
TLP 16 (5–6): 933–949, 2016. C© Cambridge University Press 2016

doi:10.1017/S147106841600048X

933

Tabling with Sound Answer Subsumption

ALEXANDER VANDENBROUCKE

KU Leuven, Belgium

(e-mail: alexander.vandenbroucke@kuleuven.be)

MACIEJ PIRÓG

KU Leuven, Belgium

(e-mail: maciej.pirog@kuleuven.be)

BENOIT DESOUTER

Ghent University, Belgium

(e-mail: benoit.desouter@ugent.be)

TOM SCHRIJVERS

KU Leuven, Belgium

(e-mail: tom.schrijvers@kuleuven.be)

submitted 6 May 2016; revised 8 July 2016; accepted 22 August 2016

Abstract

Tabling is a powerful resolution mechanism for logic programs that captures their least fixed

point semantics more faithfully than plain Prolog. In many tabling applications, we are not

interested in the set of all answers to a goal, but only require an aggregation of those answers.

Several works have studied efficient techniques, such as lattice-based answer subsumption and

mode-directed tabling, to do so for various forms of aggregation.

While much attention has been paid to expressivity and efficient implementation of the

different approaches, soundness has not been considered. This paper shows that the different

implementations indeed fail to produce least fixed points for some programs. As a remedy,

we provide a formal framework that generalises the existing approaches and we establish a

soundness criterion that explains for which programs the approach is sound.

KEYWORDS: tabling, answer subsumption, lattice, partial order, mode-directed tabling,

denotational semantics, Prolog

1 Introduction

Tabling considerably improves the declarativity and expressiveness of the Prolog

language. It removes the sensitivity of SLD resolution to rule and goal ordering,

allowing a larger class of programs to terminate. As an added bonus, the memoisation

of the tabling mechanism may significantly improve run time performance in

exchange for increased memory usage. Tabling has been implemented in a few

well-known Prolog systems, such as XSB (Swift and Warren 2010; Swift and

Warren 2012),Yap (Santos Costa et al. 2012), Ciao (Chico de Guzmán et al.

https://doi.org/10.1017/S147106841600048X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841600048X

934 Vandenbroucke et al.

2008) and B-Prolog (Zhou 2012), and has been successfully applied in various

domains.

Much research effort has been devoted to improving the performance of tabling

for various specialised use-cases (Swift 1999; Ramakrishna et al. 1997; Zhou and

Dovier 2011). This paper is concerned with one such fairly broad class of use-

cases: we are not directly interested in all the answers to a tabled-predicate query,

but instead wish to aggregate these answers somehow. The following shortest-path

example illustrates this use-case.

query(X,Y,MinDist) :- findall(Dist,p(X,Y,Dist),List), min_list(List,MinDist).
:- table p/3.
p(X,Y,1) :- e(X,Y).
p(X,Y,D) :- p(X,Z,D1), p(Z,Y,D2), D is D1 + D2.
e(a,b). e(b,c). e(a,c).

The query ?- query(a,c,D). computes the distance D of the shortest path from

a to c by first computing the set of distances {1, 2} of all paths and then selecting

the smallest value from this set. Unfortunately, when the graph is cyclic, the set of

distances is infinite and the query never returns, even though the infinite set has a

well-defined minimal value.

Various tabling extensions (know collectively as answer subsumption: mode-

directed tabling (Guo and Gupta 2004; Guo and Gupta 2008; Zhou et al. 2010;

Santos and Rocha 2013), partial order answer subsumption and lattice answer

subsumption (Swift and Warren 2012)), have come up with ways to integrate

the aggregation into the tabled resolution. This way answers are incrementally

aggregated and the tabling may converge more quickly to the desired results. For

instance, the shortest-path program can be written with mode-directed tabling as:

:- table p(+,+,min).
p(X,Y,1) :- e(X,Y).
p(X,Y,D) :- p(X,Z,D1), p(Z,Y,D2), D is D1 + D2.
e(a,b). e(b,c). e(a,c).

Here the query ?- p(a,c,D). yields only the shortest distance. It does so by greedily

throwing away non-optimal intermediate results and in this way only considers

finitely many paths, even if the graph is cyclic. In summary, this approach makes

tabling (sometimes infinitely) more efficient for our aggregation use-case.

Unfortunately, none of the existing implementations that we are aware of is

generally sound. Consider the following pure logic program.

p(0). p(1).
p(2) :- p(X), X = 1.
p(3) :- p(X), X = 0.

The query ?- p(X). has a finite set of solutions, {p(0),p(1),p(2),p(3)}, the

largest of which is p(3). However, XSB, Yap and B-Prolog all yield different

(invalid) solutions when answer subsumption is used to obtain the maximal value.

Both XSB and B-Prolog yield X = 2, with a maximum lattice and max table mode

respectively. Yap (also with max table mode) yields X = 0; X = 1; X = 2, every

solution except the right one.1

1 The batch scheduling used by Yap returns any answer as soon as it is found.

https://doi.org/10.1017/S147106841600048X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841600048X

Tabling with Sound Answer Subsumption 935

Clearly, these results are unsound. This example is not the only erroneous one;

we can easily construct more erroneous scenarios with other supported forms of

aggregation. Hence, we must conclude that answer subsumption is in general not

a semantics-preserving optimisation. Yet, as far as we know, the existing literature

does not offer any guidance on when the feature can be relied upon. In fact, to our

knowledge, its semantics have not been formally discussed before.

This paper fills the semantic gap of answer subsumption with the help of lattice

theory. We show how the existing implementations fit into this semantic framework

and derive a sufficient condition for semantics preservation that allows answer

subsumption to be safely used.

