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This paper is concerned with the asymptotic properties of a restricted class of Petri nets

equipped with stochastic mass-action semantics. We establish a simple algebraic criterion for

the existence of an equilibrium, that is to say, an invariant probability that satisfies the

detailed balance condition familiar from the thermodynamics of reaction networks.

We also find that when such a probability exists, it can be described by a free energy

function that combines an internal energy term and an entropy term. Under strong

additional conditions, we show how the entropy term can be deconstructed using the

finer-grained individual-token semantics of Petri nets.

1. Introduction

Markov chains (MC) and differential equations (DE) have been the fundamental means

of describing dynamical systems for a very long time. But today, as quantitative modelling

efforts try to address decentralised dynamics of increasing complexity and connectedness

(Easley and Kleinberg 2010), the direct use of such basic descriptive tools is becoming

unwieldy. New modeling situations present a diversity of structures and scales, where

the representational challenge is insurmountable without the use of indirect, abstract and

structured syntaxes to describe the dynamics of interest (Epstein 1999). Thus, part of

the modelling activity has to morph into a sort of domain-specific programming, where

MC/DEs play the role of an assembly language, which is best not written out by hand,

or even considered extensionally at all.

A case in point, which has drawn considerable attention in the past decade and will be

the focus of this paper, is the modelling of what is arguably the complex distributed system

par excellence, namely the combinatorial processes at work in biomolecular networks

(BMN). There is a clear need for higher syntaxes such as Petri nets (Goss and Peccoud

1998) or derivatives of pi-calculus (Regev et al. 2001), or, the more recent rule-based

propositions (Danos and Laneve 2004; Danos et al. 2007; Faeder et al. 2009). Rule-based

methods, in particular, introduce a whole new level of flexibility by adding the ability to

express refined context-independence assumptions about a particular reaction mechanism.

As a result, rules succinctly describe entire reaction classes, and they do so in a way that

makes the frequently necessary revision of a model a lot easier (Danos 2009). It should

be noted that the purpose of creating new modelling languages, and in so doing enriching
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the representational apparatus of a particular modelling domain, is not just to make the

modelling more agile and far-reaching. As has been long recognised in the context of

programming, one can lean on syntactic structures to develop various analyses that would

otherwise be impossible. For instance, in our own rule-based framework, which uses the

Kappa language, we have developed and adapted methodologies for detecting dead rules

(Danos et al. 2008b), extracting long-range causal dependencies (Danos et al. 2007), and

obtaining compressed representations of the models’ differential semantics, and thus more

accurate approximations of their stochastic behaviour (Harmer et al. 2010; Feret et al.

2009; Danos et al. 2010).

The more structure we can impose on the problem, the easier the analysis. Now,

and unlike in the case of man-made programmed distributed systems, when dealing

with natural systems, we are not at liberty to impose a structure. To make further

progress in the specific modelling and analysis of BMNs, a compelling idea is to borrow

structuring features from biophysics, and develop a modelling language where energetic

and thermodynamics constraints are put front and centre.

This is not a new idea. There have been interesting attempts at developing syntaxes for

reactions that would guarantee thermodynamic consistency by construction (Ederer and

Gilles 2008; Ederer and Gilles 2007). Quite recently, these have been successfully extended

to restricted forms of rule-based systems (Ollivier et al. 2010). This approach is congruent

with the fact that knowing whether a computable CTMC admits an energy function is

undecidable. This is a result we established using an encoding of the Post correspondence

problem in an earlier paper (Danos and Oury 2010). This led to the conclusion that

thermodynamic consistency should be ensured by construction rather than verified ex

post. This parallels the way in which strongly typed languages guarantee termination,

which is an otherwise notoriously undecidable problem.

In the present paper, we reconsider the thermodynamic consistency problem (in other

words, the existence of a stochastic equilibrium, or, equivalently, of an energy function) for

simple and symmetric Petri nets equipped with a stochastic mass-action dynamics (where

simple means that no two transitions have the same net balance; and symmetric means

every reaction is reversible). We show that in this very restricted class of computable

CTMCs, and in contrast with the more expressive Kappa language used in Danos and

Oury (2010), deciding the existence of an energy function is possible. The criterion

we obtain is of a purely linear algebraic nature. In essence, any reaction invariant (a

multiset of reactions with net balance zero) must have zero energy balance. This captures

Kolmogorov’s criterion (which is also known as Wegscheider’s condition in the chemical

literature), which states that the product of the CTMC rates along any cycle must equal

that of the rates on the reverse cycle. Thanks to the linear structure on the transition

graph of a Petri net, the above criterion can be decided by inspecting a finite basis of

reaction invariants.

