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Stokes resistance of a solid cylinder near a
superhydrophobic surface. Part 1. Grooves
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Ory Schnitzer1,† and Ehud Yariv2

1Department of Mathematics, Imperial College London, London SW7 2AZ, UK
2Department of Mathematics, Technion – Israel Institute of Technology, Haifa 32000, Israel

(Received 31 July 2018; revised 24 February 2019; accepted 25 February 2019;
first published online 10 April 2019)

An important class of canonical problems that is employed in quantifying the
slipperiness of microstructured superhydrophobic surfaces is concerned with the
calculation of the hydrodynamic loads on adjacent solid bodies whose size is large
relative to the microstructure period. The effect of superhydrophobicity is most
pronounced when the latter period is comparable to the separation between the solid
probe and the superhydrophobic surface. We address the above distinguished limit,
considering a simple configuration where the superhydrophobic surface is formed by
a periodically grooved array, in which air bubbles are trapped in a Cassie state, and
the solid body is an infinite cylinder. In the present part, we consider the case where
the grooves are aligned perpendicular to the cylinder and allow for three modes
of rigid-body motion: rectilinear motion perpendicular to the surface; rectilinear
motion parallel to the surface, in the groove direction; and angular rotation about the
cylinder axis. In this scenario, the flow is periodic in the direction parallel to the axis.
Averaging over the small-scale periodicity yields a modified lubrication description
where the small-scale details are encapsulated in two auxiliary two-dimensional cell
problems which respectively describe pressure- and boundary-driven longitudinal flow
through an asymmetric rectangular domain, bounded by a compound surface from the
bottom and a no-slip surface from the top. Once the integral flux and averaged shear
stress associated with each of these cell problems are calculated as a function of the
slowly varying cell geometry, the hydrodynamic loads experienced by the cylinder
are provided as quadratures of nonlinear functions of the latter distributions over a
continuous sequence of cells.

Key words: lubrication theory

1. Introduction
Superhydrophobic surfaces are realised by immersing a textured hydrophobic

surface in liquid, forming a so-called Cassie state in which gas is trapped in the
vacancies of the microstructure (Quéré 2008). When the liquid is made to flow
relative to the surface, it encounters a compound interface: part solid, on which the
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usual no-slip condition applies, and part gaseous, on which a no-shear condition
approximately applies. Given the fundamental role played by the no-slip condition
in numerous practical scenarios, together with recent advances in fabricating textured
surfaces, there is currently tremendous interest in the hydrodynamic ramifications of
superhydrophobicity (Rothstein 2010; Lee, Choi & Kim 2016; Seo & Mani 2016).

In particular, it has been widely demonstrated that superhydrophobic surfaces could
be used to reduce hydrodynamic resistance on small scales (Lauga & Stone 2003;
Ou, Perot & Rothstein 2004; Ou & Rothstein 2005). The prototypical problem
that corresponds most to experimental protocols involves pressure-driven flows
which are bounded between two surfaces, with either one or both of these being
superhydrophobic; the distance between them (the channel depth) provides the
‘macroscopic’ scale. When the characteristic pitch of the surface texture is small
compared to that scale, the surface may be represented via an equivalent Navier-slip
boundary condition, where the velocity evaluated at that fictitious boundary is taken
to be locally proportional to the normal shear rate. The ‘slip length’ appearing in
that condition is obtained from the solution of a canonical flow problem where
the surface is subjected to a simple shear flow (Cottin-Bizonne et al. 2004; Ybert
et al. 2007); it is accordingly calculated as an intrinsic property of the surface. With
elementary dimensional arguments showing that this property scales as the periodicity
(Ybert et al. 2007), the volume flux in the above deep-channel limit deviates only
slightly from the classical Hagen–Poiseuille prediction. The more important case is
accordingly that of comparable pitch and depth. In that case, it is generally necessary
to calculate the volume flux directly using the exact microscale formulation. For given
solid fraction and menisci protrusion angle, this task has been accomplished using
a variety of analytical, semi-analytical and numerical methods (Philip 1972a; Lauga
& Stone 2003; Teo & Khoo 2009; Marshall 2017); in some cases the flux and flow
profile turn out to be qualitatively different from those predicted by extrapolating the
deep-channel limit (Schnitzer & Yariv 2017; Yariv 2017; Yariv & Schnitzer 2018).