2 Background: Tabling Semantics

Because the operational semantics of tabling is rather complex and different systems

vary in subtle ways, we make a simplifying assumption and assume that tabling

systems implement Lloyd’s least fixed-point semantics (Lloyd 1984) for definite logic

programs, that is, that tabling is a sound program optimisation with no impact on

the denotation of a program. This semantics conveniently abstracts from low-level

aspects such as clause and goal ordering and the specific clause scheduling algorithm

used by the Prolog engine.

2.1 Least Fixed-Point Semantics

First, we need the notion of a Herbrand base: the set of all possible (ground) atoms

that occur in a logic program. More formally, let Σ be an alphabet, and P be a

logic program over Σ, then the Herbrand base HP is the set of all ground atoms

over Σ. For example, the Herbrand base of the shortest path program (without

query/3,+/2) is:

HP = {e(X,Y) | X,Y ∈ {a, b, c}} ∪ {p(X,Y ,D) | X,Y ∈ {a, b, c}, D ∈ �}

A (Herbrand) interpretation is a set I ⊆ HP . Intuitively, it contains atoms in the

Herbrand base that are true: ∀a ∈ HP : I |= a ⇐⇒ a ∈ I .

Finally, define the operator TP : P (HP)→ P (HP) such that, given an interpreta-

tion I , the value TP (I) is the interpretation that immediately follows from I by any

of the program rules:

TP (I) = {B0 ∈ HP | B0 ← B1, . . . , Bn ∈ ground(P) ∧ {B1, . . . , Bn} ⊆ I} (1)

This operator is called the immediate consequence operator. Its least fixed-point

with respect to subset-inclusion (⊆), denoted lfp(TP), defines the semantics of the

program P , and is also known as the least Herbrand model. It is the interpretation

that contains those and only those atoms that follow from the program and that

are not self-supported.

Example 1 Consider the following program P :

p(a). p(b). q(c).
q(X) :- p(X).

https://doi.org/10.1017/S147106841600048X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841600048X

936 Vandenbroucke et al.

Its Herbrand base is {p(a), p(b), p(c), q(a), q(b), q(c)}. Its fixed-point semantics

is:

lfp(TP) = {p(a), p(b), q(a), q(b), q(c)}
Observe that this is exactly the set of atoms that follow from the program.

2.2 Existence and Computability of the Least Herbrand Model

The least fixed-point semantics is not necessarily well-defined: it is not immediate

that the least fixed-point actually exists. Moreover, if it exists, it may not actually

be constructively computable.

Fortunately, there is no reason for concern: by appeal to a well-known theorem

from lattice theory, we can easily establish the well-definedness. A complete lattice

is a partially ordered set (poset) 〈L,�L〉 such that every X ⊆ L has a least upper

bound
∨
X, i.e.:

∀z ∈ L :
∨

X �L z ⇐⇒ ∀x ∈ X : x �L z

We do indeed have a lattice structure at hand: the power set of the Herbrand

base 〈P (HP),⊆〉 is a complete lattice. In fact, any power set is a complete lattice.

Moreover, it is quite easy to see that if P is a definite logic program (i.e., contains no

negations), then TP is monotone with respect to this lattice. It follows that lfp(TP)

exists, ensuring that the semantics is well-defined for every definite program P , by

the following theorem:

Theorem 2.1 (Knaster–Tarski)

Let 〈L,�L〉 be a complete lattice, and let f : L→ L be a monotone function. Then,

f has a least fixed point, denoted lfp(f).

Moreover, the TP operator is ω-continuous, which means that for all ascending

chains l1 ⊆ l2 ⊆ . . . with l1, l2, . . . ⊆ HP , it is the case that
⋃∞

i=1 TP (li) = TP (
⋃∞

i=0 li).

Then, Kleene’s fixed-point theorem gives us a constructive way of obtaining lfp(TP):

lfp(TP) =
⋃
{TP (∅), T 2

P (∅), . . .}

The least fixed-point can therefore be obtained in a bottom-up fashion by iterating

TP from the empty set onward. Operationally, tabling usually interleaves a top-down

goal-directed strategy with bottom-up iteration. The bottom-up strategy always

computes the entire least Herbrand model, even when only a small portion of it

may be required to prove a particular query. The top-down part of tabling avoids

computing irrelevant atoms as much as possible, making inference feasible.

2.3 Stratification

Unfortunately, the TP -operator is not monotone for programs containing more

advanced constructs, such as negation. Therefore, Lloyd’s semantics as described

above is not suitable for capturing the semantics of such programs. In the case

of negation, this problem is solved by partitioning the clauses of a program into

an ordered set of strata based on their interdependence. This procedure is called

https://doi.org/10.1017/S147106841600048X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841600048X

Tabling with Sound Answer Subsumption 937

stratification (Apt et al. 1988). Then, the semantics for each stratum is computed

based on the semantics of the lower strata, with no relation to the higher strata.

To make this more concrete, suppose a ground program P admits a stratification

P1, . . . , Pn, with the Pi non-empty and pairwise disjoint, then:

P = P1 ∪ · · · ∪ Pn,

Q1 = P1, Qi+1 = Pi+1 ∪Mi, for all i = 0, . . . , n− 1

Mi = lfp(TQi
) for all i = 1, . . . n

where Mi should be understood as a set of facts. If a program admits a stratification

where all negated calls are to predicates defined in lower strata, the obvious extension

T
neg
P of the TP operator to include negation is guaranteed to be monotone. The

semantics of P is then given by
⋃n

i=1 Mi.

