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SUMMARY
In this paper a path planning method for off-line program-
ming of a joint robot is described. The method can
automatically choose the easiest and safest route for an
industrial robot from one position to another. The method is
based on the use of a Self Organised Feature Map (SOFM)
neural network. By using the SOFM neural network the
method can adapt to different working environments of the
robot. According to test results one can conclude that the
SOFM neural network is a useful tool for the path planning
problem of a robot.
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1. INTRODUCTION
Path planning is one of the main processes for an industrial
robot. A path planning procedure should be easy to use and
as fast as possible. The speed of procedure is the key issue
for industrial productivity. If the path planning procedure is
fast enough, the same robot can easily be used for many
working tasks.

A traditional method for the path planning is based on the
programming sequence. A robot expert sets the robot joint
locations during the path from one working location to
another. These sequences will take up a lot of time because
working environments contain always many robot move-
ments. On the other hand, the most simple part of path
planning programming can be very boring work for
programmers. These facts point to the need for an automatic
path planning.

A configurational space method is one of the oldest
automatic path planning methods. It gives the exact
mathematical solution for the path planning problem. On
the other hand, this method requires a lot of information for
the solution. That’s why the method needs a lot of memory
and calculation time. Even if the computer technology is
developing rapidly, these technical requirements are too
difficult for up-to-date computers that can be bought at a
realistic price. In today’s world it is unrealistic to use this
method for real planning problems.

The amount of the path planning data for computers must
be decreased in order to make the calculation rapid enough.
When the amount of the data is decreased, the needed

information for a mathematical complete solution is also
missed. That’s why a new path planning procedure that can
work with an incomplete system information must be found.
Neural networks are used for applications where the
application does not have all of it’s working environmental
information. In these cases the environment can be so
complicated or difficult to measure that it is impossible to
obtain all information. Neural networks are also used for
path planning problems of different kinds of robot types.1—4

There neural networks are used to imitate the characteristics
of working environments or to build a function between
different working situations and suitable behaviour of the
robot. The main benefit of neural network based path
planning methods is that they can adapt to the current
working environment of the robot by the learning process of
a neural network.

The basic problem in path planning is how we can move
a joint robot from one working location to another. Usually,
the working environment of the robot allows several
different possibilities to perform a certain movement. The
path planning system must know which movements are not
suitable for a robot in the current working environment.

The aim of this work has been to develop a rough level
path planning method for off-line programming of the robot
that can automatically choose the easiest and safest route for
an industrial joint robot moving from one position to
another.

2. DEVELOPED PROCEDURE
Path planning can be separated into two different tasks:
These tasks  are rough level and fine level path planning. A
path planning method must make a decision which is the
suitable path for the kinematic behaviour of the robot. On
the other hand, a path planning method must know how to
move the joints of the robot during a certain path. In this
research we have designed a rough level path planning
method which can calculate ‘‘goodness’’ values for alter-
native paths. According to ‘‘goodness’’ values the path
planning system can choose the right path to move the tool
of the robot between two working locations.

2.1 Environment definition
During the environmental definition the robot expert defines
all possible types of working environments of the robot.
Environmental types are defined by sample environments.
Each sample environment definition consists of obstacle
definition, skeleton-surface definition, the stand point and
two working locations of the robot.
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Obstacles are different objects in a working environment.
A skeleton-surface describes the free space in the environ-
ment so that the surface is as far as possible from all
obstacles. Two working locations of the robot show the start
and end locations of the robot for the current moving task.

A skeleton-surface contains an infinite amount of points.
Because of the limit of the computer memory the amount of
skeleton-surface data is reduced. Therefore a skeleton-grid
has been used to approximate the real skeleton-surface. A
skeleton-grid contains grid points on a skeleton-surface and
movements between grid points. The path planning method
assumes that the tool of the robot moves across a skeleton-
grid when the robot is moving between two working
locations. It can be said that the path planning method can
calculate ‘‘goodness’’ values for different skeleton-grid
paths. Figure 1 shows all the elements needed to define the
working environment of the robot.