All of the above-mentioned solutions for pressure-driven channel flows assume
straight boundaries formed of periodically textured hydrophobic surfaces (in a
superhydrophobic Cassie state), as well as creeping flow conditions and negligible
flow-induced deformation of the menisci. Under these conditions the flow domain is
readily reduced to a single unit cell of the geometry, which greatly facilitates obtaining
analytical and numerical solutions for arbitrary channel depths. Unfortunately, many
other hydrodynamic scenarios involving superhydrophobic surfaces cannot be similarly
reduced; even for periodically textured hydrophobic surfaces, the flow could be
aperiodic owing to the presence of curved or finite boundaries, menisci deformation
or lack of symmetry of the external forcing. In these situations, the flow must be
resolved over multiple, often numerous, periods of the microstructure.

An important class of problems exemplifying the above modelling challenge is the
calculation of hydrodynamic forces on solid bodies that are forced to move relative
to textured hydrophobic substrates. These problems are employed in quantifying the
slipperiness of superhydrophobic substrates based on force measurements, given the
rationale that it is far simpler to measure these forces than the small-scale features of
the flow field. Thus, Maali et al. (2012), Mongruel et al. (2013) and Nizkaya et al.
(2016) measured the drag force on spherical particles and atomic force microscope
tips moving towards grooved hydrophobic substrates, while Choi & Kim (2006) and
Lee, Choi & Kim (2008) measured the torque on a cone spinning above grooved
and pillared hydrophobic substrates of small solid fraction. These configurations
allow one to access the near-contact limit, where the minimum clearance between
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214 O. Schnitzer and E. Yariv

the substrate and the solid probe is small compared to the dimensions of the probe.
For non-textured substrates, this is the familiar setting of lubrication theory, where a
slowly varying geometry results in enhanced hydrodynamic interactions (Davis 2017).

Naturally, the near-contact limit for textured surfaces is significantly more
complicated. Here, the representation of the surface via an intrinsic slip length
(Davis, Kezirian & Brenner 1994; Choi & Kim 2006; Kaynan & Yariv 2017) tacitly
entails the assumption that the clearance is, on the one hand, small compared to the
dimensions of the moving body (as in classical lubrication theory), while, on the
other hand, large compared to the microstructure scale and the associated slip length.
As in the analogous description of deep-channel flows, the latter constraint implies
lubrication forces that are only slightly perturbed by slip. At smaller separations,
where the clearance is commensurate with the texture scale (or intrinsic slip length,
whichever is larger), the small-scale flow associated with the solid–gas patterns is no
longer localised near the superhydrophobic surface. In that distinguished near-contact
limit, in which the notion of intrinsic slip is inapplicable, the flow field and lubrication
forces are significantly modified by the texture.

An approximate description in the above limit, extensively employed by Vinogradova
and coworkers to study the drag force on discs (Belyaev & Vinogradova 2010b) and
spheres (Asmolov, Belyaev & Vinogradova 2011; Nizkaya et al. 2016) moving
towards grooved surfaces, is based on the notion of effective (non-intrinsic) slip
length (Belyaev & Vinogradova 2010a; Schmieschek et al. 2012). In this approach,
the superhydrophobic surface is still represented as a Navier-slip condition, only that
now the slip length is assumed to depend on the local separation between the solid
body and the superhydrophobic surface. At each point along the surface, the latter slip
length is obtained by comparison with an auxiliary cell problem, of pressure-driven
flow through a flat textured channel whose depth equals the local separation. Starting
from this description, these authors derive a Darcy-like equation governing the slowly
varying lubrication pressure in the gap, wherein the permeability, derived in terms
of the effective slip length, is spatially varying and anisotropic. In general, both the
slowly varying effective slip length and the Darcy-like equation need to be solved
numerically, though closed-form expressions for the drag forces have been obtained
for separations much larger or much smaller than the texture pitch. In the former
limit, the effective slip length reduces to the intrinsic slip length of the grooved
surface.

