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The hard-core model has attracted much attention across several disciplines, representing

lattice gases in statistical physics and independent sets in discrete mathematics and computer

science. On finite graphs, we are given a parameter λ, and an independent set I arises with

probability proportional to λ|I |. On infinite graphs a Gibbs measure is defined as a suitable

limit with the correct conditional probabilities, and we are interested in determining when

this limit is unique and when there is phase coexistence, i.e., existence of multiple Gibbs

measures.

It has long been conjectured that on Z
2 this model has a critical value λc ≈ 3.796 with

the property that if λ < λc then it exhibits uniqueness of phase, while if λ > λc then there is

phase coexistence. Much of the work to date on this problem has focused on the regime of

uniqueness, with the state of the art being recent work of Sinclair, Srivastava, Štefankovič

and Yin showing that there is a unique Gibbs measure for all λ < 2.538. Here we explore

the other direction and prove that there are multiple Gibbs measures for all λ > 5.3506.

We also show that with the methods we are using we cannot hope to replace 5.3506 with

anything below 4.8771.
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Our proof begins along the lines of the standard Peierls argument, but we add two

innovations. First, following ideas of Kotecký and Randall, we construct an event that

distinguishes two boundary conditions and always has long contours associated with it,

obviating the need to accurately enumerate short contours. Second, we obtain improved

bounds on the number of contours by relating them to a new class of self-avoiding walks

on an oriented version of Z
2.

2010 Mathematics subject classification: Primary 60C05

Secondary 68R05

1. Introduction

For a graph G let I(G) denote the set of independent sets of G. For finite G the hard-

core measure on G with parameter λ is the measure μG,λ supported on I(G) given by

μG,λ(I) ∝ λ|I | for each I ∈ I(G), or equivalently

μG,λ(I) =
λ|I |∑

J∈I(G) λ
|J| .

The hard-core measure is a simple mathematical model of a gas with particles of non-

negligible size. The vertices of G are regarded as positions, each of which can be occupied

by a particle, subject to the rule that two neighbouring sites cannot both be occupied

(particles cannot overlap).

On infinite graphs, which may admit infinitely many independent sets, we make sense

of the notion of choosing an independent set I with probability proportional to λ|I | using

the machinery of Gibbs measures. Roughly speaking, these are measures supported on

the set of independent sets of G whose conditional restrictions to finite subgraphs agree

with the (suitably conditioned) finite hard-core measure.

Formally, let G = (V , E) be infinite and locally finite (i.e. no vertices of infinite degree).

We say that a property holds for μ-almost every independent set in I(G) if the set A of

independent sets for which the property does not hold has measure 0, that is, μ(A) = 0.

Definition. A probability measure μ is a Gibbs measure for the hard-core model with

parameter λ on G if, for every finite Λ ⊂ V , every J ∈ I(G) and μ-almost every I ∈ I(G),

μ(J | I ∩ Λ̄) =

⎧⎪⎨
⎪⎩

1

ZI
Λ,λ

λ|J∩Λ| if I ∩ Λ̄ = J ∩ Λ̄,

0 otherwise,

where Λ̄ = V \ Λ and

ZI
Λ,λ =

∑
K∈I(G):K∩Λ̄=I∩Λ̄

λ|K∩Λ|.

See, for example, [15, 29] for a very thorough treatment of this topic.

General compactness arguments show that an infinite, locally finite graph G admits

at least one Gibbs measure. A central concern of statistical physics (again see [15] for

a thorough discussion) is understanding when a particular system – the independent set
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model in the present setting – exhibits phase coexistence (also known as phase transition)

on a given infinite G, meaning that it admits more than one Gibbs measure.

The canonical (and by far most studied, and physically relevant) case of the hard-core

measure is that of the usual nearest neighbour graph on the integer grid Z
d. In this note

we specifically consider the two-dimensional grid Z
2. Formally this is the graph whose

vertex set is the set of pairs (x, y) ∈ Z × Z, with two pairs adjacent if they differ on exactly

one coordinate, and differ by ±1 on that coordinate.

For the classical Ising model, seminal work of Onsager [21] established the precise

value (βc(Z
2) = log(1 +

√
2)) of the critical inverse temperature below which that model

exhibits uniqueness of phase and above which it exhibits phase coexistence. Only recently

have the analogous values for the (more general) q-state Potts model been established,

in work of Beffara and Duminil-Copin [4], settling a more than half-a-century old open

problem.

Such precise results for the hard-core model seem far out of reach with currently

available methods. It has long been conjectured, though – with computational support,

see e.g. [3] – that there is a λc ≈ 3.796 such that the hard-core model on Z
2 exhibits phase

coexistence for all λ > λc, but not for any λ < λc.

Starting with Dobrushin [11] in 1968, both physicists and mathematicians have been

developing techniques to approach this conjecture. Most of the attention has focused on

establishing ever larger values of λ below which there is uniqueness of phase. The problem

has proved to be a fruitful one for the blending of ideas from physics, discrete probability

and theoretical computer science, with improvements to our understanding having been

made successively by Radulescu and Styer [23], van den Berg and Steif [5], Weitz [30],

Restrepo, Shin, Tetali, Vigoda and Yang [25], and Vera, Vigoda and Yang [28], among

others. The state of the art is recent work of Sinclair, Srivastava, Štefankovič and Yin

[26], building on the novel ideas of Weitz, which establishes that there is a unique Gibbs

measure for all λ < 2.538.

Much less is known about the regime of phase coexistence. Dobrushin [11] established

that there is a C > 0 such that for all λ > C there are multiple Gibbs measures. He did

not explicitly calculate C , but around the time of the writing of [9], Borgs [8] reported

that a direct implementation of Dobrushin’s argument would yield a value of C strictly

greater than 80. A later computation by the third author showed that C ≈ 300.

Our main aim in this paper is to give a reasonable upper bound on λc (if it exists).

Theorem 1.1. The hard-core model on Z
2 with activity λ admits multiple Gibbs measures

for all λ > 5.3506.

An intuition for the meaning of multiple Gibbs measures can be gleaned from the

following recipe for producing them. For an independent set I and a finite set W ⊆ V ,

let II (W ) be the (also finite) set of independent sets that agree with I off W . Fix I and

a nested sequence (Wi)
∞
i=1 of finite subsets of V satisfying ∪iWi = V . For each i let μIi be

the measure on II (Wi) in which each J is selected with probability proportional to λ|J∩Wi|.

Any (weak) subsequential limit of the μIi (and by compactness there must be at least

one such) is a Gibbs measure. This fact was originally proved, in a much more general
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context, by Dobrushin [12]; see for example [5] for a treatment specific to the hard-core

model on the lattice, or [10, Theorem 3.5] for a simple proof in the slightly more general

context of graph homomorphism models.

From this recipe we see that an interpretation of the existence of multiple Gibbs

measures on Z
2 is that the local behaviour of a randomly chosen independent set in a box

can be made to depend on a boundary condition imposed on the box, even in the limit

as the size of the box grows to infinity. This leads to what turns out to be the standard

approach to showing multiple Gibbs measures, which is to consider the limiting measures

corresponding to two different boundary conditions on boxes in the lattice centred at the

origin, and to find a statistic that separates these two limits. For the hard-core model, it

suffices (see [5]) to compare the even boundary condition – all vertices on the boundary

of a box at an even distance from the origin are occupied – and its counterpart odd

boundary condition, and the distinguishing statistic is typically the occupation of the

origin. Under odd boundary condition the origin should be unlikely to be occupied, since

independent sets with odd boundary and (even) origin occupied must have a contour: a

two-layer thick unoccupied ring of vertices separating an inner region around the origin

that is in ‘even phase’ from an outer region near the boundary that is in ‘odd phase’.

