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Artificial Neural Networks (ANNs)-based techniques have dominated state-of-the-art
results in most problems related to computer vision, audio recognition, and natural lan-
guage processing in the past few years, resulting in strong industrial adoption from all
leading technology companies worldwide. One of the major obstacles that have histori-
cally delayed large-scale adoption of ANNs is the huge computational and power costs
associated with training and testing (deploying) them. In the mean-time, Neuromorphic
Computing platforms have recently achieved remarkable performance running the bio-
realistic Spiking Neural Networks at high throughput and very low power consumption
making them a natural alternative to ANNs. Here, we propose using the Random Neural
Network, a spiking neural network with both theoretical and practical appealing proper-
ties, as a general purpose classifier that can match the classification power of ANNs on a
number of tasks while enjoying all the features of being a spiking neural network. This is
demonstrated on a number of real-world classification datasets.

Keywords: artificial neural network, neuromorphic computing, random neural network, spiking
neural networks

1. INTRODUCTION

Despite being first proposed about 60 years ago (The Perceptron model [69]), only in the past
few years, artificial neural network(ANNs) had become the de facto standard machine learn-
ing model [55] achieving state-of-the-art results for wide range of problems ranging from
vision problems such as image classification [44,54,75], object detection [39,68], semantic
segmentation [45,58], face recognition [67,71], and text recognition [40,73], to speech recog-
nition [2,41,46], to natural language processing problems like machine translation [51,74],
language modeling [3], and question answering [4]. This has resulted in huge industry-wide
adoption from leading technology companies like Google, Facebook, Microsoft, IBM, Yahoo!,
Twitter, Adobe, and a quickly growing number of start-ups. One of The prominent reasons
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for this recent revival is that in order for ANNs to achieve such performance they need
big labeled datasets and huge computational power at a scale that only recently came to
the hands of individual researchers in the form of GPUs [66], which kick-started the deep
learning revolution in 2012 [54]. Since then, the trend for demanding more computation and
more power has largely increased.

Despite being bio-inspired architectures, ANNs have subtle differences from actual
biological neurons in their work (how computations is performed by neurons), structure
(connection patterns and topologies of neurons), learning (how neurons adopt themselves
to new observations), and communication (how inter-neuron data is encoded and passed).
One of the main reasons of the inefficiency of ANNs compared to biological neurons is how
communication is done. While biological neurons use asynchronus trains of spikes in an
event-based, data-driven manner that adopts locally to its external stimulating pattern to
communicate and encode data (though the specific encoding mechanism used by neurons
is not totally understood), ANNs communicate in dense, continuous valued activations,
whcich means all the neurons are working in the same time thus using lots of computation
and power to operate. The idea behind spiking neural networks is to leverage this benefit
from biological neurons and communicate asynchronously in trains of spikes. Thus, spiking
neural networks incorporates the concept of time, and instead of all neurons firing in the
same time as the case with ANNs, in spiking neural networks neurons fire only when thier
intrinsic potential (i.e., membrane voltage) reaches a specific threshold [38,47]. Neurosci-
entists have historically suggested a large number of models for simulating how biological
neurons communicate, one of the simplest models that is widely used in many spiking neu-
ral networks models is the integrate-and-fire (IF) model [1], in which the change in the
membrane voltage vmem is given by

dvmem(t)
dt

=
∑

i

∑
s∈Si

wiδ(t − s) (1)

where wi is the weight of the ith incoming synapse, δ(.) is the delta function, and Si =
t0i , t

1
i , . . . contains the spike times of the ith presynaptic neuron. If the membrane voltage

crosses the spiking threshold vthr, a spike is generated and the membrane voltage is reset
to a reset potential vres [10]. Some other models exist, such as spike response model (SRM)
[52], and the Izhikevich neuron model [50].