3 Answer Subsumption Approaches

In this section, we propose a denotational semantics for tabling with answer

subsumption. Broadly speaking, we modify the semantics for stratified programs

as described in the previous section in two respects. First, our semantics includes

new answers that may emerge from the program-defined rules of subsumption,

which are not necessarily logical consequences of the same program without answer

subsumption. We obtain this by extending the TP operator. Secondly, we perform

the actual subsumption, that is, we remove the subsumed answers. Stratification, as

discussed in Section 3.4, is used to control the order in which these two steps are

invoked.

In a bit more detail, the semantics of a stratum is given by the extended immediate

consequence operator, which we call T̂P , and a function η : HP → L that aggregates

the answers using a lattice L. A consequence of this specification is that an

aggregation naturally ignores all operational aspects of the program P. That is to say,

given two structurally distinct programs P1 and P2 whose least fixed-point semantics

coincide, that is, lfp(T̂P1
) = lfp(T̂P2

), it follows that
∨
η(lfp(T̂P1

)) =
∨
η(lfp(T̂P2

)), i.e.

their aggregates coincide as well.

Obviously, the existing systems do not implement answer subsumption as a single

post-processing function. Instead, they execute it repeatedly during the bottom-up

phase of the computation, which sometimes makes them deviate from the intended

semantics, as exemplified in the introduction. We formalise and deal with this in

Section 4.

For now, we assume that the program P has only one stratum. Towards the end of

the section, we show how to assemble the semantics of programs with any number

of strata.

3.1 Mode-Directed Tabling

Mode-directed tabling is a convenient aggregation approach supported by ALS-

Prolog, B-Prolog and Yap where the arguments of a tabled predicate are annotated

https://doi.org/10.1017/S147106841600048X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841600048X

938 Vandenbroucke et al.

with one of a range of aggregation modes. Yap provides the largest range of possible

modes: index, first, last, min, max and all. The answers are grouped by distinct

values for the index arguments; the remaining arguments are aggregated according

to their mode – the mode names should be self-explanatory.

Based on our assumptions so far, we can immediately disqualify the existing

implementations of the three modes first, last and sum. The reason is that the

semantics of the existing implementations is inherently sensitive to the program

structure. Consider the two programs below:
% P1
:- table p(first).
p(1). p(2).

% P2
:- table p(first).
p(2). p(1).

Clearly lfp(TP1) = {p(1), p(2)} = lfp(TP2), however P1 yields p(1) as an answer

for ?- p(X). while P2 yields p(2). The opposite happens with the last mode. The

next programs illustrate the problem of the sum mode:
% P3
:- table p(sum).
p(1).

% P4
:- table p(sum).
p(1). p(1).

Again the least fixed-point semantics of both programs coincides: lfp(TP3) =

{p(1)} = lfp(TP4). However, they produce the following results in Yap:
% P3
?- p(X).
X = 1.

% P4
?- p(X).
X = 1 ; X = 1.
?- p(X).
X = 2.

Yap produces the result p(1) twice the first time the query is called. Any

subsequent query is answered with p(2). In other words, not only are the results of

P3 and P4 not consistent, the results for P4 are not internally consistent either.

In the rest of this paper we disregard these three modes. As their implementations

are so obviously sensitive to the program structure, we do not see a good way

to reconcile them with our semantics-oriented post-processing specification for

aggregation. In fact, in our opinion these modes are best avoided in high-level

logic programs.

3.2 Lattice-Based Approaches

The remaining three modes, min, max and all, share one notable property: they

are all based on a join-semilattice structure defined on (subsets of) UP , the set of

all ground terms over the alphabet of P . A join-semilattice is a poset 〈S,�S 〉 such

that every finite subset X ⊆ S has a least upper bound in S , which we denote, as

in the case of complete lattices,
∨
X. For example, the set of natural numbers with

standard order 〈�,�〉 is a join-semilattice (with
∨
X = maxX), but it is not a

complete lattice. Different modes define the following join-semilattices:

• min defines the join-semilattice 〈UP ,�〉 where � is the lexicographical ordering

on terms (=</2). The least upper bound is the minimum.

• max defines the join-semilattice 〈UP ,�〉 where � is the inverse of �. The least

upper bound is the maximum.

https://doi.org/10.1017/S147106841600048X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841600048X

Tabling with Sound Answer Subsumption 939

• all defines the join-semilattice 〈Pfin (UP) ,⊆〉 where Pfin (UP) is the set of all

finite subsets of UP . Existing implementations represent sets as lists of terms,

which are themselves terms.

The two additional aggregation approaches, offered by XSB, are also based on

join-semilattices:

• XSB generalises the above modes to user-defined join-semilattices with the

lattice(
∨
/3) mode that is parameterised in a binary join operator. For

instance, we can define the min mode as lattice(min/3).

• XSB also provides a second user-definable mode po(�/2) in terms of a partial

order � on UP . This partial order induces a join-semilattice 〈Pfin (UP) ,�〉 where

X � Y ≡ ∀x ∈ X : ∃y ∈ Y : x � y.

Therefore, in what follows, we only have to deal with lattices that are essentially

subsets of UP , considerably simplifying the formulae.

As we can always reorder arguments and combine multiple join-semilattices into

their product join-semilattice, we assume, without loss of generality, that only the

final argument of a predicate is an output tabling mode. That is, all ground atoms

have the shape Q(X , x) where Q is the name of some predicate, X is a vector of input

arguments X1, X2, . . . , Xn and x is the value of the output parameter. We make the

simplifying assumption that all predicates are tabled. If a predicate has only input

arguments (like tabling without answer subsumption), a (constant) dummy output

can always be added.