For sufficiently large λ, such an unoccupied layer is costly, and so such configurations

are unlikely. This is essentially the Peierls argument for phase coexistence, and was the

approach taken by Dobrushin [11].

As we will see presently, the effectiveness of the Peierls argument is driven by the number

of contours of each possible length: better upper bounds on the number of contours

translate directly to better upper bounds on λc. Previous work of other researchers on

phase coexistence in the hard-core model on Z
2 had viewed contours as simple polygons

in Z
2, which are closely related to the very well-studied family of self-avoiding walks.

While this is essentially the best possible point of view when applying the Peierls argument

on the Ising model, it is far from optimal for the hard-core model. The first contribution

of the present paper is the realization that hard-core contours, if appropriately defined,

can be viewed as simple polygons in the oriented Manhattan lattice, in which edges

of Z
2 that are parallel to the x-axis (respectively, the y-axis) are oriented positively if

their y-coordinate (respectively, x-coordinate) is even, and negatively otherwise, with the

additional constraint that contours cannot make two consecutive turns. The number of

such polygons can be understood by analysing a new class of self-avoiding walks, that we

refer to as taxi walks. The number of taxi walks turns out to be significantly smaller than

the number of ordinary self-avoiding walks, leading to significantly better bounds on λc.

There is a single number μtaxi > 0, the taxi walk connective constant, that asymptotically

controls the number cn of taxi walks of length n, in the sense that cn = μntaxiftaxi(n) with

ftaxi(n) sub-exponential. Adapting methods of Goulden and Jackson [16] we obtain

estimates on μtaxi, giving us good understanding of cn for large n. The sub-exponential

correction makes it difficult to control cn for small n, however, presenting a major stumbling

block to the effectiveness of the Peierls argument as we have just described it. Using the

statistic ‘occupation of origin’ to distinguish the two boundary conditions, one inevitably

has to control cn for both small and large n. The lack of precise information about the

number of short contours leads to discrepancies between asymptotic and actual bounds,
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such as that between the lower bound C > 80 and C ≈ 300 from a direct implementation

of Dobrushin’s argument for phase coexistence on Z
2 discussed earlier.

The second contribution of the present paper is the idea of using an event to distinguish

the two boundary conditions that has the property that every independent set in the event

has associated with it a long contour. This allows us to focus exclusively on the asymptotic

growth rate of contours/taxi walks, and obviates the need for an analysis of short contours.

In an earlier version of this work [7] we used the technology of fault lines, introduced in

[24] to define a distinguishing event. After a talk by one of the authors, Kotecký pointed

out an alternate approach [19]. Consider a box B of fixed size centred at the origin, and

say that an independent set is even (respectively, odd) on the box if every vertex in B at

an even (respectively, odd) distance from the origin is either in the independent set, or

potentially could be in the sense that none of its neighbours are. Then consider the event

that a randomly chosen independent set drawn from a much larger box (with boundary

condition) is even on B, conditioned on the event that it is either even or odd on B.

Running the Peierls argument on this event leads to contours that completely encircle B,

and so can be made arbitrarily long by choosing B to be sufficiently large.

In Section 2 we introduce the notion of taxi walks and the taxi walk connective

constant, that will be key to the precise theorem we prove (Theorem 2.3), from which

Theorem 1.1 follows via some numerical computation. The proof of Theorem 2.3 is then

given in Section 3. In Section 4 we give the details of our upper and lower bounds on the

taxi walk connective constant, and we conclude in Section 5 with some remarks.

2. Taxi walks

Let �Z2 be an orientation of Z
2 in which an edge parallel to the x-axis (respectively, y-axis)

is oriented in the positive x-direction if its y-coordinate is even (respectively, oriented in

the positive y-direction if its x-coordinate is even), and is oriented in the negative direction

otherwise. It is common to refer to �Z2 as the Manhattan lattice: streets are horizontal,

with even numbered streets oriented west to east and odd numbered streets oriented east

to west, and avenues are vertical, with even numbered avenues oriented south to north

and odd numbered avenues oriented north to south.

Definition. A self-avoiding walk in �Z2 of length n starting at vertex v0 is a sequence

v0, v1, . . . , vn of distinct vertices with, for each i = 1, . . . , n, vi−1vi an edge of �Z2 oriented from

vi−1 to vi. The walk turns at vi (1 � i � n − 1) if edges vi−1vi and vivi+1 are perpendicular,

and goes straight if these edges are parallel. A taxi walk is a self-avoiding walk in �Z2 that

does not turn at two consecutive vertices.

We call these taxi walks because a savvy passenger in a Manhattan cab would be

suspicious if the cab took two consecutive turns.

Let cn be the number of taxi walks of length n starting at the origin. A critical step

in our arguments will be bounding cn. An easy upper bound is cn � 2n, since there are

always at most two ways to extend a taxi walk of length n − 1, and an easy lower bound

is 2n/2 � cn (for even n) and 2(n+1)/2 � cn (for odd n), since walks that always take two

https://doi.org/10.1017/S0963548318000238 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000238


6 A. Blanca, Y. Chen, D. Galvin, D. Randall and P. Tetali

steps north at a time or two steps east at a time can always be extended in exactly two

ways. With very little extra work we can get a significantly better upper bound.

Lemma 2.1. cn = O(((1 +
√

5)/2)n).

Proof. A taxi walk v0, v1, . . . , vn (with v0 the origin) can be encoded by a pair (a, σ),

where a ∈ {N,E} and σ is a sequence of length n − 1 over alphabet {s, t}, as follows: if

v1 = (0, 1) then a = N and if v1 = (1, 0) then a = E, and if the walk goes straight at vi
then the ith entry of σ is s, whereas it is t if the walk turns at vi. Distinct taxi walks

evidently get distinct codes. It is well known that the number of sequences of length n − 1

over alphabet {s, t} without consecutive occurrences of the character t is the (n + 1)st

Fibonacci number fn+1 (defined by f0 = 0, f1 = 1, fn = fn−1 + fn−2 for n � 2). It follows

that cn � 2fn+1 = O(((1 +
√

5)/2)n).

Using more sophisticated tools we can improve our bounds. In what follows we say

that a function f(n) defined on positive integers grows sub-exponentially if for all ε > 0

there is n(ε) such that for all n > n(ε) we have f(n) < (1 + ε)n.

Theorem 2.2. There is a constant μtaxi – the taxi walk connective constant – with

1.55701 < μtaxi < 1.58746 and 4.8771 < μ4
taxi − 1 < 5.3506,

and a function ftaxi(n) that grows sub-exponentially, such that cn = ftaxi(n)μ
n
taxi for all n.

We defer the proof of Theorem 2.2 to Section 4. We end this section with a precise

statement of our main theorem, from which Theorem 1.1 follows via Theorem 2.2.

Theorem 2.3. The hard-core model on Z
2 with activity λ admits multiple Gibbs measures

for all λ > μ4
taxi − 1.