The ‘‘goodness’’ of the sample environment is an
important issue. The path planning system is based on
learning by example. If the sample base for the environ-
mental definition does not include examples needed for
some types of environment, a path planning method cannot
define ‘‘goodness’’ values for these missing types of
environment routes. A good sample of environmental
definition includes all types of working environments of the
robot but it must not include all possible working environ-
ments.

2.2 Path description structure and neural network
teaching
After the environmental definition, enough information is
available to learn different kinds of paths in the working
environment of the robot. Now the path planning method
will produce a self-organised feature map (SOFM) neural
network. After the teaching sequence, a SOFM neural
network includes the description for different kinds of
skeleton-grid paths. The path planning method describes
paths using a certain path description structure.

The main reason for using the SOFM neural network for
the path planning method is its capability to classify
characteristics of the input space in a defined number of
classes.5 In the path planning method the input space consist
of skeleton-grid paths described by the path description

structure; SOFM classifies these paths into certain number
of path classes. From the path planning point of view it is
much easier to handle a certain number of path classes than
the real space of skeleton-grid paths. The classification
capability of a SOFM neural network is also used for the
path planning method of a mobile robot.1

2.2.1. Path description structure. Path planning methods
based on neural networks are totally depended on the
empirical information obtained from the working environ-
ment of the robot. Input variables of the used neural network
must be chosen so that they describe different working
situations of the robot as unambiguously as possible.
Usually, this requirement influences the large input variable
space of the neural network system.1,2,4 In this respect, our
path planning method does not differ from the methods
described in the bibliography.

The path description structure describes paths so that it is
possible to separate different kinds of skeleton-grid paths.
Path ‘‘goodness’’ is dependent on the kinematic behaviour
of the actual robot. Structure variables are chosen so that
they describe the current path from a robot kinematic point
of view. The skeleton-grid path is divided to a defined
number of information points. The characteristic of each
point is described using seven variables. These variables
are:

d The tool moving direction of the robot on the current
skeleton-grid path

d Direction from the current robot TCP (tool centre point)
to the robot standpoint location

d Distance from the current robot TCP to the robot
standpoint location

d Direction from the current robot TCP to the nearest
environment obstacle wall

d Distance from the current robot TCP to the nearest
environment obstacle wall

d An average distance from the current robot TCP to the
three nearest obstacle walls

d An average direction from the current robot TCP to the
three nearest obstacle walls

A path description structure is a vector which includes
(np7) embryos. knl is the number of defined information
points in a skeleton-grid path. Figure 2 shows the sign-
ificance of the skeleton-grid path’s information points.

Fig. 1. Working environment elements of the robot (2D picture).
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2.2.2. Neural network teaching. The SOFM neural
network teaching process loads all obtained sample environ-
ments and defines all possible skeleton-grid paths in each
sample environment from one working location to another
working location. Figure 3 shows examples for different
possible skeleton-grid paths between two working locations.
We have used a standard SOFM learning algorithm for path
teaching. This algorithm is described in reference 5. Path
description structure vectors are input vectors for the SOFM
neural network learning process.

After the teaching process the current SOFM neural
network contains descriptions of different kinds of skeleton-
grid paths. The network contains one kind of picture which
describes sample paths characteristics. Each node of the
SOFM neural network describes one type of skeleton path.
According to the properties of the SOFM neural network the
accuracy of the path is dependent on the SOFM neural
network density. A dense network can describe sample paths
more exactly than a sparse one.

2.3 Path goodness definition
When defining the path ‘‘goodness’’ the robot is driven
along different skeleton-grid paths. The method defines the

‘‘goodness’’ of each SOFM neural network node to
represent the current testing path. After that, it will increase
or decrease the ‘‘goodness’’ value of the node according to
the ‘‘goodness’’ of the testing path. If the testing path is
satisfactory for a kinematic behaviour of the robot, the
‘‘goodness’’ value of the node will be increased; otherwise,
it will be decreased.

After this operation, each of the classified routes
described using a SOFM neural network has also a
‘‘goodness’’ value. The ‘‘goodness’’ value of the classified
route is a probability value that shows how good this type of
path is for the kinematic behaviour of the robot. The
reliability of the ‘‘goodness’’ value depends on the number
of sample environments that are used for the path ‘‘good-
ness’’ definition. It is important to use as large sample
environment database as possible for path ‘‘goodness’’
definition.