The key ingredient for the algebraisation of the equilibrium problem is the thermody-

namic notion of entropy, defined as

Ω(x) = −
∑

A∈S
ln x(A)!,
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where x ∈ �S is a state of a Petri net – that is, a multiset over a finite set S . This

term ensures that the invariant measure, if any, will have finite mass. This unconditional

convergence does not happen with non-mass-action semantics, where the jumping rate

of the CTMC only depends on the reaction, not the state. Neither does it happen in the

more general case of rule-based CTMCs described in the Kappa language, where one is

treading a line, which, in Petri net terms, could be described as having an unbounded

number of potential species, and there the entropic contribution no longer suffices. In

fact, a consequence of our result is that entropy-driven convergence can only be disrupted

in a Kappa model by an unlimited creation of new species since, otherwise, the dynamics

can be faithfully mapped to that of a Petri net (Danos et al. 2008a).

Unlike the literature on non-deterministic PNs, where algebraic invariants play a

fundamental role (Pedersen 2008; Chaouiya 2007), the literature on stochastic Petri nets

seems more oriented towards rich and scalable modelling environments than towards

analysing asymptotic properties of infinite state systems (Marsan 1990). In the finite case,

the theory of continuous-time Markov chains is already largely computational (Norris

1998), and since the size of the state space permits, such systems are amenable to

automated verification techniques (see, for example, Desharnais and Panangaden (2003)).

The chemistry literature contains similar arguments using Lyapounov potentials for the

existence of an equilibrium for reversible Petri nets equipped with a differential mass-

action semantics (Schuster and Schuster 1989); and there are also numerous proofs of our

result for the simple case of finite-state systems (Yang et al. 2008; Kimura et al. 2007).

However, none seem to cover the specific stochastic infinite-state scenario we propose

here.

1.1. Outline

We begin in Section 2 by recalling those properties of continuous-time Markov chains

we will need. In Section 3, we give a very brief review of Petri nets, narrowing down to

the specific class of simple and symmetric nets. In Section 4, we establish a criterion for

the existence of an equilibrium for this class, with a thermodynamic aside on entropy in

Section 5. Section 6 concludes the paper with a discussion of the limitations we had to

impose on the notion of a Petri net to obtain the result, as well as potential avenues for

further research.

2. Continuous-time Markov chains

In this section we recall the basics of continuous-time Markov chain that we will need.

We suppose we are given, once and for all, a countable state space X. We write

ΔX = {(x, x) | x ∈ X} ⊆ X2

for the diagonal of X.

An exponential timer with parameter λ > 0 is a random variable T on [0,+∞) defined

by p(T > t) = exp(−λt) for t � 0. If we pick finitely many independent timers Ti with
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parameters λi, it is easy to prove that

p(Ti = minTj, Ti < t) =
λi∑
j λj
· (1− e−(

∑
j λj )t)→t→0+ λit. (1)

Definition 2.1. A rate function on X is a map q : X2 � ΔX → �+ such that for x in X,

{y | q(x, y) > 0} is finite.

Given a rate function q, we define a binary relation on X, written |q|, as (x, y) ∈ |q| if
and only if q(x, y) > 0. We say |q| is the transition graph or the support of q. We can think

of |q| as a directed graph on X, and of q as weighting edges of |q| with positive reals. As,

according to our definition, q(x, x) is not defined, |q| is irreflexive. We also assume that

|q| is image-finite or equivalently has finite out-degree. We say that q is symmetric if |q|
is, in other words, if q(x, y) = 0⇒ q(y, x) = 0.

Given a rate function, we can generate a random sequence with values in X × [0,+∞)

in the following inductive way. Supposing we are at state x, we draw independently for

each jump from x an exponential time T (y) with parameter q(x, y). Then we set:

— the next state to be the (almost surely unique) y such that T (y) = minT (y′); and

— the time increment to be T (y).

Image-finiteness guarantees that there are only finitely many timers to choose from. If

q(x, y) > 0, it follows from (1) that the jump to y has a probability proportional to q(x, y).

If q(x, y) = 0, the chain never jumps from x to y.

This simulation protocol defines a probability to be in state y at time t, starting in state

x at time 0, which we will denote by P (t, x, y), and this is known as a continuous-time

Markov chain (CTMC).

Technically, we have to assume more from q to prevent Zenonian explosions, where

a process accumulates infinitely many jumps in finite time (Norris 1998). We do not

need to get into these delicate questions as the actual CTMCs we are interested in will

be sufficiently regular. Indeed, our rate functions will come from a certain class (to be

defined in detail in the next section) of simple and symmetric Petri nets (which is why we

need a countable state space), and will therefore have a homogeneous structure – with a

bounded out-degree (though rates themselves will be unbounded).

Definition 2.2. Given a rate function q on X, we say a probability p on X is:

— invariant if for x in X, t � 0, p(x) =
∑

y p(y)P (t, y, x);

— an equilibrium if for distinct x, y in X, we have p(x)q(x, y) = p(y)q(y, x).