Our bounds on μ4
taxi − 1 involve the theory of irreducible bridges and the Goulden–

Jackson cluster method, as well as extensive computation, but the proof of the existence

of μtaxi and ftaxi(n) at the beginning of Section 4 and the bounds
√

2 � μtaxi � (1 +√
5)/2 in this section are straightforward. A consequence of this is that if we wish to

avoid using irreducible bridges, the Goulden–Jackson cluster method and computer-aided

computations, we have via Theorem 2.3 and Lemma 2.1 a weaker version of Theorem 1.1

that is still significantly better than any previous result; namely, that the hard-core model

on Z
2 with activity λ admits multiple Gibbs measures for all λ > (5 + 3

√
5)/2, and so for

all λ > 5.8542.

A consequence of our lower bound on μtaxi is that our present approach to phase

coexistence cannot prove anything better than λc � 4.8771. A computation by Pantone

[22] using the method of differential approximants (see e.g. [17]) on the sequence (cn)
60
n=1

suggests μtaxi ∈ [1.57376, 1.57378], so the limit of the present approach may in fact be

5.134. Note that a similar situation exists for lower bounds on λc: Sinclair, Srivastava,

Štefankovič and Yin [26] showed λc � 2.538, but Vera, Vigoda and Yang [28] observed
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that the methods used in [26, 28] are unlikely to prove anything better than λc � 3.4, as

strong spatial mixing is known not to hold at that point.

3. Proof of phase coexistence (Theorem 2.3)

Let λ > μ4
taxi − 1 be fixed. Our argument will depend on a parameter m = m(λ) whose

value will be specified later.

Let E denote the set of even vertices of Z
2 – those vertices (x, y) with x + y even – and

let O denote the complementary set of odd vertices; note that these are both independent

sets. Let Un be the box {−n,−(n − 1), . . . , n − 1, n}2. When I , J are independent sets such

that I ⊆ J , we say that J extends I . Let J e
n be the set of independent sets that extend

E \ Un, and let μe
n be the probability distribution supported on J e

n in which each set

I is selected with probability proportional to λ|I∩Un|. Define μo
n analogously (with ‘even’

everywhere replaced by ‘odd’).

Say that an independent set I in Z
2 is m-even if for every even x ∈ Um, none of the four

neighbours of x is in I , and define m-odd analogously. Say that I is m-homogeneous if it

is either m-odd or m-even.

Now fix n > m and let Em be the event that an independent set is m-even, Om the

event that it is m-odd, and Hm the event that it is m-homogeneous. Note that all of these

events are in the cylinder σ-algebra. We will establish the following conditional probability

inequality for all n > m and m sufficiently large:

μe
n(Om|Hm) < 1/3. (3.1)

Reversing the roles of odd and even throughout the proof, we will also get

μo
n(Em|Hm) < 1/3

and so

μo
n(Om|Hm) > 2/3.

It follows that if μe is any Gibbs measure obtained as a weak subsequential limit of the

μe
n, and μo is any obtained from the μo

n , then

μe(Om|Hm) � 1/3 < 2/3 � μo(Om|Hm);

consequently, μe and μo are distinct Gibbs measures.

Write Be
n for the set of independent sets in Z

2 that extend E \ Un and are m-odd, and

write Ae
n for the set of independent sets in Z

2 that extend E \ Un and are m-homogeneous

(so Be
n ⊆ Ae

n ⊆ J e
n ).

For I ∈ Ae
n set wλ(I) = λ|I∩Un|, and for a set C of independent sets in Ae

n let wλ(C) denote∑
I∈C wλ(I). To establish (3.1) it is enough to show

μe
n(Om)

μe
n(Hm)

=
wλ(Be

n)

wλ(Ae
n)

< 1/3. (3.2)

The intuition here is that if I is conditioned to agree with E outside Un, then under the

extra condition that it is m-homogeneous it is far less likely to be m-odd than m-even.
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We will establish (3.2) by constructing, for each I ∈ Be
n, a collection ϕ(I) ⊆ Ae

n, together

with a flow function f(I, J) supported on {(I, J) : I ∈ Be
n, J ∈ ϕ(I)} that satisfies∑

J∈ϕ(I)

f(I, J) = 1 for each I ∈ Be
n (3.3)

and ∑
I:J∈ϕ(I)

λ|I∩Un|−|J∩Un|f(I, J) < 1/3 for each J ∈ Ae
n. (3.4)

This gives the inequality in (3.2) via

wλ(Be
n) =

∑
I∈Be

n

λ|I∩Un|

=
∑
I∈Be

n

∑
J∈ϕ(I)

λ|I∩Un|f(I, J)

=
∑
J∈Ae

n

λ|J∩Un|
∑

I:J∈ϕ(I)

λ|I∩Un|−|J∩Un|f(I, J)

< wλ(Ae
n)/3.

To construct ϕ we will use the fact that I ∈ Be
n is in even phase (predominantly even-

occupied) outside Un, but because I is m-odd, it is not in even phase close to Um; so there

must be a contour – an unoccupied ring of vertices – marking the extent of the even phase

inside Un.

We will proceed in two stages. In Section 3.1, we explain how such a contour can be

explicitly constructed, and establish the various properties of the construction that we

will need. (To aid readability we defer proofs of many of these properties to Sections 3.3

and 3.4.) In Section 3.2 we describe and analyse the standard Peierls argument, which

involves modifying I inside the contour to create ϕ(I) satisfying (3.3) and (3.4) (for suitable

choice of the flow function f), showing that being m-odd is unlikely, conditioned on being

m-homogeneous, under even boundary condition.

3.1. The contour and its properties

Fix I ∈ Be
n (so I includes all even vertices outside Un, and is m-odd). Let I ′ consist of I

together with each odd vertex that has none of its neighbours in I; notice that I ′ ∈ Be
n,

that it is completely determined by I , and that it includes all odd vertices of Um (since

I is m-odd). The point of passing from I to I ′ is that in doing so, we ensure that the

contour we construct fully encircles Um and hence has length at least on the order of m.

We now describe how to associate with I ′ a set γ(I) of edges of Z
2, which we will refer to

as the contour associated with I . The same construction was used in [9] and [13], and a

very similar construction appeared in [14].

We begin with a brief reminder of some graph theory notation. Given S ⊆ Z
2 the

subgraph of Z
2 induced by S is the graph with vertex set S in which two vertices are

adjacent if and only if they are adjacent in Z
2. We will abuse notation somewhat and refer

to this graph simply as S . Given distinct vertices u, v ∈ S , a path in S from u to v (a u–v

path) is a sequence u = u0, u1, . . . , uk = v of distinct vertices of S with ui and ui+1 adjacent
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for each i = 0, . . . , k − 1. Given a vertex u ∈ S and a subset T ⊆ S of vertices with u �∈ T ,

a path in S from u to T (a u–T path) is any path from u to v with v ∈ T . A component

of S is a subset C ⊆ S of vertices with the property that for any pair of distinct vertices

u, v ∈ C there is a path in S from u to v, and that is maximal with respect to this property.

Let (IO)+ be the set of odd vertices in I ′ together with their neighbours. By the m-

oddness of I , Um is contained in a single component of the graph induced by (IO)+; let

R be that component. Note that because I ′ extends E \ Un, R is finite, and specifically

R ⊆ Un.

The following property, which says that in leaving R one always goes from an

unoccupied even vertex to an unoccupied odd vertex (in fact, an odd vertex outside

I ′), is evident from the construction of R.

If uv is an edge with u ∈ R and v �∈ R then u ∈ E \ I and v ∈ O \ I ′. (3.5)

Define γ = γ(I) to be the set of edges uv with u ∈ R and v �∈ R, and such that there is a

path in Z
2 from v to Z

2 \ Un that avoids R. (This last condition has the effect of removing

any holes that R may have.)