2.4 Use of the path planning system
During the path planning task the system must choose the
right path for the movement. The system calculates all
possible skeleton-grid paths and checks their ‘‘goodness’’
values using the route classification information. The

Fig. 2. Information points of the skeleton-grid path.

Fig. 3. An example of different skeleton-grid paths between two working locations.
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skeleton-grid path which has the best ‘‘goodness’’ values is
the winner. The system will use this path for the movement.
Figure 4 describes the problem of choosing of the skeleton-
path. In this example the skeleton path one is impossible for
the robot. Therefore skeleton path two is the only possible
path between these two working locations.

3. DESCRIPTION OF THE TESTING SEQUENCE
AND TESTING RESULTS
The goal of the method testing was to test how useful the
developed path planning method is for joint robots. On the
other hand, it was important to find the main factor that
affects the behaviour of the path planning system.

Tests were made in a two-dimensional space because the
first tests for path planning method were easier to do and
test results were also easier to analyse in a two-dimensional
space than in a real three-dimensional space. Obviously, test
results in the two-dimensional space must be good enough
before it is reasonable to test the method in the three-
dimensional space. Tests were made using testing programs
that were made especially for this testing purpose. Testing
programs can handle two-dimensional working environ-
ments of the robot. Obstacles in the working environment
were two-dimensional obstacle blocks and the skeleton-grid
surface was described as a two-dimensional line graph. The
joint robot was described as a two-dimensional line-robot
that has three joints. The test robot can move according to
simple movement rules that are defined in the testing
program. Figure 5 shows an example of a two dimensional
testing environment.

The testing sequence consisted of the algorithm steps
described above in chapter two. During the first algorithm
step all kinds of necessary working environments of the
robot were defined. The task of the second step was to teach
the SOFM neural network. After this step the SOFM neural
network included pictures of different kinds of path routes.

The aim of the third step was to calculate ‘‘goodness’’
values for classified routes. After these three steps we define
testing environments and calculated the performance of the
path planning method.

There were 52 different working environments defined
for the algorithm steps one, two and three, and 61  different
environments to define ther performance of the path
planning method. Each of these environments includes
several skeleton path routes. The total number of paths used
for the method initialisation process were 5016 and 5928 for
the performance testing process. These environments can be
divided into four different classes (Fig. 6). Environments are
defined so that the environment database contains examples
for each of the environment classes. Examples in a certain
class are not exactly the same as those in some other classes,
but they have some common characteristics.

In real path planning, the working environments of the
robot cannot be exactly the same as used for the method
initialisation during the algorithm steps one, two and three.
That’s why working environments for the method perform-
ance testing differ from the environments that are used for
the method initiation process. The method must give right
results for the ‘‘goodness’’ of skeleton path routes, although
routes are not the same as those used during the method
initiation process.

In the path planning method described in reference 4 a
randomised definition of the working environment of the
robot has been used to ensure a variation of the working
environment for the neural network teaching process. In this
research work environments used for the simulation are
defined by a system operator. From the joint robot point of
view a randomised environment definition process could
generate too many environments which are totally impos-
sible for the kinematics of a joint robot. The special
definition of the working environment ensures that every
environment contains at least some possible routes for the
robot. On the other hand, this does not restrict the variation

Fig. 4. Skeleton-path selection problem.
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of different skeleton-grid routes; working environments
always differ somehow from each other.

The aim of testing the algorithms is to measure how good
a predictor the path planning method is for these 61 testing
environments. The path planning method gives a ‘‘good-
ness’’ probability value for each testing route. Skeleton
routes are tried that are good enough for the robot kinematic
behaviour. The testing program measures the real ‘‘good-

ness’’ probability for each classified skeleton route during
the testing sequence. The path planning method works
perfectly if ‘‘goodness’’ probability values are the same
during the initiation and testing sequences. ‘‘Goodness’’
probability values are checked for 11 ‘‘goodness’’ probabil-
ity classes. The same test is made using six different sizes of
SOFM neural networks. The different size of SOFM neural
networks gives different testing results. Results of the

Fig. 5. Description of a two-dimensional testing environment.

