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In this paper, we investigate the phenomenon of particle rebound in a viscous
incompressible fluid environment. We focus on the important case of no-slip boundary
conditions, where it is now well established that collisions cannot occur in finite time
under certain assumptions. In a simplified framework, we provide conditions which
allow us to prove that rebound is possible even in the absence of a topological contact.
Our results lead to the conjecture that a qualitative change in the shape of the solid is
necessary to obtain a physically meaningful rebound in fluids. We support the conjecture
by comparing numerical simulations performed for the reduced model with finite element
solutions obtained for corresponding well-established partial differential equation systems
describing elastic solids interacting with incompressible fluids.
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1. Introduction

The problem of particle–particle or particle–wall collisions in viscous fluids has important
practical applications and has thus been the subject of a plethora of studies, not only
experimental and numerical, but also from a purely mathematical standpoint. A precise
understanding of both contact and near-to-contact dynamics would indeed have a profound
impact on our understanding of complex phenomena such as sedimentation, filtration,
lubrication and erosion (see, for example, Davis, Serayssol & Hinch 1986; Joseph 2003,
and the references therein).

In spite of the attention it has received over the years, the problem is far from being
fully resolved and the partial results which are available can often be counter-intuitive.
An example is given by the simple case of a spherical rigid particle surrounded by
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a Stokes linear fluid that moves towards a wall. Indeed, it has been known for some
time already that if both the particle and the wall are equipped with no-slip boundary
conditions, contact cannot take place in a viscous incompressible fluid in finite time
without singular forcing. We refer to Brenner (1961) and Cooley & O’Neill (1969) for
some theoretical investigations based on singular perturbation techniques and formal
asymptotic expansions. Since no-contact results are the starting point of this work,
we highlight here some of the recent developments on this subject. A no-collision
result for a simplified model in one space dimension for a fluid that obeys the viscous
Burgers equation can be found in Vázquez & Zuazua (2006). No-contact results for an
incompressible fluid modelled by the full Navier–Stokes equations were first obtained by
Hesla (2004) and Hillairet (2007) (see also Hillairet & Takahashi (2009) for extensions
to the three-dimensional setting). The possible lack of collisions has been investigated in
several different scenarios (see, for example, Hillairet, Seck & Sokhna (2018) for the case
of a perfect Euler fluid and Grandmont & Hillairet (2016) for the case of a deformable
beam-like structure). Despite the fact that in an incompressible fluid with no-slip boundary
conditions contact seems to be impossible, it has been hypothesized that a particle can
rebound provided that it is elastic, or in general, when it admits the storage and release of
mechanical energy during the rebound, see e.g. Davis et al. (1986). In view of these facts,
the main question that motivated this work can be formulated as follows:

(Q.1) Can solid particles rebound inside a fluid in the absence of a topological contact?

In the following, we consider a smooth solid object (also referred to as particle or
structure) that may be elastic or rigid and study its motion when thrown towards a rigid
wall in a viscous incompressible liquid environment that adheres to all surfaces (that is,
under no-slip boundary conditions). We consider both the two- and the three-dimensional
cases. As remarked above, in this setting contact is excluded a priori (see Hesla 2004;
Hillairet 2007; Hillairet & Takahashi 2009); indeed, it has been mathematically proven that
the interplay of the regularity of all surfaces involved, the incompressibility of the fluid
and the prescribed no-slip boundary conditions imply that a smooth, rigid body cannot
reach any other smooth solid obstacle in finite time (for a numerical demonstration of this
phenomenon in the case of a ball thrown towards a flat wall, see figure 4).

In this paper, we aim to advance the understanding of the extent to which the
pathological behaviour described in the no-contact paradox can affect the dynamics of
solid particles in close proximity to the boundary of the container. In particular, we are
able to provide an affirmative answer to (Q.1) in a simplified setting (described in detail in
§ 2.3.2). To be precise, we investigate the rebound dynamics for body–fluid systems that
allow for the following two features:

(i) The storage and release of mechanical energy to account for an elastic response of
the solid; and

(ii) The possible deformations of the body. Especially the potential flattening of its
boundary during the rebound phase.

While property (i) is a rather natural requirement, what is probably more peculiar is
that (ii) turned out to significantly change the characteristic motion of the solid inside the
fluid. As a matter of fact, what is possibly the most striking result of the paper is that
if the shape is rigid then any eventual rebound of the particle becomes undetectable for
sufficiently small values of the fluid viscosity (we make this precise in the statement of
Theorem 1.1 below).

In the following we describe our two main results in more detail.
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Figure 1. A spherical shell with an inner mass–spring system is surrounded by a viscous incompressible
fluid.

The simplified setting that is capable of capturing a rebound is motivated by our
numerical experiments: we allow the fluid–solid interaction to affect the shape of the solid
object – in particular its flatness. It is well understood (see, for example, the discussion
in § 2.4 and the reference therein), that changes to the flatness of the particle in the
nearest-to-contact region can have a significant influence on the magnitude of the drag
force. Furthermore, since this effect becomes even more dramatic at small distances from
other solid objects or from the boundary of the container, we tailor our model to adequately
capture this interplay by considering a possible dependence on the deformation parameter
in the damping term which represents the drag force. In this simplified setting (see
Theorem 3.3), we show that rebound is indeed possible, provided that the solid experiences
a substantial flattening of its near-to-contact region.

On the contrary, if the shape is rigid (that is, if (ii) is not satisfied), our investigation
uncovers a rather surprising ‘trapping’ phenomenon for solids, thus providing further
insight into the consequences of the no-contact paradox. In order to illustrate this effect, we
study the motion of an object with rigid shape, which nevertheless allows for the storage
and release of (a fraction of) its kinetic energy, as in property (i) above. As a model
example, consider a rigid spherical shell with an internal mass–spring energy storing
mechanism, as sketched in figure 1, thrown towards a flat wall. The expected dynamics for
this particular configuration is as follows: as the outer shell is slowed down by the viscous
forces preventing from collision, part of the kinetic energy of the system is stored in the
inner mechanism; the shell can then be expected to rebound once this energy is transferred
back to it by the upwards push applied by the mass–spring system. Moreover, one would
also anticipate witnessing increasingly pronounced rebounds as friction in the fluid is
reduced by considering gradually smaller values of the viscosity parameter. However,
the analysis of this peculiar fluid–structure interaction performed on our reduced model
predicts a rather different behaviour. This is made precise in the following result.

THEOREM 1.1. In the vanishing viscosity limit, the rigid shell system described above
moves freely (that is, as it would in the vacuum) towards the wall, to which it then sticks
for all times after collision.

For a proof of this result we refer the reader to § 3, and in particular to Theorem 3.2
below, where we show a more general result.

In view of Theorem 1.1, throughout the rest of the paper we say that a system does not
produce a physical rebound if the distance between the body and the wall converges, in
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the vanishing viscosity limit, to a monotonically decreasing function of the time variable
t. Thus, for our purposes, a rebound is said to be physical (or physically meaningful) only
if it withstands the vanishing viscosity limit in the sense above. It should be noted that the
vanishing viscosity limit and the resulting limiting objects are used here as analytical tools
to distinguish between different rebound behaviours (for more details, see Remark 3.5).

Since the models considered in Theorem 1.1 (and Theorem 3.2) yield solutions that
do not withstand the vanishing viscosity limit, we conclude that some crucial aspect is
missing in order to capture physical rebound effects: the motion described in Theorem
1.1 is not only in clear contrast with our real-world experience of bouncing objects, but
also with laboratory experiments and numerical simulations (see, for example, the recent
contributions of Hagemeier, Thévenin & Richter (2021) and von Wahl et al. (2020) or
the experiments introduced in § 4). These observations naturally lead to the following
question.

(Q.2) What is the mathematical reason for a physical rebound?

Our main contributions to this complicated issue are that we derive a reduced setting
based on conditions (i) and (ii) for which we can prove the absence or the occurrence
of a physical rebound. Further, we compare the reduced model with the classical
partial differential equation (PDE) systems via numerical experiments. It turned out
that, in the absence of topological contact, conditions (i) and (ii) are to some extent
necessary and sufficient to obtain what we call a physically meaningful rebound. Further
comparisons between reduced and PDE models via numerical experiments provide
promising analogies. See indeed figure 10, where motions are compared for several values
of the viscosity parameter. Consequently, our investigations and results prompted us to
formulate the following conjecture on the qualitative conditions for rebounds.

CONJECTURE 1.2. A change in the flatness of the solid body as it approaches the wall,
together with some elastic energy storage mechanism within the body, can potentially allow
for a physically meaningful rebound (that is, that withstands the vanishing viscosity limit)
even for no-slip boundary conditions preventing from topological contact.

While on the one hand the results presented in this paper (both analytical and numerical)
allow us to speculate that our reduced model (conditions (i) and (ii)) could have indeed
potentially captured the essential features of rebound in the absence of collisions, it
should also be noted that a precise connection between the full PDE model and the
reduced one is still missing. A full investigation of this issue is beyond the scope of
this work. Actually, in the mathematical theory up to now, even the existence theory for
bulk elastic solids interacting with fluids is rather sparse (see, for example, Grandmont
2002; Benesova, Kampschulte & Schwarzacher 2020). On the other hand, no-contact
results for smooth deformable structures can be expected to be true, as indicated by
Grandmont & Hillairet (2016). These results would offer a possible starting point for
further mathematical investigations on rebound of elastic objects in viscous fluids. In
regard to the further potential applicability of our mathematical theory, we put special
effort into keeping the assumptions in the analytical section of the paper as general
as possible, without, however, hindering the tractability of the reduced model. For this
reason, in § 3.1 we provide an axiomatic set of assumptions which give the reduced
model enough flexibility when it comes to fitting it with the full fluid–structure interaction
(FSI) problem. Finally, we would like to point out that there has been a vast effort to
study different mechanisms that allow for contact and possibly for a rebound. These
include slip boundary conditions (Gérard-Varet & Hillairet 2014), the fluid compressibility
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(Feireisl 2003, 2004), pressure-dependent material properties (Barnocky & Davis 1989),
wall roughness (Gérard-Varet, Hillairet & Wang 2015), etc. (see also Joseph et al. 2001;
Joseph 2003 and the references therein). Moreover, some notions of weak solutions that
allow for possible collisions have been considered by several authors (see, for example,
Feireisl 2004; Casanova, Grandmont & Hillairet 2021).

1.1. Structure of the paper
The paper is organized as follows. In § 2 we start by introducing the fluid–structure
interaction model in the classical Eulerian–Lagrangian framework, which we then
reformulate fully in the Eulerian setting, as needed for our numerical experiments. This
is followed by the introduction of our reduced model of ordinary differential equations
(ODEs). The section is closed by the derivation of drag formulas for the family of
deformations that we consider for our numerical experiments and which form the model
case for the analysis. § 3 is dedicated to the main mathematical results of this paper and
their proofs. In § 3.1 we introduce our general assumptions and state the main theorems.
In particular, we provide conditions that allow us to prove or disprove rebound in the
vanishing viscosity limit. Section 3.2 is dedicated to the proofs of these results. In § 4,
we first provide numerical experiments for the reduced model of ODEs. In the following
subsection we introduce the numerical set-up that allows us to capture the bouncing
behaviour of elastic solids for small viscosities and provide some numerical experiments.
We conclude the section with the comparison from a numerical standpoint of the ODE
and PDE solutions (see figure 10). Finally, in § 5 we summarize and discuss our results.

2. Modelling of particle–wall approach and rebound in viscous fluids

In this section, we first recall the standard Eulerian–Lagrangian formulation of the
fluid–structure interaction problem, which we then reformulate in a purely Eulerian
setting. This is followed by presenting a class of reduced ODE models for the FSI problem.

2.1. The viscous fluid – elastic structure Eulerian–Lagrangian formulation
Consider an incompressible Newtonian fluid filling the region F(t), which surrounds an
elastic particle whose position, at time t, will be denoted by B(t). We assume that the
system composed of the fluid and the solid body occupies the region Ω = F(t) ∪ B(t),
where Ω is an open subset of R

N , N = 2 or N = 3. As is customary in fluid mechanics,
the equations expressing the conservation of mass and the balance of linear momentum
for the fluid are given in the Eulerian reference frame and read as follows:

divx v = 0,

ρf

(
∂v

∂t
+ v · ∇xv

)
= divx σf + ρf g,

in F(t),

⎫⎪⎬
⎪⎭ (2.1)

where v(x, t) is the fluid velocity, ρf is the constant fluid density and g(x, t) represents
(Eulerian) external bulk accelerations. Here, the variable x denotes a position in the current
(Eulerian) configuration, that is, x ∈ F(t). We recall that for Newtonian fluids the Cauchy
stress tensor σf (x, t) takes the form

σf = −pf IN + 2μf D(v), (2.2)

where pf (x, t) denotes the fluid pressure, IN is the N-dimensional identity matrix, μf is
the constant dynamic viscosity and D(v) := (∇xv + (∇xv)

T)/2 is the symmetric part of
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the gradient of v. On the other hand, the balance equations for the elastic solid are given
in the Lagrangian setting and can be written as

ρs
∂2η

∂t2
= divX P + ρsG,

Jρs = ρ0
s ,

in B0,

⎫⎪⎬
⎪⎭ (2.3)

where ρs and ρ0
s denote the density of the elastic solid at time t and in the reference

configuration, respectively, η(X , t) is the displacement, P(X , t) is the first Piola–Kirchhoff
stress, G(X , t) is the (Lagrangian) external acceleration acting on the solid and B0 is the
reference configuration of the solid. The variable X denotes a position in the reference
(Lagrangian) configuration, that is, X ∈ B0.

We assume that the structure is an incompressible hyperelastic solid, i.e.

P = ∂L
∂F
, where L(F ,P) := W(F )− P(J − 1). (2.4)

Here, L is the Lagrange function corresponding to the strain energy function W under
the incompressibility restriction J = 1 and P is the associated Lagrange multiplier. The
symbol F denotes the deformation gradient, i.e. if we define the deformation mapping
y(X , t) := X + η(X , t), then

F (X , t) := ∇X y(X , t) = IN + ∇X η(X , t). (2.5)

Finally, J denotes the deformation gradient Jacobian, i.e. J := det F . Let us also
mention here that, throughout the following, we assume that the deformation mapping
y(·, t) : B0 → B(t) is a sufficiently smooth bijection for all t.

