
Math. Struct. in Comp. Science (2014), vol. 24, iss. 6, e240602, 55 pages. c© Cambridge University Press 2013

doi:10.1017/S0960129513000479

Database queries and constraints via lifting problems

DAVID I. SP IVAK†

Department of Mathematics, Massachusetts Institute of Technology,

Cambridge, MA 02139, United States of America

Email: dspivak@mit.edu

Received 16 June 2001; revised 8 October 2002

Previous work has demonstrated that categories are useful and expressive models for

databases. In the current paper we build on that model, showing that certain queries and

constraints correspond to lifting problems, as found in modern approaches to algebraic

topology. In our formulation, each SPARQL graph pattern query corresponds to a

category-theoretic lifting problem, whereby the set of solutions to the query is precisely the

set of lifts. We interpret constraints within the same formalism, and then investigate some

basic properties of queries and constraints. In particular, to any database π, we can associate

a certain derived database Qry(π) of queries on π. As an application, we explain how giving

users access to certain parts of Qry(π), rather than direct access to π, improves the ability to

manage the impact of schema evolution.

1. Introduction

Diskin and Kadish (1994), Johnson (2001), Johnson et al. (2002) and many others have

presented and investigated a tight connection between database schemas and the category-

theoretic notion of sketches. This connection was taken further in Spivak (2012), where the

existence of three data migration functors was shown to follow as a simple consequence

of using categories rather than sketches to model schemas. In the current paper, we will

show that a modern approach to the study of algebraic topology, viz. the lifting problem

approach (Quillen 1967), provides an excellent model for typical queries and constraints

(Prud’hommeaux and Seaborne 2008).

A database consists of a schema (a layout of tables in which foreign key columns

connect one table to another) and an instance (the rows of actual data conforming to the

chosen layout). One can picture the analogy between databases and topological spaces as

follows. Imagine that a collection of data I and a schema S are each an abstract space,

and suppose we have a projection from I to S . That is, we have some kind of continuous

map π : I → S from a ‘data bundle’ I to a ‘base space’ S . Points in S represent tables, and

paths in S represent foreign key columns (or iterates thereof), which point from one table

to another. Over every point s ∈ S in the base space, we can look at the corresponding

fibre π−1(s) ⊆ I of the data bundle: this will correspond to the set of rows in table s. The

map π associating data with the schema is called a database instance.

† This project was supported by ONR grant N000141010841.

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 2

A query on a database instance π : I → S is like a system of equations: it includes

an organised collection of knowns and unknowns. In our model, a query takes the form

of a functor m : W → R such that W (standing for WHERE-clause) corresponds to the

set of knowns, each of which maps to a specific value in the data bundle I and such

that the relationship between knowns and unknowns is captured in a schema R. More

precisely, in (1), a query on the database instance π : I → S is presented as a commutative

diagram to the left, which would be roughly translated into the pseudo-SQL to the

right†:

W
p ��

m

��

I

π

��
R

n
�� S

SELECT ∗
FROM R

n−→ S

WHERE R
m←−W

p
−→ I

(1)

A result to the query is any mapping � : R → I making both triangles commute (�◦m = p

and π ◦ � = n) in the diagram

W
p ��

m

��

I

π

��
R

�

����������
n

�� S

(2)

The map � is called a lift of Diagram (1), hence the term lifting problem. The idea is that

a lift is a way to fill the result schema R with conforming data from the instance π.

We will now give a simple example from algebraic topology to strengthen this image. By

connecting databases and topology, we can not only visualise queries in a new way, but it

is conceivable that algebraic topologists could use database interfaces to make computers

work on lifting problems that arise in their research. Regardless of this, following

the topological example, we will ground the discussion using an example database

query.

Consider an empty sphere, defined by the equation

x2 + y2 + z2 = 1,

and call it I . We project it down onto the (x, y)-coordinate plane (z = 0), and call that

plane S ∼= R2. The sphere I serves as the database instance and the plane S serves as the

schema. A query consists of some result schema mapping to the plane S , say a solid disk

R, given by

z = 0, x2 + y2 � 1,

together with some constraints, say on the boundary circle W of the disk, given by

z = 0, x2 + y2 = 1.

Graphically, we have Figure 1.

† A more general SQL query, with a specific SELECT statement, will be discussed in Example 4.8.

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 3

Fig. 1. (Colour online) A topological lifting problem

The results of the lifting query from Figure 1 are the mappings R → I making the

diagram commute. Using (1) as a guide, the query would look something like

SELECT ∗
FROM filled disk inclusion

WHERE empty circle as boundary = empty circle as equator

Topologically, we can check that there are exactly two lifts – the top hemisphere and the

bottom hemisphere – so our pseudo-SQL query above would return exactly two results.

1.1. Main example of a lifting query

We will now provide an example of a situation in which one may wish to query a database,

and then show that this query naturally takes the structure of a lifting problem. We will

break a single example into three parts for clarity.

Example 1.1 (main example 1: situation, SPARQL and schema). Suppose we have just

come home from a party where we met and really hit it off with a married couple. The

husband’s name is Bob and the wife’s name is Sue, and they live in Cambridge. From the

conversation, we know that Bob works at MIT and Sue works in the financial sector. We

would like to see them again, but we somehow forgot to ask for their contact information –

in particular, we would like to know their last names.

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 4

This is a typical database query problem. It can be phrased as the following SPARQL

graph pattern query (which we arrange in two columns for readability and to save space):

(?marriage includesAsHusband ?b) (?marriage includesAsWife ?s)

(?b hasFirstName Bob) (?s hasFirstName Sue)

(?b livesIn Cambridge) (?s livesIn Cambridge)

(?employedb is ?b) (?employeds is ?s)

(?employedb hasEmployer MIT) (?employeds hasEmployer ?sueEmp)

(?sueEmp isIn financial)

(?b hasLastName ?bobLast) (?s hasLastName ?sueLast)

(3)

The query in (3) might be asked on the following database schema†:

S :=

G

a marriage

had
wedding on

��

includes as husband

�������������
includes as wife

������������

D

a date

M

a man

is

��������������

W

a woman

is

�������������

E

an employed

person
is ��

has employer

��

P

a person

lives in

��

has
first name

��

has last name

�������������

F

a first name

Y

an employer

is in

��

C

a city
L

a last name

T

a sector

(4)

Given that S is instantiated with data π : I → S , we can hope to find Bob and Sue, and

then determine their last name. In the following two examples (Examples 1.2 and 1.3) we

will show that this query corresponds to a lifting problem for π.

Example 1.2 (main example 2: WHERE-clause and result schema). In this example we

consider the SPARQL query presented as (3) in Example 1.1, in which we wanted to find

information about our new friends Bob and Sue. We will use a lifting problem to state

this query, and to do this we will need to come up with a result schema R, a constraint

schema (a set of knowns) W and a mapping m : W → R embedding the known objects

† The schema S in (4) deliberately includes a box D and an arrow G→ D that are not part of our query (3).

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 5

into the result schema. In this example, we will present m,W and R, then, in Example 1.3,

we will explain the lifting diagram for the query and show the results.

In order to find our friends Bob and Sue, we will use the following mapping:

W :=

Y 1

MIT

T

financial sec-
tor

F1

Bob

C1

Cambridge

C2

Cambridge

F2

Sue

m

��

R :=

Y 1

an
employer

G

a
marriage

includes as husband

		��������������
includes as wife



���������������
T

a sector

Y 2

an
employer

is in��

E1

an
employed
person

is ��

has

��

P1

a person

has

��
lives in

							
has

��







P2

a person

has

��
has

��������
lives in

���������

E2

an
employed
person

is��

has

��

F1

a first
name

L1

a last
name

C1

a city

C2

a city

L2

a last
name

F2

a first
name

The functor m : W → R sends each object in W to the object with the same label in R:

for example, �MIT�† in Ob(W ) is sent to �an employer� in Ob(R) because they are both

labelled Y 1.

The following exercise will act as an aid to orientation. First count the number of

constants in the SPARQL query (3) – there are 6 (such as Bob, Cambridge, and so on),

and this is precisely the number of objects in W . Now count the combined number of

constants and variables in the SPARQL query – there are 14 (there are 8 variables, such

as ?marriage, ?empoyedb, and so on), and this is precisely the number of objects in R.

Finally, count the number of triples in the SPARQL query – there are 13, and this is

precisely the number of arrows in R. These facts are not coincidences.

Example 1.3 (main example 3: lifting diagram and result set). In Example 1.2 we showed

a functor m : W → R corresponding to the SPARQL query stated in (3). In this example,

† We will use corner symbols around words in the running text of the paper when we refer to objects displayed

as textboxes in diagrams. For example, we write �MIT� to refer to the object

MIT

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 6

we will explain how this query can be formulated as a lifting problem of the form

W
p ��

m

��

I

π

��
R

�

���
�

�
�

n
�� S

(5)

that serves to pose our query to the database instance π. At this point, we can ask for

the set of solutions �. So far, we have presented W,m, R and S , and assumed I and π, we

will come to the set of �’s later, so we just need to present p and n now.

Reference should be made to our presentation of S in Example 1.1 (4) for the following.

The functor n : R → S should be obvious from our labelling system (for example, the

object E1=�an employed person� in category R is mapped to the object E=�an employed

person� in category S). Note that, as applied to objects, n is neither injective nor surjective

in this case:

n−1(P ) = {P1, P2}
n−1(D) = �.

Suppose π : I → S is our data bundle, and assume that it contains enough data for the

constants in the query to have unique referents†. There is an obvious functor p : W → I

that sends each object in category W to its referent in I . For example, we assume that

there is an object in I labelled �MIT�, which is mapped to by the object Y1=�MIT� in

W .

Thus, our query from (3) is finally in the form of a lifting problem as in (5). We will

show in Example 4.10, after we have built up the requisite theory, that the set of lifts can

be collected into a single table, the most useful projection of which would look something

like this:

Marriage

ID
Husband Wife

ID First Last City ID First Last City

G3801 M881-36 Bob Graf Cambridge W913-55 Sue Graf Cambridge

(6)

This concludes our tour of the main example, in which we have shown a typical query

formulated as a lifting problem. The mathematical basis for the above ideas will be

presented in Section 4.

1.2. Relation to earlier work

Aswe have already mentioned, there is a long history of applying a category-theoretic

formalism to database theory. For the purposes of our exposition here, we will divide these

approaches into two groupings. The first grouping, which includes the work in Tuijn and

† Note that the way we use the term ‘query’ here is not standard – see Sections 1.5.1 and 4.2 for an explanation.

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 7

Gyssens (1992) and Kato (1983), considers relational database tables as sets of attributes,

using limits to discuss joins. This formulation is similar to that used in Spivak (2009),

in which simplicial sets were used as a geometric model for ‘sheaves of attributes’. The

second grouping, which includes the work in Diskin and Kadish (1994), Johnson (2001)

and Johnson et al. (2002), uses sketches in the sense of Ehresmann (1968). The latter

approach is closer to that of Spivak (2012) and the current paper. We will now discuss

the similarities to and differences between the sketch and lifting problems approaches.

In the current paper, we will model database schemas as finite category presentations

(see Section 2.1), whereas the ‘second grouping’ of approaches mentioned above models

them as sketches. A sketch is a category together with specified limit cones and colimit

cones (Barr and Wells 2005). Sketches are more expressive than categories: for example,

in the database context, using sketches allows a schema to convey when the set of rows in

table T is the product of the sets of rows in tables U and V . This expressivity comes at

some cost: while the categorical model in Spivak (2012) has three built-in data migration

functors for moving data back and forth between schemas, the most general sketch model

has only one, a ‘pullback’. If the modelling is confined to the less expressive limit sketches,

a left adjoint to this pullback becomes available. The point is that with the capacity to

express more in a model, it seems the ability to transmit data to other models is reduced.

Still, it may be useful to find something in between sketches and bare categories,

because using categories as models does not allow us to express constraints beyond

foreign keys and commutative diagrams. For example, it does not allow for injectivity, or

‘is a’, constraints. It is here that the current paper fits in. Modern mathematical research,

especially algebra and topology, has found surprisingly little use for sketches and sketch

morphisms, despite their naturality and simplicity. It is not clear why this should be the

case, especially given the success of the sketch model in applications (Barr and Wells 2005);

the future of category theory in mathematics may indeed make more use of sketches.

