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Abstract

We study convergence to non-minimal quasi-stationary distributions for one-
dimensional diffusions. We give a method for reducing the convergence to the tail
behavior of the lifetime via a property we call the first hitting uniqueness. We apply the
results to Kummer diffusions with negative drift and give a class of initial distributions
converging to each non-minimal quasi-stationary distribution.
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1. Introduction

Let us consider a one-dimensional diffusion X = (Xt)t≥0 on I = [0, b) or [0, b] (0< b ≤
∞) killed nowhere and stopped upon hitting 0, and let T0 denote its first hitting time of 0.
A probability distribution ν on I \ {0} is called a quasi-stationary distribution of X when the
distribution of Xt with the initial distribution ν conditioned to be away from 0 until time t is
time-invariant, that is, the following holds:

Pν[Xt ∈ dx | T0 > t] = ν(dx) (t> 0),

where Pν denotes the underlying probability measure of X with its initial distribution ν. For a
certain quasi-stationary distribution ν, we study a sufficient condition on an initial distribution
μ such that

μt(dx) := Pμ[Xt ∈ dx | T0 > t] −−−→
t→∞ ν(dx). (1.1)

Here and hereafter all convergence of probability distributions is in the sense of weak conver-
gence. In the case where μ is compactly supported, the convergence (1.1) has been studied
by many authors (e.g. [8], [10], [14], and [17]), and it has been shown that (1.1) holds under
very general conditions and the limit distribution ν does not depend on the choice of a com-
pactly supported μ. The limit measure ν is sometimes called the Yaglom limit or the minimal
quasi-stationary distribution. On the other hand, for some diffusions there exist infinitely
many quasi-stationary distributions. Although it is a natural problem to consider for what
initial distributions (1.1) holds for each quasi-stationary distribution ν, there are very few
studies considering this problem for non-minimal quasi-stationary distributions. The author
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Quasi-stationary distributions for one-dimensional diffusions 1107

only knows two papers, Lladser and San Martín [15] and Martínez, Picco, and San Martín
[19], whose results we generalize in the present paper.

The present paper has two main results. One is Theorem 3.1, which gives a method for
reducing the convergence (1.1) to the tail behavior of T0. The other is Theorem 5.1, which
applies Theorem 3.1 to Kummer diffusions with negative drift and derives concrete sufficient
conditions for convergence (1.1).

A Kummer diffusion Y (0) = Y (α,β) (α > 0, β ∈R) is a diffusion on [0,∞) stopped upon
hitting 0 whose local generator L(0) =L(α,β) on (0,∞) is

L(0) =L(α,β) = x
d2

dx2
+ (−α + 1 − βx)

d

dx
. (1.2)

Note that the process Y (0) = Y (α,β) is also called a radial Ornstein–Uhlenbeck process in some
of the literature (see e.g. [2] and [7]). We write

gγ (x) := Px
[
e−γT(0)

0
] =

∫ ∞

0
e−γ t

Px
[
T (0)

0 ∈ dt
]

(γ ≥ 0), (1.3)

which is the Laplace transform of the first hitting time of 0 for Y (0) = Y (α,β). Then gγ is a γ -
eigenfunction for L(0), i.e. L(0)gγ = γ gγ (see e.g. [22, p. 292]). We define a Kummer diffusion
with negative drift Y (γ ) = Y (α,β,γ ) (γ ≥ 0) as the h-transform of Y (α,β) by the function gγ ,
that is, the process Y (α,β,γ ) is a diffusion on [0,∞) stopped at 0 whose local generator on
(0,∞) is

L(γ ) =L(α,β,γ ) = 1

gγ
(L(0) − γ )gγ .

If we write
Ỹ (α,β,γ ) :=

√
2Y (α,β,γ ),

then the local generator L̃(α,β,γ ) of Ỹ (α,β,γ ) on (0,∞) is given by

L̃(α,β,γ ) = 1

2

d2

dx2
+

(
1 − 2α

2x
− βx

2
+ g̃′

γ

g̃γ

)
d

dx
, (1.4)

where g̃γ (x) = P̃x
[
e−γ T̃0

]
denotes the Laplace transform of the first hitting time of 0 for Ỹ (0)

starting from x. When α= 1/2 and γ = 0, the process Ỹ (1/2,β,0) is the Ornstein–Uhlenbeck
process, and when β = 0, the process Ỹ (α,0,γ ) is the Bessel process with negative drift (see
e.g. [7]).

Previous studies. We briefly review several previous studies of quasi-stationary distributions
for one-dimensional diffusions.

A first remarkable result on quasi-stationary distributions for one-dimensional diffusions
was given by Mandl [17]. He treated the case where the right boundary is natural and gave
a sufficient condition for the convergence to the minimal quasi-stationary distributions. His
condition has been weakened by many authors, e.g. Collet, Martínez, and San Martín [5],
Hening and Kolb [8], Kolb and Steinsaltz [10], and Martínez and San Martín [18]. Under
certain weak assumptions it is shown that all compactly supported initial distributions imply
convergence to the minimal quasi-stationary distribution.

The case where the right boundary is entrance has also been widely studied. Cattiaux et al.
[3] and Littin [14] showed that in this case there exists a unique quasi-stationary distribution
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1108 K. YAMATO

and all compactly supported initial distributions are attracted to the unique quasi-stationary
distribution. Takeda [23] generalized their results to symmetric Markov processes with the
tightness property.

Let us come back to the case where the right boundary is natural. We then have non-
minimal quasi-stationary distributions. In the present paper, we let L1(I, ν) denote the set of
integrable functions on I with respect to the measure ν, and denote f (x) ∼ g(x) (x → ∞) when
limx→∞ f (x)/g(x) = 1.

First, Martínez, Picco, and San Martín [19] studied Brownian motion with negative drift
and showed convergence to non-minimal quasi-stationary distributions under the assumptions
on tail behavior of the initial distribution.

Theorem 1.1. ([19, Theorem 1.1].) Let Bt be a standard Brownian motion and let α > 0 and
consider the process

Xt = Bt − αt.

For an initial distribution μ on (0,∞), assume μ(dx) = ρ(x) dx for some ρ ∈ L1((0,∞), dx)
satisfying

log ρ(x) ∼ −(α − δ)x (x → ∞)

for some δ ∈ (0, α). Then we have

Pμ[Xt ∈ dx | T0 > t] −−−→
t→∞ νλ(dx),

with
λ= (α2 − δ2)/2 and νλ(dx) = Cλ e−αx sinh

(
x
√
α2 − 2λ

)
dx

for the normalizing constant Cλ.