Note that the equilibrium condition breaks naturally into two conditions having different

natures:

p(x)q(x, y) = p(y)q(y, x) (E1)
∑

x

p(x) = p(X) = 1 (convergence). (E2)

Condition (E1) is a purely algebraic condition for which there is a simple criterion

(Kolmogorov’s or Wegscheider’s, see the introduction). It is known as reversibility in the
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probabilistic literature, and detailed balance in the chemical one. On the other hand,

condition (E2) is a convergence condition, which only comes into play because the state

space X is infinite.

An equilibrium is a particular kind of invariant probability. To see this, let us return

to (1), which says that an exponential timer of parameter λ fires within [0, τ] with a

probability that tends to λτ as τ → 0+. Using this first-order expansion for a small time

τ, we get

P (τ, y, x) ∼ τq(y, x)

if x 
= y, and therefore

P (τ, x, x) ∼ 1−
∑

y 
=x

τq(x, y).

Hence, the invariant distribution equation given above can be rewritten as:

p(x)
∑

y 
=x

q(x, y) =
∑

y 
=x

p(y)q(y, x). (S)

Condition (S) expresses the fact that p is a probabilistic state of the system such that

the compound rate at which we leave x (the left-hand side) is the same as the rate at

which we enter x (the right-hand side). By contrast, (E1) expresses the fact that p is a

state such that the rate at which we jump from x to y is the same as the rate at which we

jump from y to x. It is clear that (S) is implied by (E1).

From the classic theory of CTMCs (Norris 1998), we know that if q’s transition graph

is strongly connected (in other words q is irreducible) and p is a probability invariant

under q, then:

— p is unique;

— q is recurrent, meaning the probability to return to any x is 1;

— q is positive-recurrent, meaning the mean return time to any x is finite; and,

importantly,

— for x, y ∈ X, we have P (t, x, y)→ p(y) when t→ +∞.

In words, wherever we start in X, the dynamics will invariably lead the system to p –

this is a strong property, and reminiscent of both termination and confluence. All of the

above holds for an invariant probability, and, a fortiori, for one that satisfies the stronger

detailed balance condition (E1). (This raises the question of whether having an invariant

probability is decidable for Petri nets; which is a question we will not attempt to answer

here.)

We will call the set of states where an equilibrium p is not zero its support. It is easy to

see that the sub-graph induced by the support of p in |q| is symmetric (and thus strongly

connected), even if |q| is not, and terminal (that is, it has no outgoing edges). It follows that

all equilibria are convex combinations of equilibria localised to such symmetric terminal

components of |q|.
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2.1. Examples

We will now give a couple of examples to illustrate the definitions so far:

(1) Take X = � � {0} and q(x, x + 1) = 1; this is a walk on X where only the times are

random, the sequence of states being inflexibly determined. It is connected, but clearly

neither symmetric nor strongly connected. To make the transition graph strongly

connected, we can add ‘resets’, for example, we can set q(2k, 1) = 1 for powers of 2,

k > 0. The resulting graph is still not symmetric, and we may also observe that with

this specific choice, resets are so sparse that the mean return time to 1 is actually

infinite, so the system has no invariant probability. This could not happen with a

finite transition graph.

(2) Take X = � and q(x, x + 1) = α · q(x + 1, x) with α > 0. This (biased) random walk

on � is symmetric and (hence) strongly connected. We see that (E1) has geometric

solutions verifying p(x + 1)/p(x) = α, and therefore (E2) only holds if α < 1.

2.2. A thermodynamic aside: energy

The condition (E1) of detailed balance refers to some notion of thermodynamic consist-

ency. Indeed, the equilibrium problem can be reformulated as the existence of a function

H : X → � such that:

ln(q(y, x)/q(x, y)) = H(y)−H(x) (F1)
∑

x

exp(−H(x)) � ∞. (F2)

We can choose to describe an equilibrium either as a probability p or by means of a

real-valued map as above. The correspondence between the two definitions is given by

Boltzmann’s relation:

p(x) = e−H(x)/
∑

x

e−H(x). (2)

The map H is called an energy function and is defined up to an additive constant (which

reflects the convention that a probability should sum up to 1).

We will return to this thermodynamic formulation when we discuss our main result at

the end of the paper.

3. Petri nets

In this section we start with a quick review of Petri nets, with an eye on:

(1) narrowing down our question to a subclass of Petri nets for which we can derive a

criterion;

(2) describing the reaction invariants which correspond to loops in the state space, and

which we will use to decide (E1).

The terminology of Petri nets reflects the history of the subject, and we will mostly use

the chemical side of the dictionary, for example, talking about reactions rather than

transitions, and species rather than places.
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3.1. Basic definition

A Petri net consists of:

— two disjoint finite sets S (species), R (reactions); and

— an input and an output function i, o : R → S → �.