The concept of effective slip length has originated in the analyses of pressure-driven
flows through uniform-depth superhydrophobic channels (Lauga & Stone 2003;
Belyaev & Vinogradova 2010a); in this type of flow the effective slip length simply
constitutes a recasting of the volumetric flux. In the above-mentioned analyses of
Vinogradova and coworkers, the effective-slip model is tacitly assumed to apply
locally to slowly varying geometries. It is not clear a priori in which scenarios that
assumption can be justified, and whether it can be applied to general lubrication
flows about textured surfaces. In particular, we note that effective-slip models have
only been applied to lubrication interactions involving squeeze flows generated by the
motion of particles perpendicular to textured boundaries.

In this paper, we demonstrate a ‘first-principles’ approach to studying lubrication
interactions between solid particles and textured surfaces, where the appropriate
macroscale description is systematically deduced from an underlying ‘exact’ microscale
formulation. ‘Systematic’ here means that the small-scale details of the textured
surface are averaged out using asymptotic tools, by considering the distinguished
near-contact limit where the clearance is comparable to the periodicity. One of the
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Stokes resistance of cylinder near superhydrophobic surface 215

advantages of adopting a systematic approach is that it allows treating lubrication
flows animated by general rigid-body motion. Since consideration of that general
motion is significantly more complex than the specific case of perpendicular motion,
we elect to devise our asymptotic paradigm in the context of the simplest possible
particle–wall configuration. Towards this end, we consider a solid cylinder translating
and rotating near a periodically grooved surface (in a superhydrophobic Cassie state).
This choice is inspired by the classical analysis of Jeffrey & Onishi (1981) who
considered the two-dimensional problem of a cylinder that moves in the vicinity
of a no-slip boundary, and by its recent generalisation to a homogeneous slippery
boundary on which a Navier-slip condition applies (Kaynan & Yariv 2017). In this
part, we consider the case where the cylinder is perpendicular to the grooves and is
allowed to translate normal and parallel to the surface, as well as rotate about its
own axis. The underlying symmetry in these problems implies periodicity along the
cylinder axis.

2. Problem formulation
We employ a simple model of a superhydrophobic surface formed by a periodically

grooved hydrophobic solid substrate. Thus, we assume that, when the surface is
brought into contact with a liquid (viscosity µ), cylindrical air bubbles occupy the
grooves. A compound interface is accordingly formed, composed of the liquid–air
interfaces and the (presumably flat) top edges of the ridges that separate the grooves.
Assuming zero-protrusion-angle menisci, this compound interface is flat too. Its
geometry is completely prescribed by the grooved-array period and solid fraction φ.
We shall refer to this compound interface as the superhydrophobic plane.

Consider now an infinite solid circular cylinder (radius a) that is immersed in the
liquid with its axis being parallel to the superhydrophobic plane, perpendicular to the
grooves; the instantaneous separation between the cylinder and the compound surface
is denoted by ha (see figure 1). We employ Cartesian coordinates (ax, ay, az) defined
such that the x-axis runs along the superhydrophobic plane in the groove direction,
with the centres of the solid ridges at z= 2nlh (n∈Z), and the y-axis passes through
the instantaneous location of the cylinder axis.

The flow problem we address herein is animated by the composition of three
independent modes of rigid-body motion, consisting of: (i) pure translation of the
cylinder in the y-direction, perpendicular to the surface, with speed s⊥; (ii) pure
translation of the cylinder parallel to the surface, in the x-direction, at speed s‖;
and (iii) pure rotation of the cylinder about its axis, in the z-direction, at angular
velocity ω. Assuming from the outset that inertial forces are negligible, the flow
equations are quasi-steady. Assuming further that the capillary number is small, the
menisci deformation and dilation due to the flow are negligible, and the postulation
of a flat interface remains intact. The liquid domain is therefore bounded by the
cylinder and the superhydrophobic plane, on which a no-slip condition applies at the
solid strips and a shear-free condition at the gaseous strips.