Secondly, Lladser and San Martín [15] studied Ornstein–Uhlenbeck processes.

Theorem 1.2. ([15, Theorem 1.1].) Let α > 0. Let X be the solution of the following SDE:

dXt = dBt − αXt dt,

where B is a standard Brownian motion. For an initial distribution μ on (0,∞), assume
μ(dx) = ρ(x) dx for some ρ ∈ L1((0,∞), dx) satisfying

ρ(x) ∼ x−2+δ	(x) (x → ∞)

for some δ ∈ (0, 1) and a slowly varying function 	 at ∞. Then we have

Pμ[Xt ∈ dx | T0 > t] −−−→
t→∞ νλ(dx)

with
λ= α(1 − δ) and νλ(dx) = Cλψ−λ(x) e−αx2

dx

for the normalizing constant Cλ, where u =ψ−λ denotes the unique solution for the following
differential equation:

1

2

d2

dx2
u − αx

d

dx
u = −λu, lim

x→0+ u(x) = 0, lim
x→0+

d

dx
u(x) = 1 (x ∈ (0,∞)).
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We will give a generalization of these two results in Theorem 5.1.

Outline of the paper. The remainder of the present paper is organized as follows. In Section 2
we will recall several known results on one-dimensional diffusions, the quasi-stationary distri-
butions and the spectral theory for second-order ordinary differential operators. In Section 3
we will show one of our main results giving a general condition for convergence to quasi-
stationary distributions. In Section 4 we will give the hitting density of Kummer diffusions
with negative drift. In Section 5 we will show the second main result, which gives a suf-
ficient condition for convergence to non-minimal quasi-stationary distributions for Kummer
diffusions with negative drift.

2. Preliminaries

2.1. Feller’s canonical form of second-order differential operators

Let (X, Px)x∈I be a one-dimensional diffusion on I = [0, b) or [0, b] (0< b ≤ ∞), that is,
the process X is a time-homogeneous strong Markov process on I which has a continuous path
up to its lifetime. Throughout this paper, we always assume

Px[Ty <∞]> 0 (x ∈ I \ {0}, y ∈ [0, b)), (2.1)

where Ty denotes the first hitting time of y, and assume the point 0 is a trap:

Xt = 0 for t ≥ T0.

Let us recall Feller’s classification of the boundaries (see e.g. Itô [9]). There exist a Radon
measure m on I \ {0} with full support and a strictly increasing continuous function s on (0, b)
such that the local generator L on (0, b) is represented by

L= d

dm

d

ds
.

We call m the speed measure and s the scale function of X and we say X is a d
dm

d
ds -diffusion.

Let c = 0 or b and take d ∈ (0, b). Set

I(c) =
∫ d

c
ds(x)

∫ x

c
dm(y), J(c) =

∫ d

c
dm(x)

∫ x

c
ds(y).

The boundary c is classified as follows:

The boundary is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

regular when I(c)<∞, J(c)<∞,

exit when I(c) = ∞, J(c)<∞,

entrance when I(c)<∞, J(c) = ∞,

natural when I(c) = ∞, J(c) = ∞.

Since Px[T0 <∞]> 0 for every x> 0, the boundary 0 is necessarily regular or exit, equiva-
lently J(0)<∞. Note that in this case s(0) := limx→0+ s(x)>−∞ holds. We also assume that
the boundary b is not exit and that the boundary b is reflecting when it is regular.

Let us consider a diffusion on I whose local generator L on (0, b) is

L= a(x)
d2

dx2
+ c(x)

d

dx
(x ∈ (0, b))
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for functions a and c. Assume a(x)> 0 (x ∈ (0, b)). Then L= d
dm

d
ds , where

dm(x) = 1

a(x)
exp

(∫ x

d

c(y)

a(y)
dy

)
dx, ds(x) = exp

(
−

∫ x

d

c(y)

a(y)
dy

)
dx

for arbitrary given d ∈ (0, b).

2.2. Quasi-stationary distributions

Let us summarize known results on quasi-stationary distributions for one-dimensional dif-
fusions and give a necessary and sufficient condition for the existence of quasi-stationary
distributions. Let X be a d

dm
d
ds -diffusion on I = [0, b) or [0, b] (0< b ≤ ∞). We define a

function u =ψλ as the unique solution of the following equation:

d

dm

d

ds
u(x) = λu(x), lim

x→0+ u(x) = 0, lim
x→0+

d

ds
u(x) = 1 (x ∈ (0, b), λ ∈R). (2.2)

Note that from the assumption that the boundary 0 is regular or exit, the function ψλ always
exists. The operator L = − d

dm
d
ds defines a non-negative definite self-adjoint operator on

L2(I, dm) :=
{

f : I →R |
∫

I
|f |2 dm<∞

}
.

Here we assume the Dirichlet boundary condition at 0 and the Neumann boundary condition
at b if the boundary b is regular. We denote the infimum of the spectrum of L by λ0 ≥ 0.

Let us consider the case where the boundary b is not natural. It is then known that there is a
unique quasi-stationary distribution (noting that Takeda [23] showed the corresponding result
for general Markov processes with the tightness property).

Proposition 2.1. (See e.g. [14, Lemma 2.2, Theorem 4.1].) Assume the boundary b is not
natural. Then we have

λ0 > 0

and the function ψ−λ0 is strictly positive on I \ {0} and integrable with respect to dm, and there
is a unique quasi-stationary distribution given by

νλ0 (dx) = λψ−λ0 (x) dm(x), Pνλ0
[T0 ∈ dt] = λ0 e−λ0t dt.

Moreover, for every probability distribution μ on (0, b) with compact support, we obtain

μt −−−→
t→∞ νλ0 .

We now assume the boundary b is natural. We now have

Px[Tb <∞] = 0 (x ∈ (0, b)) (2.3)

and
s(x) − s(0)

s(M) − s(0)
= Px[TM < T0] (0< x<M < b)

(see e.g. Itô [9]). Taking limit M → b, we have from (2.3)

s(x) − s(0)

s(b) − s(0)
= Px[T0 = ∞].
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Hence it follows that

Px[T0 <∞] = 1 for some / any x> 0 ⇔ s(b) = ∞.