The idea is that i(r)(A) is the number of tokens of species A that reaction r consumes,

while o(r)(A) is the number it produces. The state space is S → � � �S , which can be

viewed equivalently as: multisets over S; integer vectors of size |S |; or integer-valued maps

defined on S . States form a subset of the real vector space �S of dimension |S |; they are

closed under linear combination with integer coefficients, and can be added, subtracted

and compared. We write � for the pointwise order on finite maps.

The data above allows us to define a labelled transition system on the state space, that

is to say, a family of binary relations on �S labelled in R, written x→r y. Specifically, a

transition labelled by r ∈ R (also known as a firing of r) is defined by

x→r x + o(r)− i(r) if i(r) � x

where the condition i(r) � x expresses the fact that r needs a minimal number of inputs

to fire.

We will write r · x for x + o(r) − i(r), that is, the new state resulting from applying

r to x.

The transition system we have just defined is monotonic in the sense that

x→r y ⇒ x + x′ →r y + x′

for any x′ ∈ �S . More tokens never inhibit a transition. Extensions of Petri nets, including

reactions where the absence of a species can be required for a reaction to fire, make the

entire framework a lot more complex.

3.2. Linear structure

Using the linear structure of the state space, we can represent the input and output

functions as matrices indexed on S × R with coefficients in �. This gives the so-called

stoichiometric matrix C as C = o− i.

The column vector Cr ∈ �S represents the net effect of applying r, or the jump/

translation in the state space that results from applying r. This jump does not depend on

the state it is applied to (and on the manner in which it is applied – unlike in the case of

rules (Danos and Oury 2010)); what does depend on the source state is the application

condition x � i(r), the fullfilment of which will determine whether the jump is possible

(or enabled) from x.

More generally, a vector y ∈ �R represents a linear combination of reactions, and

Cy ∈ �S is its total resulting effect. In general, y will be realised by countably many

trajectories in the underlying state space �S . Specifically, any trajectory whose sequence

of reactions ỹ enumerate the multiset y will have to have enough inputs at each step for

the next reaction to proceed. By monotony, any y with integer coefficients can be realised,

provided we start with a large enough state.
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A reaction invariant, or R-invariant, is a y ∈ �R such that Cy = 0. Equivalently, a

multiset of reactions y such that, wherever realisable, the underlying trajectory is a loop

in �S . Such invariants can be thought of as loop schemes.

There is also the dual notion of a species invariant, or S-invariant, namely, a u ∈ �R in

the null-space of Ct the transpose of C; equivalently, us such that 〈u, Cy〉 = 〈Ctu, y〉 = 0,

that is to say, the linear form 〈u, 〉 is a (linear) invariant of the trajectories.

We will use later the following basic linear algebraic fact. If C is a (stoichiometric)

matrix, then ker(C)⊥ = Im(Ct). To see this, suppose κ = Ctε for some ε ∈ �S , and pick

φ in ker(C). We have 〈κ, φ〉 = 〈Ctε, φ〉 = 〈ε, Cφ〉 = 0. Hence Im(Ct) ⊆ ker(C)⊥, and since

both subspaces have the same dimension, this inclusion is in fact an equality.

Note that Ct might not be injective (equivalently the associated system might have

non-trivial S-invariants). But if we pick ε1, ε2 such that Ctε1 = Ctε2, then the linear forms

〈ε1, 〉, 〈ε2, 〉 are equal when restricted to Im(C); in other words, ε1− ε2 is an S-invariant.

In the following, this will imply that any choice of ε amounts to the same.

We will restrict ourselves to Petri nets that are simple and symmetric, as defined below.

Definition 3.1. Let N be a net, with reactions R and stoichiometric matrix C . Then N is

said to be:

— simple if there are no identical columns in C;

— symmetric if every reaction r ∈ R has an inverse reaction r� ∈ R with i(r�) = o(r) and

i(r) = o(r�).

The first condition says that no two reactions have identical jumps; the second says that

every reaction is reversible. Note that if N is symmetric and simple, then there is a unique

r� inverse to r, so in this case we can unambiguously refer to the reaction inverse to r.

Note also that r can be inverse to itself when i(r) = o(r), that is, when r has no effect on

the state.

A net can always be symmetrised by adding an inverse where it lacks one. However, it

is not clear how a given net can be ‘simplicised’ naturally; we could select among identical

columns, but that would be arbitrary.

3.3. Examples

In practice, we will present a Petri net as a list of reactions – here are 3 examples:

→ A, A→ 2A (3)

S + I → 2I, S ← I (4)

→ A, A→ . (5)

(5) and (4) are simple, but (3) is not since both transitions have the same net balance.

