y1, ... , yl correspondent to t1, ... , tl . Suppose first there is a
homomorphism of T into Γ. Then there are g1, ... , gl ∈ G and 1 ≤ i1, ... , il ≤ n

https://doi.org/10.1017/jsl.2020.19 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.19


426 MAHMOOD ETEDADIALIABADI AND SU GAO

such that, for any m-ary relation symbol R ∈ L, whenever RT (tj1 , ... , tjm ) where
1 ≤ j1, ... , jm ≤ l , we have

RΓ(gj1Hij1 , ... , gjmHijm ).

Note thatRΓ(gj1Hij1 , ... , gjmHijm ) iff there are p1, ... , pm ∈ K and g ∈ G such that
pk(aijk ) ∈ Cijk for all k = 1, ... , m,

RC (p1(aij1 ), ... , pm(aijm )),

and

(gj1Hij1 , ... , gjmHijm ) = (gp1Hij1
, ... gpmHijm ).

Applying Lemma 3.5, the above statement is equivalent to the following: there
are 1≤ i1, ... , il ≤ n such that for any m-ary relation symbol R ∈ L, whenever
RT (tj1 , ... , tjm ) with 1 ≤ j1, ... , jm ≤ l , there arep1, ... , pm ∈ K such thatpk(aijk ) ∈
Cijk

for all k= 1, ... , m,

RC (p1(aij1 ), ... , pm(aijm )),

and the following left system with variables y1, ... , yl , x, z1, ... , zm has a solution

z1Hij1
= yj1Hij1

z1Hij1
= xp1Hj1

... ...
zmHijm = yjmHijm
zmHijm = xpmHijm .

(3.5)

Here the variables x, z1, ... , zm and the left system (3.5) are introduced for each
instance of j1, ... , jm and p1, ... , pm ∈ K that satisfy the conditionsRT (tj1 , ... , tjm ),
pk(aijk ) ∈ Cijk for all k = 1, ... , m, and RC (p1(aij1 ), ... , pm(aijm )). We call these
j1, ... , jm and p1, ... , pm ∈ K a set of witnesses. There are only finitely many possible
sets of witnesses. Accumulating all sets of witnesses together, and introducing a left
system (3.5) with distinct variables x, z1, ... , zm for each set of witnesses, we obtain
a single finite left system that is the union of all these left systems for each set of
witnesses. Now this resulting left system has a solution. Conversely, if this system
has a solution, then the solutions for y1, ... , yl will witness a homomorphism of T
into Γ. Thus the existence of a homomorphism of T into Γ is equivalent to a single
left system having a solution.

Finally, since T is finite, we again have finitely many left systems such that (C3)
holds iff each of the finitely many left systems onH1, ... , Hn does not have a solution.

In summary, all conditions (C1)–(C3) can be represented as finitely many left
systems on H1, ... , Hn not having a solution. Since G has the HL-property, we can
find N1, ... , Nn �G such that each of the left systems described by (C1)–(C3) does
not have a solution with respect to (N1H1, ... , NnHn). Indeed, for each of the left
system Σ there are such NΣ

1 , ... , N
Σ
n for the system. For each i = 1, ... , n, let Ni be

the intersection of all NΣ
i . We thus get N1, ... , Nn which are still of finite index in G

so that all of the left systems on N1H1, ... , NnHn still do not have a solution. This
implies that the conditions (C1)–(C3) continue to hold with Hi replaced by NiHi .
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We now define D′ to be the finite L-structure with domain G/N1H1 � ··· �
G/NnHn such thatSD

′
i = G/NiHi for all i = 1, ... , n, and for any m-ary relation sym-

bol R ∈ L, we have RD
′
(g1Ni1Hi1 , ... , gmNimHim ) iff there are p1, ... , pm ∈ K and

g ∈ G such that pj(aij ) ∈ Cij for all j = 1, ... , m, RC (p1(ai1), ··· , pm(aim )), and

(g1Ni1Hi1 , ... , gmNimHim ) = (gp1Ni1Hi1 , ... , gpmNimHim ).