One of the prominent differences between spiking neural networks and ANNs is how
they learn and adopt to new signals. While ANNs have been predominantly trained in lit-
erature using Backpropagation [80] and some variant of stochastic gradient descent (SGD),
which can be summarized as moving the vector of network parameters or weights θ in the
direction of the negative gradient of some loss function L that characterizes the deviation
network’s current output from the ground truth labels of input data. Training spiking neu-
ral networks, on the other hand, is still an open research issue with many proposed solution
and no consensus [76]. One of the most popular and biologically plausible learning meth-
ods in spiking neural networks is unsupervised learning using the Spike Timing Dependent
Plasticity (STDP) [7,59], in which the synaptic weight is adjusted in accordance with the
relative spike times of the presynaptic and postsynaptic neurons. An important problem
that has always faced using the popular gradient-based optimization algorithms in spiking
neural networks is that both spike trains and the underlying membrane voltage are not
differentiable at the time of spikes, researchers tried different approaches to alleviate this
problem, one of the most successful has been the workaround of first training an ANN and
then converting it to a corresponding spiking neural networks [10,62,63].
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Though von Neumann architectures [78] worked very well running ANNs efficiently, it
was suggested as early as 1980s that they were not adequate for running the more realistic
spiking neural networks models efficiently, and a new architecture was needed to realize
their power and computational efficiencies [83]. The recent success of ANNs have pushed
this trend much faster. The main idea behind Neuromorphic Computing was to design
Integrated Circuits (ICs) that are arranged and behave like living neurons (i.e., to mimic
how the brain performs computation) [60], the spiking neural networks model of a biolog-
ical neuron has historically been used as a guiding design in this process. After years of
trails, the past few years saw the demonstration of Neuromorphic Computing platforms
with millions of neurons while requiring only milliWatts of power for their operation such
as TrueNorth [61], SpiNNaker [16], and Loihi [9]. A number of SSN-based pattern clas-
sification applications were demonstrated to run efficiently and accurately on these chips
while being orders of magnitude more efficient in terms of power consumption than an
ANN on a von Neumann CPU or GPU running a similar task. The main source of this
power saving is the asynchronous working and firing of spiking neural networks described
earlier, so neurons fire and the chip consumes power only when needed this is completely
different than what happens in an ANN when all neurons are obliged to fire synchronously
together which costs a lot of an unnecessary energy and computation. This efficiency can
be even increased by consuming input from neuromorphic sensors such as silicon retinas
[72] or cochleas [57], which create sparse, framefree, and precisely timed train of signals,
with substantially reduced latencies compared to traditional frame-based approaches which
produce large volumes of redundant data and therefore consumes lots of power. This line
of neuromorphic sensor design has been applied to vision sensors, auditory sensors, and
olfactory sensors [77].

The rest of the paper is structured as follows: Random Neural Network are described
and reviewed in Section 2; our experimental setup is described and results presented in
Section 3; the conclusions and future work are drawn in Section 4.

2. RANDOM NEURAL NETWORK (RNN)

G-Networks [20] are a family of queueing networks with a convenient and computationally
efficient product form mathematical solution. The computation of the state of a G-Network
is obtained via a simple fixed-point iteration, and the existence and uniqueness of the
solution to the key G-Network state equation is easily verified [31]. G-Networks incorporate
useful primitives, such as the transfer of jobs between servers or the removal of batches
of jobs from excessively busy servers, that were developed in a series of successive papers
[12,21,22,33]. They have a wealth of diverse applications as a tool to analyze and optimize
the effects of dynamic load balancing in large-scale networks and distributed computer
systems [30]. They are also used to model Gene Regulatory Networks [24,53]. A recent
application of G-Networks is to the modeling of systems which operate with intermittent
sources of energy, known as Energy Packet Networks [13,17,26,27,29].

The simplest version of G-Networks, known as the RNN [19] has a powerful property
of approximating continuous and bounded real-valued functions [36]. This property serves
as the foundation for RNN-based learning algorithms [23] and Deep Learning [32,82].

The RNN has been used for modeling natural neuronal networks [18], and for protein
alignment [65]. It has been used in several image processing applications including the
accurate evaluation of tumors from brain MRI scans [34] and the compression of still and
moving images [8,35,43]. It was recently introduced as a tool for predicting the toxicity of
chemical compounds [42].
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Figure 1. Schematic representation of a RNN [81].