The choice of the elastic material is determined by specifying the strain energy function
W . As a particular example used later in the numerical computations (see § 4), we consider
an incompressible neo-Hookean solid, for which the elastic strain energy is given by

W := Gs

2
(|F |2 − N), (2.6)

where the constant Gs denotes the shear modulus. The Cauchy stress in the solid can be
expressed in terms of the first Piola–Kirchhoff stress P as follows:

σs(x, t) = 1
J(X , t)

P(X , t)F T(X , t)
∣∣∣∣
X=y−1(x,t)

. (2.7)

As one can readily check, for the strain energy (2.6) the Cauchy stress in the solid takes
the form

σs(x, t) = −p̃(x, t)IN + GsB(x, t) = −p(x, t)IN + GsB
d(x, t), (2.8)

where p̃(x, t) := P(y−1(x, t), t), B(x, t) is the left Cauchy–Green tensor, which is
classically defined via

B(x, t) := F (X , t)F T(X , t)
∣∣
X=y−1(x,t) , (2.9)

the symbol Bd := B − (1/N)(Tr B)IN denotes its deviatoric part, and finally p := p̃ −
(1/N)Tr B.
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The conditions describing the interaction between the fluid and the solid comprise the
continuity of the velocities and of the tractions

v(x, t) = ∂η(X , t)
∂t

∣∣∣∣
X=y−1(x,t)

,

σf n = σsn,

on ∂B(t),

⎫⎪⎬
⎪⎭ (2.10)

where n is the unit normal to the fluid–solid interface. Finally, we prescribe no-slip
boundary conditions on the boundary of the domain, that is,

v = 0, on ∂Ω. (2.11)

Note that the above system is a well posed problem for the unknowns v, p describing the
fluid in their variable-in-time Eulerian domain of definition and the deformation η and the
pressure of the solid P given in their steady Lagrangian coordinates. Moreover, it admits
a formal energy equality (derived for the reader’s convenience in Appendix B) of the
following form:

K(t)+
∫
B0

W(X , t) dX +
∫ t

0

∫
F(s)

2μf |D(v(x, s))|2 dx ds = K(0)+
∫
B0

W(X , 0) dX

+
∫ t

0

∫
F(s)

ρf g(x, s) · v(x, s) dx ds +
∫ t

0

∫
B0

ρs
0G(X , s) · ∂η

∂t
(X , s) dX ds, (2.12)

where K(t) denotes the kinetic energy of the system at time t, that is

K(t) :=
∫
F(t)

ρf

2
|v(x, t)|2 dx +

∫
B0

ρs
0

2

∣∣∣∣∂η∂t
(X , t)

∣∣∣∣
2

dX . (2.13)

Let us also mention that, under the assumption of small deformations, the elastic
contribution to the energy given by (2.6) can be approximated as follows:∫

B0

W(X , t) dX ≈
∫
B0

Gs

2
|∇X η(X , t)|2 dX . (2.14)

This approximation is also formally derived in Appendix B.

REMARK 2.1. For simplicity, in this paper we restrict our attention to the case of a
homogeneous solid interacting with a homogeneous fluid, that is, both ρf and ρs

0 are
assumed to be constant. However, the governing system of equations can be readily
generalized to include the situation in which the density ρ is simply advected with velocity
v, that is, ρ̇ = 0. Similar considerations apply also to the fluid viscosity μf and to the
shear modulus Gs. It is worth noting that also in this case one can derive a formal energy
equality. However, while the theory of bouncing without contact introduced here could
conceivably be adapted to the case of compressible solid materials (see Appendix A),
considering compressible fluids might have a more dramatic impact, as topological
contact is expected to happen in this case (Feireisl 2003).

In the next subsection we reformulate the mixed Lagrangian–Eulerian problem fully in
the Eulerian frame. This allows for an efficient numerical implementation by finite element
methods using a level-set function approach as described in § 4 (see also Liu & Walkington
(2001) and the references therein).
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2.2. The viscous fluid – elastic structure purely Eulerian formulation
The standard form of the fluid–structure interaction problem, as given in §,2, consists of
two sets of equations – one for the fluid and one for the solid – which are formulated in
different configurations. While the fluid component is described in the physical Eulerian
configuration, the equations for the solid are formulated in the reference (Lagrangian)
configuration.

For our purposes, we find it more convenient to solve the whole problem in the Eulerian
setting, where the interaction conditions (2.10) are satisfied automatically. In particular, the
unknowns become the global velocity in Eulerian coordinates v : Ω × [0, T] → R

N , the
global pressure p : Ω × [0, T] → R and the left Cauchy–Green tensor B : Ω × [0, T] →
R

N×N . We transfer the problem for the solid accordingly and rewrite the Eulerian form of
the momentum balance for the solid as

ρs

(
∂v

∂t
+ v · ∇xv

)
= divx σs + ρsg, (2.15)

where the Cauchy stress σs is given by (2.8). The evolution equation for the Cauchy–Green
tensor B can be derived directly from the kinematics. Indeed, (2.9) can be reformulated as

B(y(X , t), t) = F (X , t)F (X , t)T, (2.16)

and differentiating both sides of (2.16) with respect to t yields

d
dt
(B(y(X , t), t)) = ∂F

∂t
(X , t)F (X , t)T + F (X , t)

∂F

∂t
(X , t)T. (2.17)

By an application of the chain rule, the left-hand side of (2.17) can be readily rewritten as

d
dt
(B(y(X , t), t)) = ∂B

∂t
(y(X , t), t)+ (v(y(X , t), t) · ∇x)B(y(X , t), t). (2.18)

For clarity of exposition, we remark that (2.18) is merely the computation of the material
time derivative of B. On the other hand, in order to rewrite the right-hand side of (2.17),
we observe that

Ḟ (X , t) = d
dt

∇X y(X , t) = ∇X
∂η

∂t
(X , t) = ∇X v(y(X , t), t)

= (∇xv)(y(X , t), t)∇X y(X , t)

= (∇xv)(y(X , t), t)F (X , t). (2.19)

In turn, (2.16) and (2.19) imply that

∂F

∂t
(X , t)F (X , t)T + F (X , t)

∂F

∂t
(X , t)T = (∇xv)(y(X , t), t)B(y(X , t), t)

+B(y(X , t), t)(∇xv)
T(y(X , t), t). (2.20)

Combining (2.17), (2.18) and (2.20), and passing to an Eulerian description of the motion
(that is, substituting x for y(X , t)) finally yields

∂B

∂t
(x, t)+ (v(x, t) · ∇x)B(x, t) = ∇xv(x, t)B(x, t)+ B(x, t)(∇xv(x, t))T, (2.21)
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which enables us to close the system of equations. Therefore, the governing equations for
the incompressible neo-Hookean solid in the Eulerian setting read

divx v = 0, (2.22)

ρs

(
∂v

∂t
+ v · ∇xv

)
= divx σs + ρsb, σs = −pIN + GsB

d, (2.23)

∂B

∂t
+ (v · ∇x)B − (∇xv)B − B(∇xv)

T = O. (2.24)

Here and in the following O denotes the zero matrix; furthermore, we recall that Bd

denotes the deviatoric part of the left Cauchy–Green tensor. Now, since both the fluid
and the solid are described in the Eulerian frame of reference, we distinguish between the
two simply by rheology. The formula for the Cauchy stress can be written in a unifying
(essentially visco-elastic) manner as

σ := −pIN + 2μD(v)+ GBd, (2.25)

where

μ(x, t) :=
{

0, if x ∈ B(t),
μf , if x ∈ F(t), and G(x, t) :=

{
Gs, if x ∈ B(t),
0, if x ∈ F(t). (2.26a,b)

Moreover, we let

B = IN in F(t) and
∂B

∂t
+ (v · ∇)B − (∇v)B − B(∇v)T = O in B(t). (2.27a,b)

Thus, the Cauchy stress σ is equal to σf in the fluid and to σs in the solid. Similarly, we
define

ρ(x, t) :=
{
ρs, if x ∈ B(t),
ρf , if x ∈ F(t). (2.28)

Note that the domains F(t) and B(t) are advected with the velocity v and so do the material
parameters ρ, μ and G, i.e. their material time derivatives are equal to zero

ρ̇ = μ̇ = Ġ = 0. (2.29)

To summarize, the fully Eulerian FSI model is described by the following set of equations:

divx v = 0,

ρ

(
∂v

∂t
+ v · ∇xv

)
= divx σ + ρg, σ = −pIN + 2μD(v)+ GBd,

B = IN in F(t) and
∂B

∂t
+ (v · ∇)B − (∇v)B − B(∇v)T = O in B(t).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
(2.30)

Note that this particular form of the fully Eulerian formulation of the FSI problem can
be found, for instance, in Sugiyama et al. (2011), for some variants, see, e.g. Dunne &
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Rannacher (2006) and Richter (2017). It is worth noting that the fully Eulerian model
admits the following formal energy equality:

∫
Ω

(
ρ(x, t)

2
|v(x, t)|2 + G(x, t)

2
(Tr B(x, t)− N)

)
dx +

∫ t

0

∫
F(s)

2μf |D(v(x, s))|2 dx ds

=
∫
Ω

(
ρ(x, 0)

2
|v(x, 0)|2 + G(x, 0)

2
(Tr B(x, 0)− N)

)
dx +

∫ t

0

∫
Ω

ρ(x, s)g(x, s) · v(x, s) dx ds.

(2.31)

For the reader’s convenience, a derivation of this formula is presented in Appendix B.
Finally, let us note that, for the sake of notational simplicity, we will from now on use

the symbols ∇ and div for the Eulerian operators ∇x and divx, respectively, while keeping
the notation ∇X and divX for the differential operators in the reference configuration
unchanged.

2.3. Reduced models
In view of the analytical challenges posed by the full FSI system described in § 2, in this
paper we propose a simplified model which we believe to adequately capture the essential
features of the FSI phenomena under consideration, with special emphasis on the questions
of contact and rebound. Our design of the reduced model is inspired by the observation
that (under certain simplifying assumptions), the motion of a rigid body (described by
the system of partial differential equations for the coupled fluid–structure interaction
problem) can be reduced to a single second-order ODE (see Hillairet (2007); see also
§ 2.3.1 below). To be precise, we introduce a system of coupled nonlinear ODEs as a toy
model approximation for the notoriously challenging fluid–structure interaction problem
describing the motion of an elastic solid immersed in a viscous incompressible fluid.
This is achieved via a two-step procedure. First, we consider a completely rigid particle
and show that, under certain simplifying assumptions, its dynamics can be replaced by a
single ODE. As a next step, we enrich the model by taking into account possible elastic
deformations of the particle, which we approximate by a single scalar internal degree of
freedom. In our simplified framework, this internal variable will be used to parameterize
not only the change in shape of the particle (which will be reflected in the expression for
the drag force, see § 2.4 below), but also its elastic response. The final reduced model takes
the form of two coupled ODEs with a highly nonlinear damping term.

2.3.1. Dynamics of a rigid body as a second-order ODE with nonlinear damping
In this section we show that, under certain assumptions, the dynamics of a rigid body in a
viscous incompressible fluid can be reformulated as a second-order nonlinear ODE.

To be precise, following the presentation of Hillairet (2007) (see § 3), we assume that
the system composed of the fluid and the rigid body occupies the entire half-space R

N+,
N = 2, 3, and that the fluid adapts instantaneously to the solid, so that it can be effectively
modelled by the quasi-static Stokes equations. Furthermore, if we suppose that the range of
possible motions of the body consists only of translations in the direction eN , its position
is uniquely determined by its distance from the set {xN = 0}, denoted here and in the
following with h. Let B ⊂ R

N+ denote the bounded region occupied by the rigid body
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Contactless rebound of elastic bodies

when h = 0 and define

Bh := B + heN, Fh := R
N
+\Bh. (2.32a,b)

With these notations at hand, and under the assumption that the fluid is homogeneous with
density ρf =1 kg m−3, our fluid–structure interaction problem is described by the system
of equations

−μ�v + ∇p = 0, in Fh,
div v = 0, in Fh,

v = ḣeN, on ∂Bh,
v = 0, on {xN = 0},
v = 0, at ∞,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.33)

coupled with the continuity of the stresses across the fluid–solid surface, which in the
present framework can be expressed via

Mḧ = −
∫
∂Bh

(2μD(v)− pIN)n dHN−1 · eN . (2.34)

We recall that, as in the previous subsection, we use v and p to denote the velocity field and
the pressure of the fluid, respectively. Moreover, the positive constants μ and M represent
the viscosity of the fluid and the mass of the body, respectively. Finally, throughout the
section n is always used to denote the outer unit normal vector to the fluid domain. The
system (2.33)–(2.34) is further complemented with initial conditions of the form

h(0) = h0 > 0, ḣ(0) = ḣ0. (2.35a,b)

It can be noted that in (2.33) the steady version of (2.1) and (2.2) is given, while the PDE
for the solid (2.3) is reduced dramatically to (2.34).

The next result combines Lemma 4 and Lemma 5 in Hillairet (2007).

LEMMA 2.2. Let h > 0 be given and assume that ∂B is Lipschitz continuous, that is, ∂B
is locally given by the graph of a Lipschitz function. Then there exist a unique velocity field
sh and a pressure field πh such that

−�sh + ∇πh = 0, in Fh,
div sh = 0, in Fh,
sh = eN, on ∂Bh,
sh = 0, on {xN = 0},
sh = 0, at ∞.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.36)

Moreover, the following statements hold:

(i) sh is the unique global minimizer for the functional

J (u;Fh) := 2
∫
Fh

|D(u)|2 dx, (2.37)

defined over the class

Vh := {u ∈ H1
0(R

N
+; R

N) : div u = 0, and u = eN, on ∂Bh}. (2.38)

In particular, the pressure function πh can be understood as the Lagrange multiplier
associated with the divergence-free constraint in Vh.
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(ii) For every ϕ̃ ∈ Vh and z ∈ R, if we let ϕ := zϕ̃ we have

2
∫
Fh

D(sh) : D(ϕ) dx =
∫
∂Bh

(2D(sh)− πhIN)n dHN−1 · zeN . (2.39)

(iii) The function sh depends smoothly on the parameter h, for all h ∈ (0,∞).

As a consequence of Lemma 2.2 we see that the dynamics of the system is fully
characterized by an initial value problem for a second-order ODE with a nonlinear
damping term.

LEMMA 2.3. Assume that ∂B is Lipschitz continuous. Then, for every h0 > 0 and ḣ0 ∈ R,
the solvability of the fluid–structure interaction problem (2.33)–(2.34) reduces to that of
the initial value problem

Mḧ = −μJ (sh;Fh)ḣ,

h(0) = h0, ḣ(0) = ḣ0.