Consider the map �′ : C → D′ defined as

�′(c) =
{
NiHi , if c = ai ,
pNiHi , if c ∈ Ci , c 	= ai , and p ∈ K with p(ai) = c.

Then conditions (C1) and (C2) with Hi replaced by NiHi guarantee that �′ is an
isomorphic embedding. Condition (C3) withHi replaced byNiHi implies thatD′ is
T -free. The action of G onD′ is by left multiplication, and each of g ∈ G gives an iso-
morphism of the structureD′. Finally, we check that �′ is a K-map, and therefore an
F-map. Let p ∈ K and c ∈ Ci , and assume p(c) ∈ Ci . Suppose q ∈ K with q(ai) =
c and r ∈ K with r(ai) = p(c). Then �′(p(c)) = rNiHi = pqNiHi = p(�′(c)),
where r–1pq ∈ Hi by the definition ofHi . This completes the proof of (i)⇒(ii).

3.3. Proof of Theorem 3.3 (iii)⇒(i). We assume (iii) holds and show that G has the
HL-property. SupposeH1, ... , Hn ≤ G are finitely generated subgroups. Consider a
left system Σ with l many equations onH1, ... , Hn that does not have a solution. Let A
be the finite set of g, g–1 ∈ G for all constants g appearing in Σ. LetH0 = {1G} ≤ G
be the trivial subgroup. Consider a relational structure D defined as follows:

a) the domain of D is G/H0 �G/H1 � ··· �G/Hn;
b) there are n + 1 many unary relation symbols S0, ... , Sn such that SDi = G/Hi

for i = 0, ... , n;
c) there is a binary relation symbol U such that UD = D ×D;
d) for each g ∈ A, there is a binary relation Bg such that BDg = {(hH0, hgH0) :
h ∈ G};

e) for each tuple t = (i1, ... , im), where 2 ≤ m ≤ 2l + n + 1 and 0 ≤ ij ≤ n for
each j = 1, ... , m, there is an m-ary relation symbol Rt such that

RDt (g1Hi1 , ... , gmHim ) iff g1Hi1 ∩ ··· ∩ gmHim 	= ∅.

Let L be the language of D. We claim that the left system Σ has a solution iff a
specific finite L-structure T has a homomorphic image inside D.

First we turn Σ into an equivalent left system Σ∗ with the same number of
equations. To do this, collect all equations in Σ of the form xHi = gHi where x
is a variable and g ∈ A. Introduce a new variable y and replace every equation in the
above collection by the equation xHi = ygHi . Denote the resulting left system as Σ∗.
We claim that Σ has a solution iff Σ∗ has a solution. First suppose Σ has a solution.
Then the solution for Σ together with y = 1G is a solution for Σ∗. Conversely,
suppose Σ∗ has a solution in which y = h in particular. Then this solution with
every term left-multiplied by h–1 is still a solution for Σ∗, which, with y dropped, is
a solution for Σ. Thus, without loss of generality, we may assume that all equations
in Σ are of the form xHi = ygHi where x, y are variables and g ∈ A.
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Next we note that every equation of the formxHi = ygHi can be replaced with two
equations of the form xHi = xnewHi and xnewH0 = ygH0, where the last equation
can be rearranged as yH0 = xnewg

–1H0. By repeating this process, we may obtain
an equivalent left system Σ′ with ≤ 2l many equations such that for any variable x
in Σ, the equations in Σ′ involving x are all of the form xHi = yHi or xH0 = ygH0

for some variable y and constant g ∈ A. Note that for the new variable xnew above,
we get two equations xnewHi = xHi and xnewH0 = ygH0 by moving the cosets for
xnew to the left hand side of the equations. Now for each variable x in Σ′, consider
the left system Σx consisting only of the equations in Σ′ that involve x. From the
above discussion we know that Σx can be listed as:

xHi1 = �1Hi1
··· ···
xHik = �kHik

for k ≤ 2l and each �j is either a variable y or of the form yg (in which case ij = 0)
for a variable y and a constant g ∈ A. Note that Σx has a solution iff the following
expression has a solution:

xH0 ∩ xH1 ∩ ··· ∩ xHn ∩ �1Hi1 ∩ ··· ∩ �kHik 	= ∅. (3.6)