In the field of computer network performance, the RNN has been used to build dis-
tributed controllers for quality of service routing in packet networks [5,25,28] and in the
design of Software Defined Network controllers for the Internet [14,15]. Real-time optimized
task allocation algorithms in Cloud systems [79] have also been built and tested. Recent
applications has addressed the use of the RNN to detect network attacks [70] and attacks
on Internet of Things (IoT) gateways [6].

Figure 1 gives a schematic diagram of a RNN. Assume a system with L neurons. The
state of neuron l at time t is represented by a non-negative integer called its potential,
denoted by kl(t) ≥ 0. Network state at time t is a vector k(t) = (k1(t), . . . , kl(t), . . . , kL(t)).
When an excitation signal arrives to neuron l, the state of neuron l is changed from state
kl(t) to kl(t) + 1. When an inhibition signal arrives to neuron l, the state of neuron l is
changed from state kl(t) to kl(t) − 1. Neuron l emits a spike if kl(t) is positive (i.e., it is
excited); the state of neuron l is changed from state kl(t) to kl(t) − 1. The spikes are sent
out from neuron l at a rate rl which is exponentially distributed.

Spikes are sent from the outside world to neuron l as a positive signal according to
Poisson processes of rate Λl or also as a negative signal according to Poisson processes of
rate λl

Spikes are sent out from neuron l to neuron l̂ as a positive signal with probability
pl,l̂ or as a negative signal with probability p−

l,l̂
, or they depart from the network with

probability vl. The sum of these probabilities must be one.

di +
L∑

j=1

[pl,l̂ + p−
l,l̂

] = 1, ∀l (2)

The spikes are sent out from neuron l to neuron l̂ at rates:

wl,l̂ = rl pl,l̂ ≥ 0, (3)

w−
l,l̂

= rl p−
l,l̂

≥ 0, (4)

wl,l̂ and w−
l,l̂

are also called the excitatory and inhibitory weights.
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Combining Eqs. (2)–(4) we can get:

rl =

∑L
j=1[wl,l̂ + w−

l,l̂
]

1 − vl
(5)

Let ql = limt→∞ Prob(kl(t) > 0) denote stationary excitation probability of the neuron l.
The total arrival rates of positive signals Ωl and negative signals Ω−

l , for l = 1, . . . , n, can
be calculated from the following nonlinear system of equations:

Ωl = Λl +
L∑

j=1

qlwl,l̂ (6)

Ω−
l = λl +

L∑
j=1

qlw
−
l,l̂

(7)

It has been proven that ql can be directly calculated by the following system of equations:

ql = min
{

1,
Ωl

rl + Ω−
l

}
(8)

The existence of a solution to the system of N non-linear Eq. (8) and its uniqueniess
has been proven [23]. Therefore, the states of the RNN can be efficiently obtained by
solving it.

3. EXPERIMENTAL RESULTS

Here we present experimental results on a number of benchmark real world classification
datasets that are widely used in literature. We show that spiking neural network-based
RNNs are empirically at least as powerful as ANNs in this category of classification problems
(It was theoretically shown that RNNs are universal function approximaters [36,37], Thus,
as computationally capable as ANNs [48]).

3.1. Evaluation Setup

Table 1 shows statistics about the used datasets, we use Iris, Breast Cancer, and Glass
datasets from the UCI machine learning repository [56] and the Ovarian cancer dataset
[64]. We train the RNN using the same procedure described in Hussain and Moussa [49],
which can be summarized as:

Assume the given dataset has K pairs of input training patterns xk and associated
output class label yk.

Table 1. Names and statistics of the used datasets

Dataset # Attributes # Features # Output classes

Iris 4 150 3
Breast Cancer Wisconsin 9 699 2
Glass 9 214 7
Ovarian cancer 100 216 2
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1. Initialize the weights wl,l̂ and w−
l,l̂

, ∀l, l̂, to random values between zero and one.