If ν is a quasi-stationary distribution, the distribution Pν[T0 ∈ dt] is exponentially distributed
because Pν[T0 > t + s | T0 > t] = Pν[Xt+s > 0 | T0 > t] = Pν[Xs > 0] = Pν[T0 > s]. Then by
(2.1) we have Pν[T0 = ∞]< 1, and therefore Pν[T0 = ∞] = 0, which implies s(b) = ∞. We
recall the following good properties for the function ψλ.

Proposition 2.2. ([6, Lemma 6.18].) Suppose the boundary b is natural and s(b) = ∞. Then
for λ> 0 the following hold.

(i) For 0<λ≤ λ0, the function ψ−λ is strictly positive on I\{0} and

1 = λ

∫ b

0
ψ−λ(x) dm(x).

(ii) For λ> λ0, the function ψ−λ changes signs on I.

Now we state a necessary and sufficient condition for the existence of non-minimal quasi-
stationary distributions without proof.

Theorem 2.1. ([6, Theorem 6.34], [12, Theorem 3, Appendix I].) Suppose the boundary b is
natural. Then a non-minimal quasi-stationary distribution exists if and only if

λ0 > 0 and s(b) = ∞. (2.4)

This condition is equivalent to

m(d, b)<∞ for some d ∈ (0, b) and lim sup
x→b

s(x)m(x, b)<∞.

In this case a probability measure ν is a quasi-stationary distribution if and only if

ν(dx) = λψ−λ(x) dm(x) =: νλ(dx), Pνλ [T0 ∈ dt] = λ e−λt dt for some 0<λ≤ λ0.

Here we note that as [6] only dealt with the case where the boundary 0 is regular, the proof
also works in the case where the boundary 0 is exit.

For probability distributions on (0, b), we introduce a partial order. For μ1, μ2 ∈P(0,∞),
we define μ1 �μ2 by

μ2(0, x] ≤μ1(0, x] (x> 0).

This order gives a total order for quasi-stationary distributions and, as the following proposition
says, the distribution νλ0 gives the minimal element. This is why we call it the minimal quasi-
stationary distribution.

Proposition 2.3. Suppose the boundary b is natural and (2.4) holds. Then we have

νλ � νλ′ (0<λ′ ≤ λ≤ λ0).

In particular, the distribution νλ0 is the minimal one in this order.

Proof. From (2.2) we have

ψ−λ(x) = s(x) − λ

∫ x

0
ds(y)

∫ y

0
ψ−λ(z) dm(z) (x> 0, λ ∈R).
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Hence it follows that

νλ(0, x] = λ

∫ x

0
ψ−λ(y) dm(y) = 1 −ψ+

−λ(x) (x> 0, 0<λ≤ λ0), (2.5)

where ψ+
−λ(x) is the right-derivative of ψ−λ with respect to the scale function:

ψ+
−λ(x) := lim

h→0+
ψ−λ(x + h) −ψ−λ(x)

s(x + h) − s(x)
.

Let 0<λ′ ≤ λ≤ λ0. From (2.5) we have

ψ+
−λ(x) ≤ψ+

−λ′ (x) (x> 0)

by a similar argument to [6, Lemma 6.11], which yields νλ � νλ′ . �

2.3. Spectral theory for second-order differential operators

Let us briefly review several results on the spectral theory of second-order differential
operators. For the details, see e.g. Coddington and Levinson [4] and Kotani [11].

Set I = (0, b) (0< b ≤ ∞). Let dm be a Radon measure on I with full support and let
s : I → (−∞,∞) be a strictly increasing continuous function. We assume that the boundary
0 is regular or exit, that is,∫ d

0
dm(x)

∫ x

0
ds(y)<∞ for some 0< d< b,

and assume the boundary b is natural, that is,∫ b

d
dm(x)

∫ b

x
ds(y) = ∞ and

∫ b

d
ds(x)

∫ b

x
dm(y) = ∞ for some 0< d< b.

Let u =ψλ be defined by (2.2). Set

gλ(x) =ψλ(x)
∫ b

x

ds(y)

ψλ(y)2
(λ≥ 0).

Then the function u = gλ is the unique, non-increasing solution for

d

dm

d

ds
u = λu, lim

x→0+ u(x) = 1.

Define the Green’s function

Gλ(x, y) = Gλ(y, x) := ψλ(x)gλ(y) (0 ≤ x ≤ y< b, λ≥ 0).

Then there exists a unique Radon measure σ on [0,∞), which we call the spectral measure,
such that

Gλ(x, y) =
∫ ∞

0

ψ−ξ (x)ψ−ξ (y)

λ+ ξ
σ (dξ ),

and the transition density p(t, x, y) with respect to dm of d
dm

d
ds -diffusion absorbed at 0 is

given by

p(t, x, y) =
∫ ∞

0
e−λtψ−λ(x)ψ−λ(y)σ (dλ) (t> 0, x, y ∈ I)

(see [20] for the details). Note that under the assumptions of Theorem 2.1, the spectral measure
has its support on [λ0,∞).
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3. Convergence to quasi-stationary distributions

Let X be a d
dm

d
ds -diffusion on [0, b) (0< b ≤ ∞). For a set I, we denote the set of initial

distributions on I by P(I). For a class P⊂P[0, b) of initial distributions, we say that the first
hitting uniqueness holds on P if

the map P μ �−→ Pμ[T0 ∈ dt] is injective.

For the class P , we shall take

Pexp = {μ ∈P[0, b) | Pμ[T0 ∈ dt] = λ e−λt dt (λ> 0)},
the set of initial distributions with exponential hitting probabilities. We refer to Rogers [21] as a
general study of the first hitting uniqueness. Provided that the first hitting uniqueness holds on
Pexp and X satisfies the condition of Theorem 2.1, an initial distribution μ ∈P[0, b) satisfying
Pμ[T0 ∈ dt] = λ e−λt dt for some 0<λ≤ λ0 must satisfy μ= νλ.

One of our main theorems is a general result to reduce the convergence (1.1) to the tail
behavior of T0, provided that the first hitting uniqueness holds on Pexp.

Theorem 3.1. Let X be a d
dm

d
ds -diffusion on [0, b) (0< b ≤ ∞) and set

μt(dx) = Pμ[Xt ∈ dx | T0 > t].