Mode-directed tabling groups atoms for a predicate Q by distinct values for

the input arguments X and aggregates the values of the output argument x into

a single term. Therefore, we model a table of aggregated answers by a function

table : IP ×Un
P → U⊥P (where IP is the set of predicate names in P) that maps a pair

of a predicate name and inputs to a single aggregated output. The set of aggregate

answers U⊥P = UP ∪ {⊥} is the set of all terms, on which a special element ⊥ is

grafted, to indicate the lack of an answer. We extend the chosen order on terms �
such that ⊥ is an (adjoined) bottom element, that is, ∀x ∈ U⊥P : ⊥ � x. For legibility,

we will also sometimes refer to IP ×Un
P → U⊥P by L(�). The lattice structure 〈U⊥P ,�〉

induces a join-semilattice structure 〈L(�),�〉 on the set of tables, where � is the

pointwise order:

f � g ⇐⇒ ∀(p,X) ∈ IP ×Un
P : f(p,X) � g(p,X)

This lattice structure allows us to aggregate over multiple tables, by aggregating the

answers pointwise:

(
∨

F)(p,X) =
∨
f∈F

f(p,X)

By storing each individual element of lfp(TP) into a table and then aggregating

over tables we obtain the semantics for mode directed tabling:

https://doi.org/10.1017/S147106841600048X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841600048X

940 Vandenbroucke et al.

Let η : HP → (IP ×Un
P → U⊥P) and ρ : (IP ×Un

P → U⊥P)→ P (HP) be defined as:

η(p(X , x))(q,Y) =

{
x if p = q ∧ X = Y

⊥ otherwise

ρ(f) = {p(X , f(p,X)) | f(p,X) �= ⊥}

Thus, the function η turns an atom into a singleton table, and ρ maps a table to the

set of its true atoms.

To compute the set of all true atoms of a program P , we need to consider the

consequence of joining two elements of a semi-lattice in addition to regular logical

consequences. This is because, for arbitrary lattices, the result of a join can be

distinct from any of its arguments, and thus produce new facts. We define a new

immediate consequence operator T̂P , which extends the regular TP operator with

answers obtained by joins. Formally, we define T̂P as follows, where Pfin(A) denotes

the set of all finite subsets of a set A:

T̂P (X) =
⋃
{ρ(

∨
Y) | Y ∈ Pfin(η(TP (X)))} (2)

One can show that T̂P is continuous, hence monotone. In fact, for linear orders

(such as min and max), T̂P behaves exactly like TP . Again, we consider the least

fixed-point of T̂P to be the set of all the answers that can be obtained by the logical

rules and the ‘lattice rules’.

The next step is to discard the subsumed answers by applying the join operator

on the set of answers. Thus, the set of all true atoms of the program P using

mode-directed tabling is given by:

ρ
(∨

x∈lfp(T̂P) η(x)
)

(3)

Obviously, when lfp(T̂P) is infinite, the least upper bound above does not necessarily

exist. That is why to give a full denotational semantics of answer subsumption in

the next subsection, we model tables in a more abstract way as complete lattices.

Now, to provide some intuition, we give an example in which the least upper bound

exists.

Example 2 Consider the example from the introduction, rewritten using XSB’s lattice

answer subsumption for the sake of variety:

:- table p(lattice(_,_,min/3)).
:- table e/3.
p(X,Y,1) :- e(X,Y,nt).
p(X,Y,D) :- p(X,Z,D1), p(Z,Y,D2), D is D1 + D2
e(a,b,nt). e(b,c,nt). e(a,c,nt).
min(X,Y,Z) :- Z is min(X,Y).

Note that we have additionally tabled e/3 and added a dummy output parameter

(nt stands for not tabled), as described above. The don’t cares () in the tabling

directive indicate that they are not part of the lattice. In Yap’s terminology: they

use the index tabling mode. The least fixed-point semantics of this program, that is

lfp(T̂P), is given by the following set:

{e(a,b,nt), e(b,c,nt), e(a,c,nt), p(a,b,1), p(b,c,1), p(a,c,1), p(a,c,2)}

https://doi.org/10.1017/S147106841600048X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841600048X

Tabling with Sound Answer Subsumption 941

The complete lattice on the final argument of p is 〈�,�〉, the reversed standard

order. The least upper bound in this lattice is the usual infimum on natural numbers.

Interpreted by this lattice, the semantics is

ρ
(∨

x∈lfp(T̂P) η(x)
)

= ρ(
∨
{η(e(a,b,nt)), η(e(b,c,nt)), η(e(a,c,nt)),

η(p(a,b,1)), η(p(b,c,1)), η(p(a,c,1)), η(p(a,c,2))})

= ρ(t) where t(q, x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
nt if q = e

1 if (x = a ∧ y = b) ∨ (x = b ∧ y = c)

min{1, 2} if x = a ∧ y = c

⊥ otherwise

= {e(a,b,nt), e(b,c,nt), e(a,c,nt), p(a,b,1), p(b,c,1), p(a,c,1)}

Only the atoms representing the shortest paths are retained, as expected.

Example 3 This example illustrates why we need to extend the TP operator to

include the results of the lattice operations, that is, why we need the T̂P operator.

Consider the lattice {a, b, c, d}, with a, b � c and c � d, which we use in the following

program:

lub(a,b,c). lub(a,c,c). lub(a,d,d).
lub(b,a,c). lub(b,c,c). lub(b,d,d).
lub(c,d,d).
lub(X,X,X).