}
(2.40)

Proof . Notice that, for any given h > 0 and ḣ ∈ R, letting v := ḣsh and p := μḣπh yields
a solution to (2.33). Moreover, using ϕ := μḣsh as a test function in (2.39), we obtain

2μḣ
∫
Fh

|D(sh)|2 dx =
∫
∂Bh

(2D(sh)− πhIN)n dHN−1 · μḣeN

=
∫
∂Bh

(2μD(v)− pIN)n dHN−1 · eN . (2.41)

In view of (2.41), we can then rewrite (2.34) as

Mḧ = −2μḣ
∫
Fh

|D(sh)|2 dx = −μJ (sh;Fh)ḣ. (2.42)

This concludes the proof. �

2.3.2. Spring–mass model
In this subsection, we enrich the model described in (2.33)–(2.34) by considering also
elastic deformations of the particle. It is well known that, in the regime of small
deformations, the dynamics of an elastic body reduces essentially to a (vectorial) wave
equation (see Appendix A). Inspired by this, considering what is probably simplest
possible approximation, we will assume that the deformation of the particle can be
described by a single scalar parameter ξ , which we can think of as the deformation of
an internal spring with stiffness k. In order to allow for conversion between the kinetic and
elastic energy, we will moreover assume that the internal spring carries an internal mass
m, while being enclosed in a shell of mass M. This outer shell will either be considered
completely rigid, or, in a more general situation, we will assume that its shape may change
according to the value of the internal parameter ξ (the relevant notation is summarized
in figure 1; see figure 2 for a schematic illustration of contactless rebound for the case of
a deformable particle). The latter case, that is, when we allow for some (parameterized)
deformation, is referred throughout the text as the case of a ‘deformable particle.’

To be precise, let P denote the class of all admissible particle configurations, that is, P
is the family of all bounded open subsets of R

N+ with Lipschitz continuous boundary and

942 A34-12
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(a)

(b)

(c)

Figure 2. Schematic representation of contactless rebound for a deformable shell with an inner energy
storing mechanism. The dash-dotted line represents the undeformed surface.

such that the intersection of their respective closures with the hyperplane {xN = 0} consists
of only the origin. Given B ∈ P , we consider a one parameter family of diffeomorphisms
{Gξ : B → Gξ (B) : ξ ∈ R} such that Gξ (B) ∈ P for every ξ ∈ R. Moreover, for every
h > 0 and every ξ ∈ R, we let

Fh,ξ := R
N
+\(Gξ (B)+ heN), (2.43)

and consider the energy functional

J (u;Fh,ξ ) := 2
∫
Fh,ξ

|D(u)|2 dx. (2.44)

Compare these definitions with their counterparts in the previous subsection, i.e. (2.32a,b)
and (2.37), respectively. In particular, by an application of Lemma 2.2, we obtain that, for
each h > 0 and each ξ ∈ R, there exists a vector field sh,ξ that minimizes J (·;Fh,ξ ) over
the class

Vh,ξ := {u ∈ H1
0(R

N
+; R

N) : div u = 0, and u = eN on Gξ (∂B)+ heN}. (2.45)

Under the assumption that, for every time t, the position of the shell is uniquely determined
by its current deformation (encoded by the parameter ξ ) and its distance from the origin
(denoted by h), reasoning as in Lemma 2.3 we see that its dynamics can be formulated as
a second-order ODE. Notice, however, that in the present case the shape of the shell may
change at each time level t (depending on the value of ξ ). To be precise, the mechanical
force balance for such a system takes the form of the following system of two coupled
ODEs:

Mḧ = −kξ − μJ (sh,ξ ,Fh,ξ )ḣ, (2.46)

m(ḧ − ξ̈ ) = kξ, (2.47)

with initial conditions

h(0) = h0, ḣ(0) = ḣ0, (2.48a,b)

ξ(0) = ξ0, ξ̇(0) = ξ̇0. (2.49a,b)

We remark that (2.46) is the analogue of (2.40), where the additional ‘internal’ force is
acting on the outer shell and with a more general drag force term which depends not only
h, but also on the internal deformation ξ , while the second equation (2.47) expresses the
dynamics of the internal mass–spring system in the frame accelerating with the outer shell.
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REMARK 2.4. A particular form of the drag force term in (2.46) is sought in the
next section for a fixed shape of the particle and then generalized for a parameterized
dependence of the shape on the deformation parameter ξ . Having an example of such
expression in mind can provide the reader with some insight into the structure of the ODE
in (2.46). For this reason, we give here a formula that is also used later in the numerical
experiments: in the two-dimensional case, the function

c1h̃−c2ξ−3/2 + c3 (2.50)

can be thought of as a toy example that captures the (asymptotic) dependence of
J (sh,ξ ,Fh,ξ ) on the dimensionless height h̃ and the deformation variable ξ . Here, c1,
c2 and c3 are fixed parameters.

2.4. The drag force
As a consequence of the ODE reformulation of the FSI problem provided in (2.40)
(respectively (2.46)–(2.49a,b)), we see that the drag force exerted by the fluid on
the solid body, i.e. the term −μJ (sh;Fh)ḣ (respectively −μJ (sh,ξ ;Fh,ξ )ḣ), can
significantly influence the behaviour of the system. Thus, in this section we collect some
well-known approximations of this force. In order to obtain a precise understanding of the
near-to-contact dynamics, the focus of the section is on the dependence of J (sh;Fh) on
the parameter h, with special emphasis on the case h → 0+. We recall indeed that h = 0
corresponds to a collision of the body with the boundary of the container.

To be precise, in the following we present estimates of the drag formulas for both
the two- and three-dimensional cases. Furthermore, we compare them also with those
resulting from the standard lubrication (Reynolds) approximation. For the purpose of this
section, it is not restrictive to consider rigid particles. Additionally, in all cases we shall
assume the particle is axisymmetric with respect to the axis xN (N = 2, 3) and that the
part of the boundary ∂B that is closer to the wall can be described in a neighbourhood of
the origin by a graph of the form

ψ(x1) = γ |x1|1+α if N = 2, ψ(x1, x2) = γ (x2
1 + x2

2)
(1+α)/2 if N = 3. (2.51a,b)

2.4.1. Drag force estimates based on the variational formulation
We begin by noticing that, depending on the smoothness of the immersed particle, the drag
force exerted by the viscous fluid can develop a singularity when the distance between the
body and the boundary of the cavity tends to zero. This is made precise in the next result,
which is due to Starovoitov (see Theorem 3.1 in Starovoitov 2004). A proof of the theorem
is included in Appendix C.1 for the reader’s convenience.

THEOREM 2.5. Let B be an open bounded subset of R
N+ with Lipschitz continuous

boundary and such that ∂B ∩ {xN = 0} consists of only the origin. For J and sh given
as in Lemma 2.2, let D : (0,∞) → (0,∞) be defined via

D(h) := J (sh;Fh). (2.52)

Then D is locally Lipschitz continuous. Furthermore, the following statements hold:

(i) if N = 2 and there are α, γ, r > 0 such that in a neighbourhood of the origin ∂B
coincides with the graph of ψ(x1) := γ |x1|1+α , for |x1| < r, then there exists a
positive constant c1 such that for all 0 < h ≤ r1+α

D(h) ≥ c1h(−3α)/(1+α); (2.53)
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Contactless rebound of elastic bodies

(ii) if N = 3 and there are α, γ, r > 0 such that in a neighbourhood of the origin ∂B
coincides with the graph of ψ(x1, x2) := γ (x2

1 + x2
2)
(1+α)/2, for x2

1 + x2
2 < r2, then

there exists a positive constant c2 such that for all 0 < h ≤ r1+α

D(h) ≥ c2h(1−3α)/(1+α). (2.54)

Roughly speaking, Theorem 2.5 presents us with the crucial observation that the
asymptotic behaviour of D is deeply connected to the regularity of ∂B in a neighbourhood
of the nearest point to the fixed boundary of the container. It is worth noting that, since for
every t ∈ (−1, 1) one has that

t2

2
≤ 1 −

√
1 − t2 ≤ t2, (2.55)

an application of Theorem 2.5 with α = 1 yields that, if N = 2 and B is a disk, then
D(h) � h−3/2, while, if N = 3 and B is a sphere, then D(h) � h−1. In particular, as
illustrated in Theorem 3.2 in Starovoitov (2004) (see also Theorem 3 in Hillairet 2007),
one can then transform the differential equation obtained in Lemma 2.3 into a differential
inequality; this, in turn, can be integrated to show that the rigid body cannot collide with
the boundary of the container in finite time.

It is worth noting that the proof of the no-collision result in the papers by Gérard-Varet
& Hillairet (2010), Hillairet (2007) and Hillairet & Takahashi (2009), where the fluid is
modelled by the Navier–Stokes equations, relies on the construction of a good (localized)
approximation of the solution to the associated Stokes problem. A particularly interesting
corollary of these constructions is that the asymptotic lower bounds provided by Theorem
2.5 are, in most cases, optimal. To be precise, we have the following theorem (for more
information, see also the discussion at the end of Appendix C.1).

THEOREM 2.6. Under the assumptions of Theorem 2.5, there exist two positive constants
C1,C2 such that, for all h sufficiently small,

D(h) ≤

⎧⎪⎪⎨
⎪⎪⎩

C1h(−3α)/(1+α), if N = 2,
C2h(1−3α)/(1+α), if N = 3 and α > 1/3,
C2| log h|, if N = 3 and α = 1/3,
C2, if N = 3 and α < 1/3.

(2.56)

We conclude the section by observing that, in the present framework, if ∂B is sufficiently
regular so that the body is prevented from colliding in finite time with the boundary of the
container, then the system cannot produce a rebound.

COROLLARY 2.7. Let h be a solution to (2.40) with initial conditions h0 > 0 and ḣ0 < 0,
and assume that h(t) > 0 for every t > 0. Then h is a monotone function.

Proof . Arguing by contradiction, assume that there are τ1 < τ2 such that ḣ(τ1) = 0 and
h(τ2) > h̃ := h(τ1). Since min{h(t) : t ∈ [0, τ2]} > 0 and by recalling that D is locally
Lipschitz continuous in (0,∞), we see that the initial value problem (2.40) admits a
unique solution in [0, τ2], which must therefore agree with h. Notice, however, that h is
also the unique solution to the initial value problem satisfying (2.40) on [τ1, τ2] with initial
conditions h(τ1) = h̃ and ḣ(τ1) = 0. Consequently, h ≡ h̃ on [τ1, τ2], which contradicts
h(τ2) > h̃. �
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2.4.2. Drag force estimates based on Reynolds’ approximation
Similarly to the above, throughout this subsection we consider an axisymmetric particle
B. In particular, if ∂B satisfies (2.51a,b), then in a neighbourhood of the nearest-to-contact
point ∂Bh (see (2.32a,b)) can be conveniently described as the graph of

g(r) = h + γ r1+α, (2.57)

where r denotes the distance from the symmetry axis. With this notation at hand and in
view of the lubrication (Reynolds) approximation (see Appendix C.2), we obtain that the
vertical component of the drag force exerted on the particle can be effectively estimated
by

Flub := −12μḣ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
∫ ∞

0

∫ ∞

r

r′

g(r′)3
dr′ dr, if N = 2,

π

∫ ∞

0

∫ ∞

r

rr′

g(r′)3
dr′ dr, if N = 3.

(2.58)

An exact comparison of the drag formulas in (2.58) with the resulting expressions derived
in § 2.4.1 is only possible for particular values of α, for which the Reynolds-based
expression can be integrated analytically. In particular, assuming circular (when N = 2)
or spherical (when N = 3) shape of the solid ball with radius R, we get

g(r) := h + R −
√

R2 − r2 ∼ h + r2

2R
. (2.59)

Substituting α = 1 and γ = 1/(2R) into (2.58) allows us to analytically resolve the
integrals, which ultimately yields Flub = −μDlub(h)ḣ, where

Dlub(h) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3
√

2π

(
R
h

)3/2

, if N = 2,

6π
R2

h
, if N = 3;

(2.60)

see also equation (7-270) in Leal (1992), equation (2.18) in Brenner (1961) and
equation (1.1) in Cox & Brenner (1967).

On the other hand, in order to compare the expressions for the drag force for other
values of α, we compute numerically the lubrication theory shape factor Dlub from (2.58)
and compare it with the analytical estimates in (2.56) in figure 3. Note that the match is
very good for the case N = 2 and reasonable for the case N = 3 at least in the vicinity of
α = 1, corresponding to the sphere.

3. Global well posedness and qualitative behaviour of solutions to the reduced model

In this is section, we undertake a rigorous analytical study of the reduced model that
was previously introduced in § 2.3.2. We begin by addressing the question of global well
posedness and we then proceed to investigate qualitative properties of solutions as we vary
the viscosity parameter μ. In this direction, we present two results which highlight very
different behaviours with regard to particle rebound. For clarity of exposition, we postpone
the proofs to § 3.2. In addition, we refer the reader to § 4.1 for some numerical experiments
on the model considered in this section.
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Figure 3. Natural logarithm of the drag force shape factor based on the Reynolds approximation (a,c) and on
the analytical estimate (b,d) for N = 2 (a,b) and N = 3 (c,d).

3.1. Statement of the main results
Throughout the section we consider the system of ODEs

ḧ − ξ̈ = ab(ξ),

ḧ = −b(ξ)− μD(h, ξ)ḣ,
h(0) = h0, ḣ(0) = ḣ0,

ξ(0) = ξ0, ξ̇(0) = ξ̇0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.1)

Here, a and μ are positive constants, while the functions b and D serve as proxies for the
elastic response of the solid and the drag force, respectively. Notice indeed that the system
given by (2.46)–(2.47) is a particular case of (3.1), corresponding to the choices

b(ξ) := kξ
M
, a := M

m
, D(h, ξ) := J (sh,ξ ,Fh,ξ )

M
. (3.2a–c)
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In our first result, the aim is to identify conditions for which the body is prevented from
colliding with the boundary of the container in finite time. Our analysis is in spirit very
close to that of Hillairet (2007) (see also Theorem 2.5 and the subsequent discussion). To
this end, we define

B( y) :=
∫ y

0
b(w) dw, (3.3)

and make the following assumptions:

(B.1) b : R → R is locally Lipschitz continuous; and
(B.2) B is coercive, that is, B( y) → ∞ as |y| → ∞.

Additionally, on D : (0,∞)× R → (0,∞) we require an analogous regularity condition
and a singular asymptotic lower bound that is uniform with respect to the variable ξ .
To be precise, throughout the following we always work under the following set of
assumptions:

(D.1) the map (h, ξ) �→ D(h, ξ) is locally Lipschitz continuous in (0,∞)× R; and
(D.2) there exist constants c > 0 and α ∈ [1,∞) such that for all h > 0 and ξ ∈ R

D(h, ξ) ≥ ch−α. (3.4)

It is worth noting that the assumptions above are satisfied, for example, by the drag force
exerted on a circular or spherical structure (see in particular (2.60)).