What we can say is that modern mathematical research has become deeply invested

in categories and functors. Further, algebraic topology, which was the trailblazer for

category theory, has for more than half a century found lifting problems to be a key

tool for investigating abstract spaces. In this paper we make the connection between

lifting problems and database theory. As mentioned above, we show that there are many

constraints that are well phrased as lifting problems, and that queries also fit nicely into

this framework.

Sketches are often divided into the following three types: limit sketches; colimit sketches;

and mixed sketches (that is, granting the architect the ability to impose limits, colimits, or

both). Lifting constraints cover the expressivity of limit sketches fully, and then a bit more –

see Section 3.5. In particular, lifting problems can enforce injectivity constraints, as shown

in Example 3.13. However, colimit sketches can express things that lifting constraints

cannot. For example, with colimit sketches we can express set-theoretic complements, and

this cannot be done with lifting problems. The ability to enforce the fact that one subset

is the complement of another (also known as negation) comes with well-known problems,

such as domain dependence. However, there are certain real-world applications in which

colimit sketches are simply unavoidable: for example, this is even the case for something

as simple as the data model for 3-packs of toothbrushes.

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 8

What we can take away from the current section is that lifting problems can express

a different class of constraints from that expressible by sketches. We contend here that it

is a valuable class of constraints, and that it corresponds quite well with SPARQL graph

pattern queries. We will summarise our argument for the usefulness of lifting constraints

in Section 3.3.

1.3. Purpose of the paper

The purpose of this paper is to:

— provide an efficient mathematical formulation of common database queries (modelling

both SQL and SPARQL styles);

— attach a geometric image to database queries that can be useful in conceptualisation;

and

— explore the theory and applications of the derived database schema Qry(π) of queries

on a database instance π, and the derived instance of results.

We include several mathematical results that are well known to experts in order to

help those interested in using this paper to bridge the gap between database theory and

category theory.

1.4. Plan of the paper

We begin in Section 2 with a review of the categorical approach to databases – see

Spivak (2012) for more details. Roughly speaking, this correspondence goes by the slogan

‘schemas are categories; instances are set-valued functors’. In Section 2.3, we also discuss

the Grothendieck construction, which will be crucial for our approach: a database instance

can be converted into a discrete opfibration, which we will later use extensively to make

the parallel with algebraic topology, and lifting problems in particular.

In Section 3, we define constraints on a database in terms of lifting conditions and

discuss some constraint implications. We give several examples to show how various

common existence and uniqueness constraints (such as the constraint that a given foreign

key column is surjective) can be framed in the language of lifting conditions.

In Section 4, we discuss queries as lifting problems, and review the paper’s main

example.

In Section 5, we show that the information in a given database instance can be collected

into a new, derived database. This derived database of queries and their results can be

queried, giving rise to nested queries. We explain how this formulation can be useful for

managing the impact of schema evolution.

Finally in Section 6, we briefly discuss some possible directions for future work, including

tying our approach into homotopy type theory (in the sense of Awodey and Warren (2009)

and Voevodsky (2006)) and other projects.

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 9

1.5. Notation and terminology

For any natural number n ∈ N , we use n to denote the set {1, 2, . . . , n}, and sometimes

regard sets as discrete categories without mentioning it. Note that 0 = �. We use [n]

to denote the linear order 0 � 1 � . . . � n, and sometimes regard orders as categories

without mentioning that either. In particular, 1 is the terminal category: it has one object

and one morphism (the identity).

Given any category C, we denote the category of all functors C → Set by C–Set. The

terminal object in C–Set sends each object in C to 1, and we denote it by 1C : C → Set. For

any category C, there is a one-to-one correspondence between the objects in C and the

functors 1→ C, so we may denote an object c ∈ Ob(C) by a functor 1
c−→ C. In particular,

we elide the difference between a set and a functor 1→ Set.

We draw schemas in two different ways, depending on context. When we wish to save

space, we draw objects as nodes with simple labels and morphisms as arrows with simple

labels. But, when we wish to be more expressive, we draw objects as text boxes and put as

much text in them (and on each arrow) as needed for clarity (see Spivak and Kent (2012)).

For example, we might draw the indexing category for directed graphs in either of the

following two ways:

E•
s

��

t

��
V• an edge

has as source
��

has as target

��
a vertex

(See the footnote in Example 1.2 for the representation we use in running text for objects

displayed as textboxes in diagrams.)

Given two categories, there are generally many functors from one to the other. However,

if the objects and arrows are labelled coherently, there are many fewer functors that

roughly respect the labellings. We will usually be explicit when defining functors, but we

will also take care that our functors respect labelling to the greatest extent possible.

1.5.1. ‘Queries on a database’. In the wide-spread terminology for database queries, a

‘query’ cannot depend on the current instance π of the database, but instead only on the

schema S . This is perfectly reasonable for theoretical and practical reasons. In applications,

however, we often use what is known as a cursor, which is basically a pre-defined query

consisting of a join-graph and a set of variables to be bound at run-time. With respect to

the diagram

W
p ��

m

��

I

π

��
R

�

���
�

�
�

n
�� S

the join-graph is R, the set of variables waiting to be bound is W and the binding itself

is p : W → I . The mathematics will be covered more extensively in Section 4.2, but in the

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 10

rest of this section we hope to get across how our use of the term ‘query’ in the current

paper might be connected to common ideas in database systems.

In applications, a query wizard may run the cursor in a two-step query process. First it

will query the database to offer the user a drop-down menu of choices in the active domain

of each variable. The user will then choose a row to which the variable will be bound (once

for each variable). At this point, the program will apply the actual query declared by the

cursor. This two-step process corresponds to searching for possible functors p : W → I

and then searching for lifts �.

Throughout the current paper, when we refer to queries on a database, we mean queries

for which the constant variables have been bound to elements in the active domain of a

given instance. However, as we will see in Section 4.2, we can also use the same machinery

in cursor-like fashion to pose queries in which variable values have been chosen without

regard for whether they are in the active domain or not. In other words, we will show

that what can be accomplished by queries in the sense of traditional relational database

theory fits easily into our framework. Because it works either way, we use the unusual

terminology ‘queries on a database’ since it neither lulls readers into thinking that these

gadgets are completely instance independent, nor frightens them into thinking that the

instance must be known in advance for the ideas here to work.

2. Elementary theory of categorical databases

2.1. Review of the categorical description of databases

The basic mantra for the categorical description of databases is that a database schema is

a small category S and an instance is a functor δ : S → Set, where Set is the category of

sets†. In recalling these ideas, we will borrow liberally from Spivak (2012), where further

details and clarification can be found if required. Anyone familiar with the basic setup

and data migration functors can skip to Section 2.3.

Spivak (2012) defined a category Sch of categorical schemas and translations and proved

an equivalence of categories

Sch 
 Cat, (7)

where Cat is the category of small categories. The difference between Sch and Cat is

that an object of the former is a chosen presentation of a category using generators and

relations, as described below. Given the equivalence (7), we can and will elide the difference

between schemas and small categories.

Roughly speaking, a schema S consists of a graph G together with an equivalence

relation on the set of paths of G. Each object s ∈ Ob(S) represents a table (or, more

precisely, the ID column of a table), and each arrow s → t emanating from s represents

a column of table s, taking values in the ID column of table t. The following example

should clarify these ideas.

† If preferred, Set can be replaced by the category of finite sets or by the category Types for some λ-calculus.

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 11

Example 2.1. As a typical database example, consider the bookkeeping necessary to run

a department store. We keep track of a set of employees and a set of departments. For

each employee e, we keep track of:

E1: the first name of e, which is a FirstNameString;

E2: the last name of e, which is a LastNameString;

E3: the manager of e, which is an Employee; and

E4: the department that e works in, which is a Department.

For each department d, we keep track of:

D1: the name of d, which is a DepartmentNameString; and

D2: the secretary of d, which is an Employee.

Suppose further that we adopt the following two rules:

Rule 1: For every employee e, the manager of e works in the same department that e

works in.

Rule 2: For every department d, the secretary of d works in department d.

This is all captured neatly, with nothing left out and nothing added, by the category

presented below:

S :=

Employee manager worksIn 
 Employee worksIn

Department secretary worksIn 
 Department

Employee
•

worksIn ��

manager

��

first

��

last

���
����������

Department
•

secretary
��

name

��
FirstNameString

•
LastNameString

•
DepartmentNameString

•

(8)

The underlined statements at the top indicate pairs of commutative (that is, equivalent)

paths: each path is indicated by its source object followed by the sequence of arrows that

composes it. The objects, arrows and equivalences in S correspond to the tables, columns

and rules laid out at the beginning of this example.

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 12

The collection of data on a schema is typically presented in table form. The following

tables show how a database with schema S might look at a particular moment in time.

Employee

ID first last manager worksIn

101 David Hilbert 103 q10

102 Bertrand Russell 102 x02

103 Alan Turing 103 q10

Department

ID name secretary

q10 Sales 101

x02 Production 102

FirstNameString

ID

Alan

Alice

Bertrand

Carl

David

.

.

.

LastNameString

ID

Arden

Hilbert

Jones

Russell

Turing

.

.

.

DepartmentNameString

ID

Marketing

Production

Sales

.

.

.

(9)

Every table has an ID column, and in every table each cell references a cell in the ID

column of some table. For example, cells in the secretary column of the Department table

refer to cells in the ID column of the Employee table. Finally, we can check that Rules 1

and 2 hold. For example, let e be Employee 101. He works in Department q10 and his

manager is Employee 103. Employee 103 works in Department q10 as well, as required.

The point is that the data in the tables in (9) conform precisely to the schema S from

Diagram (8).

A set of tables that conforms to a schema is called an instance of that schema. We will

denote the set of tables in (9) by δ (we noted above that δ conforms with, and is thus an

instance of, schema S). Mathematically, δ can be modelled as a functor

δ : S → Set.

To each object s ∈ S , the instance δ assigns a set of row-IDs, and to each arrow f : s→ t

in S , it assigns a function, as specified by the cells in the f-column of s.

2.2. Review of data migration functors

Once we realise that a database schema can be captured simply as a category S and each

instance on S as a set-valued functor δ : S → Set, classical category theory provides some

ready-made tools for migrating data between different schemas. We begin by defining a

schema mapping.

Definition 2.2. Let S and T be schemas (that is, small categories). A schema mapping is a

functor F : S → T .

Thus, a schema mapping assigns to each table in S a table in T , to each column in S

a column in the corresponding table of T , and all of this in such a way that the path

equivalence relation is preserved.

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 13

Definition 2.3. A schema mapping F : S → T induces three functors on instance categories,

which we call the data migration functors associated with F , and which we denote by ΣF ,ΔF

and ΠF , as follows:

S–Set

ΣF

��

ΠF

��T–Set.ΔF
��

The functor

ΔF : T–Set→ S–Set

sends an instance

δ : T → Set

to the instance

δ ◦ F : S → Set.

The functor ΣF is the left adjoint to ΔF , and the functor ΠF is the right adjoint to ΔF .

We call:

— ΔF the pullback along F;

— ΣF the left pushforward along F; and

— ΠF the right pushforward along F .

The functors ΔF ,ΣF and ΠF are well known in the category theory literature, where

the latter two are often referred to as the left Kan extension along F and the right Kan

extension along F (Mac Lane 1988, Chapter X). In databases, the left pushforward ΣF

will generally correspond to unions and quotients, and the right pushforward ΠF will

generally correspond to products and joins. We will explore these ideas a bit further in

Section 5 – see Spivak (2012) for further explanation.

2.3. RDF via the Grothendieck construction

There is a well-known construction that associates with a functor δ : S → Set, a pair

(
∫

(δ), πδ), where
∫

(δ) ∈ Cat is a new category called the category of elements of δ, and

πδ :
∫

(δ)→ S is a functor. The pair (
∫

(δ), πδ) is often called the Grothendieck construction

of δ. The objects and morphisms of
∫

(δ) are given as follows:

Ob(
∫

(δ)) :=
{

(s, x) | s ∈ Ob(S), x ∈ δ(s)
}

Hom∫
(δ)((s, x), (s′, x′)) :=

{
f : s→ s′ | δ(f)(x) = x′

}
.