:- table p(lattice(lub/3)).

p(a).
p(b).
p(d) :- p(c).

The regular immediate consequence gives us lfp(TP) = {p(a), p(b)}, which means that

ρ(
∨
η(lfp(TP))) = {p(c)}. The atom p(c) does not follow from the logical inference,

but from the lattice’s join operator. It is included in the overall answer thanks to

the post-processing step, but its logical consequences are not. With the T̂P operator

we have lfp(T̂P) = {p(a), p(b), p(c), p(d)}, and so ρ(
∨
η(lfp(T̂P))) = {p(d)}, which is

the intended semantics.

3.3 Answer Subsumption for Arbitrary Lattices

Even though at any point of computation each table is finite, it is potentially infinite

when a program produces infinitely many answers. Thus, to give a denotational

semantics for answer subsumption, a join-semilattice on terms is not enough, as we

need least upper bounds of infinite sets, i.e. a complete lattice structure. For example,

the most natural candidate for the types of values in the case of the all mode is

〈P (UP) ,⊆〉, the complete lattice of all subsets of UP , which cannot be modelled by

(finite) terms. In general, every semilattice can be extended to a complete lattice via

MacNeille (1937) completion.

https://doi.org/10.1017/S147106841600048X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841600048X

942 Vandenbroucke et al.

Thus, we do not impose any order on the set U⊥P , and the type of the table

becomes (IP ×Un
P → L) for a complete lattice L. For each predicate p ∈ IP , we also

need two bottom-preserving abstraction and representation functions: �-�p : U⊥P → L

and �-�p : L → U⊥P respectively. We require �-�p to be a retraction of �-�p, that is,

��x�p�p = x. Since we want the two functions to preserve bottoms, the least element

of L denotes ‘no value’. With this, we give new definitions of η and ρ, appropriately

adding abstraction and representation, where ⊥L is the least element of L:

η(p(X , x))(q,Y) =

{
�x�p if p = q ∧ X = Y

⊥ otherwise

ρ(f) = {p(X , �f(p,X)�p) | f(p,X) �= ⊥L}

To give the semantics, we define the T̂P operator exactly as in (2) but using the

new definitions of η and ρ. It is easy to see that it is monotone, so it always has a

least fixed point. The semantics of the entire program is given again as in (3).

3.4 Lattice Semantics for Stratified Programs

For general programs, we use stratification to distinguish between predicates that

imply and are implied by tabled values. We define the depends on relation � as

follows: for any two predicates p and q, it is the case that p � q if and only if there

exists a clause p(...):-...,q(...),.... We say that p and q are in the same

stratum if p �+ q and q �+ p, where �+ is the reflexive and transitive closure of

�. Put differently, a stratum is a strongly connected component of the dependency

graph defined by �. The relation � induces a partial ordering on the set of all strata

S , that is, for X,Y ∈ S , it is the case that X � Y if and only if there exists p ∈ X

and q ∈ Y such that p �+ q.

A stratum forms a logical unit to which the least fixed point semantics and

aggregation are applied in turn: For each stratum X ∈ S , we can define its semantics

MX ⊆ P (HP) as follows: MX = ρ(
∨
η(lfp(T̂Q))), where Q = PX ∪

⋃
Y <X MY and PX

is the set ground(P) restricted to the predicates in the stratum X, while
⋃

Y <X MY

should be understood as a set of facts. Informally, this means that to give a semantics

for a stratum, we first compute the semantics of the strata below, use the results as

a set of facts added to the part of the program in the current stratum, compute the

fixed point, and finally perform the aggregation step using the join operator. There

are always finitely many strata, so MX is well-defined. The semantics of the program

P is then the aggregation of the sum of the interpretations of all the strata, that is,⋃
X∈S MX .

Stratification ensures that the answers for a predicate are always aggregated before

they are used by another predicate, unless there is a cyclic dependency between them.

for example, consider the following variation on the shortest path program:

:- table p(index,index,min).
e(1,2). e(2,3). e(1,3).
p(X,Y,1) :- e(X,Y)
p(X,Y,D) :- p(X,Z,D1),p(Z,Y,D2), D is D1 + D2.
s(X,Y,D) :- p(X,Y,D).

https://doi.org/10.1017/S147106841600048X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841600048X

Tabling with Sound Answer Subsumption 943

Without stratification, the semantics is given by ρ(
∨

η(lfp(T̂P)) which contains

s(1,3,2), as a consequence of p(1,3,2) before aggregation. However, if we

stratify the program as discussed above, the rules for p end up in a lower

stratum than s. Therefore, the results for p will be aggregated by min, before any

consequence is derived from it. Since p(1,3,2) is subsumed, s(1,3,2) is no longer

derived.

When two predicates are interdependent (and therefore in the same stratum), but

only one of them is tabled, the answers for the untabled predicate are not subsumed.

Stratification then gives a result that appears inconsistent:

:- table even(min).

even(0).
even(X) :- odd(Y), Y is X - 1.
odd(X) :- even(Y), Y is X - 1.

Our semantics interprets this program as the set

ρ(
∨

η(lfp(T̂P))) = {even(0), odd(1), odd(3), odd(5), odd(7), . . .}.

While {even(0), odd(1)} seems equally reasonable. Because we treat subsumption as

a post-processing step per stratum, which means that inter-dependent predicates are

resolved as if no answers were subsumed. Subsumption only affects predicates in

the strata above. For instance, assume we add the following (non-tabled) predicate

to the program:

also_odd(X) :- even(Y), Y is X - 1.