Assume the first hitting uniqueness holds on Pexp and

Pν[T0 ∈ dt] = λ e−λt dt for some λ> 0 and some ν ∈P(0, b).

Then, for μ ∈P[0, b) and λ> 0, the following are equivalent:

(i) limt→∞
Pμ[T0 > t + s]

Pμ[T0 > t]
= e−λs(s> 0),

(ii) Pμt [T0 ∈ ds] −−−→
t→∞ λ e−λs ds,

(iii) μt −−−→
t→∞ ν.

Proof of Theorem 3.1. From the Markov property, we have

Pμt [T0 > s] = Pμ[T0 > t + s]

Pμ[T0 > t]
(t, s ≥ 0).

Now it is obvious that (i) and (ii) are equivalent. In addition, it is not difficult to see that (iii)
implies (i).

We show that (ii) implies (iii). Since P[0, b], the class of probability measures on the
compactification [0, b], is compact under the topology of weak convergence, we can take a
sequence {tn}n which diverges to ∞ such that

μtn −−−→
n→∞ ν̃ (3.1)

for some ν̃ ∈P[0, b]. From (ii), we have

Pμtn
[T0 ∈ ds] −−−→

n→∞ λ e−λs ds. (3.2)
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On the other hand, for fixed t> 0 we have

Pμtn
[T0 > t] =

∫
[0,b]

Px[T0 > t]μtn(dx),

where we understand that

Px[T0 > t] =
{

0 x = 0,

1 x = b.

Note that since the boundary b is natural, the function x �→ Px[T0 > t] is continuous on [0, b].
From (3.1) we obtain

lim
n→∞ Pμtn

[T0 > t] =
∫

[0,b]
Px[T0 > t]ν̃(dx).

Then from (3.2) it follows that ∫
[0,b]

Px[T0 > t]ν̃(dx) = e−λt. (3.3)

Since
lim
t→0

Px[T0 > t] = 1{x> 0}, lim
t→∞ Px[T0 > t] = 1{x = b} (x ∈ [0, b]),

we have from the dominated convergence theorem and (3.3) that ν̃{0} = ν̃{b} = 0. Therefore
ν̃ ∈P(0, b) and Pν̃[T0 ∈ ds] = λ e−λs ds. Since the first hitting uniqueness holds on Pexp, we
have ν̃ = ν. The limit distribution ν does not depend on the choice of the sequence {tn}, and
therefore we obtain (iii). �

We give a sufficient condition for Theorem 3.1(i).

Proposition 3.1. Assume the hitting densities fx of 0 exist, that is, there exists a non-negative
jointly measurable function fx(t) such that

Px[T0 ∈ dt] = fx(t) dt (0< x< b, t> 0).

Let μ ∈P(0, b) and assume the function

fμ(t) :=
∫ ∞

0
fx(t)μ(dx) (0< x< b, t> 0)

is differentiable in t> 0 and

− lim
t→∞

d

dt
log fμ(t) = λ ∈ (0, λ0]. (3.4)

Then we have

lim
t→∞

Pμ[T0 > t + s]

Pμ[T0 > t]
= e−λs (s> 0). (3.5)

Proof. Set g(u) = fμ(log u) for u> 1. From (3.4) we have

lim
t→∞

tg′(t)
g(t)

= lim
t→∞

etg′(et)

g(et)
= −λ.
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Then from [13, Theorem 2], the function g varies regularly at ∞ with exponent −λ. From
L’Hôpital’s rule, we have for u = es > 1

lim
t→∞

Pμ[T0 > t + log u]

Pμ[T0 > t]
= lim

t→∞
fμ(t + log u)

fμ(t)
= lim

t→∞
g(etu)

g(et)
= u−λ = e−λs. �

Remark 3.1. We might expect Proposition 3.1 to be extended, with (3.4) replaced by

log fμ(t) ∼ −λt (t → ∞), (3.6)

which is weaker than (3.4) by L’Hôpital’s rule. In general, however, it does not hold. We give
a counterexample that satisfies (3.6) but not (3.5). Let us find a positive function f of the form

f (t) = e(−λ+ε(t))t,
with a function ε(t) vanishing at ∞ but not satisfying∫ ∞

t+s f (u) du∫ ∞
t f (u) du

−−−→
t→∞ e−λs (s> 0). (3.7)

By the change of variables, we can see that (3.7) is equivalent to the function

h(t) :=
∫ ∞

t
u−λ−1+ε(log u) du

varying regularly with exponent −λ at ∞. If the function ε is non-increasing, by the monotone
density theorem [1, Theorem 1.7.2] it is equivalent to the slow variation of

k(s) = sε(log s) (s> 1).

We now set
ε(s) = 2−n (4n < s ≤ 4n+1, n ∈N),

and then the function ε vanishes at ∞ and

k(e · exp(4n))

k( exp(4n))
= exp(2n + 2−n)

exp(2n+1)
= exp(−2n + 2−n) −−−→

n→∞ 0.

So the function k does not vary slowly.

We give a sufficient condition for the existence of the hitting densities of 0. For this purpose,
we need the following condition on decay of the spectral measure σ of − d

dm
d
ds :

(S)
∫ ∞

0
e−λtσ (dλ)<∞ (t> 0).

A sufficient condition for (S) is as follows.

Proposition 3.2. Let m be a speed measure and s be a scale function on (0, b)(0< b ≤ ∞).
Then if |s(0)|<∞ and

m(x, c] ≤ C(s(x) − s(0))−δ (0< x< c)

for some C> 0, 0< c< b and 0< δ < 1 (in this case, the boundary 0 is automatically regular
or exit), the condition (S) holds.
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The proof of Proposition 3.2 is given in [25]. The following result by Yano [26] gives
existence and a spectral representation of the hitting densities.

Proposition 3.3. ([26, Proposition 2.1].) Assume (S) holds. Then for any 0< x< b the distri-
bution of T0 under Px has density fx(t) on (0,∞) with respect to the Lebesgue measure, that is,
the following hold:

Px[T0 ∈ dt] = fx(t) dt (0< x< b, t> 0).

The hitting densities have a spectral representation,

fx(t) =
∫ ∞

0
e−λtψ−λ(x)σ (dλ) (0< x< b, t> 0), (3.8)

and have another representation,

fx(t) = d

ds(y)
p(t, x, y)

∣∣∣∣
y=0

(0< x< b, t> 0).