We are now ready to state a no-contact result.

PROPOSITION 3.1. Let b and D be given in such a way that (B.1), (B.2), (D.1) and (D.2)
are satisfied. Then, for every a, μ, h0, ḣ0, ξ0, ξ̇0 ∈ R with a, μ, h0 > 0 there exists a unique
global solution to (3.1), denoted by (hμ, ξμ). In particular, hμ(t) > 0 for all t > 0.

Having established the existence of global solutions, the remainder of the section is
dedicated to characterizing the different qualitative behaviours of hμ, as we let μ → 0+.
For our next result, in addition to the assumptions of Proposition 3.1, we require that

(B.3) B ≥ 0;

and furthermore, we restrict our attention to the case where the function D does not depend
on the variable ξ and obeys a power law in h. To be precise, we assume the following:

(D.3) there exist three constants C1,C2 > 0 and α ∈ [1,∞) and a locally Lipschitz
continuous function g : (0,∞) → [C1,C2] such that for all h > 0 and all ξ ∈ R

we have
D(h, ξ) = g(h)h−α. (3.5)

We are now in position to state the first of our main results.

THEOREM 3.2. Under the assumptions of Proposition 3.1, set ξ0 = ξ̇0 = 0 and let
H : [0,∞) → [0,∞) be defined via

H(t) := max{0, h0 + ḣ0t}. (3.6)

Then the following statements hold:

(i) Assume that b(0) = 0 and that ḣ0 < 0. Then, as μ → 0+, we have that hμ → H and
ξμ → 0 uniformly in [0, t0], where t0 := −h0/ḣ0.
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Contactless rebound of elastic bodies

(ii) Assume that b(0) = 0 and that ḣ0 ≥ 0. Then, as μ → 0+, we have that hμ → H and
ξμ → 0 uniformly on compact subsets of [0,∞).

(iii) Assume that ḣ0 < 0, that b satisfies (B.3), and that D is given as in (D.3). Let
ξ : [0,∞) → R be defined via ξ(t) = 0 if t ≤ t0, while if t > t0 we let ξ be the
unique solution to the initial value problem

ξ̈ + ab(ξ) = 0,

ξ(t0) = 0, ξ̇(t0) = −ḣ0.

}
(3.7)

Then, as μ → 0+, we have that hμ(t) → H and ξμ → ξ uniformly on compact
subsets of [0,∞).

A few comments are in order. First, let us mention that we are primarily interested in the
case ḣ0 < 0; the case of a non-negative initial velocity is mainly stated for comparison.
Next, observe that (D.3) can be interpreted as a rigidity condition on the solid body
(see Theorems 2.5 and 2.6). It is also worth noting that the function H given in the
theorem is monotone. In particular, the conclusions of statement (iii) in Theorem 3.2 can
be summarized as follows: in the vanishing viscosity limit, a ‘rigid’ solid (in the sense
of condition (D.3)) moving towards the wall will impact the boundary of the container
in finite time (to be precise, at t = t0) and it will not separate from the container’s
wall thereafter. Thus, rather surprisingly, the reduced model predicts that, as we let the
viscosity parameter go to zero, the system composed of a smooth rigid shell with an inner
mass–spring mechanism (as described in § 2.3.2) approaches a state where the motion of
the shell and that of the spring are perfectly decoupled and the shell cannot move away
from the wall after collision. This trapping effect is readily explained by observing that, if
we could instantaneously invert the direction of the velocity, the shell would experience a
drag force of equal intensity. More specifically, the resistance of the fluid to the movement
of the body does not distinguish on whether the shell is approaching or receding from the
wall. Notably, for positive (but small) values of the viscosity parameter, the very same
phenomenon that prevents from collision is also the primary obstruction to rebound.

Next, we show that the nearly paradoxical situation described by Theorem 3.2 can be
partly resolved by allowing for qualitative changes in the shape of the solid. This has
the effect of introducing an asymmetry in the problem which can potentially prevent the
trapping phenomenon illustrated above. These changes, however, need to be significant
enough to be reflected in the asymptotic behaviour of D (which we recall should be
understood as an approximation to the drag force exerted on the body by the surrounding
fluid environment) as h approaches zero.

The running assumptions for the last result of the section are the following:

(B.4) b( y)y > 0 for all y /= 0;

(D.4) D is non-decreasing as a function of ξ , that is,

D(h, ξ1) ≤ D(h, ξ2) (3.8)

for every h > 0 and every ξ1 ≤ ξ2;
(D.5) there exist three constants δ1, c1 > 0 and γ1 ∈ [α,∞) such that for every h > 0 we

have

D(h,−δ1) ≥ c1h−γ1; (3.9)
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(D.6) there exist a constant δ2 > 0 and a function γ : (0,∞) → [0,∞) such that∫ h

0
γ ( y)y−1 dy → 0 (3.10)

as h → 0+ and with the property that for every h > 0 we have

D(h,−δ2) ≤ γ (h)h−γ1 . (3.11)

THEOREM 3.3. Under the assumptions of Proposition 3.1, let ξ0 = ξ̇0 = 0 and assume
that D satisfies (D.4), (D.5) and (D.6). Furthermore, let b be given satisfying (B.4) so that
there exists a unique y− < 0 with the property that 2aB( y−) = ḣ2

0. Assume that y− < −δ2,
where δ2 is given as in (D.6). Then, for every subsequence {hn}n ⊂ {hμ}μ there exists
T > t0 := −h0/ḣ0 such that

lim
n→∞ hn(T) > 0. (3.12)

We remark that, although Theorem 3.3 holds for every choice of the initial velocity ḣ0,
the result is of particular interest in the case where ḣ0 < 0. Indeed, since in this case we
have that hn(t0) → 0 (see statement (i) in Theorem 3.2), the theorem implies that {hn}n
converges to a function which is not monotone.

REMARK 3.4. Notice that (B.4) implies (B.3). Therefore, the main difference between
Theorem 3.2 and Theorem 3.3 is that condition (D.3) is replaced by (D.4)–(D.6). Roughly
speaking, (D.4) states that the flatness of the shell, as it approaches the wall, can only
increase. On the other hand, when combined, assumptions (D.5) and (D.6) express the
fact that the deformations of the shell are significant enough to change the asymptotic
behaviours of the drag force. We mention here that our prototypical examples for the
drag shape factor D are motivated by the drag force estimates obtained in § 2.4 (see in
particular (2.56) and (2.60)) and are given by

D1(h, ξ) := h−cξ−3/2, D2(h, ξ) := h− max{ξ,0}−1, (3.13a,b)

where c is a positive constant. Notice that, in view of (2.56) and (2.60), D1 is modelled in
such a way that positive values of ξ induce a flattening of an (initially) spherical particle in
two space dimension, while D2 does the same in three space dimensions. Moreover, both
allow for adequate choices of δ2 and y−. In particular, they satisfy (D.1), (D.5) and (D.6).
Notice that the monotonicity requirement in (D.4) holds for all h ≤ 1; thus both examples
can be suitably modified to satisfy (D.4). Additionally, as it becomes apparent from the
proof of Theorem 3.3 (see in particular (3.60)), it is enough to assume that (D.4) holds for
h ≤ h0 + ε, where ε can be any positive number. Finally, notice that (D.2) is automatically
satisfied for D2 and holds for D1 provided that ξ only takes values in a compact set, and c
is chosen opportunely. We observe here that this assumption is not restrictive, since under
the assumptions of Theorem 3.3 we have that ξ is bounded. A proof of this fact is contained
in the first step of the proof of Theorem 3.3.

REMARK 3.5. We wish to mention that the vanishing viscosity limit itself is not of our
interest here, since the purpose of the paper is the study of the rebound dynamics for
(elastic) objects in viscous fluids. Actually, the physical relevance of the limit object is
itself questionable, as we employ the Stokes approximation of the flow equations, thus
neglecting the effect of the fluid’s inertia (2.33). In particular, we keep only the pressure
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Contactless rebound of elastic bodies

near-contact singularity in play, possibly neglecting another important player – inertia –
from the equation. For positive viscosities, however, we follow the traditional lubrication
theory line, which is often formulated in this setting and where the pressure term is known
to be the dominant ‘driving force.’ Hence, (as the effect of inertia cannot be neglected a
priori in the vanishing viscosity limit) the limit objects considered in this subsection should
be seen as analytical tools that we use in order to understand the effect of decreasing the
viscosity on the bouncing behaviour. In addition, we recall that the predominance of the
contribution coming from the Stokes part of the system (near the potential contact point
for positive viscosities) can also be shown analytically. In particular, no-contact results
and respective drag force estimates can be rigorously transferred from the quasi-steady
Stokes regime to the steady or unsteady Navier–Stokes equations (see e.g. Hillairet 2007).

3.2. Proofs of the main results
In this section we collect the proofs of the results stated above. Due to the technical
nature of the arguments presented below, we give first a schematic outline of the general
principles behind the results. In particular, let us mention that the proof of Theorem 3.2
is based on the key observation that the moving object reaches a minimum distance from
the wall at which escape is no longer possible. Recalling that the leading term in the
drag coefficient does not distinguish on whether the solid is approaching or receding from
the wall, in this configuration the elastic response of the inner spring is not sufficient to
overcome the singular force that resists motion in the fluid. Conversely, in the proof of
Theorem 3.3 we exploit the fact that, as the object is approaching the wall, the change of
shape effectively stops the particle at a greater distance than the one that would be reached
by the undeformed configuration. As the deformation parameter reverts these changes, the
symmetry is broken and the elastic response is now sufficient to generate a vertical motion
away from the wall. This effective rebound is physical in the sense that it withstands the
vanishing viscosity limit.

Proof of Proposition 3.1. In view of the regularity assumptions (B.1) and (D.1), the
existence of local solutions to (3.1) follows directly from Peano’s theorem. Let (h, ξ) be a
maximal solution defined on the interval (0, T) and assume by contradiction that T < ∞.
We divide the proof into two steps.

Step 1: multiplying the first equation in (3.1) by (ḣ − ξ̇ ), the second one by aḣ and
adding together the resulting expressions, we arrive at

(ḧ − ξ̈ )(ḣ − ξ̇ )+ aḧḣ = −ab(ξ)ξ̇ − aμD(h, ξ)ḣ2. (3.14)

Define the auxiliary function

F(t) := (ḣ(t)− ξ̇(t))2 + aḣ(t)2 + 2aB(ξ(t)), (3.15)

and notice that integrating (3.14) yields the following energy equality:

F(t)+ 2aμ
∫ t

0
D(h(s), ξ(s))ḣ(s)2 ds = F(0). (3.16)

This energy equality relates well to the one formally derived for the full fluid–structure
interaction (2.12). Indeed, (ḣ(t)− ξ̇(t))2 + aḣ(t)2 resembles the kinetic energy K(t), while
2aB(ξ(t)) represents the elastic contribution given by the density W and the dissipation
(stemming from the fluid) is the same in both energy equalities.
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Since the integral on the left-hand side is non-negative, in view of (B.2) we conclude
that ξ, ḣ and ξ̇ are bounded. Consequently, since by assumption T < ∞, we obtain that
h is also bounded in [0, T]. This implies that necessarily h(T) = 0, since otherwise the
solution would admit an extension, hence contradicting the maximality of the solution
(h, ξ).

Step 2: next, we take T1 to be the smallest time instance for which h(T1) = 0. In view
of the previous step we have that T1 ≤ T < ∞. We notice that, by multiplying the second
equation in (3.1) by χ{ḣ<0}, we get(

ḧ + b(ξ)
)
χ{ḣ<0} = −μD(h, ξ)ḣχ{ḣ<0}

≥ −μch−α ḣχ{ḣ<0}
≥ −μch−α ḣχ{ḣ<0} − μch−α ḣχ{ḣ>0}
= −μch−α ḣ, (3.17)

where in the first inequality we have used the lower bound given by (D.2). Integrating both
sides in the previous inequality yields∫ t

0

(
ḧ(s)+ b(ξ(s))

)
χ{ḣ<0}(s) ds ≥ −μc

∫ t

0
h−α(s)ḣ(s) ds = −μc

∫ h(t)

h0

y−α dy. (3.18)

Notice that, since by assumption α ≥ 1, the right-hand side of (3.18) tends to infinity as
t → T−

1 . Set U := {s ∈ (0, t) : ḣ(s) < 0} and observe that, if U = (0, t), then∫ t

0
ḧ(s)χ{ḣ<0}(s) ds = ḣ(t)− ḣ0, (3.19)

while if this is not the case then we write U as the union of at most countably many disjoint
open intervals, i.e.

U =
∞⋃

i=1

(si, ti). (3.20)

Without loss of generality we assume that si ≤ sj if i ≤ j; furthermore, we notice
that ḣ(t1) = 0, ḣ(si) = 0 for all i ≥ 2, and ḣ(ti) = 0 for all i ≥ 2 provided that ti /= t.
Consequently, we have∫ t

0
ḧ(s)χ{ḣ<0}(s) ds =

∞∑
i=1

∫ ti

si

ḧ(s) ds = min{ḣ(t), 0} − min{ḣ0, 0}. (3.21)

Combining (3.19) and (3.21) with the bounds obtained in the previous step shows that the
left-hand side of (3.18) remains bounded as t → T−

1 , thus yielding a contradiction.
In turn, we obtain that h > 0 in [0, T] and the existence of a global solution follows

by Step 1. Moreover, the uniqueness of solutions is now direct consequence of the
Picard–Lindelöf theorem and (D.1). �

In the remainder of this section, we study the asymptotic behaviour of solutions as the
viscosity parameter μ approaches zero. To be precise, in the following we fix a sequence
μn → 0+ and denote with (hn, ξn) the solution to (3.1) (given by Proposition 3.1) relative
to the choice μ = μn.
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Contactless rebound of elastic bodies

LEMMA 3.6. Under the assumptions of Proposition 3.1, let (hn, ξn) be solutions as above.
Then there exist two Lipschitz continuous functions h, ξ : R → R, with h non-negative,
such that (up to the extraction of a subsequence, which we do not relabel) hn → h and
ξn → ξ uniformly on compact subsets of [0,∞).

Proof . As a consequence of the energy estimate (3.16), we see that

sup
{‖ξn‖L∞([0,∞)) + ‖ḣn‖L∞([0,∞)) + ‖ξ̇n‖L∞([0,∞)) : n ∈ N

}
< ∞. (3.22)

Since the sequence {hn}n is equi-Lipschitz continuous and hn(0) = h0 for every n, it
is also equi-bounded in [0, T] for every T > 0. The desired result then follows by the
Arzelà–Ascoli theorem. �

LEMMA 3.7. Assume that b(0) = 0, ξ0 = 0, ξ̇0 = 0 and let (h, ξ) be given as in Lemma
3.6. Then, the following hold:

(i) if ḣ0 ≥ 0 we have that h(t) = h0 + ḣ0t and ξ(t) = 0 for every t ≥ 0; and
(ii) if ḣ0 < 0 we have that h(t) = h0 + ḣ0t and ξ(t) = 0 for every t ≤ t0 := −h0/ḣ0.