The functor πδ :
∫

(δ)→ S is straightforward: it sends the object (s, x) to s and sends the

morphism f : (s, x)→ (s′, x′) to f : s→ s′.

We call the pair (
∫

(δ), πδ) the discrete opfibration associated with δ. We will see in

the next section (Definition 3.6) that πδ is indeed a kind of fibration of categories. This

construction, and, in particular, the category
∫

(δ), is also nicely connected with the resource

descriptive framework (Prud’hommeaux and Seaborne 2008), in which data is captured in

RDF triples. Indeed, the arrows
s•

p
−→b• of

∫
(δ) correspond one-for-one with these RDF

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 14

I=

101•

first

��

last

��

manager

��

worksIn



102• 103•
q10
• x02•

secretary

��

name

��

Alan• Hilbert• Production•
Bertrand• Russell• Sales•

David•
Turing
•

Marketing
•

Alice• Arden•
Carl• Smith•

π

��

S=

Employee
•

worksIn ��

manager

��

first

����
��

��
��

��

last

���
��

��
��

��
�

Department
•

secretary
��

name

��
FNString
•

LNString
•

DNString
•

Fig. 2. An example of the Grothendieck construction, or category of elements, of a functor

δ : S → Set. The functor π : I → S sends objects 101,102,103 in I to the object Employee, in S ;

similarly, it sends the arrow labelled worksIn in
∫

(δ) to the arrow labelled worksIn in S , and so

on. Note that there are 16 non-ID cells in the tables in (9), which represents our instance δ, but, to

aid readability, we have only drawn six arrows in I =
∫

(δ) and omitted the other ten – such as the

arrow
102• Last−−−−→Russell• . The point is that the RDF triple store associated with instance δ is nicely

represented using the standard Grothendieck construction. For example, the arrow
101• first−−−−→David•

represents the RDF triple (101 :first David).

triples (subject, predicate, object). In this way, we have shown a ready-made conversion

from relational databases to RDF triple stores through the Grothendieck construction.

The following example should clarify this discussion.

Example 2.4. Recall the database instance δ : S → Set given by the tables in (9), whose

schema S was presented as Diagram (8). Applying the Grothendieck construction to

δ : S → Set, we get a category I :=
∫

(δ) and a functor π := πδ as in Figure 2.

In Section 1, when we discussed database instances in terms of mappings π, each from

a data bundle I to a base space S , we were referring to exactly the discrete opfibration

picture in Figure 2.

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 15

In Section 3.2, we will give a definition of discrete opfibrations in terms of lifting

constraints (Definition 3.6). However, we will first attempt to understand a discrete

opfibration π : I → S by considering its various fibres and their relationships. More

precisely, given an object s ∈ Ob(S), we consider the fibre π−1(s), and given a morphism

f : s→ s′ in S we consider how the fibres π−1(s) and π−1(s′) are related.

If π : I → S were not assumed to be a discrete opfibration, but just a general functor,

all we would know about these various fibres would be that they were categories. But

the first distinctive feature of a discrete opfibration is that the fibre π−1(s) is a discrete

category, that is, a set, for each object s ∈ S: in other words, there are no morphisms

between different objects in a chosen fibre (see Proposition 3.7). The pre-image π−1(f)

of f : s → s′ is a set of morphisms from objects in π−1(s) to objects in π−1(s′). When π

is a discrete opfibration, there exists a unique morphism in π−1(f) emanating from each

object in π−1(s), so the subcategory

π−1(f) ⊆ I

can be cast as a single function

π−1(f) : π−1(s)→ π−1(s′).

To recap, the discrete opfibration πδ :
∫

(δ) → S of a set-valued functor δ : S → Set

contains the same information as δ does, but from a different perspective. We have

π−1
δ (s) ∼= δ(s)

π−1
δ (f) ∼= δ(f)

for any s, s′ ∈ Ob(S) and f : s→ s′.

2.3.1. Basic behaviour of the Grothendieck construction. In this section we present some

simple results for the Grothendieck construction, all of which are well known.

Proposition 2.5. Let δ : S → Set be a functor. Then the Grothendieck construction
∫

(δ)
πδ−→

S of δ can be described as a pullback in the diagram of categories∫
(δ) ��

πδ

��

�
Set∗

π

��
S

δ
�� Set,

where Set∗ is the category of pointed sets and π is the functor that sends a pointed set

(X, x ∈ X) to its underlying set X.

Proof. The statement follows directly from the definitions.

Lemma 2.6. Let S be a category. The functor∫
: S–Set→ Cat/S

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 16

is fully faithful. That is, given two instances, δ, ε : S → Set, there is a natural bijection

HomS–Set(δ, ε)
∼=−→ HomCat/S (

∫
(δ),

∫
(ε)).

Proof. The statement follows directly from the definitions.

Proposition 2.7. Let F : S → T be a functor. Let δ : S → Set and ε : T → Set be instances.

Suppose we have a commutative diagram∫
(δ) ��

πδ

��

∫
(ε)

πε

��
S

F
�� T .

(10)

Then diagram (10) is a pullback, that is,∫
(δ) ∼= S ×T

∫
(ε)

if and only if

δ ∼= ΔFε.

Proof. It is easy to check the statement by comparing the set of objects and the set of

morphisms in
∫

(δ) with the respective sets in S ×T

∫
(ε).

2.3.2. Examples from algebraic topology. In algebraic topology (May 1999), we associate

with every topological space X, a fundamental groupoid Gpd(X). This is a category whose

objects are the points of X and whose set of morphisms between two objects is the set of

(equivalence classes of) continuous paths in X from one point to the other. Two paths in

X are considered equivalent if one can be deformed to the other (without any part of it

leaving X). Composition of morphisms is given by concatenation of paths.

Some of the study of a space X can be reduced to the study of this algebraic object

G = Gpd(X), and the latter is well suited for translation to the language of the current

paper.

Example 2.8. Suppose G is a groupoid. Then a covering of groupoids in the sense of

May (1999, Section 4.3) is precisely the same as a surjective discrete opfibration with

schema G.

Let G = Gpd(S1) denote the fundamental groupoid of the circle with circumference 1.

Explicitly, we have

Ob(G) = {θ ∈ R}/∼,
where θ ∼ θ′ if θ − θ′ ∈ Z. We also have

HomG(θ, θ′) = {x ∈ R | x + θ ∼ θ′}.

Think of G as the category whose objects are positions of a clock hand, and whose

morphisms are arbitrary durations of time (rotating the hands from one clock position

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 17

around to another). Consider the functor T : G→ Set such that

T (θ) = {t ∈ R | t− θ ∈ Z}

and such that for x ∈ HomG(θ, θ′) we put

T (x)(t) = x + t.

So, for a clock position θ, the functor T returns all points in time at which the clock is

in position θ.

Applying the Grothendieck construction to T , we get a covering

π :

∫
(T )→ G,

which corresponds to the universal cover of the circle S1. It may be thought of as a helix

(modelling the time line) mapping down to the circle (modelling the clock).

A much more sophisticated example relating databases to classical questions in algebraic

topology can be found in Morava (2012).

3. Constraints via lifting conditions

In this section we introduce the lifting problem approach to database constraints. Roughly

speaking, we will apply the same model to database queries in the next section, the idea

being that a lifting constraint is a lifting query that is guaranteed to have a result.

3.1. Basic definitions

Definition 3.1. Let S ∈ Cat be a database schema. A (lifting) constraint on S is a pair

(m, n) of functors

W
m−→ R

n−→ S.

A functor π : I → S is said to satisfy the constraint (m, n) if, for all solid arrow commutative

diagrams of the form

W ��

m

��

I

π

��
R

n
��

���
�

�
�

S

(11)

there exists a dotted arrow lift making the diagram commute.

A (lifting) constraint set is a set

ξ := {Wα

mα−→ Rα

nα−→ S | α ∈ A},

for some set A. A functor π : I → S is said to satisfy the constraint set ξ if it satisfies each

constraint (mα, nα) in ξ.

Given a constraint set ξ on S , we say that a constraint W
m−→ R

n−→ S is implied by ξ if

whenever a functor π : I → S satisfies ξ, it also satisfies (m, n).

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 18

Remark 3.2. Although not all constraints on databases are lifting constraints (for example,

declaring a table to be the union of two others is not expressible by a lifting constraint),

lifting constraints are the only type of constraint we will consider in this paper. For

this reason, we will often omit the word ‘lifting’, as suggested by the parentheses in

Definition 3.1.

Example 3.3. Consider the schema

G = E•
s

��

t

��
V•

The category G–Set is precisely the category of (directed) graphs. Given a graph X : G →
Set, we have a function

X(s) : X(E)→ X(V )

assigning to every edge its source vertex. Suppose we want to declare this function to be

surjective, meaning that every vertex in X is the source of some edge. We can do this with

the lifting constraint

V• m−−−→ E• s �� V•
n−−→ E•

s

��

t

��
V•

where m and n respect labelling. A graph δ : G → Set has the desired property, viz. that

every vertex is a source if and only if
∫

(δ) satisfies the lifting constraint (m, n).

Definition 3.4. Let S ∈ Cat be a schema. Given a functor m : W → R, we define a set 〈m〉
of lifting constraints by

〈m〉 =
{
W

m−→ R
n−→ S | n ∈ HomCat(R, S)

}
.

(Note that there is a bijection 〈m〉 ∼= HomCat(R, S), but the form of the set 〈m〉 allows us

to apply Definition 3.1.) Given a set of functors

M = {mj : Wj → Rj | j ∈ J},

the union

〈M〉 :=
⋃
j∈J
〈mj〉

is a constraint set, which we call the universal constraint set generated by M. A functor

π : I → S satisfying the constraint set 〈M〉 is called an M-fibration. We say that elements

of M are generating constraints for M-fibrations.

Remark 3.5. Universal constraint sets seem to be more important in traditional mathem-

atical contexts than in ‘informational’ or database contexts. For example, in the world of

simplicial sets, the Kan fibrations are M-fibrations for some universal constraint set 〈M〉,
which is called the set of generating acyclic cofibrations (Hirschhorn 2003).

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 19

W1 =
a• W2 =

b1•

a•

f1

�������������

f2 

�����������

b2•

ρ1 : W1 → R1

ρ1(a) = a

��

ρ2 : W2 → R2

ρ2(a) = a,

ρ2(b1) = ρ2(b2) = b,

ρ2(f1) = ρ2(f2) = f

��

R1 = a• f �� b• R2 = a• f �� b•

Fig. 3. The generating constraints ρ1 and ρ2 for discrete opfibrations

3.2. Discrete opfibrations via lifting constraints

In this section we will express the notion of a discrete opfibration in terms of lifting

constraints. In other words, we will exhibit a finite set of functors

{mα : Wα → Rα}α∈A

that serve to ‘check’ whether an arbitrary functor π : I → S is a discrete opfibration.

In fact, Definition 3.6 will define π to be a discrete opfibration if and only if it is a

{ρ1, ρ2}-fibration, where ρ1 : W1 → R1 and ρ2 : W2 → R2 are the functors shown in

Figure 3.

Definition 3.6. Let I and S be categories and π : I → S be a functor. Then I is a discrete

opfibration if it satisfies the lifting constraints ρ1 and ρ2 in Figure 3. That is, for any pair

of horizontal maps W1 → I and R1 → S (respectively, for any pair of horizontal maps

W2 → I and R2 → S),

W1
∀ ��

ρ1

��

I

π

��
R1 ∀

��

∃

��






S

W2
∀ ��

ρ2

��

I

π

��
R2

∀ ��

∃

��






S

there exists a dotted arrow functor, as shown, such that the full diagram commutes.

Let π : I → S be a {ρ1, ρ2}-fibration. Then, for any functor R1 = R2 → S , that is, for

any arrow f : s→ s′ in S , we have two lifting conditions. A good way to understand the

conditions of Definition 3.6 is that for any object x ∈ π−1(s) in the fibre over s,

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 20

(1) there exists at least one arrow in I , emanating from x, whose image under π is f; and

(2) there exists at most one arrow in I , emanating from x, whose image under π is f.