In fact, if Σx has a solution x, y, ... , then x is in the intersection of (3.6). Conversely,
if (3.6) holds for some x, y, ... then they become a solution of Σx . Thus each Σx
corresponds to a formal relation

Rt(xH0, xH1, ... , xHn, �1Hi1 , ... , �kHik ) (3.7)

for a suitable t of length k + n + 1 ≤ 2l + n + 1.
We now describe a finite L-structure T. The domain of T is the set of all formal

cosets xHi and xgH0, where x is a variable in Σ′, g ∈ A, and i = 0, ... , n. The defini-
tion of STi is obvious. AlsoUT = T × T . For each g ∈ A, let BTg = {(xH0, xgH0) :
x is a variable in Σ′}. The above formal relation (3.7) becomes now the definition of
RTt . For other relation symbols Rt , RTt is empty. Note that T is a Gaifman clique.

It is now clear that Σ′ has a solution iff there is a homomorphism from the
structure T into the structure D. Since Σ does not have a solution, neither does Σ′

and it follows that D is T-free.
G acts faithfully on D by left multiplication, and it is clear that the left

multiplication by any g ∈ G preserves the structure of D. It is also clear that G
acts transitively on SDi = G/Hi for each i = 0, ... , n.

Let C be a finite substructure of D whose domain consists of all Hi and gHi for
g ∈ A and i = 0, ... , n. Define � : G → P(C ) by letting �(g)(c) = g(c) if c, g(c) ∈
C ; otherwise �(g)(c) is undefined. Since C is finite, the set �(G) is finite. Let F ⊆ G
be a finite subset so that A ⊆ F , �(F ) = �(G) and for each i = 1, ... , n, F contains
a finite set of generators for Hi . Since the action of G on SDi is transitive for each
i = 0, ... , n, the partial action of �(F ) on SCi is also transitive. Apply (iii) to get
a finite T-free extension D′ of C on which G acts by isomorphisms, and an F-
embedding � from C into D′. Note that Hi is an element of C and �(Hi) is an
element of D′, and we may assume that D′ = G(�(H0)) � ··· �G(�(Hn)). Let

Ni = {g ∈ G : g(a) = a for every a ∈ G(�(Hi))}.
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Since D′ is finite, Ni is a normal subgroup of finite index. Now let Σ �N be obtained
from Σ by replacing H1, ... , Hn respectively by N1H1, ... , NnHn. We claim that Σ �N
does not have a solution, which shows that G has the HL-property.

Towards a contradiction, assume the left system Σ �N on N1H1, ... , NnHn has a
solution. Similarly to the above, we can obtain an equivalent left system Σ∗

�N such that
each equation in Σ∗

�N is of the form xNiHi = ygNiHi . LetM0 = N0 ∩N1 ∩ ··· ∩Nn.
ThenM0 is still a normal subgroup of finite index, and obviouslyM0 ≤ Ni for all i =
0, ... , n. Now each equation of the form xNiHi = ygNiHi in Σ∗

�N can be equivalently
replaced by xNiHi = xnewNiHi and xnewM0H0 = ygM0H0. Also, the last equation
can be reformulated as yM0H0 = xnewg

–1M0H0 because of the normality of M0.
Thus we obtain an equivalent left system Σ′

�N in a similar way as before, whose
solution describes a homomorphic image of T in a structure Γ = G/M0H0 �
G/N1H1 � ··· �G/NnHn. The exact definition of the structure Γ is similar to the
definition of D above. For notational convenience we defineMi = Ni for i = 1, ... , n.