Our interest is in the hydrodynamic forces and torques acting on a unit length of the
cylinder, averaged over a single period of the superhydrophobic surface. The symmetry
properties of Stokes flow imply (see appendix A) that the force in the y-direction
possesses the form

−µ f⊥s⊥, (2.1)

while the force in the x-direction and the torque in the z-direction possess the
respective forms

−µ( f ‖s‖ + acω), −µa(cs‖ + atω). (2.2a,b)
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FIGURE 1. (Colour online) Schematic of the dimensional geometry.

Following the introduction of a into relations (2.1) and (2.2), the resistance coefficients
f⊥, f ‖, c and t appearing therein are all rendered dimensionless. Note that the same
coupling coefficient c appears in both the expression for the force due to rotation and
that for torque due to translation; in appendix A we show that this reciprocity, which
is known to hold for a solid particle that moves through an unbounded fluid domain,
also applies in the present configuration, which involves an adjacent planar boundary
on which mixed boundary conditions are prescribed.

We hereafter normalise length variables by a. In this notation, the (instantaneous)
cylinder–surface clearance is h and the grooved-array period is 2hl. The problem
periodicity allows one to consider the flow in a single ‘cell’ of lateral extent 2lh,
say that bounded between z = ±lh. Figure 2 depicts the ‘top’ and ‘side’ views of
the dimensionless geometry. To determine the resistance coefficients, it is convenient
to exploit the Stokes-flow linearity and decompose the flow problem into three
subproblems which respectively correspond to perpendicular translation, parallel
translation and rotation. Furthermore, we adopt a unified dimensionless notation
which applies to all three problems, where velocity variables are normalised by s, the
latter being chosen as

s=


s⊥h−1/2 in the perpendicular-translation problem,
s‖ in the parallel-translation problem,
ωa in the rotation problem.

(2.3)

(Note that all these choices represent a characteristic velocity in the x-direction.) Stress
variables are normalised by µs/a.

In our unified description, the governing differential equations and the majority of
the supplementary conditions are identical in all three problems. Thus, the differential
equations governing the velocity u= êxu(x, y, z)+ êyv(x, y, z)+ êzw(x, y, z) and pressure
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FIGURE 2. (Colour online) Dimensionless geometry. (a) Top view, showing a single
period of the superhydrophobic surface. (b) Side view, with the inset zooming on the gap
region.

p(x, y, z) consist of the continuity equation,

∂u
∂x
+
∂v

∂y
+
∂w
∂z
= 0, (2.4)

and the Stokes equations,

∂p
∂x
=∇

2u,
∂p
∂y
=∇

2v,
∂p
∂z
=∇

2w. (2.5a−c)

The boundary conditions at the patterned surface y= 0 consist of impermeability,

v = 0, (2.6)

a no-slip condition at the solid patches,

u=w= 0 for |z|6 φlh, (2.7)
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and a shear-free condition at the menisci,

∂u
∂y
=
∂w
∂y
= 0 for φlh< |z|< lh. (2.8)

In addition, the flow must be 2hl-periodic in the z-direction and satisfy the requirement
that u attenuates at large distances from the cylinder. Because of symmetry about z=0,
the periodicity conditions may be written as

w=
∂u
∂z
=
∂v

∂z
= 0 at z=±lh. (2.9)

The no-slip conditions on the cylinder boundary depend on the specific problem
considered. Thus, in the separate subproblems of perpendicular translation, parallel
translation and rotation, we respectively have

u= 0, v = h1/2, w= 0, (2.10a)
u= 1, v = 0, w= 0, (2.10b)

u= 1− y+ h, v = x, w= 0. (2.10c)

Note that the boundary conditions governing w are all homogeneous, suggesting that
w trivially vanishes. The instantaneous velocity field is therefore assumed to be of the
quasi-longitudinal form u= êxu(x, y, z)+ êyv(x, y, z). It then follows from (2.5b) that
the pressure p is independent of z, say p(x, y). Because of symmetry about z = 0,
we can further reduce the pertinent domain to the half-period 0 < z < lh with (2.9)
applying at z= 0 and z= lh. The other obvious symmetry about x= 0 implies that, in
the case of perpendicular translation, p and v are even functions of x while u is an
odd function of it. In the cases of parallel translation and rotation, the opposite holds.