(5) is symmetric; and (4) would have a symmetric underlying transition graph if we were

to add S → I , but it would no longer be simple, neither would it be symmetric in the

intensional sense we have used here. This illustrates the difference between the extensional

notion of a symmetric transition graph and the more restrictive and intensional one we

have defined and will be using for Petri nets.

https://doi.org/10.1017/S0960129512000126 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000126


V. Danos and N. Oury 298

Continuing with example (4), we see that there is a reaction invariant yt = (1 1), which

can be realised by a loop provided we start from a state x where x(I) > 1. It also has a

species invariant, xt = (1 1), expressing the fact that x(S) + x(I) is invariant under any

transition (the actual value depending on the initial state).

3.4. Mass-action semantics

We turn now to the quantitative aspects of Petri nets.

PNs have a countably infinite state space and finitely many reactions – so they will

generate countably infinite transition graphs with finite degree, which fits the definition

of rate function given in Section 2. We still need to assign a rate to each transition.

Suppose x, z are multisets over S , we define:

— the number of symmetries of any enumeration of x

x! :=
∏

A∈S
x(A)!;

— the total number of elements of x

|x| :=
∑

A∈S
x(A);

— when z � x, the number of matches for z in x

[z; x] :=
∏

A∈S
[z(A); x(A)] :=

∏

A∈S
x(A)!/(x(A)− z(A))! = x!/(x− z)!. (6)

Definition 3.2. Given a simple PN on S , R and a rate constant map k : R → �+ � {0}, we

define the jumping rate as

x→r x + o(r)− i(r) with rate τ(x, r) = k(r) · [i(r); x].

By the application condition, i(r) � x, so [i(r); x] is well defined.

Note that if the PN were not simple, the above definition would induce a compound

rate function

q(x, y) =
∑
{r|r·x=y} τ(x, r).

As we will see, this would create a problem when it comes to constructing equilibria,

which is why we restrict to simple PNs. As a consequence, the set of reactions leading

from x to y is either empty or a singleton {r}, and we can write q(x, r · x) = τ(x, r) and

q(x, y) = 0 otherwise.

Another point worth making is that we have chosen to use [a; b] = b!/(b − a)! the

number of injections of a in b to count matches, but sometimes,
(
b
a

)
= [a; b]/a!, that is,

the number of subsets, is used instead. The difference between the two conventions is

independent of the state (that is, it is static), and can (therefore) be entirely hidden in the

rate constant k(r). The convention we follow is noticeably more natural when considering

the rule-based extension of PNs and their refinement theory (Danos et al. 2008a).
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3.5. Comparison with constant rate semantics

The semantics above will be called the mass-action semantics.

It is important to contrast it with another semantics, which associates to a jump

x→r x + o(r)− i(r) a flat rate τ(x, r) = k(r). These nets are often referred to as stochastic

Petri nets with marking-independent rates (Marsan 1990), since the rate of a jump only

depends on the reaction r and not on the state x to which the reaction applies.

The difference between the two semantics has drastic consequences on their long-term

behaviours. To see this, let us reconsider example (5), a birth-and-death process →k A→d

where rate constants are indicated as subscripts (which we recall are both > 0). If we

follow the non-mass-action definition, (E1) becomes p(x)k = dp(x + 1), so p(x) is a

geometric sequence, and will verify (E2) if and only if μ := k/d < 1. With the mass-action

definition, the condition (E1) reads

p(x)k = d(x + 1)p(x + 1),

and it is easy to verify that the solution is a Poisson distribution,

p(x) = exp(−μ) μx/x!,

which therefore converges independently of the value of μ. This unconditional convergence

is a general phenomenon and so is the occurrence of the Poisson distribution; somewhat

paradoxically, mass action will turn out to be a mathematically simpler semantics when

it comes to deciding equilibria.

3.6. A lemma

We will say that a Petri net N with a rate constant map k : T → �+ is sisma, if it is

simple, symmetric (as in Definition 3.1), and has mass-action semantics.

Lemma 3.3. Let N be sisma. Then for x in �S , r ∈ R and y = r · x, we have

q(y, x)/q(x, y) = k(r�)/k(r) · y!/x!.

Proof. Because N is simple, r is the only reaction that brings x to y, so, by the definition

of mass action, the rate of the jump from x to y is

q(x, y) = k(r) · x!/(x− i(r))!.

Because N is symmetric, r� brings y back to x, so q(y, x) > 0, and again, because N is

simple, r� is the only reaction that does this, so the rate of the reverse jump is

q(y, x) = k(r�) · y!/(y − o(r))!

where we have used i(r�) = o(r), which holds by the definition of r�.

The conclusion then follows since y − o(r) = x− i(r).

4. Equilibrium

Everything is now in place for us to present our main result.
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Theorem 4.1. Let N be sisma with stochiometric matrix C , and define N’s transitional

energy vector κ ∈ �R as κ(r) = ln(k(r�)/k(r)) for r ∈ R. Then N has a nowhere zero

equilibrium if and only if κ ∈ ker(C)⊥.