In the remainder of this section we will give some consequences of Definition 3.6.

Proposition 3.7. Let π : I → S be a discrete opfibration. Then for each object s ∈ Ob(S)

the fibre π−1(s) is a discrete category.

Proof. Let s ∈ Ob(S) be an object and g : x→ y be a morphism in the fibre π−1(s) ⊆ I .

We will show that x = y and that g = idx is the identity morphism. Consider the map

ρ2 : W2 → R2 in Figure 3. Let n : R2 → S be the functor sending f to ids. Let p : W2 → I

send f1 to idx and send f2 to g. We now have a lifting diagram as in Definition 3.6, so a

lift is guaranteed. This lift equates idx and g.

Proposition 3.8. If π : I → S is a discrete opfibration, then π is faithful. In other words,

for any two objects i, j ∈ Ob(I), the function

π : HomI (i, j)→ HomS (π(i), π(j))

is injective.

Proof. To prove that π is faithful, we only need to find a solution for each lifting

diagram of the form

W := i• 


��
j• �� I

m

��
π

��

R := i• �� j• �� S

We can extend this diagram on the left with either surjective map from the relational

constraint functor ρ2 (see Figure 3) to m, as indicated in the diagram

W2
��

ρ2

��

W ��

m

��

I

π

��
R2

��

� � � � �
�

�

R �� S

The result then follows by noting that the left-hand square is a pushout.

Let S be a category. We define a functor

∂ : Cat/S → S–Set

as follows. For any F : X → S , we write

1X : X → Set

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 21

to denote the terminal object of X–Set (see Notation 1.5), and note that∫ (
1X

) ∼= X

in Cat/X . We define ∂ (F) : S → Set by

∂ (F) := ΣF

(
1X

)
.

We have the following proposition, which is well known.

Proposition 3.9.

(i) The functor ∂ is left adjoint to
∫

:

Cat/S
∂ ��S–Set.∫��

(ii) For any γ : S → Set, the counit map is an isomorphism:

∂ ◦
∫

(γ)
∼=−→ γ.

(iii) An object X
F−→ S in Cat/S is a discrete opfibration if and only if

F ∼=
∫

∂ (F)

in Cat/S .

Proof. Let F : X → S be an object of Cat/S and let γ : S → Set be an object of S–Set.

By Proposition 2.7, we have the pullback diagram∫
(ΔFγ) ��

��

�

∫
(γ)

��
X

F
�� S

which implies the first isomorphism in the chain

HomCat/S

(
F,

∫
(γ)

) ∼= HomCat/X

(
idX,

∫
(ΔFγ)

)
∼= HomX–Set

(
1X,ΔFγ

)
∼= HomS–Set

(
ΣF

(
1X

)
, γ
)

= HomS–Set(∂ F, γ)

where the second isomorphism follows from Lemma 2.6 and the third is adjointness. This

completes the proof of Statement (i).

Statement (ii) follows from the same lemma.

By construction, π :
∫

(δ)→ S is a discrete opfibration for any δ : S → Set, so if X
F−→ S

is not a discrete opfibration, then X �∼=
∫
∂ (F). Thus, it remains to show that if F is a

discrete opfibration, then X ∼=
∫
∂ (F). To see this, note that for each s ∈ Ob(S), the set

F−1(s) is final in (F ↓ s), so

∂ (F)(s) = ΣF

(
1X

)
(s) = colim

(F↓s)
1X ∼= F−1(s).

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 22

This shows that the object structure in F is the same as that in
∫
∂ (F). Similar analyses

can be carried out for arrows and path equivalences.

3.3. Examples

In this section we will show how to use lifting constraints (see Definition 3.1) to declare

a number of different properties for tables and foreign keys in a database. Our examples

will describe each of the following in turn:

— declaring a table to be non-empty;

— declaring a table to have exactly one row;

— declaring a foreign key to be injective;

— declaring a foreign key to be surjective;

— declaring a binary relation to be reflexive, symmetric and/or transitive;

— declaring a table to be a product (or more generally a limit) of other tables; and

— declaring that there are no non-trivial cycles in the data on a self-referencing table.

Example 3.10 (non-empty). Let S be a schema and T ∈ Ob(S) be a table, which we want

to declare to be non-empty. We use the constraint drawn as follows

m1−−−−−−−−−→ A•
n−−−−−−−−→ S

where n(A) = T . In other words, we set W1 = � to be the empty category, and we set

R = {A} to be the discrete category with one object A. To say that the lifting problem

W1
��

m1

��

I

π

��
R

���
�

�
�

n
�� S

has a solution is to say that there exists an object in the instance category I whose image

under π is T . In other words, there exists a row in table T . Here, the commutativity of

the upper-left triangle does nothing, and the commutativity of the lower-right triangle

does all the work.

Example 3.11 (cardinality=1). Let S be a schema and T ∈ Ob(S) be a table, which we

want to declare to have exactly one row. We know a constraint guaranteeing the existence

of a row in T from Example 3.10. In Section 3.4, we will give a general method for

transforming existence constraints into uniqueness constraints, but here we will just give

the result of that method.

To declare T to have at most one row, we use the constraint drawn as follows:

a1•

a2•

m2−−−−−−−−−→ A•
n−−−−−−−−→ S

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 23

where

m2(a1) = m2(a2) = A

and

n(A) = T .

In other words, we set W2 = {a1, a2} to be a discrete category with two objects, and we

set R = {A} to be a discrete category with one object. The lifting problem

W2
��

m2

��

I

π

��
R

���
�

�
�

n
�� S

has a solution if and only if both triangles commute. We already know that the image

of a and b in I consists of two rows in table T because the square commutes. The

commutativity of the upper-left triangle implies that a and b are the same, as desired.

The commutativity of the lower-right triangle is implied by the surjectivity of m2 and the

commutativity of the square.

The set {(m1, n), (m2, n)} is a constraint set on S that is satisfied by a discrete opfibration

π if and only if the set I(T ) of rows in T has exactly one element.

We will treat the remaining examples more briefly. The following constraint was used

in Example 3.3.

Example 3.12 (surjective foreign key). The declaration stating that a foreign key f : T →
T ′ is surjective is achieved by the constraint

b•
m−−−−−−−−→ A• F �� B•

n−−−−−−−−→ S

where

m(b) = B

n(A) = T

n(B) = T ′

n(F) = f.

Example 3.13 (injective foreign key). The declaration stating that a foreign key f : T → T ′

is injective is achieved by the constraint

a1•

  �������

b•

a2•

!!�������

m−−−−−−−−→ A• F �� B•
n−−−−−−−−→ S

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 24

where

m(a1) = m(a2) = A

m(b) = B

n(F) = f.

Example 3.14 (reflexive, symmetric and/or transitive binary relation). In this example, we

will only describe the constraints that ensure a binary relation R ⊆ A × A is transitive

and leave the symmetric and reflexive cases as exercises.

The declaration that a relation

R
f ��
g

�� A ⊆ S

is transitive is achieved by the constraint

r1•
f1

""��
��

�
g1

##�
��

��
r2•

f2

""��
��

�
g2

##�
��

��

a1• a2• a3•

m−−−−−−−→

R1•
F1

$$��
��

�
G1

%%�
��

��
R2•

F2

$$��
��

�
G2

%%�
��

��

A1• A2• A3•

R3•
F3

&&��������� G3

�����������

n−−−−−−−→ S

where the functors m and n should be clear by our labelling: for example,

n(R1) = n(R2) = n(R3) = R.

The next example describes lifting constraints for products. However, this is part of

a much larger story, and in Section 3.5 we will show that any limit constraint can be

modelled by lifting constraints.

Example 3.15 (product). Suppose we have a table T and two of its columns are

f : T → U

g : T → V .

The declaration that (the set of rows in) table T is the product of (the sets of rows in)

tables U and V is achieved by two constraints: an existence constraint and a uniqueness

constraint. The existence constraint is

b• c•

m1−−−−−−−−−→

A•

G

##�
��

��
�

F

""��
��

��

B• C•

n−−−−−−−−→ S

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 25

where

m1(b) = B

m1(c) = C,

and

n(F) = f

n(G) = g.

The uniqueness constraint is

a1•

G1

''�
��

��
��

��

F1

((  
  
  
  
 

a2•

G2
))!

!!
!!

F2
**""

""
"

b• c•

m2−−−−−−−−−→

A•

G

##�
��

��
��

F

""��
��

��
�

B• C•

n−−−−−−−−→ S

where

m2(F1) = m2(F2) = F

m2(G1) = m2(G2) = G,

and

n(F) = f

n(G) = g.

Thus, the constraint set for (T , f, g) to be a product is {(m1, n), (m2, n)}.

Example 3.16 (forests). Let S be the free category generated by the graph with one object

and one arrow:

S :=

ν•

p

�� (12)

This is just a self-referencing table. In mathematics, an instance δ : S → Set of such a

self-referencing table is called a discrete dynamical system or DDS. The set δ(ν) will be
called the set of nodes of δ, and given a node x ∈ δ(ν), the node δ(p)(x) is called the parent

of x. The following picture shows such an instance δ and its Grothendieck construction

I =
∫

(δ):

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 26

δ :=

ν

ID p

a f
b c
c d
d g
e f
f i
g c
h f
i i
j i

I :=

a•

��######
b• �� c• �� d•

��
e• �� f•

��######
g•

++######

h•

��$$$$$$ i•
��

j•

��$$$$$$

(13)

Note that a DDS looks like a forest (collection of trees) except that it may have cycles.

These cycles can only occur at the root of a tree, and, indeed, each tree in the forest

has a root cycle. In (13), the tree containing a has a root cycle of length 1, and the tree

containing b has a root cycle of length 3. Forests are a useful notion in computer science:

we will consider a DDS to be a forest if and only if each root cycle has length 1. This can

be achieved by the following lifting constraint.

Let R = S be the schema in (13), and let n = id: R → S . Let W be the free category

on the graph below, and let m : W → R denote the functor sending p1 and p2 to p:

W:=

ν1•

p1

 ν2•
p2

,,
m−−−−−−−−−−−→

R:=

ν•

p

�� n−−−−−−−−−−→

S:=

ν•

p

��

3.4. Encoding uniqueness constraints

Suppose we are given a constraint W
m−→ R

n−→ S . According to Definition 3.1, a functor

π : I → S satisfies (m, n) if for every solid arrow diagram

W ��

m

��

I

π

��
R

n
��

���
�

�
�

S

(14)

there exists a dotted arrow lift making it commute. Thus, it may appear that all lifting

constraints are existence declarations. However, by employing a technique found in

Makkai (1997), we can always turn such an existence declaration into a uniqueness

declaration using a related lifting diagram. In fact, we have already done this a couple

times – see Examples 3.11 and 3.15. The uniqueness constraint corresponding to (m, n) is

R �W R
(idR � idR ) �� R

n �� S. (15)

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 27

In other words, π satisfies constraint (15) if and only if there exists at most one dotted

arrow lift making diagram (14) commute.

3.5. Lifting constraints are more expressive than limit sketches

In this section we show that lifting constraints are more expressive than limit sketches

when it comes to set models. We define limit sketches in Definition 3.17, prove that lifting

constraints are at least as expressive as limit sketches in Proposition 3.18, and then prove

that lifting constraints are strictly more expressive than limit sketches in Proposition 3.19.

For any category C, we let C� denote the category obtained by adjoining an initial

object to C.

Definition 3.17. A limit sketch consists of a category S and a set D of commutative

diagrams in Cat of the form

Jd
Xd ��

id

��

S

(Jd)
�

Ld

--%%%%%%%%

one for each d ∈ D. We call each Xd a specified limit pre-cone in S and each Ld a specified

limit cone in S . We call S the underlying category of the sketch (S, D).