We now introduce a graph Z
2
♦ that may be thought of as dual to Z

2. The vertices of

Z
2
♦ are the midpoints of edges in Z

2, and two such vertices are adjacent if the associated

edges in Z
2 are incident and perpendicular. Note that Z

2
♦ is a rotated, dilated, translated

copy of Z
2.

Each edge in γ is a vertex in Z
2
♦, and so we may specify γ by specifying a subgraph of

Z
2
♦ whose vertex set is γ. In what follows we describe a way to specify one such subgraph,

which will turn out to be a cycle (a connected 2-regular graph) in Z
2
♦ that separates R

from Z
2 \ Un, and moreover has a particular structure related to taxi walks.

To construct the subgraph, which we will call Γ and also sometimes refer to as the

contour associated with I , consider an arbitrary uv ∈ γ with u ∈ R and v �∈ R (so u ∈ E
and v ∈ O). The edge uv forms a side of two 1 × 1 squares in Z

2. Let uvst be one such,

with s ∈ E and t ∈ O (so each of uv, vs, st and tu are edges of Z
2). Viewed as vertices of

Z
2
♦, uv has two neighbours among the edges uv, vs, st and tu, namely tu and vs. If s ∈ R,

then the directed edge uv → vs is added to Γ, and if s �∈ R then the directed edge uv → tu

is added to Γ. We proceed in the same way with the other 1 × 1 square in Z
2 that uv

forms one side of. (Thus Γ is initially a directed graph; presently we will modify it slightly

to create an undirected graph.)

It will be helpful for subsequent arguments to view the construction above via the

following case-by-case analysis, which is easily seen to be equivalent. There are four cases,

depending on the statuses of s and t with regard to membership of R.

Case i. t ∈ R and s �∈ R. This case cannot occur since t is odd and so if t ∈ R then

also s ∈ R.

Case ii. t �∈ R and s �∈ R. In this case, of tu and vs only tu is in γ (to see that tu ∈ γ

note that there is a path in Z
2 from t to Z

2 \ Un that avoids R, that starts tsv and then

continues along any R-avoiding path from v to Z
2 \ Un), and we put the directed edge (in

Z
2
♦) uv → tu in Γ.
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Case iii. t ∈ R and s ∈ R. In this case, of tu and vs only vs is in γ, and we put the edge

uv → vs in Γ.

Case iv. t �∈ R and s ∈ R. In this case, vs is evidently in γ, and ut may or not be (depending

on whether there is an R-avoiding path in Z
2 from t to Z

2 \ Un), and we put the edge

uv → vs in Γ (but not the edge from uv to tu, even if tu ∈ γ).

What we have constructed so far is a directed graph on the set of vertices in Z
2
♦

corresponding to edges in γ. Observe that every vertex of this directed graph has out-

degree two, since for each edge uv ∈ γ exactly two edges of Z
2
♦ are included: one in each

of the two 1 × 1 squares in Z
2 of which uv is a side. But notice that the construction of

directed edges is symmetric: if we put the edge uv → tu (say) in Γ then the construction

also mandates putting in the edge tu → uv. So underlying the 2-out-regular directed graph

is a 2-regular undirected graph (a union of cycles) and it is this we take as Γ. Note that

Γ determines γ, since its vertex set is exactly γ; but Γ is not (necessarily) the subgraph of

Z
2
♦ induced by γ, because not all edges from Z

2
♦ with endpoints in γ are in Γ (see Case iv

above). Note also that because Γ is 2-regular, the size of both its vertex set and its edge

set is |γ|.
If we draw Γ in Z

2, using straight-line segments joining midpoints of edges of γ to

represent edges of Γ, then each component of Γ is a simple closed Z
2-avoiding polygon

in R
2, and so encloses a finite interior (with an infinite exterior). We refer to the vertices

of Z
2 that are in the interior as the vertex interior of the component, and to all other

vertices of Z
2 as the vertex exterior. A basic fact is the following.

Lemma 3.1. If uv ∈ γ with u ∈ R and v �∈ R, then u is in the vertex interior of the com-

ponent of uv in Γ, and v is in the vertex exterior.

Proof. Assume without loss of generality that uv is parallel to the y-axis. By construction

Γ has an edge to the right of uv that ends at the midpoint of uv, and one to the left

that starts at that point, so the edge uv crosses Γ. This establishes that one of u, v is in

the vertex interior of the component of uv in Γ, and the other is in the vertex exterior.

If v is in the vertex interior then any v–Z
2 \ Un path in Z

2 must cross Γ and so meet R,

contradicting the construction of γ. So v is in the vertex exterior and u is in the vertex

interior.

So far we have established that Γ is a union of cycles; Lemma 3.1 is a key ingredient

in proving our first important fact about Γ, namely, that it has a single component.

Lemma 3.2. The graph Γ is a cycle.

Proof. Assume, for a contradiction, that Γ has distinct components C1 and C2. It cannot

be the case that one of these, C1 say, encloses the other. For if uv ∈ γ crosses C2, with

v �∈ R, then there must (by the definition of γ) be a v–Z
2 \ Un path in Z

2 that avoids R;

but any such path must cross C1, and so meet R, a contradiction.
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So it must be the case that C1 and C2 have disjoint vertex interiors. Let uv cross C1 and

u′v′ cross C2, with u and u′ the interior vertices. Via Lemma 3.1 this gives an immediate

contradiction: every u–u′ path in Z
2 must use an edge of γ and so leave R, contradicting

the connectivity of R.

The following facts about the structure of Γ (Lemmas 3.3 and 3.4) will be used to

complete the proof of Theorem 2.3. We defer the proof of Lemma 3.3 to Section 3.3, and

that of Lemma 3.4, which crucially depends on the connection between contours and taxi

walks (essentially, a contour is a closed taxi walk) to Section 3.4.

Lemma 3.3. |Γ| � 2
√

2m and is a multiple of 4.

Let Cm
	 be the collection of all Γ with |Γ| = 4	 that arise in the above-described

construction, as I runs over Be
n, and let Cm = ∪	Cm

	 .

Lemma 3.4. There is a function g(	) that grows subexponentially such that |Cm
	 | � g(	)μ4	

taxi,

where μtaxi is the connective constant of taxi walks.

The Peierls argument that we will use in Section 3.2 involves the shift operation.

Essentially this is a shifting, by one lattice unit, of all the vertices of I that are enclosed

by Γ, while leaving the remainder of I unchanged. The content of Lemma 3.5 below is

that this allows I to be augmented substantially, leading to a weight-increasing map from

Be
n to Ae

n that allows for the construction of a flow function satisfying (3.3) and (3.4).

Let W be the vertex interior of Γ and W ′ the vertex exterior. For v ∈ Z
2, and

s ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)}, let σs(v) = v + s. Let Is = (I ∩ W ′) ∪ {σs(v) : v ∈ I ∩ W },
so that Is may be thought of as the result of shifting I one unit in the s direction within

W , while leaving it unchanged outside W . Let Ĩs = {v ∈ W : σ−1
s (v) ∈ W ′}, so that we

may think of Ĩs as the set of vertices in W with the property that their pre-image under

the map σs is outside W ; note that σ−1
s (v) = v − s. Finally, let I ′′

s = Is ∪ Ĩs.

Lemma 3.5. The shifted set Is is an independent set, with |Is| = |I |. Moreover, the augmen-

ted shifted set I ′′
s is an independent set, with |I ′′

s | = |Is| + |Ĩs|. Finally, there is a choice of s

for which |Ĩs| � |γ|/4.