SinceD′ is a T-free structure, it is enough to show that there is a homomorphism
from Γ into D′. Consider the map � : Γ → D′ defined by �(gMiHi) = g(�(Hi)).
Then � is the desired homomorphism. Note that � is well-defined since if
g1MiHi = g2MiHi then g2 = g1nh for some n ∈Mi ≤ Ni and h ∈ Hi ; using
the definition of Ni and Hi and the fact that � is an F-embedding, we have
g2(�(Hi)) = g1nh(�(Hi)) = g1(�(Hi)). More precisely, we can write h = f1 ···fr
with f1, ... , fr ∈ F as F contains a finite set of generators for Hi ; since � is an F-
embedding, we have h(�(Hi)) = f1 ···fr(�(Hi)) = �(f1 ···fr(Hi)) = �(Hi). Also,
by definition of Ni , for n ∈ Ni we have n(�(Hi)) = �(Hi).

It remains to verify that � preserves structure. For this let t = (i1, ... , im) with
m ≤ 2l + n + 1 and assume RΓ

t (g1Mi1Hi1 , ... , gmMimHim ), that is,

g1Mi1Hi1 ∩ ··· ∩ gmMimHim 	= ∅.

Then there are nij ∈Mij ≤ Nij and hij ∈ Hij for j = 1, ... , m such that

g1ni1hi1 = ··· = gmnimhim = g.

The action of g on D′ sends the tuple (�(Hi1 ), ... , �(Him )) to

(g1(�(Hi1 )), ... , gm(�(Him ))) = (�(g1Mi1Hi1), ... , �(gmMimHim )).

Note thatRCt (Hi1 , ... , Him ) and thereforeRD
′
t (�(Hi1 ), ... , �(Him )). Now since g acts

by an isomorphism on D′, we have RD
′
t (g1(�(H1)), ... , gm(�(Hm))).

Finally, consider (hM0H0, hgM0H0) ∈ BΓ
g for some g ∈ A and h ∈ G . We need to

show that (h(�(H0)), hg(�(H0))) ∈ BD′
g . By the definition of C, we haveH0, gH0 ∈

C and BCg (H0, gH0). Since g ∈ A ⊆ F and � is an F-embedding, we have �(gH0) =

g(�(H0)) and BD
′
g (�(H0), g(�(H0))). Now h acts by an isomorphism onD′, and so

BD
′
g (h�(H0), hg(�(H0))) as desired.
This finishes the proof of Theorem 3.3.

3.4. Free products of groups with the HL-property. As a corollary to Theorem
3.3, we show below that the HL-property is closed under taking finite free products.
This is analogous to the theorem of Coulbois [1] which states that the RZ-property
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is closed under taking finite free products. In the proof of the corollary we use the
coherence result of Sinora–Solecki [9], which is also established in [5] with a different
proof. We summarize in the following proposition the exact fact we will need in our
proof.

Proposition 3.6. Let C be a finite T -free L-structure. Then, C has a finite T -free
HL-extension (D,φ) such that for every substructureE ⊆ C , φE : Aut(E) → Aut(D)
defined as

φE(p) =
{
φ(p), if p ∈ Aut(E) ∩ PC ,
1D, if p = 1E,

is a group isomorphic embedding.

Proof. It was proved in [9] and [5] that, for any finite T -free L-structure C,
there is a finite T -free extension D of C and a map ϕ : P(C ) → Aut(D) such
that p ⊆ ϕ(p) for all p ∈ P(C ), and for any p, q, r ∈ P(C ) with p ◦ q = r we
have ϕ(p) ◦ ϕ(q) = ϕ(r). We claim (D,ϕ � PC ) is the desired HL-extension. Let
E ⊆ C be a substructure. Since 1E ◦ 1E = 1E , we have ϕ(1E) ◦ ϕ(1E) = ϕ(1E).
Thus ϕ(1E) = 1D , and φE = ϕ � Aut(E). The coherence property clearly implies
thatφE is a group homomorphism from Aut(E) into Aut(D). Assumeg ∈ Aut(E) ⊆
P(C ) and φE(g) = ϕ(g) = 1D , then g = 1E since g ⊆ ϕ(g). Therefore, φE is an
isomorphic embedding from Aut(E) into Aut(D). �

In the proof of the corollary we will also need a property of Gaifman cliques proved
by Siniora–Solecki in [9]. To explain the property, first recall some definitions.