2. Set the inhibitory rates to zero.
3. Set the excitatory input rates for the input neurons, Λk = xk, where xk is the kth

input training pattern.
4. Solve the nonlinear system of Eq. (8) to obtain the neuron stationary excitation

probability ql,∀l

5. Iterate through the RNN learning algorithm till convergence, updating in each step
the weights wl,l̂ and w−

l,l̂
, ∀l, l̂, which minimize the following error function:

E =
K∑

k=1

L∑
l=1

[qlk − ylk]2 (9)

3.2. Dataset Description

Here we give a brief description of the four datasets used for evaluation.

1. Iris dataset [56]: Each instance is described by four plants attributes (sepal length
and width, and petal length and width) all are real numbers and the task is to
recognize which class of Iris plants (Iris Setosa, Iris Versicolour, or Iris Virginica) a
given test instance belongs to.

2. Breast Cancer Wisconsin dataset [56]: Each instance is described by 9 numerical
attributes, that range from 1 to 10. The attributes include the clump thickness,
uniformity of cell size, uniformity of cell shape, marginal adhesion, single epithelial
cell size, bare nuclei, bland chromatin, normal nucleoli, and mitoses. This breast
cancer databases were obtained from the University of Wisconsin Hospitals, Madison
from Dr. William H. Wolberg. The task is to recognize the class of the breast cancer
(benign or malignant).

3. Glass dataset [56]: Each instance has 9 continuous attributes, including the refractive
index and the unit measurements of sodium, magnesium, aluminum, silicon, potas-
sium, calcium, barium, and iron. There are in total 7 types of glass, while there are
instances of only 6 types of glass in the dataset. The task is to using the 9 attributes
to recognize which type of glass this instance belongs to (whether it is windows glass
or non-window glass).

4. Ovarian Cancer dataset [64]: From the FDA-NCI Clinical Proteomics Program Data-
bank, the dataset comprises 216 patients, out of which 121 are ovarian cancer patients
and 95 are normal patients. Each instance has 100 attributes, each of which repre-
sents the ion intensity level at a specific mass-charge value . The task is to recognize
the class of the ovarian cancer (benign or malignant).

3.3. Results

Tables 2–5 display confusion matrices of RNN on the four datasets. Table 6 compares the
accuracy of RNNs against ANNs some UCI datasets. For the ANN results, we use results
obtained on UCI datasets from the comprehensive study in Fernández-Delgado et al. [11].
We can clearly see in Table 1 that RNNs are at least as powerful as ANNs in these datasets
and can deliver excellent classification accuracy.
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Table 2. Confusion matrix for Iris dataset

Class Setosa Versicolour Virginica

Setosa 1.0 0.0 0.0
Versicolour 0.0 1.0 0.0
Virginica 0.0 0.0 1.0

Table 3. Confusion matrix for Breast Cancer dataset

Class Positive Negative

Positive 0.984 0.016
Negative 0.067 0.933

Table 4. Confusion matrix for Glass dataset

Class Positive Negative

Positive 1.0 0.0
Negative 0.127 0.8139

Table 5. Confusion matrix for Ovarian Cancer dataset

Class Positive Negative

Positive 1.0 0.0
Negative 0.1064 0.8936

Table 6. Accuracy comparison between RNN, and ANN. Best
result in each dataset is in bold

Dataset RNN ANN

Iris 1.0 0.959
Breast Cancer Wisconsin 0.964 0.963

4. CONCLUSIONS

In this paper, we have motivated the need for power and computation-wise efficient models
for classification and how ANNs, despite being very powerful classifiers, are not efficient nei-
ther in their power nor computational demands. We presented and reviewed spiking neural
networks and neuromorphic computing as a possible alternative that have received a lot of
interest in past years due to its power usage and computation efficiency, but also suffered
from its own problems, namely, being harder to train and less robust in its generalization
performance. We also presented a special kind of spiking neural networks, the Random Neu-
ral Network, that was first introduced in Gelenbe [19]. RNN’s special analytical properties
makes it much easier to train, we have also empirically shown that it provides generalization
performance that is at least as powerful as conventional ANNs in a number of real world
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classification datasets, while entertaining the efficiencies associated with being a spiking
neural network.
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