Proof . Since by assumption h(0) = h0 > 0, there exists t1 > 0 such that h(t) > 0 in
[0, t1). For any t2 < t1, let ε := min{h(t) : t ∈ [0, t2]}. Then, for t ∈ (0, t2) we have

|ḧn(t)| ≤ ‖b(ξn)‖L∞ + μn‖ḣn‖L∞ max {D( y, ξn) : y ∈ [ε, ‖hn‖L∞]} . (3.23)

Thus, {hn}n is bounded in C1,1((0, t2)) and by the Arzelà–Ascoli theorem we find for that
for a subsequence ḣn → ḣ uniformly.

Next, notice that by integrating the second equation in (3.1) we arrive at

ḣn(t)− ḣ0 = −
∫ t

0
b(ξn(s)) ds − μn

∫ t

0
D(hn(s), ξn(s))ḣn(s) ds. (3.24)

Letting n → ∞ in the previous identity yields

ḣ(t)− ḣ0 = −
∫ t

0
b(ξ(s)) ds. (3.25)

Subtracting the second equation in (3.1) from the first one we obtain

ξ̈n = −(1 + a)b(ξn)− μnD(hn, ξn)ḣn. (3.26)

Therefore, reasoning as above, we conclude that ξ ∈ C1((0, t2)) and that eventually
extracting a subsequence we also have ξ̇n → ξ̇ . Integrating the equation in (3.26) and
passing to the limit with respect to n we see that

ξ̇(t) = −(1 + a)
∫ t

0
b(ξ(s)) ds. (3.27)

In turn, ξ is of class C2 in (0, t2) and solves the initial value problem

ξ̈ + (1 + a)b(ξ) = 0,

ξ(0) = ξ̇(0) = 0.

}
(3.28)

Since by assumption b(0) = 0, we readily deduce that ξ is identically equal to zero in
[0, t2]. This, together with (3.25), implies that ḣ(t) = ḣ0 and therefore that h(t) = h0 + ḣ0t
for every t ∈ [0, t2].
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Finally, assuming first that ḣ0 < 0, we notice that if we can choose t1 ≥ t0 then there is
nothing else to do. If this is not the case, then we can assume without loss of generality
that t1 < t0 is such that h(t1) = 0. In this case, letting t2 → t−1 would then imply that
h(t1) = h0 + ḣ0t1 > 0, thus leading to a contradiction. On the other hand, if ḣ0 ≥ 0 the
proof is similar, but simpler; thus we omit the details. This completes the proof. �

In the following proposition we address the more delicate case in which ḣ0 < 0 and
t ≥ t0.

PROPOSITION 3.8. Under the assumptions of Theorem 3.2, let hn, ξn, h and ξ be given as
in Lemma 3.6. Then, if ḣ0 < 0 we have that h(t) = 0 in [t0,∞).

Proof . Assume first that α > 1 and fix ε > 0. We claim that there exists N(ε) ∈ N such
that if n ≥ N(ε) then

hn(t)α−1 ≤ ε (3.29)

for every t ≥ t0. The desired result then follows by the arbitrariness of ε. We begin by
observing that adding the first equation in (3.1) to a multiple of the second equation yields

(1 + a)ḧn − ξ̈n = −aμng(hn)h−α
n ḣn. (3.30)

Let t ≥ t0 be such that hn(t) < h0. Then, integrating the previous identity and by means of
a change of variables we obtain

(1 + a)ḣn(t)− (1 + a)ḣ0 − ξ̇n(t) = −aμn

∫ t

0
g(hn(s))hn(s)−α ḣn(s) ds

= −aμn

∫ hn(t)

h0

g( y)y−α dy

≤ −C2aμn

1 − α
(hn(t)1−α − h1−α

0 ). (3.31)

Rearranging the terms in the previous inequality yields

hn(t)α−1 ≤ C2aμn

α − 1

(
(1 + a)ḣn(t)− (1 + a)ḣ0 − ξ̇n(t)+ C2aμn

α − 1
h1−α

0

)−1

. (3.32)

Therefore, to prove (3.29) it is enough to show that

C2aμn

α − 1
≤ ε

(
(1 + a)ḣn(t)− (1 + a)ḣ0 − ξ̇n(t)+ C2aμn

α − 1
h1−α

0

)
; (3.33)

in the following it will be convenient to rewrite this condition as

(1 + a)ḣ0 + C2aμn

α − 1
(ε−1 − h1−α

0 ) ≤ (1 + a)ḣn(t)− ξ̇n(t). (3.34)

Let us remark here that, since by assumption ḣ0 < 0, it is possible to choose n large enough
so that the left-hand side in (3.34) is negative. Consequently, if arguing by contradiction
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Contactless rebound of elastic bodies

we assume that (3.34) does not hold, we obtain that∣∣∣∣(1 + a)ḣ0 + C2aμn

α − 1
(ε−1 − h1−α

0 )

∣∣∣∣ < |(1 + a)ḣn(t)− ξ̇n(t)|. (3.35)

Squaring both sides in (3.35) and by Young’s inequality we see that

[
(1 + a)ḣ0 + C2aμn

α − 1
(ε−1 − h1−α

0 )

]2

< ((1 + a)ḣn(t)− ξ̇n(t))2

≤
(

1 + 1
δ

)
(ḣn(t)− ξ̇n(t))2 + (1 + δ)a2ḣn(t)2 (3.36)

holds for every δ > 0. In particular, if we let δ = 1/a, the right-hand side in (3.36) can be
rewritten as(

1 + 1
δ

)
(ḣn(t)− ξ̇n(t))2 + (1 + δ)a2ḣn(t)2 = (1 + a)[(ḣn(t)− ξ̇n(t))2 + aḣn(t)2],

(3.37)

and therefore, from the energy equality (3.16), we see that

(1 + a)[(ḣn(t)− ξ̇n(t))2 + aḣn(t)2] = (1 + a)2ḣ2
0 − 2a(1 + a)B(ξn(t))

−2a(1 + a)μn

∫ t

0
g(hn(s))hn(s)−α ḣn(s)2 ds. (3.38)

Further, expanding the square on the left-hand side of (3.36) we obtain the quantity

(1 + a)2ḣ2
0 + 2C2a(1 + a)μn

α − 1
(ε−1 − h1−α

0 )ḣ0 + O(μ2
n). (3.39)

Thus, combining (3.38) and (3.39) with (3.36) for δ = 1/a and rearranging the terms in
the result inequality, we arrive at

B(ξn(t))+ μn

∫ t

0
g(hn(s))hn(s)−α ḣn(s)2 ds ≤ C2μn

α − 1
(ε−1 − h1−α

0 )(−ḣ0)+ O(μ2
n).

(3.40)
Let t1 < t0 be such that

h1−α
0 + C2

C1
(ε−1 − h1−α

0 ) < (h0 + ḣ0t1)1−α. (3.41)

Then, since by assumption t ≥ t0, it follows from (B.3) that

C1

∫ t1

0
hn(s)−α ḣn(s)2 ds ≤ B(ξn(t))

μn
+
∫ t

0
g(hn(s))hn(s)−α ḣn(s)2 ds

≤ C2(−ḣ0)

α − 1
(ε−1 − h1−α

0 )+ O(μn). (3.42)

We claim that letting n → ∞ in the previous inequality leads to a contradiction to the
definition of t1. Indeed, since in [0, t1] we have that hn and ḣn converge uniformly to h and
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ḣ, respectively. Moreover, since (B.3) implies that b(0) = 0, we are in a position to apply
Lemma 3.7 and conclude that

C1(−ḣ0)

α − 1
[(h0 + ḣ0t1)1−α − h1−α

0 ] = C1

∫ t1

0
h(s)−α ḣ(s)2 ds

≤ C2(−ḣ0)

α − 1
(ε−1 − h1−α

0 ). (3.43)

As one can readily check, (3.43) is in contradiction with (3.41) and the claim is proved.
Thus, we have shown that if t ≥ t0 and hn(t) < h0 for every n sufficiently large then
hn(t)α−1 ≤ ε. Assume for the sake of contradiction that there exists t > t0 such that
hn(t) → h(t) ≥ h0. Since h(t0) = 0, there must be a point τ ∈ (t0, t) such that h(τ ) =
h0/2. Let N ∈ N be such that ∣∣∣∣hn(τ )− h0

2

∣∣∣∣ < h0

4
(3.44)

for all n ≥ N. Notice that for every such n we have that hn(τ ) < h0; therefore, we are in a
position to apply the result of the previous step to conclude that hn(τ )

α−1 ≤ ε, provided n
is large enough. This implies that 0 < h0/2 = h(τ ) ≤ ε1/(α−1). Letting ε → 0 leads to a
contradiction.

If α = 1, the argument presented above can be suitably modified to prove that

1
|log hn(t)− log h0| ≤ ε (3.45)

rather than (3.29). Since the proof requires only minimal changes, we omit the details. �

LEMMA 3.9. Under the assumptions of Proposition 3.1, let hn, ξn, h and ξ be given as in
Lemma 3.6. Then, if ḣ0 < 0, b(0) = 0 and h(t) = 0 for t ≥ t0 we have that ξ is the unique
solution to the initial value problem

ξ̈ + ab(ξ) = 0,

ξ(t0) = 0, ξ̇(t0) = −ḣ0.

}
(3.46)

Proof . We begin by noticing that, if we let zn := hn − ξn, we have that z̈n = ab(ξn).
Therefore, the sequence {zn}n is bounded in C1,1. In turn, by Arzelá–Ascoli, we see that
there exists a function z such that, up to the extraction of a subsequence (which we do
not relabel), zn → z and żn → ż uniformly on compact subsets of [0,∞). Integrating the
equation for zn and passing to the limit in n yields

ż(t)− ż(0) =
∫ t

0
ab(ξ(s)) ds. (3.47)

Therefore, z ∈ C2(0,∞) and satisfies z̈ = ab(ξ). Since by assumption we have that h(t) =
0 for every t ≥ t0, in view of Lemma 3.7 it is left to show that ξ̇(t0) = −ḣ0. This follows
by observing that

ḣ0 = lim
t↗t0

ḣ(t)− ξ̇(t) = ż(t0) = lim
t↘t0

ż(t) = lim
t↘t0

−ξ̇(t). (3.48)

This concludes the proof. �
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Contactless rebound of elastic bodies

Proof of Theorem 3.2. Combining the results of Lemma 3.7, Proposition 3.8 and Lemma
3.9, we obtain that for every sequence μn → 0+, the corresponding sequences of
solutions, i.e. {hn}n and {ξn}n, admit a subsequence with the desired convergence
properties. As one can readily check with a standard argument by contradiction, this
implies that the convergence holds for the entire family. Hence, the proof is complete. �

We conclude the section with the proof of Theorem 3.3.

Proof of Theorem 3.3. We present the proof for the case that γ1 > 1, where γ1 is the
constant given in (D.5). The case that γ1 = α = 1 follows by the same arguments
(replacing powers by logarithms at the relevant places).

We divide the proof into several steps.
Step 1: arguing by contradiction, assume that hn(t) → max{h0 + ḣ0t, 0} for all t ≥ 0.

Then, an application of Lemma 3.9 yields that eventually extracting a subsequence we
have that ξn → ξ , where ξ is the solution to

ξ̈ + ab(ξ) = 0, (3.49)

with initial conditions ξ(t0) = 0 and ξ̇(t0) = −ḣ0. Furthermore, from (B.2) and (B.4) we
see that there are exactly two points y−, y+, with y− < 0 < y+, such that 2aB( y±) = ḣ2

0.
Let

t± := 2

∣∣∣∣∣
∫ y±

0
(ḣ2

0 − 2aB( y))−1/2 dy

∣∣∣∣∣ . (3.50)

Observe that t± are finite by the positivity assumption of (B.4), since (by Taylor expansion)
ḣ2

0 − 2aB( y) = 2ab( y±)( y± − y)+ O(( y± − y)2). Further, notice that the points y± are
turning points for the nonlinear oscillator (3.49), whose period is given by t+ + t−. We
then define t1 := t0 + t+ and t2 := t0 + t+ + t−. With this notation at hand, we have that

y− ≤ ξ(t) ≤ y+ for t ≥ 0,
ξ(t) > 0, for t ∈ (t0, t1),
ξ(t) < 0, for t ∈ (t1, t2).

⎫⎬
⎭ (3.51)

Step 2: in this step we prove that for every ε > 0 with 6ε < t2 − t1 there exists N(ε)
such that if n ≥ N(ε) then ḣn(t) ≥ 0 in (t1 + 3ε, t2 − 3ε). To this end, observe that by the
uniform convergence of ξn to ξ , there exists a positive δ such that

ξn(t) ≤ −δ, (3.52)

for all t ∈ (t1 + ε, t2 − ε) and all n sufficiently large. Arguing by contradiction, suppose
that for a subsequence of {hn}n (which we do not relabel) we can find points τn ∈ (t1 +
3ε, t2 − 3ε) with the property that ḣn(τn) < 0. Observe that necessarily ḣn(t) ≤ 0 in (t1 +
ε, τn). Indeed, if this was not the case then hn would admit a local maximum at a point σn
in this interval. This leads to a contradiction since (3.52), together with (B.4), implies that
ḧn(σn) = −b(ξn(σn)) > 0. Let tε,n ∈ (t1 + ε, t1 + 2ε) be such that

hn(t1 + ε)− hn(t1 + 2ε) = −ḣn(tε,n)ε. (3.53)

Letting n → ∞ we see that ḣn(tε,n) → 0. Integrating the second equation in (3.1) between
tε,n and t ∈ (tε,n, t1 + 3ε), using the fact that hn is non-increasing in this interval, and
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(3.52) we arrive at

ḣn(t)− ḣn(tε,n) ≥ −
∫ t

tε,n
b(ξn(s)) ds ≥ β(t − tε,n), (3.54)

where β := min{−b( y) : y ∈ [y−,−δ]}. Integrating the previous inequality between t1 +
2ε and t1 + 3ε we then conclude that

hn(t1 + 3ε)− hn(t1 + 2ε)− ḣn(tε,n)ε ≥ βε2

2
, (3.55)

which in turn implies

hn(t1 + 3ε)− 2hn(t1 + 2ε)+ hn(t1 + ε) ≥ βε2

2
. (3.56)

Letting n → ∞ leads to a contradiction, since the left-hand side converges to zero by
assumption.