Definition 3.7. Let L be a relational language andC1, C2 and C be L-structures.
AssumeC ⊆ C1, C2. Then the free amalgamation ofC1 andC2 over C is the structure
on D = (C1 \ C ) � C � (C2 \ C ) where for every relation R in the language RD =
RC1 ∪RC2 . A class C of L-structures has the free amalgamation property if the free
amalgamation of any two structures in C over a structure in C is still in C.

Siniora–Solecki proved in Lemma 4.5 of [9] that a class C of L-structures has the
free amalgamation property iff there is a set T of L-structures each of which is a
Gaifman clique such that C is exactly the collection of all L-structures C for which
there does not exist any isomorphic embedding from any T ∈ T into C. Note that
in our context (where T is a finite set of finite L-structures) the statement implies
that the class of finite T -free L-structures has the free amalgamation property iff all
T ∈ T are Gaifman cliques. This is because, if T is a set of Gaifman cliques and if
we let T ′ to be the set of all homomorphic images of structures in T , then T ′ is still
a finite set of Gaifman cliques, and the collection of T -free structures is exactly the
collection of structures into which no T ∈ T ′ isomorphically embed.

Corollary 3.8. Let G1, G2 be two groups with the HL-property. Then, the free
product of G1 and G2, G1 ∗G2, has the HL-property.

Proof. Suppose G1, G2 have the HL-property. To show that G1 ∗G2 has the
HL-property, we use the equivalence between clauses (i) and (iii) of Theorem 3.3.
Specifically, we show the following:
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Let L be a finite relational language with unary relation symbols S1, ... , Sn. Let
T be a finite set of finite L-structures such that every T ∈ T is a Gaifman clique.
Let D be a T -free L-structure such that {SD1 , ... , SDn } is a partition of the domain
of D. Let C be a finite substructure of D. Let F be a finite subset of G1 ∗G2.
Suppose that G1 ∗G2 acts faithfully by isomorphisms on D and that G1 ∗G2

acts transitively on each SDi for i = 1, ... , n. Then there exists a finite T -free
L-structure D′ on which G1 ∗G2 acts by isomorphisms, and an F-embedding
from C into D′.

In the following we construct the desired structure D′.
Let F1 ⊆ G1 and F2 ⊆ G2 be finite subsets such that F ⊆ F1 ∗ F2. Let C ′ ⊆ D

be a finite structure extending C such that for every f = f1 f2 ···fl ∈ F where
fi ∈ F1 ∪ F2 for every i = 1, 2, ... , l , and every a ∈ C where f(a) ∈ C , we have
fj ···fl (a) ∈ C ′ for every 1 ≤ j ≤ l . Since G1 and G2 have the HL-property, we
can find finite T -free L-structures D′

1 and D′
2 such that for k = 1, 2:

(1) Gk acts by isomorphisms on D′
k , and

(2) there exists an Fk-embedding �k from C ′ to D′
k .

LetD0 be the free amalgamation ofD′
1 andD′

2 over �1(C ′) ∼= �2(C ′), that is, the
underlying set of D0 is (D′

1 \ �1(C ′)) � C ′ � (D′
2 \ �2(C ′)) and for every relation R

in the language RD0 = RD
′
1 ∪RD′

2 . Since T consists of only Gaifman cliques, the
collection of all T -free L-structures has the free amalgamation property. ThusD0 is
T -free.