4. Hitting densities of Kummer diffusions with negative drift

Let us give the hitting densities of Kummer diffusions with negative drift.
First we give a speed measure and a scale function for Kummer diffusions with negative

drift. Fix α > 0 and β ∈R. From (1.2) we have

L(0) =L(α,β) = x
d2

dx2
+ (−α+ 1 − βx)

d

dx
= d

dm(0)

d

ds(0)

with

dm(0)(x) := dm(α,β)(x) = x−α e−βx dx, ds(0)(x) := ds(α,β)(x) = xα−1 eβx dx. (4.1)

In addition, for γ ≥ 0, we have

L(γ ) =L(α,β,γ ) = x
d2

dx2
+

(
−α + 1 − βx + xg′

γ (x)

gγ (x)

)
d

dx
= d

dm(γ )

d

ds(γ )
,

with
dm(γ ) = g2

γ dm(0) ds(γ ) = g−2
γ ds(0),

where gγ is the function given in (1.3). Note that since gγ (0) = 1, the classification of the
boundary 0 for L(γ ) does not depend on γ ≥ 0. The boundary ∞ for L(γ ) is always natural,
which we will see in Proposition 4.1. We also have

L(γ ) =L(0) + xg′
γ

gγ

d

dx
,

and since
g̃γ (x) = gγ (x2/2),

it follows that

L̃(α,β,γ ) = L̃(α,β,0) + g̃′
γ

g̃γ

d

dx
,

which implies (1.4).
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We summarize several results on the hitting densities for Kummer diffusions with negative
drift. Note that from (4.1) and Proposition 3.2, the condition (S) holds for d

dm(0)
d

ds(0) .

Theorem 4.1. For the process Y (α,β,γ ) (α > 0, β ∈R, γ ≥ 0), the hitting densities f (γ )
x of 0

and the spectral measure σ (γ ) for L(γ ) are given by

f (γ )
x (t) = e−γ t

gγ (x)
f (0)
x (t) (0< x<∞, t> 0) (4.2)

and

σ (γ )(dλ) = σ (0)(d(λ− γ )), (4.3)

where

f (0)
x (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

�(α)
xαt−α−1 e−x/t (β = 0),

xα eβt

�(α)

(
β e−βt

1 − e−βt

)1+α
exp

(−xβ e−βt

1 − e−βt

)
(β �= 0),

(4.4)

and

σ (0)(dλ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βα+1
∞∑

n=0

(α)n+1

n!�(α)
δβ(n+α)(dλ) (β > 0),

1

�(α)2
λα dλ (β = 0),

(−β)α+1
∞∑

n=0

(α)n+1

n!�(α)
δ(−β)(n+1)(dλ) (β < 0),

(4.5)

where (a)k (a ∈R, k ∈N) is a Pochhammer symbol,

(a)k = a(a + 1) · · · (a + k − 1).

In particular, we have

λ
(γ )
0 =

⎧⎪⎨
⎪⎩
αβ + γ (β > 0),

γ (β = 0),

−β + γ (β < 0).

Remark 4.1. From [16, Section 3.7], for example, we have

gγ (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2α−1�(α)
(2

√
γ x)αKα(2

√
γ x) (β = 0),

�(α+ γ /β)

�(α)
(βx)αU(α+ γ /β, α+ 1; βx) (β > 0),

�(1 − γ /β)

�(α)
(−βx)α eβxU(1 − γ /β, α + 1; − βx) (β < 0),

(4.6)
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where Kα denotes the modified Bessel function of the second kind (see e.g. [16, Section 3.1])
and U denotes the Tricomi confluent hypergeometric function

U(a, b; x) = 1

�(a)

∫ ∞

0
e−sxsa−1(1 + s)b−a−1 ds (a> 0, b ∈R, x> 0).

Note that

Kα(x) ∼ 2α−1�(α)x−α, U(a, b; x) ∼ �(b − 1)

�(a)
x−b+1 (x → +0, a> 0, b> 1)

and

Kα(x) ∼
√
π

2x
e−x, U(a, b; x) ∼ x−a (x → +∞, a> 0) (4.7)

(see e.g. [16, Section 3.14.1]).

Although Theorem 4.1 can be easily shown by compiling some known results, we give a
proof for completeness.

Proof of Theorem 4.1. First we show (4.2) and (4.4). We denote the transition probability of
Y (γ ) = Y (α,β,γ ) by

Px
[
Y (γ )

t ∈ dy
] = p(γ )(t, x, y) dm(γ )(y).

Then we have

p(γ )(t, x, y) = e−γ t p(0)(t, x, y)

gγ (x)gγ (y)

(see e.g. [24, p. 172]), where we write Px for the underlying probability measure for Y (γ )

starting from x. From [2, Appendix 1], the transition density p(0)(t, x, y) is given by

p(0)(t, x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

t
(xy)α/2 e−(x+y)/tIα

(
2
√

xy

t

)
(β = 0),

β e−αβt/2

1 − e−βt
(xy)α/2 exp

(
− (x + y)β e−βt

1 − e−βt

)
Iα

(
2
√

xyβ e−βt/2

1 − e−βt

)
(β �= 0),

where the function Iν is the modified Bessel function of the first kind:

Iν(x) =
∞∑

n=0

1

n!�(n + ν + 1)

(
x

2

)ν+2n

(ν ∈R, x ∈R).
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We now have

Px
[
T (γ )

0 > t
] =

∫ b

0
p(γ )(t, x, y) dm(γ )(y)

= e−γ t

gγ (x)

∫ b

0
p(0)(t, x, y)gγ (y) dm(0)(y)

= e−γ t

gγ (x)

∫ b

0
p(0)(t, x, y) dm(0)(y)

∫ ∞

0
e−γ uf (0)

y (u) du

= e−γ t

gγ (x)

∫ ∞

0
e−γ u du

∫ b

0
p(0)(t, x, y)f (0)

y (u) dm(0)(y)

= e−γ t

gγ (x)

∫ ∞

0
e−γ uf (0)

x (u + t) du

= 1

gγ (x)

∫ ∞

t
e−γ uf (0)

x (u) du.

This shows (4.2). Then from Proposition 3.3 we obtain (4.4).
From [24, p. 173] we have (4.3). We show (4.5). First we consider the case β > 0. By some

computation, we can check that

ψλ(x) = 1

α
xαM(λ/β + α, 1 + α; βx) (x> 0, λ ∈R), (4.8)

where the function M is Kummer’s confluent hypergeometric function:

M(a, b; x) =
∞∑

n=0

(a)nxn

(b)nn! (a, b ∈R, x ∈R).