If (S, D) is a limit sketch, then an (S, D)-model is a functor δ : S → Set such that for

each d ∈ D, the map id induces an isomorphism

lim
(Jd)�

(δ ◦ Ld) ∼= lim
Jd

(δ ◦Xd). (16)

Proposition 3.18. If (S, D) is a limit sketch, we can construct a set of lifting constraints ξ

such that the functor
∫

: S–Set → Cat/S induces a bijection between the set of functors

δ : S → Set modelling (S, D) and the set of instances π : I → S satisfying ξ.

Proof. It suffices to show that for each diagram d = (J,X, L) as shown below

Jd
Xd ��

id

��

S

(Jd)
�

Ld

--%%%%%%%%

(17)

there exists a set Kd of lifting constraints {(mk, nk)}k∈Kd
with the property that δ : S → Set

satisfies (16) if and only if
∫

(δ)→ S satisfies the constraints in Kd.

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 28

The limit limJ δ ◦Xd is in bijection with the set of dotted lifts

sd : Jd →
∫

(δ)

(such that π ◦ sd = Xd) in ∫
(δ)

π

��
Jd

--%
%

%
% Xd ��

id

��

S
δ �� Set

J�
d

Ld

--&&&&&&&&&

and, similarly, the limit lim(Jd)� δ ◦ Ld is in bijection with the set of lifts

(Jd)
� →

∫
(δ).

Thus, to say that δ models d is to say that for every commutative diagram of the form

Jd
sd ��

id

��

∫
(δ)

π

��
(Jd)

�

Ld

��

��$
$

$
$

S

there exists a unique dotted lift. We thus take Kd to be the set

{(id, Ld), (i
′
d, Ld)},

where

i′d : (Jd)
� �Jd (Jd)

� → (Jd)
�.

In other words (id, Ld) encodes the existence of the dotted lift and (i′d, Ld) encodes its

uniqueness, as in Section 3.4.

Proposition 3.19. There exists a schema S and a set of lifting constraints ξ on it whose

satisfaction is not modelled by any limit sketch with underlying category S .

Proof. Let S = 1 be the terminal category, so a functor δ : S → Set can be considered

as just a set δ ∈ Ob(Set) and we have I :=
∫
(δ) ∼= δ. Consider the unique lifting constraint

of the form

2
m−→ 1

n−→ S.

Up to isomorphism, there exist precisely two instances δ satisfying ξ = {(m, n)}, namely,

δ ∼= 0 and δ ∼= 1. We will show that there is no limit sketch with underlying category S

having only two models up to isomorphism.

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 29

For a limit sketch on S , each (J,X, L) either J = � or J
X−→ S is an epimorphism. In

the first case,

lim
(Jd)�

(δ ◦ Ld) ∼= 1

lim
Jd

(δ ◦Xd) ∼= δ,

so a model of (J,X, L) must have δ ∼= 1. In the second case

lim
(Jd)�

(δ ◦ Ld) ∼= δ ∼= lim
Jd

(δ ◦Xd),

so every set δ models this constraint. Thus, there is no set D such that the set of sketch

models of (S, D) has precisely two elements up to isomorphism.

3.6. Constraint implications

Propositions 3.21 and 3.22 in this section are constraint implication results. That is, they

show that instances satisfying one lifting constraint automatically satisfy another. These

two constraint implications are not meant to be exhaustive, but just to give the idea.

Definition 3.20. Suppose we have a diagram of the form

W
s1 ��

m

��

W ′ p1 ��

m′

��

W

m

��
R

s2
�� R′

p2

�� R

such that the top and bottom compositions are identity:

p1 ◦ s1 = idW

p2 ◦ s2 = idR.

In this case we say that m is a retract of m′.

Proposition 3.21. Suppose (m, n) is a constraint for a schema S and that m is a retract of

some m′, part of which is shown to the left in the diagram

W ′ p1 ��

m′

��

W

m

��
R′

p2

�� R
n

�� S

Then any discrete opfibration π : I → S satisfying (m′, n ◦ p2) also satisfies (m, n).

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 30

Proof. The proof is straightforward, but we include it for pedagogical reasons. Suppose

we are given a lifting problem

W
p ��

m

��

I

π

��
R

�

���
�

�
�

n
�� S

(18)

We assume by hypothesis that the dotted arrow lift f exists making the solid arrow

diagram

W
s1 ��

m
��

W ′ p1 ��

m′��

W

m
��

p �� I

π

��
R

s2
�� R′

f

����������
p2

�� R
n

�� S

commute. We then just need to check that

� = f ◦ s2 : R → I

is a lift as in (18), which it is.

Proposition 3.22. Suppose the square to the left in the diagram

W ′ ��

m′

��

W

m

��
R′

q
�� R

�

n
�� S

is a pushout (as indicated by the corner symbol �). If π : I → S satisfies the constraint

(m′, n ◦ q), then it satisfies (m, n).

Proof. The statement is obviously true.

4. Queries as lifting problems

In this section, we will show a correspondence between queries and lifting problems,

under which the set of results for a query corresponds to the set of solutions (that is,

lifts) for the associated lifting problem. The main example we will use was discussed in

Example 1.1. There we were interested in learning more about a married couple, given

certain information about them. After building up the necessary theory in Sections 4.1

and 4.3, we will apply it to the case of the married couple in Example 4.10.

In the Introduction, more specifically in (1), we alluded to a dictionary between certain

SQL statements and lifting problems. In this section we will extend this a bit to include

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 31

more specificity in the SELECT clause. Specifically, we have the correspondence

W
p ��

m

��

I

π

��
X

q
�� R

�

���
�

�
�

n
�� S

SELECT X
q
−→ R

FROM R
n−→ S

WHERE R
m←−W

p
−→ I

(19)

The map q can be composed with any lift � : R → I to restrict our attention (that is,

project) to a certain segment of the result. We will explain these ideas in Example 4.8.

However, before getting to this general kind of query, we will discuss queries that do not

include the WHERE-clause, that is, the collection W → I of knowns.

4.1. WHERE-less queries

In this section we study queries as in Diagram (19) in which the where-clause W is empty,

W = �. Such queries are often called views. In this case the two maps

R
m←−W

p
−→ I

contain no information, so Diagram (19) reduces to

I

π

��
X

q
�� R

�

..'
'

'
'

n
�� S

SELECT X
q
−→ R

FROM R
n−→ S

We call these WHERE-less queries.

Definition 4.1. Let S be a schema. A probe on S is a functor n : R → S , where the category

R is called the result schema for the probe. Given a discrete opfibration π : I → S , the

probe n is said to set up the lifting problem

I

π

��
R

n
��

..'
'

'
'

S

In the presence of a discrete opfibration π, we may refer to the probe n as a where-less

query. We define the set of solutions to the query, denoted Γ(n, π) as

Γ(n, π) := {� : R → I | π ◦ � = n}.

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 32

Example 4.2. Consider the discrete opfibration π : I → S given by

I =

Ann•

Bob•

x137•

//((((((((((((((((((

����������������������
Deb•

x139•

//((((((((((((((((((

00)))))))))))))))))

x144•

11((((((((((((((((((

00)))))))))))))))))

Smith•

Jones•

π

��

S =

FNames•

Person•

First
22*************

Last ��+++++++++++++

LNames•

To find two people with the same last name, we find lifts of the where-less query

R :=

P1•
L1

33,,,,,,,

LN•

P2•
L2

44-------

n−−−−−−−−→

FNames•

Person•

First
22*************

Last ��+++++++++++++

LNames•

= S

where

n(L1) = n(L2) =
(
Person• Last−−→LNames•

)
.

There are two people (Ann Smith, Bob Smith) with the same last name, so we may hope

to get as our result set

{(x137, Smith, x139)}.

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 33

We compute the result set for our query as follows. We are looking for functors

� : R → I that make the diagram

I

π

��
R

n
��

�

..'''''''
S

(20)

commute. Since L1 and L2 in R are sent to Last in S , we need to choose two ‘downward

sloping’ arrows in I with the same target. Doing so, we indeed find all pairs of persons in

I that have the same last name. Unfortunately, this query would return five results, which

we can abbreviate as

(x137, Smith, x139), (x139, Smith, x137), (21)

(x137, Smith, x137), (x139, Smith, x139), (x144, Jones, x144).

The first two are what we are looking for, but they are redundant; the last three are

degenerate (for example, Deb Jones has the same last name as Deb Jones). We will deal

with these issues in Example 4.5, after we have discussed morphisms of queries.

Definition 4.3. Let S be a schema. Given two probes

n1 : R1 → S

n2 : R2 → S,

we define a strict morphism from n1 to n2, denoted f : n1 → n2, to be a functor f : R1 → R2

such that

n2 ◦ f = n1.

Let P̃rb(S) = Cat/S denote the category whose objects are probes and whose morphisms

are strict morphisms. In the presence of a discrete opfibration π : I → S , we may refer to

f as a strict morphism of where-less queries (as in Definition 4.1).

Given a strict morphism f : n1 → n2, we obtain a function

Γ(f, π) : Γ(n2, π)→ Γ(n1, π),

because any lift �2 in the diagram

I

π

��
R1

f ��

n1

//R2
n2 ��

�2

��
S,

(22)

that is, with n2 = π ◦ �2, induces a lift

�1 := �2 ◦ f : R1 → I

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 34

with n1 = π ◦ �1. We have thus produced a functor

Γ(−, π) : P̃rb(S)op → Set,

which is just the representable functor at π,

Γ(−, π) = Hom
P̃rb(S )

(−, π).

Remark 4.4. We use the term strict morphism for the probes in Definition 4.3 because

we will define a more lax version of morphism in Definition 5.2. While in the above we

consider commutative triangles of categories (for example, n2 ◦ f = n1 in (22)) and call

the resulting category P̃rb(S), the lax version will allow for natural transformations (for

example, n2 ◦ f ⇒ n1) and will be denoted by Prb(S). The functor

Γ(−, π) : P̃rb(S)→ Set

defined in Definition 4.3 can be extended to a functor (which we give the same name),

Γ(−, π) : Prb(S)→ Set.

This will all be discussed fully in Section 5.1.

Example 4.5. We again consider the situation from Example 4.2, where we were using the

query n : R → S to look for pairs of people who had the same last name. The solution

set in (21) had two problems:

— we got degenerate answers because each person has the same last name as him/herself;

and

— we got order redundancy because, given two people with the same last name, we can

reverse the order and get another such pair.

In order to deal with the first issue, consider the strict morphism f of queries

R =

P1•
L1

33,,,,,,,

LN•

P2•
L2

44-------

f ��

R2 :=

P• L �� LN•
n2 ��

S =

FNames•
Person•

First
22����������

Last ��..........

LNames•

where

f(L1) = f(L2) = L,

and note that we do indeed have

n = n2 ◦ f.
By Definition 4.3, this induces a function between the solution sets: that is, we get a

function

Γ(f, π) : Γ(n2, π)→ Γ(n, π).

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 35

In our example (21), the image of this function is precisely the set of duplicates. In other

words, if we delete the elements in the image of Γ(f, π), we get

Γ(n, π)− Γ(n2, π) = {(x137, Smith, x139), (x139, Smith, x137)}.

In order to deal with the remaining order-redundancy issue, consider the swap map

s : R → R given by

s(L1) = L2

s(L2) = L1.

Note that n ◦ s = n. Thus we have a strict morphism of probes s : n→ n, which induces a

function

Γ(s, π) : Γ(n, π)→ Γ(n, π).

By taking the orbits of this function, we effectively quotient out by order-swapping. In

fact, our swap map acts not just on (R, n) but on (R2, n2) as well, so we can combine this

method with the one above to obtain the desired answer, the one element set consisting

of (x137, Smith, x139), in unspecified order.

Proposition 4.6. Let δ : S → Set be an instance and πδ : I → S be the induced discrete

opfibration. Given any probe n : R → S , there is an isomorphism

Γ(n, πδ)
∼=−→ limR(δ ◦ n).

Proof. Consider the diagram

I ��

πδ

��

�
Set∗

π

��
R

n
�� S

δ
�� Set

where the right-hand square is a pullback, as shown in Proposition 2.5. We have a bijection

HomCat/S (n, πδ)
∼= HomCat/Set

(δ ◦ n, π).

The left-hand side is Γ(n, πδ) and the right-hand side is a standard formula for the limit

of a set-valued functor, in this case for limR(δ ◦ n).