It is in a different stratum than even and odd, so its semantics depends on the

semantics of even after the subsumption step. This means that the semantics

together with the also odd predicate is given as:

{even(0), also odd(1), odd(1), odd(3), odd(5), odd(7), . . .},

Here also odd behaves like the alternative suggested for odd above. Importantly,

programs like the one above do not satisfy our correctness condition for the greedy

strategy given in Section 4.

4 Generalised Answer Subsumption Semantics

The previous section specifies the semantics of tabling with lattice-based answer

subsumption in terms of a post-processing aggregation. However, the existing

implementations do not actually first compute the least Herbrand model. Instead,

they greedily aggregate intermediate results during SLD-resolution. This makes it

feasible to, for instance, compute the shortest path in a cyclic graph in a finite

amount of time, as well as generally improving efficiency. However, as the examples

in the introduction acutely demonstrate, this greedy strategy is not always valid. This

section characterises the greedy strategy as a form of generalised semantics for logic

programs and considers its correctness with respect to our postulated specification.

https://doi.org/10.1017/S147106841600048X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841600048X

944 Vandenbroucke et al.

4.1 Generalised Semantics

Again, we assume that we work in a single stratum. We can capture alternate

greedy strategies as generalised semantics of P in terms of structures 〈L, ηL, TL
P 〉,

where:

1. L is a complete lattice,

2. ηL : HP → L is a function that ‘embeds’ terms in the lattice,

3. TL
P : L→ L (a generalised immediate consequence operator) is monotone,

4. L is generated by ηL(HP), which means that for every x ∈ L, there exists an

X ⊆ ηL(HP) such that x =
∨
X.

Note that in general we do not need a counterpart of the ρ function: in the

post-processing semantics given in Section 3, we need ρ to define the T̂P operator

and move between strata. Here, we use this semantics to capture correctness within

a single stratum, and the immediate consequence operator is not defined, but it is

given. This allows us to generalise the whole table to a lattice, which simplifies the

generalised semantics.

The generalised semantics of the program P is given by lfp(TL
P), which exists

due to the Knaster–Tarski theorem. It is easy to verify that the regular least fixed-

point semantics is a valid instance of this generalised semantics. Also, note that the

generalised semantics does not depend on ηL or the fact that L is generated by ηL.

We need these facts in a moment to establish a correctness criterion.

One obvious instantiation of this semantics is with the T̂P operator defined in

Section 3.3, where ι : X → P (X) is the singleton function:

〈P (HP), ι, T̂P 〉

We say that an instance of the generalised semantics is a correct implementation

strategy only if yields the same result as the post-processing semantics defined in

Section 3. More formally, a generalised semantics 〈L, ηL, TL
P 〉 is correct if and only

if

lfp(TL
P) = [ηL](lfp(T̂P)), (4)

where, for convenience, we define, for any lattice L, set S , and function f : S → L,

the function [f] : P (S)→ L as follows:

[f](Y) =
∨
x∈X

f(x)

Intuitively, it means that evaluating the whole program with no answer subsumption

and then obtaining the final result using L’s join operation on the answers is the

same as computing every step with the lattice L (which is usually more efficient).

The following theorem gives sufficient conditions for the equation (4) to hold.

Theorem 4.1 (Fixed-Point Fusion (Backhouse 2000))

Let 〈X,�X〉 and 〈Y ,�Y 〉 be posets. Let f : X → X and g : Y → Y be two functions

with least fixed points. Let h : X → Y be a function. Assume the following:

(a) It is the case that h ◦ f = g ◦ h.

https://doi.org/10.1017/S147106841600048X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841600048X

Tabling with Sound Answer Subsumption 945

(b) The function h has an upper Galois adjoint, that is, there exists a function

j : Y → X such that h(x) �Y y ⇐⇒ x �X j(y) for all x ∈ X and y ∈ Y .

Then, lfp(g) = h(lfp(f)).

The equation (4) is clearly an instance of this theorem’s conclusion, with f = T̂P ,

g = TL
P and h = [ηL]. Yet, the theorem only applies if we can show that (a)

[ηL] ◦ T̂P = TL
P ◦ [ηL], and that (b) [ηL] has an upper Galois adjoint. Fortunately,

(b) readily follows from the fact that [ηL] is continuous, and that every continuous

function has an upper Galois adjoint (Backhouse 2000).

Intuitively the remaining condition (a) means that [ηL] should preserve immediate

consequences. In other words, subsumption of a conventional immediate conse-

quence should be the generalised immediate consequence of [ηL].

4.2 Greedy Strategy

For better performance, practical implementations of tabling with answer subsump-

tion use a greedy strategy, which means that they remove subsumed answers as soon

as possible, and not as a single post-processing step. We can try to express it as the

following instance of the generalised semantics, in terms of the functions defined in

Section 3.3:

〈IP ×Un
P → L, η, [η] ◦ TP ◦ ρ〉

The function ρ extracts the set of true ground atoms from a table, which is a

subset of the Herbrand base HP , so we can indeed express the ‘greedy’ immediate

consequence operator in terms of the standard immediate consequence operator TP ,

subsumption [η] and extraction ρ. In fact this definition is quite convenient, because

tabled Prolog systems readily provide an efficient implementation of TP .

The question remains if the function [η] ◦ TP ◦ ρ has a fixed point. Luckily, given

a tuple 〈L, ηL, TL
P 〉, where L is generated by ηL(HP), the condition (a) is enough for

TL
P to be monotone (this is where the assumption that ηL(HP) generates L comes

in handy):

Theorem 4.2

Let 〈L, ηL, TL
P 〉 be as above. If [ηL] ◦ T̂P = TL

P ◦ [ηL] (the condition (a)), then TL
P

is monotone.