3. Near-contact limit
3.1. Gap coordinates and scalings

Our interest is in the limit h→ 0 with l= O(1), namely where the cylinder–surface
clearance is comparable to the microstructure periodicity, and both are small compared
to the cylinder radius. The limit h→ 0 is naturally accommodated by zooming in the
gap using the stretched coordinates

X = x/h1/2, Y = y/h, Z = z/h. (3.1a−c)

In terms of these gap-scale coordinates, the cylinder surface becomes Y=H(X)+O(h),
where H = 1+ X2/2. The unit vector normal to the cylinder (pointing into the liquid
domain) is

n̂∼−(êy − h1/2Xêx)[1+O(h)]. (3.2)

With the choice (2.3) of the velocity scale s in the three subproblems, the near-contact
scalings of the pressure and two velocity components are identical in all three
problems,

p=O(h−3/2), u=O(1), v =O(h1/2), (3.3a−c)

thus allowing for a truly unified analysis (as in Kaynan & Yariv 2017). We therefore
employ the following asymptotic expansions of the flow variables:

p=h−3/2P(X,Y)+· · · , u=U(X,Y,Z)+· · · , v=h1/2V(X,Y,Z)+· · · , (3.4a−c)

where P, U and V are O(1).
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3.2. Leading-order problem
The leading-order inner variables satisfy the following:

(i) the continuity equation,
∂U
∂X
+
∂V
∂Y
= 0; (3.5)

(ii) the momentum balances,

∂P
∂X
=
∂2U
∂Y2
+
∂2U
∂Z2

,
∂P
∂Y
= 0; (3.6a,b)

(iii) conditions at the compound surface Y = 0, consisting of impermeability,

V = 0, (3.7)

no slip at the solid strip,

U = 0 for 0< Z <φl, (3.8)

and no shear at the free surface,

∂U
∂Y
= 0 for φl< Z < l; (3.9)

(iv) the symmetry and periodicity conditions,

∂U
∂Z
=
∂V
∂Z
= 0 at Z = 0, l; (3.10)

and (v) the no-slip conditions at Y =H(X) (cf. (2.10)),

U = 0, V = 1 in the perpendicular-translation problem, (3.11a)
U = 1, V = 0 in the parallel-translation problem, (3.11b)
U = 1, V = X in the rotation problem. (3.11c)

The far-field velocity decay does not apply in the gap region; it is replaced by the
requirement of asymptotic matching with the ‘outer’ solution outside the gap. In
particular, given the O(1) pressure scaling there,

lim
X→±∞

P= 0. (3.12)

Finally, we note that the pressure scaling (3.3a) in conjunction with the O(h1/2)

extent of the gap in the x-direction implies an O(h−3/2) gap-scale contribution to f⊥.
Similarly, the velocity scaling (3.3b) in conjunction with the O(h) extent of the gap
in the y-direction implies that, within the gap, the shear stresses in the xy-plane are
O(h−1); their contributions to f ‖, c and t are accordingly O(h−1/2). Since the outer
contributions to the hydrodynamic loads from the region outside the gap are clearly
O(1), and hence subdominant, we conclude that

f⊥ = h−3/2F⊥ + · · · (3.13)
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and

f ‖ = h−1/2F‖ + · · · , c= h−1/2C+ · · · , t= h−1/2T + · · · , (3.14a−c)

where the O(1) coefficients F⊥, F‖, C and T are unaffected by the outer region.
As these coefficients are independent of h, they depend only upon the geometric
parameters l and φ.

An ad hoc procedure which allows for the preceding coefficient to be readily
calculated involves replacement of the mixed conditions at the compound surface by
a presumably equivalent Navier-slip condition. This procedure, which provides useful
approximations for small l, is described in appendix B. In what follows, we proceed
with a systematic analysis of the longitudinal flow in the inner region.