We consider the values of λ for which the function ψλ is square-integrable. We may assume
λ< 0. Since the asymptotic behavior of the function M is given by

M(a, b; x) ∼ �(b)

�(a)
xa−b ex (x → ∞)

for a �= 0,−1,−2, . . . (see e.g. [16, p. 289]), the function ψλ is not square-integrable with
respect to dm when λ/β + α �= 0,−1,−2, . . . . When λ/β + α= 0,−1,−2, . . . , the function
ψλ is a polynomial and obviously square-integrable with respect to dm. Note that

M(−n, 1 + α; βx) = n!
(1 + α)n

L(α)
n (βx),

where L(α)
n (x) is the nth Laguerre polynomial of parameter α, that is,

L(α)
n (x) = ex x−α

n!
dn

dxn
(e−xxn+α) (n ∈N)

(see e.g. [16, p. 241]). Since the Laguerre polynomials {L(α)
n (x)}n comprise an orthogo-

nal basis of L2((0,∞), xα e−x dx), the functions {ψ−β(α+n)(x)} are an orthogonal basis on
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L2((0,∞), x−α e−βx dx). Hence the spectral measure only has the point spectrum, and the
support of σ is {β(α + n), n ≥ 0}. Since we have∫ ∞

0
L(α)

i (x)L(α)
j (x)xα e−x dx = δij

�(i + α+ 1)

i! (i, j ∈N)

(see e.g. [16, p. 241]), it follows that∫ ∞

0
ψ−β(α+n)(x)2 dm(x) = (n!)2

α2βα+1{(1 + α)n}2

∫ ∞

0
L(α)

n (x)2xα e−x dx

= n!�(α)

βα+1(α)n+1
.

Hence we obtain

σ {β(n + α)} = βα+1(α)n+1

n!�(α)
(n ≥ 0).

Next we show the case β < 0. Let us consider the map

L2((0,∞), dm(α,−β))  f �−→ eβxf ∈ L2((0,∞), dm(α,β)). (4.9)

Obviously this map is unitary. Moreover, since we have

L(α,β)(eβxψ
(α,−β)
λ (x)

) = (λ− β(α − 1))
(
eβxψ

(α,−β)
λ (x)

)
and

d

ds(α,β)

(
eβxψ

(α,−β)
λ (x)

) = βx1−αψ (α,−β)
λ (x) + eβx d

ds(α,−β)
ψ

(α,−β)
λ (x),

we can see from (4.8) that
ψ

(α,β)
λ (x) = eβxψ

(α,−β)
λ+β(α−1),

where we denote the function defined in (2.2) for L(α,β) by ψ (α,β)
λ . Then, from the unitarity of

the map (4.9) and the argument for the case β > 0, the functions
{
ψ

(α,β)
−β(n+1), n ≥ 0

}
comprise

the orthogonal basis of L2((0,∞), dm(α,β)) and therefore we obtain (4.5) for β < 0.
Finally, we show the case β = 0. Note that we can see from some computation that

ψλ(x) = �(α)

(
x

λ

)α/2
Iα(2

√
λx) (x> 0, λ ∈R).

From (3.8) and (4.4) we have∫ ∞

0
e−λtψ−λ(x)σ (0)(dλ) = 1

�(α)
xαt−α−1 e−x/t.

Since
d

dx
(xνIν(x)) = xνIν−1(x), Iν(x) ∼ ex

√
2πx

(ν ∈R, x → ∞)

(see e.g. [16, p. 67, p. 139]), we can see that∫ ∞

0
e−λt

∣∣∣∣ d

dx
ψ−λ(x)

∣∣∣∣σ (0)(dλ)<∞ (x> 0).

https://doi.org/10.1017/jpr.2022.2 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.2


Quasi-stationary distributions for one-dimensional diffusions 1121

Thus we have ∫ ∞

0
e−λtσ (0)(dλ) = d

ds(x)

∫ ∞

0
e−λtψ−λ(x)σ (0)(dλ)

∣∣∣∣
x=0

= d

ds(x)

1

�(α)
xαt−α−1 e−x/t

∣∣∣∣
x=0

= αt−α−1

�(α)
.

From the uniqueness of the Laplace transform, we obtain (4.5). �

We give the classification of the boundary ∞ for L(γ ).

Proposition 4.1. For α > 0, β ∈R, γ ≥ 0, the boundary ∞ for L(γ ) is natural.

Proof. Let β > 0. From (4.6) and (4.7) we have

s(γ )(x) − s(γ )(1) =
∫ x

1
yα−1 eβy dy

g2
γ (y)

�
∫ x

1
yα+2γ /β−1 eβy dy −−−→

x→∞ ∞,

where f1 � f2 means that there exists a constant c> 0 such that (1/c)f1(x) ≤ f2(x) ≤ cf1(x) for
large x> 0. Note that from L’Hôpital’s rule, it holds for δ ∈R that∫ ∞

x
yδ e−βy dy ∼ 1

β
xδ e−βx (x → ∞).

We have∫ ∞

1
ds(γ )(x)

∫ ∞

x
dm(γ )(y) �

∫ ∞

1
xα+2γ /β−1 e−βx dx

∫ ∞

x
y−α−2γ /β e−βy dy

�
∫ ∞

1

dx

x

= ∞.

Thus the boundary ∞ is natural. We can show the cases of β = 0 and β < 0 by a similar
argument and hence we omit them. �

5. Convergence to non-minimal quasi-stationary distributions for Kummer diffusions
with negative drift

Let us apply Theorem 3.1 to Kummer diffusions with negative drift, and give a sufficient
condition on initial distributions under which the conditional process converges to each non-
minimal quasi-stationary distribution specified.

We classify Y (γ ) = Y (α,β,γ ) (α > 0, β ∈R, γ ≥ 0) into the following five cases by β and γ :

Case 1 β = 0, γ > 0,

Case 2 β > 0, γ ≥ 0,

Case 3 β < 0, γ > 0,

Case 1′ β = 0, γ = 0,

Case 3′ β < 0, γ = 0.

(5.1)
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We give a necessary and sufficient condition for Kummer diffusions with negative drift to
satisfy the condition of Theorem 2.1.