Additionally, it is the case that [η] ◦ TP = [η] ◦ T̂P . Thus, to show correctness of a

program under the greedy semantics, we need only show the following:

[η] ◦ TP = [η] ◦ TP ◦ ρ ◦ [η] (5)

Example 4 Reconsider the invalid program from the introduction. We show that

the condition 5 does not hold for this program under semantics 〈L(�),�, η, TL(�)
P 〉

where HP = {p(0), p(1), p(2), p(3)} and (�) = (�) is the partial order on terms.

By means of the following counter example: A simple calculation shows that

([η] ◦ TP)
(
{p(0), p(1)}

)
�= ([η] ◦ TP ◦ ρ ◦ [η])

(
{p(0), p(1)})

)
.

https://doi.org/10.1017/S147106841600048X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841600048X

946 Vandenbroucke et al.

This example also explains the odd behaviour of XSB, Yap and B-Prolog: p(0)

is subsumed by p(1), therefore the body of the third rule in the program cannot be

satisfied and p(3) (the correct answer) is never produced.

Interestingly, when we change the last rule to p(3) :- p(0), the result of the

query ?-p(X). changes once more in all systems, although logically both rules

should behave identically. Furthermore, different implementations handle this rule

differently. For instance, XSB reasonably disallows calls where lattice-mode

arguments are not free, and the latter rule therefore produces an error message.

While Yap instead produces X=3, because its batched-mode evaluation immediately

derives p(1) from the fact p(1).

Example 5 Now, consider the shortest path program from Example 2 under seman-

tics 〈L(�),�, η, TL(�)
P 〉 and (�) = (�). We prove the correctness condition by proving

that lhs � rhs and lhs � rhs . Then by anti-symmetry of �, the correctness condition

holds.

(�-direction) Because [η] ◦ TP is monotone, and for this case ρ ◦ [η] is deflative, i.e.

ρ([η](X)) ⊆ X for all X ⊆ HP , we are done with this direction.

(�-direction) A p(x,y,d)-atom is either introduced by an edge e(x,y,nt) or by

two other atoms p(x,z,d1) and p(z,y,d2). In the former case d = 1, in the latter

case d = d1 + d2. It is easy to see that if an atom p(x,y,1) is introduced by TP , it

is also introduced by TP ◦ ρ ◦ [η]. In the latter case, d1 and d2 are at least as large as

their corresponding entries in the table produced by [η]. Hence, d must be at least

as large as any corresponding distance in the set produced by TP ◦ ρ ◦ [η]. Hence,

the infimum of ds produced by TP must be at least as large as any corresponding

distance. Finally, this means that the entry in the table produced by [η] ◦ TP must

be at least as large as the entry in the table produced by [η] ◦ TP ◦ ρ ◦ [η].

5 Related Work

As far as we know, “output” subsumption for tabling was first proposed by Van

Hentenryck et al. (1993) in the context of abstract interpretation.

Tabling Modes for Dynamic Programming In dynamic programming, an optimal

solution to a problem is defined in terms of the optimal solutions of smaller sub-

problems. This intuition is in fact captured by the correctness condition (Equation 5):

it states that the solution found by examining all sub-solutions, is equal to examining

only the optimal solutions. This is good news, because it implies correctness for

dynamic programming.

We have already discussed the tabling modes of Yap (Santos and Rocha 2013)

and XSB (Swift and Warren 2012) at length in Section 3.1. XSB’s lattice based

answer subsumption is more suitable for implementing techniques that require more

general lattices than simple minimum and maximum, such as abstract interpretation.

Guo and Gupta (2004; 2008) implemented 5 tabling modes in ALS-Prolog with

the aim of simplifying and accelerating dynamic programming. These modes are

+ (indexed), -(only the first answer is retained), min (minimum), max (maximum)

and last (the last answer is retained). The correspondence to Yap’s tabling modes

https://doi.org/10.1017/S147106841600048X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841600048X

Tabling with Sound Answer Subsumption 947

is obvious, but there is no equivalent for Yap’s all and sum modes. Answers are

grouped by distinct values for the + arguments and the remaining arguments are

aggregated based on their mode.

Zhou et al. (2010) added tabling to B-Prolog with the same purpose in mind.

Consequently, the tabling modes they support are identical, except they do not

implement a last mode. Instead, they support cardinality constraints, which limit

the answers that are stored in the table to the first N optimal answers for some

positive integer N. Also supported is an nt (not-tabled) tabling mode, which is

used to pass around global constants efficiently. From the perspective of the tabling

system nt arguments do not exist, and thus are never stored in the table.

Haskell Vandenbroucke et al. (2016) have added lattice answer subsumption to their

tabling implementation in Haskell. It is based on the effect handlers approach.

Abstract interpretation Our approach bears a strong resemblance to abstract inter-

pretation (Cousot and Cousot 1992; Abramsky and Hankin 1987). Unlike answer

subsumption, abstract interpretation admits approximate solutions, implying a

weaker correctness condition where equality is replaced by an order relation.

Matroids and Greedoids Other set theoretic structures (besides lattices) such as

matroids (Oxley 1992) and greedoids (Korte et al. 1991), have been developed

to analyse greedy algorithms and show their optimality. As answer subsumption is

essentially a greedy strategy, we plan to re-examine answer subsumption in this new

context in the future.

6 Conclusion and Future Work

In many instances of tabling only the optimal answers to a query are relevant. To

improve performance over a naive generate-and-aggregate approach, various forms

of answer subsumption that greedily combine these answers have been developed

in the literature. However, their semantics has never been described formally. An

operational understanding is always an option in this case, and although often

useful, it is a far cry from the declarative ideal that tabling promises.