4. Two cell problems
4.1. Decomposition of the longitudinal flow

From (3.6b) we find that P is also independent of Y , say P(X). The problem governing
U is therefore uncoupled to that governing V . It consists of the Poisson equation
(cf. (3.6a))

∂2U
∂Y2
+
∂2U
∂Z2
=

dP
dX
, (4.1)

together with the conditions governing U, consisting of (3.8)–(3.10) and either one of
(3.11) on the cylinder boundary.

Consider first the case of perpendicular translation, where the boundary condition
governing U on the cylinder is homogeneous, see (3.11a). It then follows that all the
pertinent boundary conditions are homogeneous, implying that the problem governing
U is forced solely by the pressure gradient dP/dX. From (4.1) we then find that U
must be linear in dP/dX. Moreover, after factoring out dP/dX, the dependence upon
X enters only through the application of boundary conditions at Y =H(X). It therefore
follows that U may be represented in terms of an X-independent ‘pressure-driven’ cell
function UP(Y, Z;H) via the relation

U(X, Y, Z)=−
dP
dX

UP(Y, Z;H(X)). (4.2)

In the cases of parallel translation and rotation, the problem governing U is further
forced by an (identical) inhomogeneous boundary condition satisfied by U at Y =
H(X). For these problems,

U(X, Y, Z)=−
dP
dX

UP(Y, Z;H(X))+ UB(Y, Z;H(X)), (4.3)

where we introduce a ‘boundary-driven’ cell function UB(Y, Z;H). (The distributions
of P(X) in these two cases are obviously different.) We next discuss the pressure-
driven and boundary-driven cell problems governing UP and UB, respectively.

4.2. Pressure-driven cell problem
The cell problem governing UP(Y, Z;H) consists of the following:

(i) Poisson’s equation,

∂2UP

∂Y2
+
∂2UP

∂Z2
=−1 for 0< Z < l, 0< Y <H; (4.4)
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(ii) no slip at the top boundary,

UP = 0 at Y =H; (4.5)

(iii) the mixed conditions at Y = 0,

UP = 0 for 0< Z <φl,
∂UP

∂Y
= 0 for φl< Z < l; (4.6a,b)

and (iv) the symmetry conditions,

∂UP

∂Z
= 0 at Z = 0, l. (4.7)

In addition to H, UP also depends upon the texture parameters l and φ. As a
consequence, all integral properties of the cell problem are functions of H, l and φ.
Two of these properties play a key role in the following analysis. The first is the
averaged cross-sectional volumetric flux,

QP(H, l, φ)= l−1
∫ l

0
dZ
∫ H

0
dY UP(Y, Z;H). (4.8)

The second is the averaged shear stress at the top boundary (in the negative
x-direction)

SP(H, l, φ)= l−1
∫ l

0
dZ
[
∂

∂Y
UP(Y, Z;H)

]
Y=H

. (4.9)

Consider now l and φ as fixed, whereby UP depends upon the single parameter H
and is written as UP(Y, Z;H). It is easy to verify by a rescaling of the cell problem
that UP(Y, Z; H) is a homogeneous function of degree two in its three arguments,
namely

UP(Y, Z;H)=H2 UP(Y/H, Z/H; 1). (4.10)

The integral volume flux and average shear stress thus transform as

QP(H, l, φ)=H3QP(1, l/H, φ), SP(H, l, φ)=HSP(1, l/H, φ). (4.11a,b)

These transformations accordingly allow one to relate the integral properties of
the original cell to those corresponding to a unit-depth cell (denoted hereafter the
‘standard cell’). These relations, in turn, reduce the number of geometric parameters
by one when seeking to determine the complete dependence of QP and SP upon the
cell geometry.