The proof of Lemma 3.5 uses standard ideas (see e.g. [14, Proposition 2.12], [13,

Lemma 4.1] and [9, proof of Lemma 6]). The same is true for our next lemma (see e.g.

[14, equation (15)]). For completeness we furnish proofs in Section 3.3.

Lemma 3.6. If I ∈ Be
n has associated contour Γ, and J = Is ∪ S where S ⊆ Ĩs and s is one

of the four possible shift directions, then I is completely determined by J , s and γ.

We also need one more lemma, that says that after shifting we go from an m-odd

independent set to an m-homogeneous set. The proof appears in Section 3.3.
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Lemma 3.7. If I ∈ Be
n then I ′′

s ∈ Ae
n.

3.2. The Peierls argument for phase coexistence

We are now in a position to define the collection ϕ(I) ⊆ Ae
n and f(I, J) for I ∈ Be

n

and J ∈ ϕ(I). First, choose an s ∈ {(1, 0), (0, 1), (−1, 0), (0,−1)} for which |Ĩs| � |γ|/4 (by

Lemma 3.5 there is such an s; choose, for example, the first such that works in some

arbitrary ordering). Next, set

ϕ(I) = {Is ∪ S : S ⊆ Ĩs}

(by Lemma 3.7 we have ϕ(I) ⊆ Ae
n). Finally, for I ∈ Be

n and J ∈ ϕ(I) set

f(I, J) =
λ|S |

(1 + λ)|Ĩs|
.

For this choice of f we have

∑
J∈ϕ(I)

f(I, J) =
∑
S⊆Ĩs

λ|S |

(1 + λ)|Ĩs|
=

1

(1 + λ)|Ĩs|

|Ĩs|∑
k=0

(
|Ĩs|
k

)
λk = 1,

so (3.3) is established, and it only remains to verify (3.4).

We now present the Peierls argument that verifies (3.4) and completes the proof of

phase coexistence. Recall that λ > μ4
taxi − 1 has been given. Choose μ > 0 to be such that

μ4 − 1 is the midpoint of [μ4
taxi − 1, λ]. Choose m sufficiently large that

g(	)μ4	
taxi < μ4	 (3.6)

for all 	 �
√

2m/2, where g(	) is the subexponential function from Lemma 3.4 (this

inequality holds for all sufficiently large m = m(λ) since μ > μtaxi, and depends only on λ),

and also that

∑
	�

√
2m/2

μ4	

(1 + λ)	
< 1/3 (3.7)

(this inequality holds for all sufficiently large m = m(λ) since 1 + λ > μ4).

For n > m, fix J ∈ Ae
n. From the definitions of ϕ(I) and f, we have that

∑
I:J∈ϕ(I)

λ|I |−|J|f(I, J) =
∑

I:J∈ϕ(I)

1

(1 + λ)|Ĩs|
�

∑
I:J∈ϕ(I)

1

(1 + λ)|γ(I)|/4 , (3.8)

since |Ĩs| � |γ(I)|/4 by Lemma 3.5. Bearing Lemma 3.6 in mind, for each Γ ∈ Cm there are

at most four I ∈ Be
n for which J ∈ ϕ(I) (at most one for each shift s ∈ {(1, 0), (0, 1), (−1, 0),

(0,−1)}). Hence,

∑
I:J∈ϕ(I)

λ|I |−|J|f(I, J) � 4
∑
Γ∈Cm

1

(1 + λ)|Γ|/4

= 4
∑

4	�2
√

2m

|Cm
	 |

(1 + λ)	
(3.9)
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�
∑

	�
√

2m/2

g(	)μ4	
taxi

(1 + λ)	

<
∑

	�
√

2m/2

μ4	

(1 + λ)	

< 1/3,

where the first inequality uses (3.8), we use Lemma 3.3 in (3.9), the second inequality uses

Lemma 3.4, and the remaining inequalities follow from our choice of m (specifically using

(3.6) and (3.7)). The proof is now complete.

3.3. Proofs of contour facts

In this section we begin wrapping up the proof of Theorem 2.3 by providing the proofs

of Lemmas 3.3, 3.5, 3.6 and 3.7.

We will need a basic fact about Γ that comes immediately from the construction.

Lemma 3.8. If {a, b, c, d} are the vertices of a 1 × 1 square in Z
2 (with ab, bc, cd and da

the edges of Z
2), then in Γ it is not possible for bc to be adjacent to both ab and cd.

Proof of Lemma 3.3. Since the interior of Γ contains a vertex with x-coordinate m

(along the top of Um) and one with x-coordinate −m (along the bottom), and each edge

of Γ spans a distance of 1/
√

2 in the x-direction, it follows that Γ must have at least

2
√

2m edges.

To argue about the length of Γ, we view it as a simple closed Z
2-avoiding polygon in

R
2, in the manner described before the statement of Lemma 3.1, and consider traversing

this polygon in a clockwise direction starting from an arbitrarily chosen point P that is

the midpoint of the form (ax, ay − 1/2) of an edge of γ, with ax, ay integers. We traverse

in steps of length
√

2/2, which corresponds to moving from the midpoint of one edge of

γ to the midpoint of an adjacent (and perpendicular) edge.

A complete traverse of the polygon consists of x↘ steps oriented southeast (parallel to

the edge from (0, 0) to (−1,−1)), x↖ steps oriented northwest, x↙ steps oriented southwest

and x↗ steps oriented northeast, and because Γ is closed we have x↘ = x↖ and x↙ = x↗.

Starting at P , a point in R
2 of the form (ax, ay − 1/2) with ax, ay integers, after two

steps we return to a point of this form, having passed through a point of the form

(a′
x − 1/2, a′

y) with a′
x, a

′
y integers. These two steps must be one of: southwest followed

by southeast or vice versa; northwest followed by northeast or vice versa; or two steps in

the same direction. (All other possibilities, such as southwest followed by northwest, are

ruled out by Lemma 3.8.)

Write x↙↘ for the total number (over the entire polygon) of pairs of steps of the kind

just described that consist of southwest followed by southeast, and write x↘↙, x↖↗, x↗↖,

x↘↘, x↖↖, x↙↙ and x↗↗ for the count of the other possible pairs. Using x↘ = x↖ we get

x↙↘ + x↘↙ + 2x↘↘ = x↖↗ + x↗↖ + 2x↖↖,
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and using x↙ = x↗ we get

x↘↙ + x↙↘ + 2x↙↙ = x↖↗ + x↗↖ + 2x↗↗.

Combining (and dividing by 2) we get

x↙↘ + x↘↙ + x↘↘ + x↙↙ = x↖↗ + x↗↖ + x↖↖ + x↗↗.

It follows that x↙↘ + x↘↙ + x↘↘ + x↙↙ + x↖↗ + x↗↖ + x↖↖ + x↗↗ is even, and so

|Γ|, being twice this sum, is a multiple of 4.

That 4 divides |Γ| could also be read out of [9, Lemma 5]; we give a self-contained

proof above to avoid a lengthy detour matching our notation to that of [9].

Proof of Lemma 3.5. We begin with the final statement. Let γs be the set of edges in γ

of the form uv with u ∈ W , v �∈ W and v = u − s. Note that γ = ∪sγs, so there is a choice

of s for which |γs| � |γ|/4. Now the map from γs to Ĩs that sends uv to u is injective (for

each u ∈ Ĩs there is a unique v such that uv ∈ γs, namely u − s), so |Ĩs| � |γs| � |γ|/4.