4.2. Binding variables

In Section 3.1 we defined lifting constraints on a schema S to be a pair of composable

functors W
m−→ R

n−→ S . The idea is to think of R as a set of equations (or a join graph)

and of W as a set of variables to be bound at run-time. Our lifting approach for queries

will assume that the variables (in W ) have already been bound to something in the active

domain of π. As mentioned in the introduction, it is not standard to allow queries to

depend on instances. In this short section we will explain how to use where-less queries

to determine the active domains. In this way, we will explain how instance-independent

queries can be posed using the same lifting-problems approach.

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 36

The idea is reminiscent of what is known in modern database practice as a cursor. Once

the active domains for the variables in W are found, one can either run the cursor (that

is, the query) parameterised over all values in these active domains, or prompt the user to

choose bindings for these variables.

We will assume for this section that W is a discrete category, which is the most common

case in practice, but all the ideas we will discuss generalise to the non-discrete case.

Suppose we are given a cursor W
m−→ R

n−→ S . To determine the active domains of each

variable in W , we simply apply the where-less query given by the diagram

I

π

��
W

���
�

�
�

n◦m
�� S

The set of lifts Γ(n ◦ m, π) is the set of possible variable bindings. Once a lift p : W → I

has been chosen, we have a commutative square

W
p ��

m

��

I

π

��
R

�

���
�

�
�

n
�� S

and, as we will see in Section 4.3, the dotted arrow lifts � will correspond to the results of

the now fully defined query.

There is one more case we should discuss. Suppose we want to pose a query where it

is not known in advance whether the chosen constants will or will not be available in the

active domain – if they are not, the query must certainly return an empty set of results,

and this is the intended behaviour. In fact, this is the type of situation that is most often

called a query in the database literature. In the remainder of this section, we will explain

how this is handled by lifting queries.

Let Dom denote the set of all possible domain values, Dom denote the indiscrete category

on Dom and d : Dom× S → S denote the projection†. Recall that for any category C, the

set of functions Ob(C)→ Dom is in natural bijection with the set of functors I → Dom.

We are given the shape of the query W
m−→ R

n−→ S , and we are also given, for each

w ∈W , a value t(w) ∈ Dom. In other words, our query is represented by the commutative

square

W
(t,n◦m) ��

m

��

Dom× S

d

��
R

n
�� S

† If we want each table s ∈ Ob(S) to have its own data type, we just replace d with the appropriate category

over S .

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 37

We are also given a map v : I → Dom that sends each datum i ∈ Ob(I) to its value in

Dom:

I

(v,π)
��

W ��

m

��

Dom× S

d

��
n

�� S

As above, we perform the query in two steps. First we find all lifts p : W → I such that

(v, π) ◦ p = (t, n ◦ m).

If this set is empty, the query will return an empty result set. However, if there do exist

lifts p, then, by choosing one, we bind our W -variables to their values found in the active

domain. Finally, for each of them, we find all lifts R → I making the diagram

I

(v,π)
��

W

p

44-
-

-
-

-
-

��

m

��

Dom× S

d

��
R

55/
/

/
/

/
/

/
/

n
�� S

commute. The set of all ways of doing this is the set of results for our query.

4.3. General lifting queries

In this section we tackle the more general lifting query. These closely resemble graph

pattern queries, as used in SPARQL (Prud’hommeaux and Seaborne 2008). We will show

how to perform queries like (and including) the one suggested in Example 1.1, where we

hoped to find the last names of our new acquaintances Bob and Sue. We begin with the

definition.

Definition 4.7. Let S be a schema and π : I → S be a discrete opfibration. A query on π

is a commutative diagram of the form made up of the solid arrows in the diagram

W
p ��

m

��

I

π

��
R

�

���
�

�
�

n
�� S

(23)

The categories W and R are called the where-category and the result schema, respectively.

We define the set of solutions to the query, denoted Γm,p(n, π), to be the set of lifts �

making the diagram commute. Precisely,

Γm,p(n, π) := {� : R → I | π ◦ � = n and � ◦ m = p}.

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 38

Example 4.8. We have now developed enough of the theory required to make sense of

the following dictionary:

W
p ��

m

��

I

π

��
X

q
�� R

�

���
�

�
�

n
�� S

SELECT X
q
−→ R

FROM R
n−→ S

WHERE R
m←−W

p
−→ I

Each lift � in the commutative square is a solution to the SELECT ∗ statement, and

composing � with q projects to schema X.

The following proposition says that for any query on a dataset δ, there is a canonical

embedding of the query result back into δ.

Proposition 4.9. Let δ : S → Set be an instance on a schema and π : I → S be the

associated discrete opfibration. Suppose we are given a query (lifting problem)

W
p ��

m

��

I

π

��
R

n
��

���
�

�
�

S

with solution set Γm,p(n, π) ∈ Set. Considering this set as a constant functor Γ: R → Set

(given by Γ(r) = Γm,p(n, π) for all r ∈ Ob(R)), there is an induced map of R-sets,

Res: Γ→ Δnδ.

Proof. Let

Γ(n, π) = {� : R → I | π ◦ � = n}
denote the set of solutions to the where-less query n : R → S . Clearly, we have an inclusion

Γm,p(n, π) ↪→ Γ(n, π).

By Proposition 4.6, there is an isomorphism

Γ(n, π) ∼= lim
R

(δ ◦ n).

Let t : R → 1 denote the terminal functor. It follows from the definitions that for any

functor G : R → Set, there is an isomorphism of [0]-Sets,

lim
R

(G) ∼= Πt(G),

so, in particular, we have an inclusion

Γm,p(n, π)→ Πt(δ ◦ n).

By the (Δt,Πt)-adjunction, there is an induced map

Δt(Γ
m,p(n, π))→ (δ ◦ n)

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 39

of R-sets. But since

Δt(Γ
m,p(n, π)) = Γ

δ ◦ n = Δnδ,

the result follows.

Example 4.10 (Bob and Sue, revisited). The motivating example for this paper was

presented in Section 1.1. In particular, we provided a SPARQL query to find all instances

of married couples with the requisite characteristics (for example, the husband’s and wife’s

first names being Bob and Sue, respectively). We showed that this SPARQL query could

be straightforwardly transformed into a lifting problem of the form

W
p ��

m

��

I

π

��
X

q
�� R

n
��

�

���
�

�
�

S

as in (5), and we specified the two functors W
m−→ R

n−→ S . We did not specify the discrete

opfibration I
π−→ S or the inclusion of the known data p : W → I because writing out a

convincing possibility for I would have used too much space.

The lifting diagram (5) was presumed to have only one solution, because it was presumed

that we knew enough about Bob and Sue that no one else would fit the description. In

the language of Definition 4.7, the set Γm,p(n, q) has one element. By Proposition 4.9, this

element can be written as a database state on R. We output the result as a two-level table

with one row in (6), which we repeat here:

Marriage

ID
Husband Wife

ID First Last City ID First Last City

G3801 M881-36 Bob Graf Cambridge W913-55 Sue Graf Cambridge

In fact, this was a state on a schema X
q
−→ R, where X is the schema

X :=

G

Marriage

66000000000000

77������������

P1

Husband

��   111111

88������

P2

Wife

����&&&&&
2

2222

F1

First

L1

Last

C1

City

C2

City

L2

Last

F2

First

(24)

While we have not discussed two-level tables before, we hope the idea is straightforward

enough not to require any further explanation.

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 40

4.4. SPARQL queries involving predicate variables

In Example 1.1, our SPARQL query (3) only has variables in subject and object positions

(the nodes of the schema). It seems that most SPARQL queries used in practice also only

have variables in the subject and object positions (see, for example, Deus et al. (2010)).

However, general SPARQL queries can involve variables in any position, including

predicate positions, which correspond to the arrows of the schema. For example, we

may use

(John ?x Mary) (25)

to find all known relationships between John and Mary. To deal with this type of query,

we may proceed as follows.

If S = (V , E, s, t) is a graph (which can be thought of as a schema with trivial path

equivalences, which is in keeping with RDF schemas), then S itself can be viewed as a

database instance S : G → Set on the schema

G = Verb•

subj





obj

��
Noun•

similar to Example 3.3. We will be working with the Grothendieck construction∫
(S)→ G.

The category
∫

(S) will be generated by a bipartite graph. The set of vertices in
∫

(S) is the

union Noun � Verb, which we can call noun vertices and verb vertices. There is a unique

edge in
∫

(S) from every verb vertex to its subject noun vertex and another to its object

noun vertex.

Example 4.11. Let X = (V , E, s, t) be the graph

X :=

John• livesIn ��

sonOf

��

Iowa•

Mary
•

If X is conceived as an instance X : G → Set, then
∫

(X) is the category

�
(X) :=

John• livesIn•subj�� obj �� Iowa•

sonOf•

subj

��

obj

��
Mary
•

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 41

An instance π : I → S can be considered simply as a map of graphs, that is, a map of

instances on G. Taking its Grothendieck construction yields a functor∫
(I)→

∫
(S),

whereby each arrow from S (representing a foreign key column) and each arrow from

I (representing a cell in a foreign key column) have become a vertex in
∫

(S) and
∫

(I),

respectively, as in Example 4.11. We can perform the original SPARQL query (25) to this

derived form of the database because our original predicate can now be accessed as a

subject or an object. For example, our statement (John ?x Mary) would become the pair

of statements (?x subj John) and (?x obj Mary).

5. The category of queries on a database

In this section we will discuss some formal properties of the machinery developed in

earlier sections. For example, we will show that the queries on a given database can be

arranged into a database of their own, which can be queried subsequently. This process

is commonly known as nesting queries. To this end, we define a category of queries and

prove that the process of finding solutions is functorial. We will do this in Sections 5.1

and 5.2. In Section 5.3, we extend some results from Section 3.6, giving more details of

the interaction between data migration functors, on the one hand, and query containment

and constraint implication on the other.

This section is technical, but it may have fruitful applications. Given any database π,

the category Qry(π) organises the queries (or views) on π into a schema of their own.

There is a canonical instance on Qry(π) populating each table (corresponding to a query)

with its set of results. In typical applications, users of a database π are often better served

by interacting with Qry(π) rather than with π. It is important to understand how schema

evolution affects different parts of Qry(π), and we will discuss this briefly in Section 5.3.

5.1. New discrete opfibrations from old

The following theorem is not new, but its formulation in terms of databases is. Further-

more, the proof may be instructive.

Theorem 5.1. Let π : I → S be a discrete opfibration and B be a category. Then the

induced functor πB : IB → SB is a discrete opfibration. If

δB = ∂ (πB) : SB → Set

is the associated instance, then for any F : B → S in Ob(SB), there is a bijection

δB(F) ∼= Γ(F, π).

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 42

Proof. We begin our proof of the first claim by drawing a figure for reference:

I

π

��
B

�1

..''''''''''''''''
F1

��

F2

11⇓α S

(26)

To see that πB is a discrete opfibration, suppose F1, F2 : B → S are functors and α : F1 → F2

is a natural transformation. Given a functor �1 : B → I with π ◦ �1 = F1, we must show

that there exists a unique functor �2 : B → I and natural transformation β : �1 → �2 such

that

π ◦ �2 = F2

π ◦ β = α.

For any object b ∈ Ob(B), the map

αb : F1(b)→ F2(b)

in S together with the object �1(b) ∈ I , such that

π(�1(b)) = F1(b),

induces a unique arrow βb : �1(b) → ib in I for some ib ∈ Ob(I), because π is a discrete

opfibration. We define �2(b) = ib. This defines �2 : B → I on objects.

We now suppose that f : b→ b′ is any morphism in B. Applying what we have so far,

we get a functor X → Y , where X is the solid-arrow portion of the category to the left

and Y is the commutative square category to the right,

X :=

�1(b)
βb ��

�1(f)

��

�2(b)

?

��
�1(b

′)
βb′

�� �2(b
′)

−−−−→

F1(b)
αb ��

F1(f)

��

F2(b)

F2(f)

��
F1(b

′)
αb′

�� F2(b
′)

=: Y (27)

and we get a commutative diagram

X ��

��

I

π

��
Y �� S

In order to complete our definition of �2, we need to fill in the missing side (the dotted

arrow labelled ‘?’) in square X.