It is accordingly beneficial to define the standard-cell velocity field

ŨP(Y, Z) def
= UP(Y, Z; 1) (4.12)

and the associated integral quantities

Q̃P(l, φ)
def
=QP(1, l, φ), S̃P(l, φ)

def
= SP(1, l, φ). (4.13a,b)
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The latter are related to the standard-cell velocity field via the relations (cf. (4.8)
and (4.9))

Q̃P = l−1
∫ l

0
dZ
∫ 1

0
dY ŨP(Y, Z), S̃P = l−1

∫ l

0
dZ

∂ŨP

∂Y

∣∣∣∣∣
Y=1

. (4.14a,b)

Transformations (4.11) thus read

QP(H, l, φ)=H3Q̃P(l/H, φ), SP(H, l, φ)=HS̃P(l/H, φ). (4.15a,b)

4.3. Boundary-driven cell problem
Consider now the cell problem governing UB(Y, Z; H). It consists of Laplace’s
equation,

∂2UB

∂Y2
+
∂2UB

∂Z2
= 0 for 0< Z < l, 0< Y <H, (4.16)

and is forced by an inhomogeneous condition at the top boundary,

UB = 1 at Y =H. (4.17)

Otherwise, it satisfies the same mixed conditions at Y = 0 and symmetry conditions
that appear in the pressure-driven cell problem. The integral quantities QB(H, l, φ) and
SB(H, l, φ) are defined in a manner similar to (4.8) and (4.9), with UB used instead
of UP.

Consider now l and φ as fixed, whereby UB depends upon the single parameter H
and is written as UB(Y, Z;H). It is easy to verify that UB(Y, Z;H) is a homogeneous
function of zeroth degree in its three arguments:

UB(Y, Z;H)= UB(Y/H, Z/H; 1). (4.18)

The integral volume flux and average shear stress thus transform as

QB(H, l, φ)=HQB(1, l/H, φ), SB(H, l, φ)=H−1SB(1, l/H, φ). (4.19a,b)

As in the pressure-driven cell problem, we define the standard-cell velocity field,

ŨB(Y, Z) def
= UB, (Y, Z; 1), (4.20)

and the associated cell flux and mean shear,

Q̃B(l, φ)
def
=QB(1, l, φ), S̃B(l, φ)

def
= SB(1, l, φ). (4.21a,b)

These integral quantities are provided by

Q̃B = l−1
∫ l

0
dZ
∫ 1

0
dY ŨB(Y, Z), S̃B = l−1

∫ l

0
dZ

∂ŨB

∂Y

∣∣∣∣∣
Y=1

. (4.22a,b)

Transformations (4.19) thus read

QB(H, l, φ)=HQ̃B(l/H, φ), SB(H, l, φ)=H−1S̃B(l/H, φ). (4.23a,b)
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4.4. Properties of Q̃P and S̃P

The function Q̃P(l, φ) was provided by Philip (1972b) as the solution of a
transcendental equation, itself obtained from the conformal-map calculation of the
velocity field (Philip 1972a). Given the complexity of that equation, which involves
elliptic integrals, contemporary analyses of the standard-cell geometry (Sbragaglia &
Prosperetti 2007; Teo & Khoo 2009) typically represent the solution via an appropriate
Fourier series and evaluate its coefficients (of which only one affects the value of
Q̃P) by solving the dual series equations which follow from the mixed boundary
conditions at the compound surface (cf. Lauga & Stone 2003). In what follows, we
also need S̃P, which to the best of our knowledge has never been calculated.

We accordingly choose here to evaluate the quantities Q̃P(l, φ) and S̃P(l, φ) using a
Fourier-series representation of the standard-cell field ŨP. The details of the calculation
methodology are provided in appendix C. The calculation itself has been performed
for several values of φ (0.3, 0.5 and 0.7); for each of these values, Q̃P and S̃P have
been determined for a large number of l-values (ranging from 10−6 to 106).

In what follows we provide several asymptotic properties of Q̃P(l, φ) and S̃P(l, φ)
which may be deduced without referring to the above-mentioned semi-numerical
solutions.