Proof.

(⇒) (This is the easy direction.) We pick φ in ker(C). Since C has values in �, we can

suppose without loss of generality that φ has coefficients in �. In fact, we can suppose

φ has coefficients in �, since N being symmetric, we can always replace a negative

coefficient on r (say) with a positive one on r�. Next, pick a state x0 sufficiently large

for φ to be realisable as a cycle γφ at x0 – this is always possible by monotony. By

(E1), for all jumps (x, y) in γφ, we have

p(x)q(x, y) = p(y)q(y, x).

Since p is nowhere zero, this can be rewritten as

p(x)/p(y) = q(y, x)/q(x, y),

which implies
∏

γφ
q(y, x)/q(x, y) =

∏
γφ
p(x)/p(y) = 1,

or, equivalently (by taking a log),

0 =
∑

(x,y)∈γφ ln(p(x)/p(y)) =
∑

(x,y)∈γφ ln(q(y, x)/q(x, y)).

We can now evaluate q(y, x)/q(x, y) using Lemma 3.3, and obtain

0 =
∑

r

κ(r)φ(r) +
∑

(x,y)∈γφ

ln(y!/x!)

= 〈κ, φ〉+
∑

(x,y)∈γφ

ln(y!/x!)

= 〈κ, φ〉,

since the terms ln(y!/x!) add up to zero along any cycle.

(⇐) Because N is symmetric, the transition graph of q is a disjoint sum of symmetric

components.

Pick a component D, together with a distinguished state z0, and for each z in D

choose a path γz from z0 to z.

Up to the choice of p(z0), the following uniquely defines a function p on D:

ln(p(z0)/p(z)) :=
∑

(x,y)∈γz ln(q(y, x)/q(x, y))

= 〈κ, γ̃z〉+ ln(z!/z0!)

where γ̃z is the R-vector to which γz projects.

We can rewrite the above as

ln p(z) + ln z! = ln p(z0) + ln z0!− 〈κ, γ̃z〉.

This expression for p(z) does not depend on the choice of γz since 〈κ, γ̃z〉 is constant

over all paths from z0 to z. This is because we assume that 〈κ, γ̃〉 = 0 for any cycle γ.

For the same reason, this assignment verifies (E1).
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We also have to take care of (E2).

Using an earlier remark in Section 3.2, we know there is an ε ∈ �S such that

〈κ, γ̃z〉 = 〈ε, Cγ̃z〉, and since Cγ̃z = z − z0, we can rewrite the above as

ln p(z) + ln z! + 〈ε, z〉 = ln p(z0) + ln z0! + 〈ε, z0〉. (7)

From equation (7), we have

∑
z∈D p(z) ∝

∑
z∈D e−〈ε,z〉/z! �

∑
z∈�S e−〈ε,z〉/z!.

Writing μA = e−ε(A), we have

∑
z∈�S e−〈ε,z〉/z! =

∑
z∈�S

∏
A∈S μA

z(A)/z(A)! =
∏

A∈S e
μA < ∞.

Hence (E2) also holds. Since we can repeat the construction for each component, we

can define a nowhere zero equilibrium. �

Note that in the (E2) part of the argument, the choice of ε such that Ctε = κ does not

matter. If we had picked another ε′, it would follow from (7) that

ln(p′(z)/p(z)) = 〈ε′ − ε, z0 − z〉 = 0

because ε′ − ε is an S-invariant (Section 3.2) and z0, z are connected in the transition

graph.

We can conclude immediately that whether a sisma Petri net N has a nowhere zero

equilibrium is decidable. We can equally use the theorem to choose a κ in the solution

space ker(C)⊥. This solution space has dimension d = |R| − dim(ker(C)), which means

we can fix d of the |R| transitional energies to arbitrary values and fill in the rest

uniquely according to the constraint. In particular, there is always the trivial choice κ = 0,

corresponding to k(r) = k(r�) for all r in R.

Yang et al. (2008) explores, in the case of a finite state space, how the solution space can

be further constrained by experimental evidence. Our criterion shows that this is possible

in general for a countable state space.

It is clear from the proof that, provided κ is the solution space, we can define a unique

equilibrium with support any of the components of q; all other equilibria can then be

obtained by convex combinations of such minimal ones.

It is also clear that the convergence part of the proof (E2) makes great use of the

specific mass-action shape of the rates. This does not come as a surprise as we saw earlier

with the birth-and-death example (Section 3.5) that the constant rate semantics does not

always yield a convergent solution to (E1). Moreover, as foreseen in Section 3.5, the

equilibrium solution must be a Poisson distribution when q is irreducible.

Corollary 4.2. Let N be sisma and irreducible. Then its invariant probability, if it exists,

is unique and is a product of Poisson distributions.