We define a high-level semantics for answer subsumption based on lattice theory.

Then we generalise it to establish a correctness condition indicating when it is safe

to use (greedy) answer subsumption. We show several examples where the existing

implementations of answer subsumption fail that condition and derive an erroneous

result.

This condition is sufficient, but not necessary: there may still exist programs that

do not satisfy the condition, for which the greedy strategy nevertheless delivers

correct results. Since we have not run across any non-contrived examples of such

programs, we contend that this apparent lack of necessity is an artefact of our rather

coarse semantics, which we intend to refine in future work.

The verification of correctness does constitute a non-trivial effort. Hence, manually

proving the correctness condition for realistically sized programs could be unfeasible

in practice. Ideally we would have an automated analysis that warns the programmer

if it fails to establish the correctness condition. This is future work.

https://doi.org/10.1017/S147106841600048X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841600048X

948 Vandenbroucke et al.

Acknowledgements

We would like to thank Bart Demoen for enlightening discussions during the

preparation of this paper. This research was partially funded by the Flemish Fund

for Scientific Research (FWO).

Supplementary material

For supplementary material for this article, please visit http://dx.doi.org/10.1017/

S147106841600048X

References

Abramsky, S. and Hankin, C. 1987. Abstract Interpretation of declarative languages. Vol. 1.

Ellis Horwood, Chapter An introduction to abstract interpretation, 63–102.

Apt, K. R., Blair, H. A. and Walker, A. 1988. Towards a Theory of Declarative Knowledge.

Morgan Kaufmann.

Backhouse, R. C. 2000. Galois connections and fixed point calculus. In Algebraic and

Coalgebraic Methods in the Mathematics of Program Construction, International Summer

School and Workshop, Oxford, UK, April 10-14, 2000, Revised Lectures, R. C. Backhouse,

R. L. Crole, and J. Gibbons, Eds. LNCS, vol. 2297. Springer, 89–148.

Chico de Guzmán, P., Carro, M., Hermenegildo, M. V., Silva, C. and Rocha, R. 2008.

An improved continuation call-based implementation of tabling. In Practical Aspects of

Declarative Languages, 10th International Symposium. LNCS, vol. 4902. Springer, 197–213.

Cousot, P. and Cousot, R. 1992. Abstract interpretation and application to logic programs.

The Journal of Logic Programming 13, 2-3, 103 – 179.

Guo, H.-F. and Gupta, G. 2004. Simplifying dynamic programming via tabling. In Practical

Aspects of Declarative Languages. LNCS, vol. 3057. Springer, 163–177.

Guo, H.-F. and Gupta, G. 2008. Simplifying dynamic programming via mode-directed tabling.

Software: Practice and Experience 38, 1, 75–94.

Korte, B., Lovász, L. and Schrader, R. 1991. Greedoids, algorithms and combinatorics, vol.

4.

Lloyd, J. W. 1984. Foundations of Logic Programming. Springer-Verlag, New York.

MacNeille, H. M. 1937. Partially ordered sets. Transactions of the American Mathematical

Society , 416–460.

Oxley, J. G. 1992. Matroid theory. Oxford University Press.

Ramakrishna, Y. S., Ramakrishnan, C. R., Ramakrishnan, I. V., Smolka, S. A., Swift, T.

and Warren, D. S. 1997. Computer Aided Verification: 9th International Conference, Haifa,

Israel, June 22–25, 1997 Proceedings. Springer, 143–154.

Santos, J. and Rocha, R. 2013. On the efficient implementation of mode-directed tabling. In

Practical Aspects of Declarative Languages. LNCS, vol. 7752. Springer, 141–156.

Santos Costa, V., Rocha, R. and Damas, L. 2012. The YAP Prolog system. Theory and

Practice of Logic Programming 12, 1-2, 5–34.

Swift, T. 1999. Tabling for non-monotonic programming. Annals of Mathematics and Artificial

Intelligence 25, 3-4, 201–240.

Swift, T. and Warren, D. 2010. Tabling with answer subsumption: Implementation,

applications performance. 300–312.

https://doi.org/10.1017/S147106841600048X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841600048X

Tabling with Sound Answer Subsumption 949

Swift, T. and Warren, D. S. 2012. XSB: Extending Prolog with tabled logic programming.

Theory and Practice of Logic Programming 12, 1-2 (Jan.), 157–187.

Van Hentenryck, P., Degimbe, O., Charlier, B. L. and Michel, L. 1993. Abstract

interpretation of Prolog based on OLDT resolution. Tech. rep., Providence, RI, USA.

Vandenbroucke, A., Schrijvers, T. and Piessens, F. 2016. Fixing non-determinism.

In Proceedings of the 27th symposium on Implementation and Application of Functional

Languages 2015.

Zhou, N.-F. 2012. The language features and architecture of B-Prolog. Theory and Practice

of Logic Programming 12, 1-2, 189–218.

Zhou, N. F. and Dovier, A. 2011. A tabled Prolog program for solving sokoban. In 2011

IEEE 23rd International Conference on Tools with Artificial Intelligence. 896–897.

Zhou, N.-F., Kameya, Y. and Sato, T. 2010. Mode-directed tabling for dynamic programming,

machine learning, and constraint solving. In 22nd International Conference on Tools with

Artificial Intelligence (ICTAI), 2010. Vol. 2. 213–218.

https://doi.org/10.1017/S147106841600048X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841600048X