Step 3: let tn be such that

hn(tn) = min
{

hn(t) : t ∈
[

0,
t1 + t2

2

]}
. (3.57)

The purpose of this step is to prove that there exists a constant K > 0 such that for every n
sufficiently large we have

Khn(tn)γ1−1 ≥ μn. (3.58)

To see this, fix ε > 0 such that ξ(t) > −δ1/2 in [0, t1 + 3ε], where δ1 is given as in (D.5).
Using the fact that ξn → ξ uniformly in [0, t2] and the result of the previous step it is
possible to find a number N(ε) such that if n ≥ N(ε) then the following properties are
satisfied:

ξn(t) ≥ −δ1, in [0, t1 + 3ε],
ḣn(t) ≥ 0, in [t1 + 3ε, t2 − 3ε].

}
(3.59)

Notice that by (3.59) it follows that tn ∈ [0, t1 + 3ε]. Moreover, in view of (D.4), (D.5),
and (3.59), for every t ∈ [0, t1 + 3ε] we have(

ḧn(t)+ b(ξn(t))
)
χ{ḣn≤0}(t) = −μnD(hn(t), ξn(t))ḣn(t)χ{ḣn≤0}(t)

≥ −μnD(hn(t),−δ1)ḣn(t)χ{ḣn≤0}(t)

≥ −μnc1hn(t)−γ1 ḣn(t)χ{ḣn≤0}(t)

≥ −μnc1hn(t)−γ1 ḣn(t). (3.60)

Reasoning as in (3.21) (see also (3.22)), we conclude that there exists a constant k > 0
such that

k ≥
∫ tn

0

(
ḧn(t)+ b(ξn(t))

)
χ{ḣn≤0}(t) dt ≥ μnc1

γ1 − 1
(hn(tn)1−γ1 − h1−γ1

0 ), (3.61)

where the second inequality is obtained by integrating the estimate in (3.60). Notice that
(3.61) can be rewritten as

(γ1 − 1)k
c1

hn(tn)γ1−1 ≥ μn(1 − h1−γ1
0 hn(tn)γ1−1), (3.62)

and that the right-hand side can be further estimated from below by μn/2, provided n is
large enough. In particular, we have shown that (3.58) holds for K = 2(γ1 − 1)k/c1.
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Contactless rebound of elastic bodies

Step 4: with this estimate at hand can proceed as follows. Since by assumption y− <
−δ2, where δ2 is the constant given as in (D.6), eventually replacing ε with a smaller
number, we can find T1, T2 such that T1 < T2, 4ε < T2 − T1, (T1, T2) ⊂ (t1 + 3ε, t2 −
3ε), and with the property that ξn(t) ≤ −δ2 for every t ∈ (T1, T2). Reasoning as in Step 2
of the proof, for every n we can find a point τε,n ∈ (T1, T1 + ε) in such a way that

hn(T1)− hn(T1 + ε) = −ḣn(τε,n)ε. (3.63)

Notice that for every t ∈ (T1, T2), (3.58) and (D.5) imply that

ḧn(t) = −b(ξn(t))− μnD(hn(t), ξn(t))ḣn(t)

≥ −b(ξn(t))− Khn(tn)γ1−1γ (hn(t))hn(t)−γ1 ḣn(t)

≥ −b(ξn(t))− Kγ (hn(t))hn(t)−1ḣn(t). (3.64)

Integrating the previous inequality between τε,n and t ∈ (τε,n, T2) we obtain

ḣn(t)− ḣn(τε,n) ≥ −
∫ t

τε,n

b(ξn(s)) ds − K
∫ t

τε,n

γ (hn(s))hn(s)−1ḣn(s) ds

= −
∫ t

τε,n

b(ξn(s)) ds − K
∫ hn(t)

hn(τε,n)

γ ( y)y−1 dy

≥ −
∫ t

τε,n

b(ξn(s)) ds − K
∫ hn(T2)

0
γ ( y)y−1 dy, (3.65)

where in the last inequality we have used the fact that hn is positive and non-decreasing in
(T1, T2). Integrating (3.65) from τε,n to T2 yields

hn(T2)− hn(τε,n)− ḣn(τε,n)(T2 − τε,n) ≥ −
∫ T2

τε,n

∫ t

τε,n

b(ξn(s)) ds dt

−K(T2 − τε,n)

∫ hn(T2)

0
γ ( y)y−1 dy. (3.66)

In view of (D.6), by letting n → ∞ in the previous inequality we obtain

0 = lim
n→∞ hn(T2)− hn(τε,n)− ḣn(τε,n)(T2 − τε,n) ≥ lim

n→∞ −
∫ T2

τε,n

∫ t

τε,n

b(ξn(s)) ds dt.

(3.67)

To conclude, it is enough to notice that the right-hand side of (3.67) is positive. Indeed, if
we set β̃ := min{−b( y) : y ∈ [y−,−δ2]} > 0, we get

−
∫ T2

τε,n

∫ t

τε,n

b(ξn(s)) ds dt ≥ 1
2
(T2 − T1 − ε)2β̃ > 0. (3.68)

We have thus arrived at a contradiction and the proof is complete. �
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4. Numerical results

In this section, we present some numerical experiments in order to further strengthen
our main conjecture, which was previously formulated in the introduction. We begin
by illustrating that the ‘effectively deformable’ reduced model, for which the internal
spring deformation is coupled with the damping term representing the drag force, does
indeed produce a physical rebound. We conclude the section with the comparison from
a numerical standpoint of the ODE and PDE solutions. The striking similarities that we
observe suggest the relevance of the reduced model for the description of the rebound
phenomenon.

4.1. Reduced model
In the numerical simulations we shall consider a particular variant of the reduced model
(3.1). To be precise, we take

D(h, ξ) := c1h̃−c2ξ−3/2 + c3

M
, (4.1)

where the first term on the right-hand side is in accordance with (3.13a,b) and reflects
the change of flatness parameterized by ξ , here h̃ denotes the dimensionless value of h,
i.e. h̃ := h m−1 to make the expression physically meaningful, and the second constant
term describes the standard Stokes drag in the absence of geometrical constraints (such
as the boundary of the domain). Consequently (using (3.2a–c)), the system of governing
equations for h and ξ (2.46)–(2.49a,b) can be written as

Mḧ = −kξ − μ(c1h̃−c2ξ−3/2 + c3)ḣ, (4.2)

m(ḧ − ξ̈ ) = kξ, (4.3)

with initial conditions

h(0) = h0, ḣ(0) = ḣ0, (4.4a,b)

ξ(0) = ξ0, ξ̇(0) = ξ̇0. (4.5a,b)

4.1.1. Numerical results for the reduced model
In order to demonstrate the critical effect of the change of flatness for the reduced model,
we compare the two situations in which c2 = 0 and c2 /= 0. In both cases an internal
energy storage mechanism is present in the form of a mass–spring element. In the first
case the elongation of the spring does not affect the drag force (rigid shell model). For this
model we proved that a physical rebound is not possible, see Proposition 3.1 and Theorem
3.2. In the other case, the elongation of the spring does affect the drag force (effectively
deformable model); in this setting a physical rebound can be expected in view of Theorem
3.3. For comparison, we will also show the case with a rigid particle without any internal
storage mechanism. The numerical results of all these simulations were obtained by the
standard NDSolve ODE solution routine in Wolfram Mathematica.

The qualitatively different behaviours that the three settings can exhibit are summarized
in figure 4, where we plot the evolution of h, that is, the distance to the wall, as a function
of time t for several values of the fluid viscosity μ for: (i) the rigid shell model without
an internal spring (top row), (ii) the rigid shell with an internal spring (middle row) and
(iii) for the effectively deformable model with an internal spring (bottom row). For each
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Figure 4. Distance to wall h as a function of time for: rigid shell model without an internal spring (a,b), rigid
shell model with an internal spring (c,d) and deformable shell model with an internal spring (e, f ). Colours
distinguish cases with different fluid viscosities. In panels (a,c,e), we show the evolution over time interval
(0, 1) s, while in panels (b,d, f ), we present a zoom-in to the vicinity of the rebound instant.

case, the left panels show the full time interval, while in the right panels, we zoom into the
vicinity of the supposed rebound instant. The figure clearly demonstrates the severe effect
of the inclusion of a coupling between the internal deformation parameter ξ and the drag
force on the dynamics of the system.

For the rigid shell without an internal spring, we observe the expected behaviour – the
distance to wall is a monotone decreasing function of time converging with decreasing
viscosity to the ‘hit-and-stick’ solution, i.e. to the piece-wise affine function H(t) =
max{0, h0 + ḣ0t} (see Corollary 2.7 and Theorem 3.2). For the rigid shell model with
the internal spring, oscillations can be observed, i.e. the solutions are no longer monotone,
but note that, interestingly, the amplitude of the oscillations diminishes with decreasing
the fluid viscosity. These results are in accord with our analytical proof in Theorem 3.2.
In particular, with decreasing viscosity, we again observe the convergence of the solutions
to the ‘hit-and-stick’ solution. This confirms numerically the somewhat counter-intuitive
conclusion, that despite the fact that an energy storage mechanism is present (spring), the
absence of any shape change prevents the particle from physically meaningful rebounds
(as it does not withstand the vanishing viscosity limit).
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The situation is very different for the effectively deformable model. For the highest
values of viscosity (brown and red lines), the body bounces off very mildly and its
motion is rather quickly slowed down due to friction in the fluid. But with decreasing
viscosity, the rebound becomes more and more pronounced and the solutions appear to be
converging to an expected frictionless limit. Note how oscillations of the internal spring
manifest themselves in the motion of h, becoming less and less damped as μ goes to zero.
Interestingly, our simulations indicate that the kinetic energy corresponding to the outer
shell, i.e. the fraction M/(M + m) of the total kinetic energy of the system, is lost during
the rebound in the vanishing viscosity limit. This suggests that a proper physical rebound
(i.e. a perfectly elastic vacuum situation), would correspond in our reduced model to the
case M → 0+, that is, to the situation in which the entire mass of the body is carried by
the internal mass and the outer shell is massless.

The parameters used in the depicted simulations are as follows: k = 10 000 N m−1 for
the models with spring, k = 0 N m−1 without spring, c1 = 0.1 m, c2 = 20 m−1 for the
effectively deformable model (and it is set equal to zero in the rigid shell cases), c3 =
7.4 m. Finally, masses for models with the spring are taken as M = 1 kg, m = 5.5 kg. In
the simulation without the spring, to make the setting compatible, we set M = 6.5 kg,
m = 0 kg. For the initial conditions we considered the following values: h0 = 0.3 m, ḣ0 =
−0.5 m s−1 and ξ0 = 0 m, ξ̇0 = 0 m s−1.

This choice of material parameters is motivated by our effort to match the solutions to
the reduced model with the finite element solutions to the full FSI problem described
in § 4.3. It is also worth noting that in this case the energy estimate (3.16) implies
that supt |ξ(t)| ≤ √

(M + m)/k|ḣ0| .= 0.013 m, in accordance with the assumptions of
Theorem 3.3 (see also Remark 3.4).

4.2. Full FSI model
The standard form of the fluid–structure interaction problem, as presented in § 2, is
typically treated by the so-called arbitrary Lagrangian–Eulerian (ALE) method (see, for
example, Donea et al. 2004; Scovazzi & Hughes 2007) where the solid part is Lagrangian,
but the fluid problem is transformed into a certain special configuration which reflects the
changes of the shape of the fluid domain but is not disrupted by the (possibly vigorous)
motion of the fluid within the domain. The ALE method can be used to tackle the problem
of contact in fluid–structure interactions, but often requires the use of sophisticated
adaptive remeshing techniques to keep the fluid domain in the contact region well resolved.
Alternatively, to capture the interaction of a fluid with rigid particles, penalty-based
techniques such as the fictitious-domain method can be employed and possibly combined
with the ALE approach (Glowinski et al. 1999; Janela, Lefebvre & Maury 2005).

For our specific problem, however, we find it more convenient to pass to a fully Eulerian
description. This formulation was derived in § 2.2 (see (2.30)), and reads

div v = 0, (4.6)

ρ

(
∂v

∂t
+ v · ∇v

)
= div σ, σ = −pIN + 2μD(v)+ GBd. (4.7a,b)

Recall that the unknowns v, p,B are the global velocity v, the global pressure p and the
left Cauchy–Green tensor B. The viscosity μ is positive in the fluid part of the domain
F(t) and zero in the solid part of the domain B(t). The elastic modulus G is positive in the
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solid and zero in the fluid, the density ρ is equal to ρs in the solid and ρf in the fluid and

B = IN in F(t) and
∂B

∂t
+ (v · ∇)B − (∇v)B − B(∇v)T = O in B(t). (4.8a,b)

For the numerical implementation of the above model, we employ the conservative
level-set method with reinitialization, which facilitates the tracking of the boundary
between the fluid and the solid domain. In particular, we add a new scalar unknown χ ,
defined via

χ(x, t) :=
{

1, if x ∈ B(t),
0, if x ∈ F(t), (4.9)

and which is smeared out so that it changes smoothly across an interfacial zone with
characteristic thickness ε. The newly obtained regularized level-set function is denoted
here by χε. As the elastic solid moves in the fluid, the level-set function χε is advected by
the velocity, i.e.

∂χε

∂t
+ v · ∇χε = 0, (4.10)

and, in order to ensure stability of the method and a good resolution of the interfacial zone,
the level set must also be reinitialized during the simulations (see for example Olsson &
Kreiss (2005)). This is done by solving the following equation:

div
[
χ̄ε(1 − χ̄ε)

∇χε
|∇χε|

]
− ε�χ̄ε = 0, (4.11)

where χε is the solution of the advection equation (4.10) at the reinitialization time. The
solution χ̄ε is then assigned to χε and the evolution of χε is then continued according to
(4.10). Note that the reinitialization smears out the level-set function to a diffuse profile.
In one dimension, this reads

χε(x) = 1
2

(
1 + tanh

x
2ε

)
, (4.12)

so indeed the parameter ε controls the thickness of the diffuse interface. Similarly, the
material parameters ρ,μ, and G are prescribed to change smoothly across the interface by
setting

ρ(χε) := χ̃δρs + (1 − χ̃δ)ρf , μ(χε) := χ̃δμs + (1 − χ̃δ)μf ,

G(χε) := χ̃δGs + (1 − χ̃δ)Gf , (4.13a–c)

where χ̃δ is an interpolating function derived from the level set χε, but changing more
sharply across the fluid–solid interface. In particular, we employ

χ̃δ(χε) :=

⎧⎪⎨
⎪⎩

0, χε < 0.5 − δ,
1
2

+ χε − 0.5
2δ

+ 1
2π

sin
(

π(χε − 0.5)
δ

)
, 0.5 − δ ≤ χε ≤ 0.5 + δ,

1, χε > 0.5 + δ,

(4.14)

and in the calculations we use the value δ = 0.2. By such choice, very sharp material
changes can be achieved (see figure 8), while keeping the numerical scheme stable. The
difference between the level set χε and the focused interpolating function χ̃δ is shown for
a one-dimensional situation in figure 5.
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1.0 χε
χ̃δ
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0.4
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–3 –2 –1

x (ε)
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Figure 5. A comparison of the level set χε and the focused interpolating function χ̃δ for a one-dimensional
case.