Proof. To see this, observe that from (7), we get for z ∈ �S

p(z) ∝
∏

A∈S
μ
z(A)
A /z(A)! (8)
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with μA = e−ε(A). Now if N’s transition graph is (strongly) connected, this says exactly

that p(z) is an S-indexed product of Poisson distributions with parameters μA.

Hence, a thermodynamically consistent and irreducible sisma net N is equivalent in the

long term to a juxtaposition of independent birth-and-death processes with parameter

ratios μA. All correlations between As and Bs are transient. If N is not irreducible,

the formula above is still correct, but the normalisation factor for p(z) depends on the

component of z, so while there can now be long-term correlations, they will have to be

entirely encoded in the qualitative reachability properties of N. This intriguing lack of

expressivity in the asymptotic behaviour of (irreducible) sisma nets (which one might call

their ‘normal forms’ to borrow from the terminology of rewriting systems) can be traced

back to the fact that the transitional energies κ can be ‘tokenised’ as Ctε when N satisfies

(E1).

4.1. A stronger version?

The result only decides the existence of an equilibrium that is everywhere non-zero (or,

equivalently, whether it is possible, for every connected component of N’s transition graph

to define an equilibrium with support this component). However, what if we are interested

in deciding whether N has an equilibrium with support the component D of some specific

initial state z0? Admittedly, this is a rather gratuitous question since if such a situation

is not already covered by our result, the ‘physics’ of our Petri net is consistent for some

specific inputs only. Nevertheless, it seems fairly subtle.

Returning to the second part of the proof, it can be seen that to build an equilibrium

on D, we need κ to be orthogonal only to those reaction invariants φ that are realised by

a loop γφ in the distinguished component D. So the refined statement becomes that N has

a solution to (E1) with support D if and only if κ is orthogonal to those. The problem is

that we no longer know how to conclude to (E2), and even if we could prove it always

holds, it is unclear how to decide the partial orthogonality property above.

True, it is easy to decide whether any given φ is realised in D. First, φ is realisable

in D if and only if one of the |φ|! orderings φσ of φ is. For each φσ , with A ∈ S , we

can compute the minimal number of As needed to complete φσ(A), say x(A); and φσ

is realisable in D if and only if there exists a z reachable from z0 such that z � x (in

PN terms, whether x is coverable starting from z0). This is decidable: for example, using

coverability trees à la Karp–Miller (Karp and Miller 1969).

But checking realisability within D on a generating family of R-invariants (in �R) is no

longer enough since non-realisability is not stable under linear combination (with integer

coefficients).

Consider the following two ‘co-operating’ (ordered) R-invariants:

φ1 = A1 → B1, B2 + B1 → B2 + C1, C1 → A1

φ2 = A2 → B2, C1 + B2 → C1 + C2, C2 → A2.

φ1 needs an A1 and a B2; φ2 needs an A2 and a C1.
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If we start from z0 = A1 +A2, none of the loops go through. Nevertheless, φ1 +φ2 can

be realised since φ1, φ2 can exchange intermediates B2 and C1:

A1 + A2 →2 A1 + B2 →1 B1 + B2 →1 C1 + B2

C1 + B2 →2 C1 + C2 →1 A1 + C2 →2 A1 + A2.

Whether it is possible to work around this additional complication and find a finite

description of the loops realisable in an arbitrary component of a Petri net remains to be

seen.

5. A thermodynamic aside: entropy

It is instructive to rephrase our main result in terms of energy, and to build a different

intuition for it.

We have proved that a sisma Petri net N with transitional energies κ has an equilibrium if

and only if κ ∈ ker(C)⊥, where we, essentially, use equation (7) to define the equilibrium.

Equivalently, using the correspondence explained in equation (2) in Section 2.2, the

equilibrium can be described as the following (free) energy assignment:

F(x)=〈ε, x〉+ ln x! (9)

where ε is such that κ = Ctε (recall that we write x! for
∏

A x(A)!). Note that the choice

of a particular representative of ε will only change the above definition by an additive

constant per connected component.

It can be seen that F(x) decomposes as E(x)− Ω(x) with:

— E(x) = 〈ε, x〉, which can be interpreted as the internal energy of x, or the energy of

creating x;

— Ω(x) = − ln x!, which is a combinatorial symmetry discount term that can be

interpreted as the entropy of creating x (see the discussion below).

Since p(x) ∝ e−F(x), those states x that minimise E(x) and maximise Ω(x) will be favoured

by the invariant probability. Minimising the E-term is easy: if A has the lowest εA, then

x should have only As. Maximising the Ω-term is also easy: x should have a low x!,

which means x should be as uniformly distributed among species as possible. To see this,

observe that |x|!/x! is a multinomial coefficient, which, for a fixed value of |x|, gets its

highest values when x partitions |x| as evenly as possible. This second term, unlike the

first one, favours disorder. To minimise both at once is complicated as the two goals are

clearly in contention.