By Proposition 3.6, there exists a finite T -free HL-extension (D′, φ) of D0 such
that for every finite substructure E ⊆ D0, φ induces a group isomorphic embedding
from Aut(E) to Aut(D). In particular, this holds for E = D′

1, D
′
2. Therefore, φ

induces an action of Gk on D′ by g(a) = φ(g)(a) for k = 1, 2. By considering the
free product of these two actions, we get an action ofG1 ∗G2 onD′ by isomorphisms.
It remains to show that there exists an F-embedding � from C toD′. Let � : C ′ → D′

denote the inclusion map. We claim � � C is as desired. Let f = f1 f2 ···fl ∈ F
where fi ∈ F1 ∪ F2 for every i = 1, 2, ... , l, and a ∈ C be such that f(a) ∈ C . Note
that for k = 1, 2, since � is an Fk-embedding from C ′ to D′

k , we have that � is also
an Fk-embedding from C ′ to D′. Therefore,

�(f(a)) = �(f1 ···fk(a)) = f1(�(f2 ···fl (a)))

= ··· = f1 ···fl (�(a)) = f(�(a)). �

§4. Coherent HL-extensions and ultraextensive structures. In this section we
introduce a notion of ultraextensive L-structures using a new notion of coherent
HL-extensions. Coherence in our sense is slightly weaker than the coherence notion
of Siniora–Solecki [9] but is sufficient for deriving the interesting properties of
ultraextensive structures. These notions are generalizations of similar notions in [2]
in the context of metric spaces.

Definition 4.1. LetC1 ⊆ C2 be L-structures and (Di, φi) be an HL-extension of
Ci for i = 1, 2. We say that (D1, φ1) and (D2, φ2) are coherent if
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(i) D2 extends D1,
(ii) φ2(p) extends φ1(p) for all p ∈ PC1 ⊆ PC2 , and

(iii) letting Ki = 〈φi(PCi )〉 ≤ Aut(Di) for i = 1, 2, and letting κ : φ1(PC1 ) →
φ2(PC2 ) be such that κ(φ1(p)) = φ2(p) for all p ∈ PC1 , then κ has a unique
extension to a group isomorphic embedding from K1 into K2.

Definition 4.2. An L-structure U is ultraextensive if

(i) U is ultrahomogeneous, i.e., there is a φ such that (U,φ) is an HL-extension
of U ;

(ii) Every finite C ⊆ U has a finite HL-extension (D,φ) where D ⊆ U ;
(iii) If C1 ⊆ C2 ⊆ U are finite and (D1, φ1) is a finite minimal HL-extension of

C1 with D1 ⊆ U , then there is a finite minimal HL-extension (D2, φ2) of C2

such that D2 ⊆ U and (D1, φ1) and (D2, φ2) are coherent.

Theorem 4.3. Let T be a finite set of finite L-structures each of which is a Gaifman
clique. Suppose C1 ⊆ C2 are finite T -free L-structures and (D1, φ1) is a finite T -free
HL-extension of C1. Then there is a finite T -free HL-extension (D2, φ2) of C2 so that
(D2, φ2) is coherent with (D1, φ1).

Proof. Since every T ∈ T is a Gaifman clique, the collection of all T -free
structures has the free amalgamation property. Let C be the free amalgamation
of D1 and C2 over C1. Then C is T -free. We will again use the main theorem of
[8] and [5], which states that, for any finite T -free L-structure C, there is a finite
T -free extensionD2 of C and a mapϕ : P(C ) → Aut(D2) such thatp ⊆ ϕ(p) for all
p ∈ P(C ), and for any p, q, r ∈ P(C ) with p ◦ q = r we have ϕ(p) ◦ ϕ(q) = ϕ(r).

Define φ2 : PC2 → Aut(D2) as

φ2(p) =
{
ϕ(φ1(p)), if p ∈ PC1 ⊆ PC2 ,
ϕ(p), if p ∈ PC2 \ PC1 ⊆ P(C ).