Proposition 5.1. For L(α,β,γ ) (α > 0, β ∈R, γ ≥ 0), the condition of Theorem 2.1 holds if and
only if one of Cases 1–3 in (5.1) holds.

Proof. Let β > 0. Obviously m(γ )(1,∞)<∞ and s(γ )(∞) = ∞. From (4.7) we have

m(γ )(x,∞)
(
s(γ )(x) − s(γ )(1)

) � (
x−α−2γ /β e−βx)(xα+2γ /β−1 eβx)

� 1/x −−−→
x→∞ 0.

Let β = 0. We can easily check s(γ )(∞) = ∞ for γ ≥ 0 and

lim
x→∞ m(0)(x,∞)

(
s(0)(x) − s(0)(1)

) = ∞.

For γ > 0, from (4.7) we have

m(γ )(x,∞)
(
s(γ )(x) − s(γ )(1)

) � e−4
√
γ x · e4

√
γ x = 1.

Let β < 0. From (4.1) we obtain s(0)(∞)<∞. For γ > 0, we have from (4.6)

s(γ )(x) − s(γ )(1) �
∫ x

1
y−α−γ /β e−βy dy

� x1−α−2γ /β e−βx −−−→
x→∞ ∞.

Similarly, we can show m(γ )(1, x) � x−2+α+2γ /β eβx and thus m(γ )(1,∞)<∞. Then we have

m(γ )(x,∞)
(
s(γ )(x) − s(γ )(1)

) � 1/x −−−→
x→∞ 0. �

The following is another main result of the present paper. For Kummer diffusions with neg-
ative drift, it gives a sufficient condition for an initial distribution under which the conditioned
distribution converges to a non-minimal quasi-stationary distribution.

Theorem 5.1. Let X = Y (γ ) = Y (α,β,γ ) (α > 0, β ∈R, γ ≥ 0) satisfying one of Cases 1–3 in
(5.1) and let μ ∈P(0,∞). Then the following hold.

(i) If Case 1 holds and μ(dx) = ρ(x) dx for some ρ ∈ L1((0,∞), dx) and

log ρ(x) ∼ (δ− 2
√
γ )

√
x (x → ∞)

for some 0< δ < 2
√
γ , then we have

μt −−−→
t→∞ νλ

with λ= γ − δ2/4 ∈ (
0, λ(γ )

0

)
, where λ(γ )

0 = γ > 0 is the spectral bottom.

(ii) If Case 2 holds and
μ(x,∞) ∼ x−α−γ /β+δ	(x) (x → ∞) (5.2)

for some 0< δ < α + γ /β and some slowly varying function 	 at ∞, then we have

μt −−−→
t→∞ νλ

with λ= β(α − δ) + γ ∈ (
0, λ(γ )

0

)
, where λ(γ )

0 = αβ + γ > 0 is the spectral bottom.
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(iii) If Case 3 holds and
μ(x,∞) ∼ x−1+γ /β+δ	(x) (x → ∞)

for some 0< δ < 1 − γ /β and some slowly varying function 	 at ∞, then we have

μt −−−→
t→∞ νλ

with λ= −β(1 − δ) + γ ∈ (
0, λ(γ )

0

)
, where λ(γ )

0 = −β + γ > 0 is the spectral bottom.

The proof of Theorem 5.1 will be given after several preparatory results.

Remark 5.1.

• When α = 1/2, β = 0 and γ > 0, the process
√

2Y (1/2,0,γ ) is a Brownian motion with
negative drift −√

2γ t. Hence Theorem 5.1(i) gives a generalization of Theorem 1.1.

• In Theorem 5.1(ii), if μ(dx) = ρ(x) dx for ρ ∈ L1((0,∞), dx) and

ρ(x) ∼ x−α−γ /β+δ−1	(x) (x → ∞)

for a slowly varying function 	, then (5.2) holds from Karamata’s theorem
[1, Proposition 1.5.8]. Hence Theorem 5.1(ii) is an extension of Theorem 1.2.

For the process Y (α,β,γ ), the first hitting uniqueness holds on P(0,∞). We show this fact in
more general settings as follows.

Theorem 5.2. Let X be a d
dm

d
ds -diffusion on [0, b)(0< b ≤ ∞) and s(b) = ∞. Suppose the

hitting densities fx(t) of 0 have the following form:

fx(t) = u(x)w(t) e−v(x)y(t) (0< x< b, t> 0) (5.3)

for some strictly positive functions u(x) and v(x) on (0, b) and some strictly positive function
w(t) and y(t) on (0,∞). In addition, suppose v is strictly increasing continuous and y(0,∞) =
(0,∞). Then the first hitting uniqueness holds on P(0,∞).

Proof. Suppose μ1 and μ2 ∈P(I) satisfy

Pμ1[T0 ∈ dt] = Pμ2 [T0 ∈ dt]

and set μ=μ1 −μ2. We have ∫ b

0
fx(t)μ(dx) = 0 (t> 0). (5.4)

Note that from the continuity of fx(t)/w(t) with respect to t, the equality (5.4) holds for every
t> 0. From (5.3) and by a change of variables, we have

0 =
∫ v(b)

v(0)
u
(
v−1(x)

)
e−xy(t)μ

(
v−1(dx)

)
.

Since y(0,∞) = (0,∞), from the uniqueness of the Laplace transform we obtain

u(x)μ(dx) = 0 on (0, b).

Since u(x)> 0, we obtain the desired result. �
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Now we go on to the proof of Theorem 5.1. For the proof of Theorem 5.1(i) we need the
following lemma, which enables us to cut off the integral region for the asymptotic behavior
of the Laplace transform.

Lemma 5.1. Let f : (0,∞) → [0,∞) and assume

log f (x) ∼ δ
√

x (x → ∞) (5.5)

for δ > 0 and ∫ ∞

0
e−x/tf (x) dx<∞ (t> 0).

Then we have

log
∫ ∞

0
e−x/tf (x) dx ∼ δ2

4
t,

and for every ε > 0

∫ ∞

0
e−x/tf (x) dx ∼

∫ (δ2/4+ε)t2

(δ2/4−ε)t2
e−x/tf (x) dx (t → ∞).