To show |Is| = |I | consider the map ϕ from I to Is that sends v to v if v ∈ W ′ and sends

v to v + s if v ∈ W . The restrictions of ϕ both to I ∩ W ′ and to I ∩ W are bijections.

Also, ϕ(I ∩ W ′), being I ∩ W ′, is disjoint from W , and ϕ(I ∩ W ) ⊆ W , this latter since the

vertices of W with a neighbour outside W are all unoccupied. This shows |Is| = |I |. To see

that Is is an independent set, note first that ϕ(I \ W ) and ϕ(I ∩ W ) are both independent

sets, so we need only rule out the possibility of having v1 ∈ I ∩ W and v2 ∈ I ∩ W ′ with

ϕ(v1)ϕ(v2) an edge in Z
2. Since (as we have already observed) ϕ(v1) ∈ W , and ϕ(v2) ∈ W ′,

such an adjacency would put ϕ(v1)ϕ(v2) in γ; but since ϕ(v2) = v2 this would lead to an

edge in γ with one endvertex occupied, contradicting (3.5).

Next we show that Ĩs is disjoint from Is. It is clearly disjoint from ϕ(I ∩ W ′). It is also

easily seen to be disjoint from ϕ(I ∩ W ), since all vertices v in ϕ(I ∩ W ) have v − s ∈ W ,

and no vertices in Ĩs have this property. Finally we need to show that no v ∈ Ĩs is adjacent

to something in I ′
s. There cannot be a w ∈ ϕ(I ∩ W ′) with vw ∈ Z

2, for vw would then be

in γ and have one endvertex (w) occupied. Next we consider a w ∈ ϕ(I ∩ W ) with vw an

edge of Z
2. We cannot have w = v + s, for then we would have v ∈ I (again creating an

edge in γ with one endvertex, this time v, occupied). We cannot have w = v − s since this

would put w into W ′ (by definition of Ĩ ′
s), and we know w ∈ W since ϕ(I ′ ∩ W ) ⊆ W .

There remains the case w = v + s′, with s′ perpendicular to s. But in this case, w − s is an

occupied vertex in W , and v − s is a neighbour of w − s that is outside W , again creating

an impossible edge in γ.

Proof of Lemma 3.6. Γ determines I and so W , and this together with s determines Ĩs
(which, crucially, depends only on W and s and not on I). This allows S to be determined,

as S = J ∩ Ĩs, from which Is can be determined as Is = J \ S . Finally we determine I as

I = (Is ∩ W ′) ∪ {σ−1
s (v) : v ∈ Is ∩ W }.
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Proof of Lemma 3.7. Because I is m-odd we know that no even vertex of Um is in I ,

and nor is any even vertex outside Um that is adjacent to something in Um. We aim to

establish that after the shift operation no odd vertex of Um is in I , and nor is any odd

vertex outside Um that is adjacent to something in Um; this shows that Is is m-even, and

since in going from Is to I ′′
s we only add even vertices, so also is I ′′

s .

That no odd vertex of Um is in I after the shift is clear, since R includes σ−s(v) for every

odd v ∈ Um, no such σ−s(v) is in I , and the status of v with regard to membership of Is
is identical to the status of σ−s(v) with regard to membership of I . The same argument

holds for any odd vertex v outside Um adjacent to something in Um for which either

σ−s(v) ∈ Um or σ−s(v) is outside Um but adjacent to something in Um.

There remains the case of odd v, adjacent to something in Um, with σ−s(v) not in Um

and not adjacent to something in Um. If such a v is not in I , then it is clearly not in Is. If

v ∈ I then v ∈ R and σ−s(v) �∈ I and so as before v �∈ Is.

3.4. Contours as taxi walks

In this section we establish the connection between contours and taxi walks, which allows

us to give the proof of Lemma 3.4. The key ingredient is the following.

Lemma 3.9.

(1) Viewed as a polygon in Z
2
♦, if Γ turns, goes straight for an odd number of steps, and

turns again, then the second turn must be in the same direction as the first, while if it

goes straight for an even number of steps, then the second turn must be in the opposite

direction.

(2) If Γ turns, then it cannot turn again after a single step.

Proof. We first show that if Γ turns, goes straight for an odd number of steps, and

turns again, then the second turn must be in the same direction as the first, while if it

goes straight for an even number of steps, then the second turn must be in the opposite

direction.

Suppose that (e1, f1, f2, . . . , f2k+1, e2) is a list of consecutive edges in Γ, with e1 perpendic-

ular to f1, all the fi parallel, and e2 perpendicular to f2k+1. Without loss of generality e1 is

the edge in Γ from (−1/2, 1) to (0, 1/2), which by Lemma 3.8 forces f1 to go from (0, 1/2)

to (1/2, 1), which forces fi to go from (0, 1/2) + (i − 1)(1/2, 1/2) to (0, 1/2) + i(1/2, 1/2)),

and in particular f2k+1 to go from (k, k + 1/2) to (k + 1/2, k + 1). Again by Lemma 3.8,

e2 must now go from (k + 1/2, k + 1) to (k, k + 3/2). This shows that two turns in Γ

separated by an odd number of steps must both go in the same direction (anticlockwise

in this case). The case of Γ taking an even number of steps between turns is dealt with

similarly.

Next we consider the possibility of Γ taking two consecutive turns. Suppose that the

turns are taken around vertex v, in the sense that v has neighbours (read off in cyclic

order) a, b, c, d, and Γ has edges from av to bv, from bv to cv, and from cv to dv. (Bearing

Lemma 3.8 in mind, no other situation is possible.)

Consider first the case where v is an odd vertex. In the 1 × 1 square that a, v and d are

three corners of, the construction of Γ dictates that there must be an edge of Γ from av
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to dv (we are either in case iii or case iv). This means that Γ encloses just the odd vertex

v, which, by Lemma 3.1, cannot happen.

If v is even, let q be the vertex that completes the 1 × 1 square that includes b and c as

corners, r the one for c and d, s the one for a and b, and t the one for a and d. Note that

Γ cannot have an edge from av to dv, for if it did it would be a 4-cycle enclosing a single

vertex v, implying that |R| = 1, a contradiction since Um ⊆ R. Looking at the construction

rules for Γ, we see that we must have q �∈ R, r �∈ R, s �∈ R and t ∈ R, and Γ has edges from

av to at and from dv to dt. Note now that v ∈ R has all four of its neighbours outside

R. This is not possible, since by construction of R every even vertex of R must have a

neighbour in R. It follows that Γ cannot take two consecutive turns.

The import of Lemma 3.9 is that Γ can be thought of as a taxi walk; we now record

this key fact formally.

Lemma 3.10. Let mx, my be integers such that (mx, my − 1/2) is the apex of a ‘vee’ in

Γ; that is to say, (mx − 1/2, my) is adjacent to (mx, my − 1/2) in Γ, and (mx, my − 1/2) is

adjacent to (mx + 1/2, my). There is a unique orientation of the edges of Z
2
♦ such that it

becomes isomorphic to �Z2 via a translation that sends (mx, my − 1/2) to the origin, followed

by a clockwise rotation through π/4, followed by a dilation by
√

2. Under this orientation,

if the edge from (mx − 1/2, my) to (mx, my − 1/2) is removed from Γ then the residue is

mapped to a taxi walk of length |Γ| − 1.