Then (D2, φ2) is an HL-extension of C2. It is also clear that D2 extends D1. For
p ∈ PC1 , our definition of φ2 gives that φ2(p) = ϕ(φ1(p)) ⊇ φ1(p). Now define
κ : K1 → K2 by letting κ(φ1(p)) = φ2(p) and extending the definition of κ to all
finite products in K1 = 〈φ1(PC1)〉 ≤ Aut(D1). We first verify that κ is well-defined.
For this let p1, ... , pn ∈ PC1 such that φ1(p1) ···φ1(pn) = 1K1 . We need to show that
φ2(p1) ···φ2(pn) = 1K2 . Both products take place in an automorphism group, so they
are compositions. By the coherent property of ϕ, we have ϕ(φ1(p1)) ···ϕ(φ1(pn)) =
ϕ(1K1 ), and so φ2(p1) ···φ2(pn) = 1K2 . Thus we have shown that κ is a group
homomorphism. To see that it is a group isomorphic embedding, we show that
the kernel of κ is trivial. For this let p1, ... , pn ∈ PC1 so that φ2(p1) ···φ2(pn) = 1K2 .
Restricting all maps on D1, we get φ1(p1) ···φ1(pn) = 1K1 . �

We remark that the condition in the above theorem for T to consist only of
Gaifman cliques is necessary. If T fails this property, not only the proof fails to
work because of the failure of the free amalgamation property for the collection of
T -free L-structures, but also the statement of the theorem can fail.

We give a counterexample below.
Consider L = {R,S} where R is a binary relation symbol and S is a quarternary

relation symbol. Let T = {0, 1, 2, 3, 4, 5, 6} where RT = {(0, 1), (1, 2), (2, 0)}
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and ST = {(a, b, c, d ) : a, b, c, d ∈ {3, 4, 5, 6}}. Let C2 = {x, y, z} with RC2 =
{(x, y), (y, z), (z, x)} and SC2 = ∅. Let C1 = {x, y} be the induced substructure
of C2. Let D1 = {x, y, u, v} where RD1 = {(x, y), (y, u), (u, v), (v, x)} and SD1 =
{(a, b, c, d ) : a, b, c, d ∈ {x, y, u, v}}. Then PC1 = {x �→ y, y �→ x} and (D1, φ1) is
an HL-extension of C1, with φ1 : PC1 → Aut(D1) extending x �→ y to the automor-
phism {x �→ y, y �→ u, u �→ v, v �→ x} and extending y �→ x to the automorphism
{y �→ x, x �→ v, v �→ u, u �→ y}. Note that C1, C2, D1 are T-free L-structures. Now
there is no T-free HL-extension (D2, φ2) of C2 that is coherent with (D1, φ1).

Theorem 4.4. Let T be a finite set of finite L-structures each of which is a Gaifman
clique. Then every countable T -free L-structure can be extended to a countable T -free
ultraextensive L-structure.

Proof. Let C be a countableT -freeL-structure. Write C as an increasing union of
finite T -freeL-structures Fn for n = 1, 2, ... . For n ≥ 1, inductively define increasing
sequences of finite T -free L-structure Cn, Dn and Zn as follows. Let C1 = F1 and
(D1, φ1) be a finite T -free, minimal HL-extension of C1. We define Z1 ⊇ D1 such
that for every pair (D,D′) withD ⊆ D′ ⊆ D1 and any minimal HL-extension (E, φ)
of D whereE ⊆ D1, there exists a T -free minimal HL-extension (E ′, φ′) ofD′ where
E ′ ⊆ Z1, such that (E, φ) and (E ′, φ′) are coherent. Note that this is possible since
there are only finitely many triples (D,D′, E) and for any such triple by Theorem
4.3 we can fix a coherent extension E ′. Finally, to construct Z1, we add E ′ \ E to
D1 for all E ′ corresponding to the triple (D,D′, E) such that the union of the new
points (E ′ \ E) andE ⊆ D1 is an isomorphic copy ofE ′.Z1 is a free amalgamation
of T -free structures, and hence is T -free. LetC2 be the free amalgamation ofZ1 and
F2 over F1.