The map

F2(f) : F2(b)→ F2(b
′)

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 43

in S together with the object �2(b) ∈ Ob(I) with

π(�2(b)) = F2(b)

induces a unique arrow

hb′ : �2(b)→ jb′

for some jb′ ∈ Ob(I) with π(jb) = b′. But now we have two maps in I over the composite

F1(b)→ F2(b
′), both with source �1(b) ∈ Ob(I): namely

βb′ ◦ �1(f) : �1(b)→ �2(b
′)

hb′ ◦ βb : �1(b)→ jb′ .

Since π is a discrete opfibration, their codomains must be equal, so we have a map

�2(f) := hb′ : �2(b)→ �2(b
′) = jb′ ,

and we have completed the commutative square X in Diagram (27). We have now defined

our functor �2 : B → I and natural transformation β : �1 → �2 over α, and they are unique:

we made no choices in their constructions. Hence, we have shown that πB : IB → SB is a

discrete opfibration.

Let

δB := ∂ (πB) : SB → Set

be the instance associated with πB and let F ∈ Ob(SB) be an object. We can consider F

as a map 1
F−→ SB , and δB(F) is isomorphic to the set of lifts in the diagram

IB

πB

��
1

..3
3

3
3

F
�� SB

which by adjointness is in bijection with the set of lifts Γ(F, π) in the diagram

I

π

��
B

..'
'

'
'

F
�� S

Therefore, we have δB(F) ∼= Γ(F, π), which completes the proof.

The following definition of Prb(S) extends the notion of P̃rb(S) given in Definition 4.3:

we have

P̃rb(S) ⊆ Prb(S)

is a subcategory with the same set of objects. The category Prb(S) is a 2-category-theoretic

version of slice categories, and is not new – see, for example, Kelly (1974).

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 44

Definition 5.2. Let S be a category. We define the category of probes on S , denoted Prb(S),

as follows:

Ob(Prb(S)) = {(A, F) | A ∈ Ob(Cat), F : A→ S a functor}
HomPrb(S )((A, F), (A′, F ′)) = {G, α) | G : A′ → A, α : F ◦ G→ F ′}

A′
G ��

F ′

��A
F ��

⇓α
S

Remark 5.3. In the presence of a discrete opfibration π : I → S , a probe F : A → S sets

up a where-less query on π for which the results are the lifts � ∈ Γ(F, π) for the diagram

� ��

��

I

π

��
A

F
��

�

..'
'

'
'

S

We call these where-less queries to emphasise the fact that the where-category (upper left

of the diagram) is empty.

For any category B, there is an obvious functor SB → Prb(S). The following corollary

extends Theorem 5.1 in the obvious sense. One way to understand its content is that

we can query over where-less queries. In other words, this is a formalisation of nested

queries. For example, we can create a join graph of where-less queries and look for a

set of coherent results. Corollary 5.4 (which is not new) implies that given a morphism

between two where-less queries on S and given a result for the first query, there is an

induced result for the second query. We will deal with the general case of nested queries

(those having non-trivial where-categories) in Proposition 5.10.

Corollary 5.4. Let π : I → S be a discrete opfibration. Then the induced functor

π = Prb(π)) : Prb(I)→ Prb(S)

is a discrete opfibration. The instance associated with π is

Γ(−, π) = ∂ (π) : Prb(S)→ Set.

Proof. Proving this corollary is really just a matter of writing down the appropriate

diagram. In order to show that π is a discrete opfibration, we choose an object � : A→ I

in Prb(I) with

π(�) = F : A→ S,

we choose a morphism

(G, α) : (A, F)→ (A′, F ′)

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 45

in Prb(S), and show that there exists a unique morphism

(G, β) : (A, �)→ (A′, �′)

in Prb(I) for some �′ : A′ → I such that π ◦ β = α. In diagrams, we begin with the

solid-arrow portion of the diagram

I

π

��
A′

G ��

F ′

��

�′
��

4
%

-
5 6 7 8

A

⇑β

⇓α

�

..3333333
F �� S

(28)

and hope to find such an �′ : A′ → I and β : � ◦ G→ �′.

We have

π ◦ (� ◦ G) = F ◦ G.
Applying Theorem 5.1, there is a unique induced functor �′ : A′ → I and natural

transformation β : � → �′ such that π ◦ β = α, having the required properties. This

completes the proof.

Remark 5.5. There is a way to express the set of solutions to a lifting problem using

limits. Let π : I → S be a discrete opfibration, and consider the query

W
p ��

m

��

I

π

��
R

n
�� S

We can consider m as a strict morphism of probes on S , so it induces a function

Γ(m, π) : Γ(n, π)→ Γ(nm, π),

and we can consider p ∈ Γ(nm, π) as an element in the codomain. There is a bijection

Γm,p(n, π) ∼= Γ(n, π)×Γ(nm,π) {p} (29)

expressing the set Γm,p(n, π) of solutions to the lifting problem as the fibre of Γ(m, π) over

p. This idea may be useful when we have disjunctions in the WHERE-clause of a query,

since it means we can replace {p} with the set of disjuncts.

We will now present examples of two types of morphisms of where-less queries, namely,

projection and indirection. These types generate all morphisms of where-less queries.

Example 5.6 (projection). Let δ : S → Set be an instance and π : I → S be the associated

discrete opfibration. Let n ∈ N be a natural number. The n-column table schema, here

denoted by Cn, is the category with an initial object K , precisely n other objects and

precisely n non-identity arrows. It follows that Cn looks like an asterisk (or ‘star schema’),

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 46

for example, C4 is drawn

c1

c4 K

��

�� ��

��

�� c2

c3

A functor p : Cn → S is called an n-column table schema in S . For each object x ∈ Cn, we

call p(x) ∈ Ob(S) a column of p and call p(K) the primary key column of p. In fact, p is a

probe or where-less query. The result set Γ(p, π) can be thought of as the set of records

for instance δ in table p: indeed, Γ(p, π) is isomorphic to δ(p)(K) as sets.

For any injection

h : {1, 2, . . . , n′} ↪→ {1, 2, . . . , n},
there is an induced functor C(h) : Cn′ → Cn, which we can compose with p to get a new

morphism

p′ := p ◦ C(h) : Cn′ → S

and a strict morphism of probes p→ p′. A record in table p is given by a lift � as shown

in

I

π

��
Cn′

p′

//
C(h) �� Cn

�

���������� p �� S,

(30)

and composing � with C(h) gives its projection as a record in table p′. Thus h induces a

function Γ(p, π)→ Γ(p′, π), and its image is the associated projection. The diagram

�• ��

��

Prb(I)

Prb(π)

��p•
C(h)
−−−−→p′• �� Prb(S)

is another way of viewing diagram (30).

Remark 5.7. In Example 5.6, we did not really need to assume that the function h was

injective. If h were not injective, then the morphism of queries C(h) would result in some

duplication of columns rather than a pure projection. In other words, the morphism of

queries is simply given by substitution along the function C(h).

In Example 5.6, we changed the shape of the result schema and used a strict morphism

of probes (the natural transformation p◦C(h)→ p′ was the identity). In the next example,

we will keep the result schema fixed but allow a non-strict morphism.

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 47

Example 5.8 (indirection). Let

R = [1] = •0
f
−→ •1

and let S be the schema

S :=
A

a person lives at ��
B

an address
is in ��

C

a city

There are three non-constant functors R → S , which we denote by FAB, FAC and FBC . There

is a natural transformation α : FAB → FAC and a natural transformation β : FAC → FBC .

Thus we get two morphisms in Prb(S), namely

(idR, α) : (R, FAB)→ (R, FAC)

(idR, β) : (R, FAC)→ (R, FBC).

Suppose π : I → S is an instance. We can draw the setup as

I

π

��
R

FBC

99R

⇓β
FAC

��R

⇓α
FAB

�� S

We can take global sections Γ(−, π) for each of these three probes and obtain maps

between the result sets by Theorem 5.1:

Γ(FAB, π)
α−−→ Γ(FAC, π)

β
−−→ Γ(FBC, π).

In other words, the morphism of queries induces a morphism of result sets. Put simply,

given some person and her address, we can return a person and the city she lives in; given

some person and his city, we can return an address and the city it is in.

5.2. The category of queries

We are now ready to generalise the category Prb(S) of where-less queries on S to a

category of all (lifting) queries on S .

Definition 5.9. Let π : I → S denote a discrete opfibration. We define the category of

(lifting) queries on π, denoted Qry(π), as follows. The objects of Qry(π) are commutative

diagrams of the form

W
p ��

m

��

I

π

��
R

n
�� S

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 48

and the morphisms

(F,G, α, γ) : (R,W, n, p)→ (R′,W ′, n′, p′)

are diagrams of the form

W ′
G

��

p′

  

m′

��

W
⇑γ

m

��

p
�� I

π

��
R′

F ��

n′

44R
⇓α

n �� S

where

m ◦ G = F ◦ m′

π ◦ γ = α ◦ m′.

Proposition 5.10. Let π : I → S be a discrete opfibration, and suppose we are given the

diagram

W ′
G

��

m′

��

W

m

��

p
�� I

π

��
R′

F ��

n′

44R
⇓α

n �� S

where the two squares commute. Then there exists a unique morphism of queries

(F,G, α, γ) : (R,W, n, , p)→ (R′,W ′, n′, p′)

as in

W ′
G

��

p′

  

m′

��

W
⇑γ

m

��

p
�� I

π

��
R′

F ��

n′

44R
⇓α

n �� S

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 49

Proof. The statement follows from a direct application of Theorem 5.1. Indeed, in place

of Diagram (26), we draw

I

π

��
W ′

pG

��
nFm′

��

n′m′

11⇓αm′ S

The unique functor and transformation labelled �2 and β given by the theorem serve as

p′ and γ here.

Theorem 5.11. Let π : I → S be a discrete opfibration. Then

Γ−,−(−, π) : Qry(π)→ Set

is functorial. That is, given a morphism of queries

W ′
G

��

p′

  

m′

��

W
⇑γ

m

��

p
�� I

π

��
R′

F ��

n′

44R
⇓α

n �� S

there is an induced function

Γm,p(n, π) −→ Γm′ ,p′ (n′, π),

which is natural in Qry(π).

Proof (sketch). Suppose we are given a lift � : R → I in Γm,p(n, π). By Corollary 5.4,

we have a map �′ : R′ → I , with π ◦ �′ = n′, and a natural transformation β : � ◦ F → �′,

with π ◦ β = α. We need to show that �′ ◦ m′ = p′ and β ◦ m′ = γ. But, using the proof

technique from Proposition 5.10, this follows from Theorem 5.1 and the definition of

discrete opfibration.

Remark 5.12. Given a discrete opfibration π : I → S , we will sometimes denote the functor

Γ−,−(−, π) simply by

Γ(π) : Qry(π)→ Set.

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 50

5.3. Data migration functors

Recall from Definition 2.3 that, given a functor F : S → T , three data migration functors

are induced between the categories S–Set and T–Set. The most straightforward is denoted

ΔF : T–Set→ S–Set.

It has both a left adjoint, denoted

ΣF : S–Set→ T–Set,

and a right adjoint, denoted

ΠF : S–Set→ T–Set.

In standard database contexts, schemas evolve over time. We model these schema

evolutions as zigzags of functors from one schema to another, along which we can

migrate data using a data migration functor. It is useful to know how this will affect

queries. Typically, users of a database π : I → S are given access to a subset of Qry(π) –

they do not see the whole database, but instead some collection of queries. As the schema

evolves it is important to understand how Qry(π) evolves. In this section we describe

some results: for example, results are unchanged under a pullback query.

We will begin by giving a description of ΠF in terms of where-less queries (see

Section 4.1). Recall that for any object d ∈ Ob(T ), the ‘comma’ category (d ↓ F) is defined

by

Ob(d ↓ F) = {(c, f) | c ∈ Ob(S), f : d→ F(c)}
Hom(d↓F)((c, f), (c′, f′)) = {g : c→ c′ | f′ ◦ F(g) = f}.