Proof of Lemma 3.4. By Lemma 3.10 an element Γ of Cm
	 is fully described by specifying

a midpoint (mx, my − 1/2) (mx, my integers) of an edge in Z
2 where Γ makes a ‘vee’ turn,

followed by specifying a taxi walk of length 4	 − 1. Since Γ is a simple closed curve

of length 4	/
√

2 that encloses the origin, there are at most O(	2) choices for the pair

(mx, my), and by Lemma 2.2 there are at most ftaxi(4	 − 1)μ4	−1
taxi choices for the taxi walk.

The lemma follows.

4. The taxi walk connective constant (Theorem 2.2)

In this section we prove Theorem 2.2. A helpful initial observation is that �Z2 is vertex-

transitive; specifically, for each (x, y) ∈ Z
2, the bijective map f(x,y) : Z

2 → Z
2 given by

f(x,y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

translation by (−x,−y) if x, y both even

translation by (−x,−y), then rotation through π radian if x, y both odd

translation by (−x,−y), then reflection across x-axis if x odd, y even

translation by (−x,−y), then reflection across y-axis if x even, y odd

induces an orientation-preserving bijection of �Z2 that sends (x, y) to the origin.

We begin the proof of Theorem 2.2 by establishing the submultiplicativity of cn (or,

equivalently, the subadditivity of log cn).

Lemma 4.1. For n, m � 1, cn+m � cncm.
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Table 1. Values of ci for i = 1, . . . , 60; see [6]

c1 2 c13 740 c25 208 506 c37 54 807 754 c49 13 922 238 632

c2 4 c14 1 192 c26 332 616 c38 87 077 354 c50 22 069 957 494

c3 6 c15 1 918 c27 530 588 c39 138 346 766 c51 34 986 181 158

c4 10 c16 3 064 c28 843 222 c40 219 324 398 c52 55 383 388 278

c5 16 c17 4 910 c29 1 342 662 c41 348 109 128 c53 87 740 467 384

c6 26 c18 7 872 c30 2 138 280 c42 552 582 790 c54 139 014 623 272

c7 42 c19 12 620 c31 3 405 346 c43 877 163 942 c55 220 254 102 104

c8 68 c20 20 114 c32 5 406 522 c44 1 389 806 294 c56 348 536 652 664

c9 110 c21 32 150 c33 8 597 632 c45 2 204 289 314 c57 551 914 140 382

c10 178 c22 51 396 c34 13 674 278 c46 3 496 483 316 c58 874 039 817 792

c11 288 c23 82 160 c35 21 748 530 c47 5 546 212 122 c59 1 384 184 997 874

c12 460 c24 130 730 c36 34 501 460 c48 8 783 360 626 c60 2 189 670 407 434

Proof. If we split a taxi walk of length n + m into two pieces, an initial segment of

length n and a terminal segment of length m, then both resulting pieces are self-avoiding.

Moreover, the initial segment of length n is a taxi walk of length n, while the terminal

segment of length m gets mapped to a taxi walk of length m by the map f(x,y) described

above, where (x, y) is the initial vertex of the terminal segment. It is straightforward to

verify that this gives rise to an injective mapping from taxi walks of length n + m to

ordered pairs of taxi walks, the first of length n and the second of length m, so that

cn+m � cncm.

It follows from Lemma 4.1 that dn := log cn is subadditive, that is, dn+m � dn + dm. By

Fekete’s Lemma (see e.g. [27, Lemma 1.2.2]) we know that limn→∞ dn/n exists and that

lim
n→∞

dn

n
= inf

n

dn

n
. (4.1)

Thus we can write the number of taxi walks of length n as cn = ftaxi(n)μ
n
taxi, where μtaxi is

a constant and ftaxi(n) is subexponential in n.

We have already (in Section 2) observed that
√

2 � μtaxi � (1 +
√

5)/2. Various tech-

niques from the self-avoiding walk literature – subadditivity, Alm’s method, the Goulden–

Jackson cluster method, and Kesten’s methods of bridges and irreducible bridges – can be

used to improve both bounds. We now discuss these methods and our associated results.

4.1. Upper bounds on μtaxi

Subadditivity gives us a strategy for getting a better upper bound on μtaxi. From (4.1) we see

that for all n, log cn/n is an upper bound for log μtaxi. Then, using that c60 = 2189670407434

(see Table 1 and [6]) gives the bound μtaxi < 1.60574 and μ4
taxi − 1 < 5.6482.

The connective constant for ordinary self-avoiding walks has been well studied, and

some of the methods used to obtain bounds there can be adapted to deal with taxi walks.

In this section, we adapt two methods due to Alm [1] and Goulden and Jackson [16] to

bound μtaxi and thus establish Theorem 2.2. The bounds derived using these methods are

very similar, so both are provided for completeness.
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First we discuss the method of Alm [1]. Fix n > m > 0. Construct a square matrix

A(m, n) whose ij entry counts the number of taxi walks of length n that begin with the ith

taxi walk of length m, and end with the jth taxi walk of length m, for some fixed ordering

of the walks of length m (formally we mean that if (x, y) is the vertex that begins the

terminal segment of length m of the walk, then the map f(x,y) described earlier sends the

the terminal segment of length m to the jth taxi walk of length m). Then a result of Alm

[1, Theorem 1] says that

μtaxi � λ1(A(m, n))1/(n−m),

where λ1 indicates the largest positive eigenvalue. (Note that when m = 0 this recovers the

subadditivity bound discussed earlier.) Alm’s result as stated in [1] only applies to bound

the ordinary connective constant of a finitely generated lattice, directed or otherwise. His

proof is easily seen to go through without change, however, when the extra condition is

added that walks do not take two consecutive turns. We calculated A(20, 60); this is a

square matrix of dimension 20114 for which we can estimate its largest eigenvalue using

MATLAB. This gives that μtaxi < 1.58834 and μ4
taxi − 1 < 5.3646 (again see [6] for this

data).

Our second approach is the Goulden–Jackson cluster method [16]. This is an algorithm

which takes as input a finite alphabet A, an integer n and a finite list M of words over

A – the elements of which we refer to as mistakes – and outputs the number 	n of words

of length n over A that do not contain any mistakes as subwords (that is, as strings of

consecutive letters in the word).

Recall from the proof of Lemma 2.1 that a taxi walk of length n may be encoded

by a pair (a, σ), where a ∈ {N,E} and σ is a word of length n − 1 over alphabet {s, t}.
Suppose that M is a finite set of subwords that is not allowed to occur in any word

σ over alphabet {s, t} that occurs in an encoding of a taxi walk (for example, tt is one

such subword). If 	n is as defined in the last paragraph then we have cn+1 � 2	n, so by

subadditivity μtaxi � (2	n)
1/(n+1).

We can improve this slightly. Alm [1, Remark 9] observes that in a vertex-transitive

lattice for which any self-avoiding walk of length 1 can be mapped on to any other

self-avoiding walk of length 1 by some orientation-preserving symmetry (built from

translations, rotations and reflections), the connective constant is bounded above by

(f(n + 1)/f(1))1/n, where f(m) is the number of self-avoiding walks of length m starting

for some fixed vertex (by vertex-transitivity, it does not matter which). Applying this to

the present situation (where Alm’s condition is certainly satisfied, with f(1) = 2), we get

μtaxi � 	1/n
n . (4.2)

If (a, σ′) encodes a walk in the Manhattan lattice that takes no two consecutive turns,

starts and ends at the origin, and otherwise does not visit any vertex twice, then it is

evident that the word σ′ cannot occur as a subword of σ in any taxi walk (a, σ). We refer

to such a σ′ as a taxi polygon of length |σ′| + 1, where |σ′| is the number of letters in

σ′. For example, sstsstsstss is a taxi polygon of length 12, and tstsstsssstsssstsst is a taxi

polygon of length 20.
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We have enumerated taxi polygons of length at most 48 (there are 8 009 144 of them).