Fig. 6. Environment classes during the testing sequence.
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testing sequence are printed in Table I; the meaning of
measurement variables are described in Table II.

Blank cells in Table I mean that there are no testing routes
for the current ‘‘goodness’’ probability class or the current

path planning method that do not even contain the
information for the ‘‘goodness’’ probability class. This
means that the database used for the initialisation process of
the path planning method does not include example skeleton

Table I. Test results.

Measures variables SOFM-20 SOFM-100 SOFM-130 SOFM-170 SOFM-250 SOFM-300

L-vectors 5016 5016 5016 5016 5016 5016
SOFM size 20 100 130 170 250 300
Positive routes 3 9 11 19 17 20
Avg. I-counter value 250 50 38 29 20 16
Testing vectors 5928 5928 5928 5928 5928 5928
50–55% 0 0·3 0
55–60 0 0 0·02 0·13
60–65% 0·05 0 0·09
65–70% 0·33 0·22 0·05 0
70–75% 0·09 0 0·01
75–80% 0·19 0·58
80–85% 0·32 0·03
85–90%
90–95% 0·02 0·01 0·04 0
95–99%
100% 0 0 0·08 0·14 0 0·13
Average error 0·03 0·08 0·13 0·11 0·09 0·16
Performance 2·91 8·28 9·57 16·91 15·47 16·8

Table II. Meanings of measurement variables

Measurement variable Meaning of the measurement variable

L-vectors Amount of skeleton-route vectors for the path planning initialisation process
SOFM size The size of used SOFM neural network
Positive routes Amount of the routes whose “goodness” is more than 50%
Avg. 1-counter value Average value of example routes which are used for route ‘‘goodness’’ definition for each classified route
Testing vectors Amount of used testing vectors
50–55% Measured average error value for classified routes whose ‘‘goodness’’ probability value should be among

50–55%. The value tells ‘‘goodness’’ probability value difference between the current probability class
limits and measured ‘‘goodness’’ probability values for these routes whose probability values should be
between the current probability class limits.

55–60% Measured average error value for classified routes whose ‘‘goodness’’ probability value should be between
55–60%

60–65% Measured average error value for classified routes whose ‘‘goodness’’ probability value should be between
60–65%

65–70% Measured average error value for classified routes whose ‘‘goodness’’ probability value should be betgween
65–70%

70–75% Measured average error value for classified routes whose ‘‘goodness’’ probability value should be between
70–75%

75–80% Measured average error value for classified routes whose ‘‘goodness’’ probability value should be between
75–80%

80–85% Measured average error value for classified routes whose ‘‘goodness’’ probability value should be between
80–85%

85–90% Measured average error value for classified routes whose ‘‘goodness’’ probability value should be between
85–90%

90–95% Measured average error value for classified routes whose ‘‘goodness’’ probability value should be among
90–95%

95–99% Measured average error value for classified routes whose ‘‘goodness’’ probability value should be between
95–99%

100% Measured average error value for classified routes whose ‘‘goodness’’ probability value should be between
100%

Average error Calculated average error across all found error
Performance The calculated performance value of the path planning method. The performance value is calculated so that

it also calculates the number of positive skeleton routes. Number of positive routes shows how many times
it would be possible to calculate a wrong ‘‘goodness’’ value.

Performance=(12Average error) p Positive routes
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routes for the current probability class. According to Table
I it can be seen that the ‘‘goodness’’ of the performance
increases when the performance value increases.

4. ANALYSIS OF THE RESULTS
According to the test results the average error made by the
path planning method is 10%. Test results also show that a
path planning method with a smaller SOFM neural network
makes fewer errors than that with a larger SOFM neural
network. On the other hand, the amount of the classified
runable routes depends on the size of the used SOFM neural
network. The path planning method with a large SOFM
neural network can classify more suitable routes than that
with a smaller SOFM neural network.