In order to reduce the complexity of the problem, which is further enhanced by the
necessity of solving for the evolution of the tensor B, we simplified the model by assuming
that both the elastic deformations and the velocities are small. Consequently, we omit all
convective terms, including the one in the evolution equation for B. In the same spirit,
we also assume that (∇v)B ≈ ∇v in the solid, while in the fluid part the equation is
regularized in such a way that the evolution equation for B can be solved easily. (Note
that the set of equations obtained through these reductions (that is, in the regime where
deformations and velocities are small) was compared with the full (large strain, large
velocities) model. The difference turned out to be insignificant for both the qualitative
and quantitative characteristics of the rebound, which indicates that the simplifications are
admissible.) In particular, due to the regularized level-set function we introduce a global
left Cauchy–Green tensor B : Ω × [0, T] → R

N×N , where B = (1 − χε)Bf + χεBs, with
Bf = IN . All together we arrive at the following set of equations that we solve numerically:

div v = 0, (4.15)

∂χε

∂t
+ v · ∇χε = 0, div

[
χ̄ε(1 − χ̄ε)

∇χε
|∇χε|

]
− ε�χ̄ε = 0, (4.16a,b)

ρ(χε)
∂v

∂t
= div σ, σ = −pIN + 2μ(χε)D + G(χε)Bd, (4.17a,b)

∂Bs

∂t
= 2D, Bf = IN, B = (1 − χε)Bf + χεBs, (4.18a–c)

which is optimized for the performance of the numerical simulations. The problem is
implemented with the finite element method in the open source finite element library
FEniCS (see Alnæs et al. 2015) and discretized on a regular triangular mesh iteratively
refined in the vicinity of the close-to-contact point, see figure 7, the mesh size varying
between �h = 0.0026 m and �hmin = 0.00033 m. The mass balance (4.15), momentum
balance (4.17a,b) and the transport equation for the level set (4.16a,b)1 are solved
simultaneously by a monolithic solver, fully implicitly in time. The reinitialization
step for the level set, i.e. (4.16a,b)2 is performed separately after each time step.
Finally, the equation for Bs (4.18a–c) is solved locally and its solutions is then inserted
immediately into the balance equation of linear momentum. In particular, in the numerical
implementation, the time derivative in (4.18a–c) is approximated with the backward Euler
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time scheme, that is, (
∂Bs

∂t

)n

≈ Bn
s − Bn−1

s

�t
, (4.19)

where the upper index indicates the value of a quantity at the nth time step. The time step
�t is chosen adaptively according to the speed of the fluid from the previous time step in
such a way that the Courant–Friedrichs–Lewy (CFL)-like condition holds, i.e.

vmax�t
�h

= 1
2
. (4.20)

Here, vmax denotes the maximum value of the velocity magnitude. The local integration
of Bs gives

Bn
s = Bn−1

s + 2Dn�t, Bn
f = IN, Bn = (1 − χn

ε )B
n
f + χn

εBn
s . (4.21a–c)

Thus, the only global unknowns are the velocity v, the pressure p and the level-set function
χε. While velocity and pressure are approximated by the classical P2/P1 Taylor–Hood
element, the level-set function is approximated with the P2 element. The nonlinearities
are treated with the exact Newton method and the resulting set of linear equations is then
solved with the multifrontal massively parallel sparse (MUMPS) direct solver.

4.2.1. Numerical results
We have numerically investigated the rebound of an elastic ball in a viscous fluid
environment. The radius of the ball considered is 0.2 m and its centre is initially located
0.3 m from the bottom wall in a square container of size 0.8 m. At the boundary of
the container, no-slip boundary conditions are prescribed. For simulations shown in this
section, as mollification parameters we use ε = 0.0024 m, δ = 0.2.

The initial velocity of the ball is 0.5 m s−1 (downwards), the fluid is initially at rest and
the ball in a stress-free state. Throughout the simulation, body forces have been switched
off. The following material parameters have been prescribed:

ρf = 1 kg m−3, ρs = 1001 kg m−3, (4.22a,b)

μf = 0.2 Pa s, μs = 0 Pa s, (4.23a,b)

Gf = 0 Pa, Gs = 50kPa. (4.24a,b)

Figure 6 shows the snapshots of the velocity and level-set fields at three time instances:
moving down (panel a), during the rebound (panel b) and moving up (panel c). Since
the viscosity considered is relatively high, the process is dissipative and the velocity
magnitude is gradually decreasing with time. We remark that contact between the elastic
ball and the wall never takes place – it is indeed prevented by the development of a
high-pressure region around the point where contact would normally be expected, see
figure 7. The formation of this hydrodynamic pressure spike then facilitates the rebound.
Note that the very high refinement and focusing of the material parameters by the χ̃δ
function ensures that we are able to resolve the rebound of the elastic ball from the viscous
fluid layer that separates it from the wall. This is documented in figure 8, where we plot a
detail of the viscosity and shear modulus in a neighbourhood of the near-to-contact zone.

It is also worth noting how, in figure 7, the ball gets deformed, with the ‘impacting’ face
becoming very flat during the rebound phase. In order to quantify this effect, we fitted the
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|v| (m s–1)

(a) (b) (c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 6. Panels (a–c) show: left half – magnitude of velocity (colours) and the vectorial velocity field
(arrows), right half – level set at the stage of (a) moving down at t = 0.047 s, (b) shortly before rebound
at t = 0.224 s, (c) moving up at t = 0.736 s. The white contour depicts the interface where the value of the
level-set function is equal to 0.5. interpreted as the position of the fluid–solid interface.

0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37

0 1 2 3 4 5 6 7 8 9 10

0.38 0.39 0.40

X axis

Pressure (kPa)

0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50

Figure 7. Left half: pressure in the fluid at the time of rebound (t = 0.248 s). Right half: computational mesh
refined in the vicinity of the contact zone. The white line represents the 0.5-level set, interpreted as the position
of the fluid–solid interface.

shape of the interface at the bottom of the ball with the function

y = h + d|x̃|α, (with x̃ := x m−1). (4.25)

For that we performed a least-squares fit of the 0.5-level-set positions with 7 equidistant
points with distance from the axis of symmetry less or equal than 0.07 m. Both the
prefactor d and the exponent α are shown in figure 9 as functions of the distance to the
wall h, together with several snapshots of the extracted points and the fit. Note that both
the prefactor d and the exponent α increase significantly during the phase of rebound,
so qualitatively the observed dependence of the flatness exponent in the FSI simulation
corresponds with the ansatz (4.1) in the reduced ODE model. Please note, however, that
in the numerical experiments with the reduced ODE model, we only take into account
the deformation dependence of the ‘flatness’ exponent for simplicity, while keeping the
prefactor fixed. However, both our numerical experiments and also the analytical insights
(not shown here) indicate that just the deformation dependence of the prefactor without
change in the flatness exponent would not lead to rebound.

Another comment concerns the stability of our numerical results with respect to the
choice of the level-set thickness parameter ε and the mesh resolution �h. For the used
(fixed) values of ε, we have confirmed (not shown in the paper) that the results are robust
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Figure 8. (a,b) Detailed zoom of the material parameters and the computational mesh close to the wall at the
instant of rebound – shear modulus G (a) and viscosity μ (b). (c,d) Profiles of the material parameters along the
profile given by the white line in panels (a,b): shear modulus G (c) and viscosity μ (d). Note that the material
is purely viscous to the distance of approximately 0.001 m from the wall.
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Figure 9. (a) Fit of the shape of the closest-to-contact part of the particle in the FSI simulation by the function
(4.25) – in particular, the dependence of the exponent α and the prefactor d on the minimal distance to the wall
h. (b) Several snapshots of the 0.5-level-set positions (points) extracted from the simulation data together with
the fitted curves (red: t = 0.047 s, green: t = 0.119 s, blue: t = 0.177 s, orange: t = 0.248 s). The snapshots
correspond to the times preceding the bounce. Both figures refer to the case with μ = 0.2 Pa s.
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0.14
(a) (b)

0.12

0.10

0.08

0.06

h (m)

t (s)

0.04

0.02

0.2 0.4 0.6 0.8 1.00

0.14 Frictionless

μ = 0.001 Pa s

μ = 0.01 Pa s

μ = 0.2 Pa s

μ = 0.5 Pa s

μ = 1 Pa s

μ = 0.1 Pa s

0.12

0.10

0.08

0.06

t (s)

0.04

0.02

0.2 0.4 0.6 0.8 1.00

Figure 10. Comparison of numerically obtained solutions with the reduced ODE model corresponding to
the deformable shell with an internal spring (a) and finite element method (FEM) solutions of the full FSI
model (b).

with respect to resolution �h and the quantitative characteristics of our experiments do
not change significantly for finer resolution. With decreasing ε, in particular for small
viscosities, the details of the rebound process differ quantitatively. This is hardly surprising
since this application is certainly pushing the level-set approach to FSI to its limits.
Nevertheless, the qualitative characteristics of our results and all the main findings seem
to hold firm. This is also supported by some preliminary results with a sharp-interface
ALE-based implementation of the same experiment (not shown here).

4.3. A comparison of the two models
Let us now compare in detail the numerical simulations performed for the reduced
(effectively deformable) ODE model with the finite element solutions obtained for the full
FSI problem. Throughout the section, we refer in particular to figure 10, where we display
the distance to the wall h as a function of time for both models and for several values of the
viscosity parameter. It is worth noting that for the FSI model h is defined as the distance
between the wall and 0.5-level set. Observe that with the choice of parameters made in
§ 4.1.1, the match between the two sets of solutions is satisfactory in terms of the duration
of the rebound phase and also regarding the mean body velocity after the rebound.

A comment on the oscillatory behaviour of h after rebound in the ODE solutions is in
order. While the oscillations are unmistakably due to the internal spring–mass system,
which is effectively undamped for low viscosity values, it is worth mentioning that
somewhat similar ‘free oscillations’ can also be seen in figure 10 for the full FSI model for
sufficiently small values of the fluid viscosity μf . This can be seen as an indication that
this particular feature of the ODE model should not be a priori regarded as completely
non-physical. The fact that the amplitudes and frequencies of the oscillations do not match
is not surprising due to the simplicity of the reduced ODE model.

Next, we note that the vertical offset of the solutions from the x-axis suggests that the
finite element solutions bounce off at greater distances from the wall when compared with
solutions of the ODE model. To some extent, this can be attributed to the effect of the
level-set approximation, i.e. to the diffuse interface between the ball and the fluid in the
FSI model. As demonstrated in figure 8, however, for the considered set of parameters we
are confident that for high and intermediate values of viscosity μ, the rebound due to the
pressure singularity is not a mere artefact of the diffuse interface approach and the elastic
ball bounces off a well-resolved purely viscous layer.
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5. Summary and concluding remarks

In this paper, we investigate how serious and physically relevant the so called no-contact
paradox is, that is, the absence of body–body and body–wall topological contact for
elastic particles in an incompressible Stokes fluid with no-slip boundary conditions
imposed on all boundaries. We were driven partially by the question whether the no-slip
boundary condition in fluid–structure interaction problems must be avoided and branded as
non-physical, or whether it can be redeemed somehow. We believe that we have provided
an affirmative answer to the latter question, as we have shown that even in the absence of
topological contact between an elastic body in motion towards a rigid wall, an effective
rebound can be achieved, which is physical in the sense that it withstands the vanishing
viscosity limit.

It is known and it has been proved rigorously that neither topological contact nor
rebound are possible for perfectly rigid bodies (see, for example, § 2.3.1 and Corollary
2.7). On the other hand, the inclusion of elastic deformations of the solid bodies has been
hypothesized as a promising ingredient towards obtaining a physical rebound. We tried
to follow this path, yet, to simplify the notoriously difficult fluid–structure interaction
problem, we devised a simplified ODE model (see § 2.3.2) which captures the features
that we believe to be essential.

The model comprises a ball (immersed in an incompressible Stokes fluid with no-slip
boundary conditions prescribed both on the boundary of the container and on the
fluid–solid interface) that is initially thrown towards a flat rigid wall. As a simplified model
of elasticity, we introduced a single scalar internal parameter ξ , which can be visualized
as the elongation of a spring attached to a certain mass within the ball (see figure 1).
In this setting, when the ball is subjected to the drag and internal push and pull from
the spring, we have proved that contact cannot happen in finite time for any value of the
viscosity parameter, and moreover that there is no rebound in the vanishing viscosity limit
(see § 2.3.1; see also Theorems 3.2 and 1.1). In view of this fact, we conjectured that the
internal mechanical energy storage alone is not a sufficient mechanism to ensure particle
rebound.

As a next step in our analysis, we have investigated how allowing for deformations of
the solid body changes the picture. This was achieved by coupling the internal deformation
parameter with the drag formula. As a model case, we considered a one-parameter family
of graphs describing the near-to-contact shape of the solid body by a general power
function of the form

y = h + d|x̃|α, (5.1)

where h is the distance of the closest point to the wall, while d and α are parameters
possibly depending on the elastic deformation, i.e. we take d = d(ξ) and α = α(ξ). We
have derived the corresponding parameterization of the drag force exerted by the fluid on
the ball for such ‘deformed’ configurations as they approach the wall (see Appendix C.1).
These formulas are consistent with the standard lubrication (Reynolds’) theory (see § 2.4.2
and Appendix C.2) and read

D(h, ξ) ∼ h−(3α(ξ))/(1+α(ξ)), if N = 2, D(h, ξ) ∼ h(1−3α(ξ))/(1+α(ξ)), if N = 3.
(5.2a,b)

It is worth noting that, in the context of the standard Hertz theory of contact, the shape
of the solid body does not change dramatically in the sense that ‘spheres deform to
ellipses’, so that the shape exponent α remains unaltered. Inspired, however, by real-world
observations, where much more dramatic changes in the ‘flatness’ of an impacting body
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are often observed, we relaxed the assumption of the Hertz theory that α is constant and
allowed it to change according to the elastic deformation described by ξ .