There is a natural functor nd : (d ↓ F) → S , and given a morphism h : d → d′ in T we

have a morphism (d′ ↓ F)→ (d ↓ F), or, more precisely, nd′ → nd, in Cat/S .

Proposition 5.13. Let F : S → T be a functor and γ : S → Set be an instance of S

with associated discrete opfibration π : I → S . Given any object d ∈ Ob(T ), there is an

associated where-less query

I

π

��
(d ↓ F)

nd
��

���
�

�
�

�
S

and we have

ΠF (γ)(d) ∼= Γ(nd, π).

Moreover, a morphism d → d′ in T induces a strict morphism of where-less queries

nd′ → nd. Thus, we have a functor T → P̃rb(π)op. Then ΠF (γ) : T → Set is the composition

T
d�→nd−−−→ P̃rb(π)op Γ(−,π)

−−−→ Set.

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 51

Proof. Let F, γ, π, d, and nd : (d ↓ F)→ S be as in the statement. By Proposition 4.6, we

have

Γ(nd, π) ∼= lim
R

(γ ◦ nd).

This is exactly the formula for ΠF (γ)(d) by Mac Lane (1988, Theorem X.3.1) since ΠF is

a right Kan extension. The statement for morphisms follows similarly.

While Proposition 5.13 provides an interesting relationship between right pushforwards

and queries, it does not allow us to relate queries on a database to queries on its right

pushforward. In the following, we will show briefly that graph pattern queries do transform

nicely with respect to data migration functors ΣF and ΔF .

We begin by discussing the left pushforward functor. Given a functor F : S → T , we

have a migration functor

ΣF : S–Set→ T–Set.

If δ ∈ S–Set and ε ∈ T–Set are instances, there is a bijection between the set of natural

transformations ΣFδ → ε and the set of commutative diagrams∫
(δ) ��

πδ

��

∫
(ε)

πε

��
S

F
�� T

Given a query on πδ , we clearly obtain an induced query on πε, and a solution to the

former yields a solution to the latter:

W
p ��

m

��

∫
(δ) ��

πδ

��

∫
(ε)

πε

��
R

--&
&

&
&

n
�� S

F
�� T

We state this formally in the following proposition.

Proposition 5.14. Let F : S → T be a functor, δ ∈ S–Set and ε ∈ T–Set be instances and

ΣFδ → ε be a map of T -sets. There exists an induced functor of query categories and a

natural transformation diagram

Qry(πδ) ��

Γ(πδ ) 33���������
=⇒

Qry(πε)

Γ(πε)::���������

Set

Proof. The statement follows from the discussion above.

We will now consider the case where δ ∼= ΔFε.

Proposition 5.15. Let F : S → T and ε : T → Set be functors, and let δ = ΔFε : S → Set

be its pullback. Let πδ and πε be as in Diagram (31) below. Then the results of any query

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 52

on πδ are the same as the results of the induced query on πε. That is, we have a natural

isomorphism diagram

Qry(πδ) ��

Γ(πδ ) 33��������� ∼=
=⇒

Qry(πε)

Γ(πε)::���������

Set

Proof. Consider the diagram ∫
(δ) ��

πδ

��

�

∫
(ε)

πε

��
S

F
�� T

(31)

which is a pullback by Proposition 2.7. Given a query on πδ , we obtain a query on πε as

in Proposition 5.14. The function from solutions for πδ to solutions for πε is a bijection

by the universal property of pullbacks:

W
p ��

m

��

∫
(δ)

�
��

πδ

��

∫
(ε)

πε

��
R

��

9 * 6 � 5
�

n
�� S

F
�� T .

Indeed, given a lift R →
∫

(ε) of πε, the fact that (31) is a pullback means that there is a

unique lift of πδ mapping to it.

6. Future work

This paper has set up an analogy between database queries and constraints on the one

hand, and what is now a classical approach to algebraic topology – the lifting problem –

on the other. Data on a schema is analogous to a covering space or fibration: the local

quality of this fibration is determined by constraints, and the locating of sections that

satisfy a set of properties is the posing of a query.

There are a few interesting directions for future research. The first is to make a

connection to the relatively new field of homotopy type theory (HoTT) – see Awodey and

Warren (2009) and Voevodsky (2006). The idea is that instead of two paths through a

database schema being equal, one could declare them merely equivalent, and if paths are

declared equivalent in more than one way, these equivalences may also be declared as

equivalent (or not). In this context, two observations on data may not be definitionally

equal, but provably equal, and we consider the proofs and the differences between proofs

as part of the data. To make this connection, the schema of a database should be a

quasi-category (Joyal 2002; Lurie 2009) X rather than an ordinary category. Each higher

simplex encodes a proof that different paths (or paths of paths, and so on) through

the schema are equivalent. We might replace the instance data by a functor (map of

quasi-categories) X → Type, where Type is the quasi-category of homotopy types. In this

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 53

context, classical homotopical questions, for example, from the theory of model categories

(Hirschhorn 2003), may be even more applicable.

Another direction for future research is to use topological tools to investigate or

‘mine’ data. For example, given a functor δ : S → Set, we can compose with the functor

i : Set → Top that sends each set to the corresponding discrete topological space. The

homotopy colimit of i◦δ is a topological space, of possibly any dimension and homotopy

type, that encodes the connection pattern of the data. This space is homotopy equivalent

to the nerve of the data bundle:

hocolim(i ◦ δ) 
 N(
∫
δ)

(Dugger 2008). Thus, we could report homotopy invariants of the data δ, such as connected

components and loops. The question is whether these invariants would be meaningful

and useful. For schemas of classical mathematical interest, such as the simplicial indexing

category S = Δop, the homotopy colimit of i ◦ δ is exactly what we want – it is the

geometric realisation of δ. It remains to be seen whether such homotopy invariants may

be useful in other contexts: for example, there may be some connection to the analysis

given by persistent homology (Ghrist 2008; Carlsson et al. 2004)).

A third and fairly straightforward project would be to adapt Garner’s small object

argument (Garner 2009) to our notion of constraints. Garner’s argument works and

provides nice universal properties in the case of what we have called ‘universal constraint

sets’ (see Section 3.2). The question is, if we apply his techniques to local constraints, such

as those in Example 3.15 used to declare that one table is the product of two others, does

his procedure still result in a discrete opfibration with all the nice universal properties

enjoyed in the universal case? We conjecture that it will. We should also check whether the

results obtained from that procedure agree with those from the universal chase procedure

(Deutsch et al. 2008). Indeed, they should provide equivalent results since both claim to

be universal in the same way.

Acknowledgments

I would like to express my appreciation to Peter Gates. I am also grateful to Henrik

Forssell, Rich Haney, Eric Prud’hommeaux and Emily Riehl for many useful discussions.

References

Awodey, S. and Warren, M.A. (2009) Homotopy theoretic models of identity types. Mathematical

Proceedings of the Cambridge Philosophical Society 146 (1) 45–55.

Bancilhon, F and Spyratos, N. (1981) Update semantics of relational views. ACM TODS 6 557–575.

Barr, M. and Wells, C. (2005) Toposes, triples, and theories (corrected reprint of the 1985 original

published by Springer-Verlag), Reprints in Theory and Applications of Categories 12 1–287.

Borceux, F. (1994) Handbook of categorical algebra 1-3, Encyclopedia of Mathematics and its

Applications 50–52, Cambridge University Press.

Carlsson, G., Zomorodian, A., Collins, A. and Guibas, L. (2004) Persistence barcodes for shapes.

In: Scopigno, R. and Zorin, D. (eds.) Eurographics Symposium on Geometry Processing 127–138.

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


D. I. Spivak 54

Deus, H. F. et al. (2010) Provenance of microarray experiments for a better understanding of

experiment results. Proceedings of The Second International Workshop on the role of Semantic

Web in Provenance Management, Shanghai, China.

Deutsch, A., Nash, A. and Remmel, J. (2008) The Chase Revisited. Proceedings of Symposium on

Principles of Database Systems (PODS), ACM.

Diskin, Z. and Kadish, B. (1994) Algebraic graph-oriented=category-theory-based – manifesto of

categorizing data base theory. Technical report, Frame Inform Systems.

Dugger, D. (2008) A primer on homotopy colimits. ePrint available at http://math.uoregon.edu/

~ddugger/hocolim.pdf.

Ehresmann, C. (1968) Esquisses et types des structures algèbriques. Buletinul Institutului Politehic

din Iasi (N.S.) 14 (18) (1-2) 1–14.

Gambino, N. and Kock, J. (2013) Polynomial functors and polynomial monads. Mathematical

Proceedings of the Cambridge Philosophical Society 154 153–192.

Garner, R. (2009) Understanding the small object argument. Applied Categorical Structures 17 (3)

247–285.

Ghrist, R. (2008) Barcodes: the persistent topology of data. Bulletin of the American Mathematical

Society (N.S.) 45 (1) 61–75.

Hartshorne, R. (1977) Algebraic Geometry, Graduate Texts in Mathematics 52, Springer-Verlag.

Hirschhorn, P. (2003) Model categories and their localizations, Mathematical surveys and

monographs, American Mathematical Society 99.

Johnson, M. (2001) On Category Theory as a (meta) Ontology for Information Systems Research.

Proceedings of the international conference on Formal Ontology in Information Systems.

Johnson, M., Rosebrugh, R. and Wood, R. J. (2002) Entity-relationship-attribute designs and

sketches. Theory and Applications of Categories 10 94–112.

Johnstone, P. (2002) Sketches of an elephant 1-2, Oxford logic guides 43-44, The Clarendon Press.

Joyal, A. (2002) Quasi-categories and Kan complexes. Journal of Pure and Applied Algebra 175 (1-3)

207–222.

Joyal, A. (2010) Catlab. (Available online at http://ncatlab.org/joyalscatlab/show/

Factorisation+systems.)

Kato, A. (1983) An abstract relational model and natural join functors. Bulletin of Informatics and

Cybernetics 20 95–106.

Kelly, G.M. (1974) On clubs and doctrines. In: Kelly, G.M. (ed.) Category Seminar. Springer-Verlag

Lecture Notes in Mathematics 420 181–256.

Lurie, J. (2009) Higher topos theory, Annals of Mathematical Studies 170, Princeton University

Press.

Mac Lane, S. (1988) Categories for the working mathematician (second edition), Graduate texts in

mathematics 5, Springer Verlag.

Mac Lane, S. and Moerdijk, I. (1994) Sheaves in Geometry and Logic: a first introduction to topos

theory, Universitext, Springer-Verlag.

Makkai, M. (1997) Generalized sketches as a framework for completeness theorems I. Journal of

Pure and Applied Algebra 115 (1) 49–79.

May, J. P. (1999) A concise course in Algebraic Topology, Chicago Lectures in Mathematics,

University of Chicago Press.

Morava, J. (2012) Theories of anything. (Available at http://arxiv.org/abs/1202.0684v1.)

Prud’hommeaux, E. and Seaborne, A. (eds.) (2008) SPARQL Query Language for RDF: W3C

Recommendation 2008/01/15. (Available at http://www.w3.org/TR/2008/REC-rdf-sparql-

query-20080115/.)

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479


Database queries and constraints via lifting problems 55

Quillen, D.G. (1967) Homotopical Algebra. Springer-Verlag Lecture Notes in Mathematics 43.

Spivak, D. I. (2009) Simplicial databases. (Available at http://arxiv.org/abs/0904.2012.)

Spivak, D. I. (2012) Functorial data migration. Information and Computation 217 31–51.

Spivak, D. I. and Kent, R. E. (2012) Ologs: A Categorical Framework for Knowledge Representation.

PLoS ONE 7 (1).

Tuijn, C. and Gyssens, M. (1992) Views and decompositions from a categorical perspective. In:

Biskup, J. and Hull, R. (eds.) Database Theory – ICDT ’92: Proceedings 4th International

Conference. Springer-Verlag Lecture Notes in Computer Science 646 99–112.

Voevodsky, V. (2006) A very short note on the homotopy λ-calculus. Unpublished note.

https://doi.org/10.1017/S0960129513000479 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000479