We then used an implementation of the Goulden–Jackson cluster method due to Noonan

and Zeilberger [20] to calculate a802 with M consisting of the set of all taxi polygons of

length at most 44 (there are 1 721 326 of them) together with the word tt. Via (4.2) this

leads to μtaxi < 1.58746 and μ4
taxi − 1 < 5.3506, as stated in Theorem 2.2. (See [6] for the

data and the computer code used to generate it.)

4.2. Lower bounds on μtaxi

To improve the trivial lower bound
√

2 � μtaxi we consider bridges (introduced for ordinary

self-avoiding walks by Kesten [18]). A bridge, for our purposes, is a taxi walk that begins

by moving from the origin (0, 0) to the vertex (1, 0), never revisits the y-axis, and ends by

taking a step parallel to the x-axis to a vertex on the walk that has maximum x-coordinate

over all vertices in the walk (but note that this maximum does not have to be uniquely

achieved at the final vertex).

Let bn be the number of bridges of length n (by convention b0 = 1). Observe that

bridges are supermultiplicative, that is, bn+m � bnbm (and log bn is superadditive). To see

this, consider bridges β1 of length n and β2 of length m. By the definition of a bridge, it

is straightforward to verify that if we concatenate β1 and the image of β2 under the map

f−1
(x,y), where (x, y) is the terminal vertex of β1, then the result is a bridge. Moreover, the

map just described from pairs of bridges, the first of length n and the second of length m,

to bridges of length n + m, is injective. It follows that there are at least bkn taxi walks of

length kn (just concatenate k length n bridges), so that

μtaxi = lim
m→∞

c1/m
m � lim

k→∞
(bkn)

1/nk = b1/n
n .

Since b60 = 80312795498 (see [6]), we get that μtaxi > 1.51965 and μ4
taxi − 1 > 4.3330.

Using Kesten’s more sophisticated notion of irreducible bridges (bridges that are not the

concatenation of shorter bridges), we can get significantly better bounds. Our discussion

follows the approach of Alm and Parviainen [2]).

Say that an internal vertex (x, y) along a bridge is a cutvertex if the walk from the

origin up to (x, y) is a bridge, after (x, y) the next vertex of the walk is (x + 1, y), and the

walk from (x, y) to the end (more correctly, the image of this walk under f(x,y)) is also a

bridge. Say that a bridge is irreducible if it does not have a cutvertex. Denote by an the

number of irreducible bridges of length n (by convention a0 = 0).

Fix n � 1. For each 	 � 1, each solution to k1 + · · · + k	 = n with each ki � 1, and each

sequence of irreducible bridges (p1, . . . , p	) with pi of length ki for each i, there corresponds

a bridge of length n obtained by concatenating the pi (with suitable translations, reflections

and rotations where necessary). Moreover, each bridge of length n is obtained exactly

once in this process. It follows that

bn =
∑
	�1

∑{ 	∏
i=1

ai : compositions k1 + · · · + k	 = n

}
,
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and so, setting B(x) =
∑

k�0 bkx
k and A(x) =

∑
	�1 a	x

	, we have

B(x) =
1

1 − A(x)
. (4.3)

Notice that A(x) = 1 has a unique solution rpos in the interval (0, 1). Let r be any upper

bound on rpos. From (4.3), standard facts about generating functions (see e.g. [31, Section

2.4]) tells us that rpos (and thus r) is an upper bound on the radius of convergence of

B(x); consequently

lim sup
n→∞

b1/n
n � 1/r.

But we also know that cn � bn, implying that

μtaxi = lim sup
n→∞

c1/n
n � lim sup

n→∞
b1/n
n � 1/r.

It follows that an upper bound on rpos, the unique positive solution to A(x) = 1, yields a

lower bound on μtaxi.

Consider a sequence (a′
n)

∞
n=1 with 0 � a′

n � an for each n. Set A′(x) =
∑∞

n=1 a
′
nx

n. As is

the case with A(x), the equation A′(x) = 1 has a unique solution r′ in the interval (0, 1),

which moreover clearly satisfies r′ � rpos. We record the conclusion to this discussion as a

theorem.

Theorem 4.2. With the notation as above, if x > 0 satisfies
∑∞

n=1 a
′
nx

n > 1 then μtaxi >

1/x.

For any N � 1, the coefficients of the power series of 1/B(x) up to the coefficient of

xN are determined by the coefficients of the power series of B(x) up to xN , and so using

(4.3) the coefficients of A(x) up to xN are determined by the coefficients of B(x) up to xN .

We know the coefficients of B(x) up to x60 and from this we can easily calculate an for

n � 60 (see [6]). Taking a′
n = an for n � 60 and a′

n = 0 for n > 60 yields μtaxi > 1.55701

and μ4
taxi − 1 > 4.8771, as stated in Theorem 2.2.

5. Concluding remarks

• In an early version of this work [7] we employed the Peierls argument described in

Section 3 to separate μe
n and μo

n by establishing

μe
n(E) < 1/3

in place of (3.1), where the event E was defined in terms of fault lines and crosses,

as defined in [24]. The idea of replacing E with Om, and conditioning on Hm, which

significantly streamlines the analysis, was suggested to us by Kotecký [19] after the

third author spoke on this work during the 2013-14 Warwick EPSRC Symposium on

Statistical Mechanics. We are very grateful to him for this suggestion.

• The standard Peierls argument for establishing phase coexistence tries to separate μe
n

and μo
n using the event {v ∈ I} where v ∈ O is some fixed vertex. Indeed, in [5] it
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is shown using the FKG inequality that there is phase coexistence for the hard-core

model on Z
2 if and only if lim supn→∞ μe

n({v ∈ I}) < lim supn→∞ μo
n({v ∈ I}). However,

analysing μe
n({v ∈ I}) using the approach described in the present paper requires

considering contours of length 4	 for all 	 � 3. This in turn necessitates controlling

the sub-exponential term in the growth rate of taxi walks, which in turn leads to poorer

bounds on λ. Using Om as the distinguishing event, which ensures that all contours are

long, obviates this necessity. This specifically comes into play with the lower bound

on 	 in (3.9), coming from Lemma 3.3.

• In [7] it was shown that if λ satisfies λ > μ4
taxi − 1 then Glauber dynamics for

independent sets on the n × n torus takes time at least ecn to mix, for some constant

c = c(λ) > 0, and that if also 2(1 + λ) > μ2
taxi(1 +

√
1 + 4λ) then the same is true for the

n × n grid. Based on the computations in that reference, it was possible to conclude

slow mixing for λ > 5.3646 on the torus, and λ > 7.1031 on the grid. Using our

improved bounds on μtaxi here, we can improve these bounds to λ > 5.3506 on the

torus, and λ > 7.0852 on the grid.

• One way to improve our lower bound on μtaxi would be to construct families of

irreducible bridges of various lengths n > 60, and to use the sizes of these families

as the a′
n in Theorem 4.2. So far we have only had slight success with this approach,

obtaining μtaxi > 1.55711 and μ4
taxi − 1 > 4.8786. The details are messy, and we choose

not to include them here, but they can be found in [6].
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