Surprisingly, this appears to be the key missing ingredient – the feature that allows us to
reproduce a physically meaningful rebound. Indeed, in § 3 we have proved the possibility
of a rebound that withstands the vanishing viscosity limit. Furthermore, our proofs are
supplemented with numerical simulations of the ODE system (see figure 4). It is worth
noting that the reduced model can predict rebound while incorporating at the same time
the defining feature of our problem, that is, the lack of topological contacts. This is a direct
consequence of the fact that, in view of the imposed no-slip boundary conditions, the drag
force exerted by the fluid blows up as the distance of the body from the wall approaches
zero.

Not only the ODE model admits a rigorous analysis of the effective rebound process,
but, despite its apparent simplicity, it also shows a striking capability to reproduce
qualitative characteristics of the rebound process when compared with finite element
simulations of the full fluid–structure interaction problem (see figure 10). This gives us
the confidence to consider the rigorously proved result for the ODE model as a reliable
proof of concept for the general fluid–structure interaction problem outlined in § 2 and
to strengthen our main conjecture from the introduction, i.e. the claim that a qualitative
change in the flatness of the solid body as it approaches the wall, together with some elastic
energy storage mechanism within the body, allows for a physically meaningful rebound
even in the absence of topological contact.
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Appendix A. Reduction of the full elastic dynamics to the wave equation

In this appendix, we motivate the design of the reduced model from § 2.3.2; in particular,
we formally justify the reduction of the elastic structure to a spring–mass model. To
simplify the derivation, let us for a moment replace the incompressible neo-Hookean
material with a compressible one, for which the elastic strain energy is given by

Wcomp := G
2
(|F |2 − N − 2 ln J). (A1)

Then the resulting first Piola–Kirchhoff stress tensor reads

P = ∂Wcomp

∂F
= G(F − F−T). (A2)
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Contactless rebound of elastic bodies

Let us assume that the deformations are small, i.e. |∇X η| � 1. By performing Taylor
expansions around the identity, we readily obtain

F−T = (
IN + (∇X η)T

)−1 = IN − (∇X η)T + O(|∇X η|2), (A3)

J = det(IN + ∇X η) = 1 + Tr(∇X η)+ O(|∇X η|2) = 1 + divX η + O(|∇X η|2). (A4)

Notice that upon inserting (A3) into (A2) and neglecting all terms of order O(|∇X η|2) we
recover the well-known formula of the stress for small strains, that is

P ≈ G
(∇X η + (∇X η)T

) =: 2GDX (η). (A5)

Under the assumption that the material is nearly incompressible, that is ρs ≈ ρ0
s ,

combining the balance of mass (2.3) with (A4) and neglecting all terms of order
O(|∇X η|2), we obtain

ρ0
s ≈ Jρ0

s ⇒ J ≈ 1 ⇒ divX η ≈ 0. (A6)

Moreover, inserting (A5) in the balance of linear momentum (2.3) yields the classical wave
equation for η, that is

ρ0
s
∂2η

∂t2
≈ G�X η + ρ0

s G. (A7)

Appendix B. Formal energy equality for the FSI problem

We begin this appendix with the formal derivation of an energy equality for the fully
Eulerian model (2.30). To this end, we multiply the balance of linear momentum by the
velocity v and integrate the resulting relation over Ω . Then, by the Gauss theorem and
(2.29) we get

d
dt

∫
Ω

ρ

2
|v|2 dx = −

∫
Ω

(−pIN + 2μD(v)+ GBd) : D(v) dx +
∫
Ω

ρg · v dx

= −
∫
Ω

(2μ|D(v)|2 + GB : D(v)) dx +
∫
Ω

ρg · v dx, (B1)

where in the last equality we have used the incompressibility condition. Next, we take the
trace of the transport equation for B (see (2.24)), we multiply it by G/2, integrate it over
Ω , and use again (2.29) to obtain

d
dt

∫
Ω

G
2

Tr B dx =
∫
Ω

GB : D(v) dx. (B2)

Upon adding together (B1) and (B2) we arrive at

d
dt

∫
Ω

ρ

2
|v|2 dx + d

dt

∫
Ω

G
2

Tr B dx +
∫
Ω

2μ|D(v)|2 dx =
∫
Ω

ρg · v dx. (B3)

In view of (2.29), the second term in the previous equality can be modified in such a way
that the energy balance takes the form

d
dt

∫
Ω

ρ

2
|v|2 dx + d

dt

∫
Ω

G
2
(Tr B − N) dx +

∫
Ω

2μ|D(v)|2 dx =
∫
Ω

ρg · v dx. (B4)
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Upon integrating (B4) over the time interval (0, t), and recalling that μ = 0 in B(t), finally
yields

∫
Ω

(
ρ(x, t)

2
|v(x, t)|2 + G(x, t)

2
(Tr B(x, t)− N)

)
dx +

∫ t

0

∫
F(s)

2μf |D(v(x, s))|2 dx ds

=
∫
Ω

(
ρ(x, 0)

2
|v(x, 0)|2 + G(x, 0)

2
(Tr B(x, 0)− N)

)
dx +

∫ t

0

∫
Ω

ρ(x, s)g(x, s) · v(x, s) dx ds.

(B5)

One can observe now that the first integral consists of two terms: the kinetic energy, with
density Ek = ρ|v|2/2, and the elastic strain energy, with density given by W expressed
in the Eulerian framework (see (2.6)). Notice also that the second integral represents the
standard Newtonian dissipation 2μ|D|2. Upon transforming the integrals over B(t) to the
reference configuration B0, recalling that G = 0 in F(t), that J = 1 and by employing
the identity Tr B = Tr(FF T) = |F |2, the energy equality can be recast to a form which is
perhaps more standard in the FSI setting (cf. the energy equality for the reduced model
(3.16))

K(t)+
∫
B0

W(X , t) dX +
∫ t

0

∫
F(s)

2μf |D(v(x, s))|2dx ds = K(0)+
∫
B0

W(X , 0) dX

+
∫ t

0

∫
F(s)

ρf g(x, s) · v(x, s) dx ds +
∫ t

0

∫
B0

ρs
0G(X , s) · ∂η

∂t
(X , s) dX ds, (B6)

where K(t) denotes the kinetic energy of the system at time t, that is

K(t) :=
∫
F(t)

ρf

2
|v(x, t)|2 dx +

∫
B0

ρs
0

2

∣∣∣∣∂η∂t
(X , t)

∣∣∣∣
2

dX . (B7)

Finally, if we now restrict our attention to the regime of small deformations (see
Appendix A) and therefore neglect all terms of the second and higher orders in |∇X η|,
we get

|F |2 = |IN + ∇X η|2 = N + 2 divX (η)+ |∇X η|2 ≈ N + |∇X η|2. (B8)

This readily implies that∫
B0

W(X , t) dX ≈
∫
B0

Gs

2
|∇X η(X , t)|2 dX . (B9)

Appendix C. Drag force estimates

The material in this appendix is meant to complement our treatment of the drag force in
§ 2.4 by providing a proof of the analytical estimates and a derivation of the drag force
predicted by the lubrication approximation theory.

C.1. The drag force based on the variational formulation
We begin this first part of the appendix with the proof of Theorem 2.5. The argument we
present here is directly adapted from the proof of Lemma 3 in Hillairet (2007).
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Proof of Theorem 2.5. We divide the proof into two steps.
Step 1: assume first that N = 2. Then, by a density argument, it is enough to show that

for every v ∈ C∞
c (R

2+; R
2) ∩ Vh

c1 ≤ h3α/(1+α)‖∇v‖2
L2, (C1)

where c1 is a positive constant independent of v. To see this, using the notation introduced
in (2.57), we define

Fh(δ) := {(x1, x2) : |x1| < δ, 0 < x2 < g(|x1|)} ⊂ Fh, (C2)

and integrate div v = 0 in Fh(δ) to obtain∫
∂Fh(δ)∩∂Bh

v · n dH1 = −
∫
Fh(δ)∩{|x1|=δ}

v · n dH1. (C3)

Since v = e2 on ∂Bh, we see that

L :=
∫
∂Fh(δ)∩∂Bh

v · n dH1 =
∫
∂Fh(δ)∩∂Bh

n2 dH1 = 2δ, (C4)

where the last equality is obtained via a direct computation, parameterizing the domain of
integration. Similarly, but also using the fact that g(δ) = g(−δ), we obtain that

R :=
∫
Fh(δ)∩{|x1|=δ}

v · n dH1 =
∫ g(δ)

0
(v1(δ, x2)− v1(−δ, x2)) dx2, (C5)

and an application of Hölder’s and Poincaré’s inequalities yields∫ g(δ)

0
|v1(δ, x2)− v1(−δ, x2)| dx2 ≤ g(δ)1/2‖v1(δ, ·)− v1(−δ, ·)‖L2((0,g(δ));R2)

≤ g(δ)3/2
∥∥∥∥∂v1

∂x2
(δ, ·)− ∂v1

∂x2
(−δ, ·)

∥∥∥∥
L2((0,g(δ));R2)

. (C6)

In turn,

2δ = L ≤ |R| ≤
√

2g(δ)3/2
(∫ g(δ)

0
(|∇v1(δ, x2)|2 + |∇v1(−δ, x2)|2) dx2

)1/2

. (C7)

Integrating the previous inequality over δ ∈ (0, r) yields

r2 ≤
√

2 sup
δ∈(0,r)

{g(δ)3/2}
∫ r

0

(∫ g(δ)

0
(|∇v1(δ, x2)|2 + |∇v1(−δ, x2)|2) dx2

)1/2

dδ

≤
√

2 sup
δ∈(0,r)

{g(δ)3/2}r1/2

(∫ r

0

∫ g(δ)

0
(|∇v1(δ, x2)|2 + |∇v1(−δ, x2)|2) dx2 dδ

)1/2

=
√

2 sup
δ∈(0,r)

{g(δ)3/2}r1/2‖∇v‖L2, (C8)

where in the second to last step we have used Hölder’s inequality. Consequently, recalling
that g is given as in (2.57), if we let r = h1/(1+α) we obtain

1√
2

≤
(

sup
{
h + γ δ1+α : δ ∈ (0, r)

}
r

)3/2

‖∇v‖L2 = (1 + γ )3/2h3α/(2(1+α))‖∇v‖L2 .

(C9)
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The desired result readily follows.
Step 2: now, assume that N = 3. Reasoning as in the previous step, but with the aid of

cylindrical coordinates (δ, θ, z), we readily deduce that

πδ2 ≤ g(δ)3/2δ
∫ 2π

0

(∫ g(δ)

0
|∇v|(δ, θ, z)|2 dz

)1/2

dθ (C10)

holds for every v ∈ C∞
c (R

3+; R
3) ∩ Vh. Thus, integrating the previous inequality over δ ∈

(0, r) and by means of Hölder’s inequality, we get

πr3

3
≤ sup
δ∈(0,r)

{g(δ)3/2δ1/2}
∫ r

0
δ1/2

∫ 2π

0

(∫ g(δ)

0
|∇v|(δ, θ, z)|2 dz

)1/2

dθ dδ

≤
√

2π sup
δ∈(0,r)

{g(δ)3/2δ1/2}r1/2‖∇v‖L2 . (C11)

Therefore, setting once again r = h1/(1+α), we get

1
3

√
π

2
≤ sup
δ∈(0,r)

{g(δ)3/2}r−2‖∇v‖L2 ≤ (1 + γ )3/2h(3α−1)/(2(1+α))‖∇v‖L2 . (C12)

This concludes the proof. �

Next, we turn our attention to the proof of Theorem 2.6, which we only sketch here.
Recalling that by definition D(h) = min{J (u;Fh) : u ∈ Vh}, the conclusions of Theorem
2.6 follow if we can exhibit a competitor, namely wh ∈ Vh, for which J (wh;Fh) is
bounded from above by the right-hand side of (2.56). To achieve this, one has to construct
a velocity field which allows for the fluid to escape the aperture in between the solid
body and the boundary of the container in a nearly optimal way. For N = 2, such a
construction was carried out by Gérard-Varet and Hillairet (see § 4.1 and Proposition 8 in
Gérard-Varet & Hillairet 2010). Their argument is adapted from the analogous construction
for a two-dimensional disk, due to Hillairet (see § 4 in Hillairet 2007). The construction
for N = 3 is due to Hillairet and Takahashi (see § 3.1 in Hillairet & Takahashi 2009) for a
sphere, and can be suitably modified for the more general shapes that we consider in this
paper.

C.2. The drag force based on the Reynolds approximation
In this second part of the appendix, we are interested in approximating the drag force
exerted on a particle immersed in a Newtonian fluid, which is moving towards a rigid
wall, when both the wall and the fluid–solid interface are subjected to no-slip boundary
conditions. Considering an axisymmetric situation (as in figure 6), a good approximation
can be found by calculating and integrating the pressure under the solid body, which indeed
represents the major contribution to the drag force (Leal 1992). The pressure profile can
be estimated using the so-called lubrication, or Reynolds, approximation. This yields the
following ODE (see equation (7-256) in Leal (1992) for N = 2; see equation (4.22) in
Bassani & Piccigallo (1992) for N = 3):

d
dr

(
rN−2g3 dp

dr

)
= 12μrN−2ḣ, N = 2, 3, (C13)

where r is the distance from the symmetry axis, and g is defined as in (2.57). Integrating
the previous equation from 0 to r′, and recalling that by assumption the particle is
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Contactless rebound of elastic bodies

axisymmetric, yields

dp
dr
(r′) = 12μḣ

r′

g(r′)3(N − 1)
, N = 2, 3. (C14)

Integrating now between r and R we obtain

p(r)− p(R) = − 12μḣ
N − 1

∫ R

r

r′

g(r′)3
dr′. (C15)

Assuming R � 1 then the pressure difference on the left-hand side corresponds to the
actual dynamic pressure, which constitutes the main contribution to the drag force.
Integrating the pressure difference over the surface of the solid body yields the (pressure
contribution) to the drag force

F̃ lub := −
∫
Γ

( p(r)− p(R))n dHN−1, (C16)

where n is the outer unit normal to Γ (pointing inside the fluid). By symmetry, we only
need to evaluate the vertical component of the force, since all other components are zero

F̃lub := F̃ lub · eN = −
∫
Γ

( p(r)− p(R))n dHN−1 · eN . (C17)

In view of (C15), letting R → ∞ in the expression above yields

Flub := lim
R→∞

F̃lub = −12μḣ

⎧⎪⎪⎨
⎪⎪⎩

2
∫ ∞

0

∫ ∞

r

r′

g(r′)3
dr′ dr, if N = 2,

π

∫ ∞

0

∫ ∞

r

rr′

g(r′)3
dr′ dr, if N = 3,

(C18)

which is the desired approximation.
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