Proof. Since we have

lim
t→∞

∫ 1

0
e−x/tf (x) dx<∞ and lim

t→∞

∫ ∞

1
e−x/tf (x) dx = ∞,

we may assume without loss of generality that f (x) = 0 for 0< x< 1. It is enough to show that

lim
t→∞

∫ (δ2/4−ε)t
1 e−x/tf (x) dx∫ ∞

1 e−x/tf (x) dx
= 0 (5.6)

and

lim
t→∞

∫ ∞
(δ2/4+ε)t e−x/tf (x) dx∫ ∞

1 e−x/tf (x) dx
= 0. (5.7)

Let

h(x) = log(x2f (x))√
x

− δ (x> 1).

Then from (5.5) we have limx→∞ h(x) = 0. It follows that∫ ∞

1
e−x/tf (x) dx =

∫ ∞

1
e−ϕt(x) dx

x2
,

where
ϕt(x) = x/t − (δ + h(x))

√
x.

Note that

ϕt(x) = 1

t

(√
x − δ+ h(x)

2
t

)2

− (δ + h(x))2

4
t.

Let θ := δ/2 − √
δ2/4 − ε > 0 and take R> 1 so that

|h(x)|< θ and
2δ|h(x)| + h(x)2

4
< θ2/8 (x> R).
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Then for R< x< (δ2/4 − ε)t2 it follows that

δ+ h(x)

2
t − √

x>
δ+ h(x)

2
t − t

√
δ2/4 − ε >

θ

2
t

and thus
ϕt(x) ≥ (θ2/8 − δ2/4)t.

Then it follows that ∫ (δ2/4−ε)t2

R
e−ϕt(x) dx

x2
≤ e(δ2/4−θ2/8)t

∫ (δ2/4−ε)t2

R

dx

x2

≤ e(δ2/4−θ2/8)t.

To show (5.6), it is enough to show

log
∫ ∞

1
e−x/tf (x) dx ∼ δ2

4
t (t → ∞). (5.8)

From [1, Theorem 4.12.10(ii)], we have

log
∫ x

0
f (y) dy ∼ δ

√
x (x → ∞).

From Kohlbecker’s Tauberian Theorem [1, Theorem 4.12.1], we therefore obtain (5.8). We can
show (5.7) by a similar argument. �

Now we proceed to the proof of Theorem 5.1.

Proof of Theorem 5.1. First we show (i). From Proposition 3.1 and Theorem 4.1, it is enough
to show that

lim
t→∞

d

dt
log

∫ ∞

0
e−x/t xα/2

Kα(2
√
γ x)

μ(dx) = δ2/4.

From (4.7) we have

log ρ̃(x) := log
xα/2ρ(x)

Kα(2
√
γ x)

∼ δ
√

x (x → ∞). (5.9)

Take ε > 0. Since

d

dt
log

∫ ∞

0
e−x/t xα/2

Kα(2
√
γ x)

μ(dx) =
∫ ∞

0 e−x/txρ̃(x) dx

t2
∫ ∞

0 e−x/tρ̃(x) dx
,

we have from (5.9) and Lemma 5.1

∫ ∞
0 e−x/txρ̃(x) dx

t2
∫ ∞

0 e−x/tρ̃(x) dx
∼

∫ (δ2/4+ε)t2
(δ2/4−ε)t2 e−x/txρ̃(x) dx

t2
∫ (δ2/4+ε)t2

(δ2/4−ε)t2 e−x/tρ̃(x) dx
,

and obviously we have

∫ (δ2/4+ε)t2

(δ2/4−ε)t2
e−x/txρ̃(x) dx � (δ2/4 ± ε)t2

∫ (δ2/4+ε)t2

(δ2/4−ε)t2
e−x/tρ̃(x) dx.
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Since ε > 0 can be arbitrarily small, we obtain∫ ∞
0 e−x/txρ̃(x) dx

t2
∫ ∞

0 e−x/tρ̃(x) dx

t→∞−−−→ δ2/4.

Next we show (ii). From the proof of Proposition 3.1, it is enough to show that the function
fμ(log t) varies regularly at ∞ with exponent −λ. From Theorem 4.1, we have

fμ(log t) = 1

�(α)
tβ−γ h(t)1+α

∫ ∞

0

xα

gγ (x)
e−h(t)xμ(dx),

where

h(t) = β

tβ − 1
(t> 1).

The inverse function h−1 of h is given by

h−1(s) =
(

1 + β

s

)1/β

(s> 0).

Note that the function h−1(s) varies regularly at s = 0 with exponent −1/β. By considering
the function f (log h−1(s)), it follows that the function fμ(log t) varies regularly at t = ∞ with
exponent −λ if and only if the function∫ ∞

0

xα

gγ (x)
e−sxμ(dx)

varies regularly at s = 0 with exponent −α − (γ − λ)/β. From Karamata’s Tauberian Theorem
[1, Theorem 1.7.1], it is equivalent to the function∫ x

0

yα

gγ (y)
μ(dy)

varying regularly at x = ∞ with exponent α + (γ − λ)/β. Then from (4.7) and [1, Theorem
1.6.4], it is equivalent to the functionμ(x,∞) varying regularly at x = ∞ with exponent −λ/β,
and therefore we obtain (ii).

Finally, we show (iii). The proof of this case is quite similar to that of (ii). From
Theorem 4.1, we have

fμ(log t) = 1

�(α)
tβ−γ h(t)1+α

∫ ∞

0

xα

gγ (x)
e−h(t)xμ(dx).

Note that for β < 0 we obtain limt→∞ h(t) = −β. Then the function fμ(log t) varies regularly
at t = ∞ with exponent −λ if and only if the function∫ ∞

0

xα

gγ (x)
e−h(t)xμ(dx) = (−β)−α�(α)

�(1 − γ /β)

∫ ∞

0

e−(h(t)+β)x

U(1 − γ /β, α+ 1; − βx)
μ(dx) (5.10)

varies regularly at t = ∞ with exponent −λ− β + γ . Note that the function h−1(s) varies reg-
ularly at s = −β + 0 with exponent −1/β. Thus, by denoting u = s + β, the regular variation
at t = ∞ of (5.10) with exponent −λ− β + γ is equivalent to that at u = 0 of∫ ∞

0

e−ux

U(1 − γ /β, α+ 1; −βx)
μ(dx)

with exponent 1 + (λ− γ )/β. Using (4.7), the rest of the proof can be made by the same
argument in (ii) and hence we omit it. The proof is complete. �
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