Note that we can rescale κ by any factor λ, without leaving ker(C)⊥, and obtain a

rescaled equilibrium:

H(x) = λE(x)− Ω(x) = λ(E(x)− λ−1Ω(x)),

which leads us to interpret ‖ε‖−1 as a formal notion of temperature arbitrating the

competition between the internal energy and entropic terms.

To return to the entropy term, supposing |x| :=
∑

A x(A) is a constant n (that is, the

total number of tokens per component is constant), we can explain this term as follows.
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Consider the set of words Sn, or, equivalently, the set of maps n → S . Permutations

of n have an action on this set. Write Π for the (canonical) projection Π from words to

multisets.

By the orbit-stabiliser relation, for any word w, we have

n! = sym(w)× orb(w).

On the other hand,

sym(w) =
∏

A∈S
Π(w)(A)!

since sym(w) is the set of name-preserving permutations of w.

Hence, the cardinality of the inverse image of x is

|Π−1(x)| = (
∑

A

x(A))!/
∏

A

x(A)! = |x|!/
∏

A

x(A)! = |x|!/x!. (10)

Taking logs, we get

ln |Π−1(x)| = ln |x|! + Ω(x),

and we see that the equilibrium F is the image of E under the quotient induced by Π,

that is to say,

F(x) = E(w) + ln |Π−1(x)|
up to an additive constant ln n!, for any w ∈ Π−1(x).

This hints at the existence of a concrete counterpart of N, acting on words (which is

reminiscent of the individual-token semantics of Petri nets (Bruni et al. 1999)) for which

Π would be a functional stochastic bisimulation. It is not too difficult to carry out this

programme explicitly for the simple case where there is a constant number of tokens. In

so doing, the entropic term is seen as a side-effect of changing the semantics and switching

to the more abstract collective one, as described by the projection Π. It is however unclear

at the time of writing whether this microscopic rendition of entropy can be freed from

the simplifying assumption of an invariant number of tokens.

6. Conclusion

We have established a computable criterion for a simple and symmetric Petri net equipped

with a mass-action semantics to admit an equilibrium probability. This result, put alongside

our earlier result in Danos and Oury (2010) where we proved that the same problem is

undecidable for general computable Markov chains, sheds some light on the decidability

boundary. There are many possible questions to pursue from this point.

We have mentioned already the decision of the weaker property of having an invariant

probability, as well as the more foundational question of the extent to which we can

deconstruct entropy terms by constructing covers, as sketched at the end of the previous

section. Ideally, this would be done in some axiomatic framework to give maximal

generality, perhaps following the leads in Bruni et al. (1999) or the more encompassing

notion of adhesive categories (Lack and Sobociński 2005; Lack and Sobociński 2004;

Ehrig et al. 2004).
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Another question is how our result relates to the MC/DE divide. If a Petri net has an

invariant probability, we would expect its deterministic DE approximation to be defined

at all times (Darling and Norris 2008). For instance, the reaction 2A → 3A will give the

mass-action differential equation x′ = x2, which is a Ricati equation with explosive

solutions x(t) = 1/(x(0) − kt). As soon as we add the reverse reaction 2A ← 3A,

the new differential equation x′ = x2 − x3 has positive solutions defined at all times.

The extent to which convergence in the MC world carries over to differential limits

should be investigated. A related question is the relation to Feinberg’s chemical reaction

theory, which is also partly based on algebraic conditions (the so-called deficiency space

of a reaction system) to ensure multistationarity of the differential semantics (Feinberg

1987). Certainly, a probabilistic equilibrium is adverse to multistationarity, and the link

should be made precise. Anderson et al. (2010) might help shed some light on this issue.

Another direction to pursue, which we mentioned in the introduction and which also

prompted this investigation in the first place, is to bring the experience gained here to bear

on the study of the thermodynamic consistency of the larger class of rule-based models

of BMNs. As we said earlier, there is no hope of getting an all-encompassing criterion

of computational significance because the question is undecidable. However, it is possible

to envision the synthesis of specific classes of consistent rule sets by using local energy

terms to constrain the allowed rules. This is an exciting question, which we have already

started investigating in trying to extend the energy-based modelling techniques of Ollivier

et al. (2010).

Finally, we have dealt here with what might be called a quantitative termination

question. It is pleasing, if unsurprising, to see thermodynamics inviting itself into the

conceptual apparatus. It seems that a thermodynamics-based quantitative rewriting theory

could renew in an interesting way the classical questions of reachability (for a recent

example of such an investigation in Kappa-related formalisms, see, for example, Delzanno

et al. (2009)), confluence and termination that have been its traditional concerns (for a

recent example in concurrency theory, see, for example, Bacci et al. (2011)).
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