In general, assume a finite Cn has been defined for n > 1. Apply Theorem 4.3 to
obtain a finite T -free, minimal HL-extension (Dn, φn) of Cn that is coherent with
(Dn–1, φn–1). We use a similar construction to the construction of Z1 from D1 to
defineZn ⊇ Dn. Note thatZn has the property that for every minimal HL-extension
in Dn, that is, for every D,E ⊆ Dn where (E, φ) is a minimal HL-extension of D,
everyD ⊆ D′ ⊆ Dn has a minimal HL-extension in Zn that is coherent with (E, φ).
Let Cn+1 be the free amalgamation of Zn and Fn+1 over Fn. All structures obtained
are T -free.

Let D be the union of the increasing sequence (Dn)∞n=1. We verify that D is
ultraextensive. To verify Definition 4.2(i), let p ∈ PD . Then there is n ≥ 1 such that
p ∈ PCn . Let np be the least such n. Then for all m ≥ np, p ⊆ φm(p) ⊆ φm+1(p) by
the coherence of (Dm, φm) with (Dm+1, φm+1). Define φ(p) =

⋃
m≥np φm(p). Then

φ(p) is an isomorphism of D that extends p.
For Definition 4.2(ii), let F ⊆ D be finite. Then there is n such that F ⊆ Cn, and

it follows that (Dn, φn � PF ) is an HL-extension of F.
Finally, for Definition 4.2(iii), letF ⊆ F ′ ⊂ D be finite and assume that (E, φ) is a

finite minimal HL-extension of F withE ⊆ D. Then, there is a natural number n such
that F ′, E ⊆ Dn. By the construction of Zn, there exists a minimal HL-extension
(E ′, φ′) of F ′ (corresponding to the triple (F, F ′, E)) such that E ′ ⊆ Zn ⊆ D and
that (E ′, φ′) is coherent with (E, φ). �

We derive some properties of ultraextensive structures below.
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Theorem 4.5. If U is an ultraextensive L-structure, then every countable substruc-
ture C ⊆ U can be extended to a countable ultraextensive substructure D ⊆ U .

Proof. We use a similar argument to the argument in the proof of Theorem
4.4 to construct D. The differences are that in the construction instead of applying
Theorem 4.3 we use the properties of ultraextensive structures to find (Dn, φn); and
we consider union of structures instead of free amalgamation to findCn,Zn. Clearly,
all the structures Cn,Dn,Zn are substructures of U and therefore, D ⊆ U . �

Theorem 4.6. If U is a countable ultraextensive L-structure then Aut(U ) has a
dense locally finite subgroup.

Proof. Let {Ci}∞i=1 be an increasing sequence of finite substructures of U such
thatU =

⋃∞
i=1 Ci . Since U is an ultraextensiveL-structure, we can find an increasing

sequence {(Di, φi)}∞i=1, where each Di ⊆ U , such that (Di, φi) is an HL-extension
of Ci and (Di+1, φi+1) is coherent with (Di, φi) for i = 1, 2, ... . Then,

⋃∞
i=1 Aut(Di)

is a dense locally finite subgroup of Aut(U ). �
Definition 4.7. Let C be a class of L-structures. We say C has the coherent

extension property if it has the EPPA and for finite structures D ⊆ D′ in C and a
finite minimal HL-extension (E, φ) of D where E is also in C, there exists a finite
minimal HL-extension (E ′, φ′) of D′ where E ′ is in C and (E, φ) and (E ′, φ′) are
coherent.

Theorem 4.8. Let C be a Fraı̈ssé class and U be the Fraı̈ssé limit of C. Then, U is
ultraextensive iff C has the coherent extension property. In particular, if T is a finite
set of Gaifman cliques and C is the class of T -free structures, then U is ultraextensive.

Proof. The equivalence is clear by Definition 4.7. The second part is the direct
consequence of Theorem 1.3 and Theorem 4.3. �

Corollary 4.9. The Henson graph Gn, the Fraı̈ssé limit of the class of Kn-free
graphs, is ultraextensive for every natural number n.
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