A large SOFM neural network consists of more nodes
than a small one. That’s why it also describes routes learned
during the initiation process more correctly than a small
one. The amount of positive routes depends on the size of
the SOFM neural network. The path planning method with
a large SOFM neural network can find also more sat-
isfactory routes than that with a smaller SOFM neural
network. The difference between the suitabilities of route
description, in different sizes of SOFM neural networks is
described in Figure 7. It shows average Euclidean distances
between best matching unit vectors of the SOFM neural
networks and learning vectors. Learning vectors describe
skeleton routes used during the initialisation process.
Distances are measured after the initialisation process. The
SOFM neural network with 20 nodes gives the largest
average distance, and the neural network with 300 nodes
gives the smallest average distance, viz. 20% less.

Test results also show that together with the increase of
satisfactory classified routes the probability for big errors
also increases when the size of the used SOFM neural
network increases. The reason for this phenomenon is the
amount of learning vectors used for the initialisation
process. The same learning vector database is used for all

tested path planning systems. This means that the average
number of testing vectors used for each classified route
decreases when the size of the used SOFM neural network
increases. Hence the ‘‘goodness’’ of each classified route is
defined more reliably in a small SOFM neural network than
in a large one. Test results show that path planning methods
with large SOFM neural networks produce big errors more
frequently than those with a small SOFM.

It is also possible to observe the error made by the path
planning method as a function of the amount of learning
vectors used for the initialisation process. Figure 8 shows a
result of this research. In Figure 8 the X-axis describes the
number of example routes used for ‘‘goodness’’ calculations
of classified routes, and the Y-axis describes the error
between the classified ‘‘goodness’’ value and the measured
one during the testing sequence. According to Figure 8, the
variation and the average error decrease when the amount of
learning vectors for classified routes increases.

On the other hand, there are still some errors although the
number of learning samples per classified route is very high.
Figure 7 shows that a planning method with a small SOFM
neural network describes the working environment less
carefully than that with a large SOFM neural network. It is
possible that classified routes when using a small SOFM
neural networks are described so imprecisely that the path
planning method produces always some errors when the
database used for the testing process is large and complex
enough.

Although the method produces big errors in some test
samples their number is smaller than that with a small error,
as shown in Figure 9. These errors produced by the path
planning method are divided into two error classes: There is
one class for test samples when the error made by the
method is equal or more than 10%, and one class for test
samples when the error is less than 10%.

According to the analysis described above, it is important
to find the right balance between the size of the used SOFM
neural network and the number of used sample vectors for

Fig. 7. Route description correctness in different sizes of SOFM neural networks.
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the initialisation process. A large SOFM neural network can
allocate more satisfactory routes than a small one, but a
large SOFM neural network needs more sample vectors for
the initialisation process for reliable results.

In the current test case at least 50 learning samples for
each classified route are needed before the error made by the
path planning method is stable. This means that the path
planning method with a SOFM network size 100 would be
the optimal choice if one of tested methods for the test case
should be chosen. Methods which use larger SOFM neural
networks need more sample data for reliability. The number
of samples used for the method initialisation has also been
mentioned in reference 4 as an important issue.

Although the method is tested in a two-dimensional
space, it is at least in theory possible to use the method for
real three-dimensional path planning problems. On the other
hand, more research work is needed so that the method
works more reliably even in a two-dimensional space. A
three-dimensional working space contains much more data
than a two-dimensional one, and it is much more difficult

for the method. It is possible that the method needs some
changes before it could be useful in a three-dimensional
space. However, the path planning method described in this
paper is a good basis for future development work for the
path planning method based on the use of a SOFM neural
network.

5. CONCLUSIONS
In this paper a rough level path planning method is
described that can choose a suitable rough level path for a
robot from one working point to another. The method is
tested in a two-dimensional space. The average error made
by the path planning method is 10%. This means that the
difference between the path ‘‘goodness’’ prediction and its
real ‘‘goodness’’ is 10% on the average. According to test
results, the main issue for a reliable performance of the
method is the number of learning vectors used for the
initialisation process of the method. The size of the SOFM
neural network should be chosen so that there are enough

Fig. 8. Error as a function of learning vectors used in the initialisation process.

Fig. 9. Amount of test cases in two error classes.
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samples for the initialisation process of the path planning
method. The method can work with a small sample space
but the probability for big errors increases when the size of
the sample space decreases. According to test results, one
can say that a SOFM neural network is a useful tool for the
path planning problem of robots.
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