4.4.1. Homogeneous solid surface
When φ= 1, ŨP is independent of Z: it is then the familiar Poiseuille flow between

two solid walls,

ŨP =
Y − Y2

2
. (4.24)

The corresponding volumetric flux and average shear stress are

lim
φ→1

Q̃P =
1
12
, lim

φ→1
S̃P =−

1
2
. (4.25a,b)

4.4.2. Homogeneous free surface
When φ = 0, ŨP is again independent of Z: it is now given by the Poiseuille flow

between a solid wall and a free surface,

ŨP =
1− Y2

2
. (4.26)

The corresponding volumetric flux is four times as much as before,

lim
φ→0

Q̃P =
1
3
. (4.27)

The average shear stress is
lim
φ→0

S̃P =−1. (4.28)
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4.4.3. Deep cell
When l� 1 the unit cell appears deep. It follows that the Poiseuille profile (4.24)

approximately applies, except in a narrow region several multiples of l away from the
compound surface. At leading order, this accordingly results in the same flux as in
the case of a homogeneous solid wall:

lim
l→0

Q̃P =
1
12
, lim

l→0
S̃P =−

1
2
. (4.29a,b)

Making use of (4.15), the limit (4.29) readily provides a large-X approximation for
both QP(H(X), l, φ) and SP(H(X), l, φ). Thus, since H(X) ∼ X2/2 as X → ∞, it
follows that

QP(H(X), l, φ)∼
X6

96
as X→∞ (4.30)

and

SP(H(X), l, φ)∼−
X2

4
as X→∞. (4.31)

4.4.4. Shallow cell
For l� 1, where the cell appears shallow, a Hele-Shaw approximation is readily

applied, where the velocity profiles (4.24) and (4.26) respectively hold in the intervals
0 < Z < φl and φ < Z < l, with the extent of the transition region connecting
these intervals being small compared to l. (A related approximation was used by
Feuillebois, Bazant & Vinogradova (2009).) The corresponding volumetric fluxes (per
unit length in the z-direction) are accordingly 1/12 and 1/3; see (4.25a) and (4.27).
The corresponding mean flux Q̃P is then provided by (4.14a) as the weighted average
of these two values:

lim
l→∞

Q̃P =
4− 3φ

12
. (4.32)

This weighted average is analogous to the current through resistors connected in
parallel, with the pressure gradient and volumetric fluxes being respectively analogous
to the voltage and currents. The mean shear S̃P is also provided by a weighted average,
namely

lim
l→∞

S̃P =−

(
1−

φ

2

)
. (4.33)

4.4.5. Lack of commutativity
Comparing (4.27) and (4.28) to (4.29), we note that the respective limits of small

solid fraction and deep cell do not commute. This has to do with the singularity of
the small solid-fraction limit (Ybert et al. 2007). To appreciate this singularity in
the present context, it is expedient to review the form of the slip coefficient (B 4)
appearing in the Navier-slip condition (B 3). This form implies that B = O(l) for
small l, thus justifying the above heuristic linkage between the small-l limit and the
solid-surface limit φ→ 1. At small φ, however, it actually follows from (B 4) that B
scales as l ln(1/φ). The asymptotic limits (4.29) accordingly break down when φ is
so small that l ln(1/φ) becomes O(1).
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4.5. Properties of Q̃B and S̃B

As with the pressure-driven cell problem, we evaluate the standard-cell quantities
Q̃B(l, φ) and S̃B(l, φ) using a Fourier-series representation of the standard-cell
velocity ŨB. The details of the calculation methodology are provided in appendix C.

In what follows we provide several asymptotic properties of Q̃B(l, φ) and S̃B(l, φ),
which may be deduced without referring to the Fourier-series solution.

4.5.1. Homogeneous solid surface
When φ = 1, ŨB is independent of Z: it is then the familiar Couette flow between

two solid walls,
ŨB = Y. (4.34)

The corresponding volumetric flux and average shear stress are

lim
φ→1

Q̃B =
1
2
, lim

φ→1
S̃B = 1. (4.35a,b)

4.5.2. Homogeneous free surface
When φ = 0, ŨB is again independent of Z: it is now given by the plug flow,

ŨB ≡ 1. (4.36)

The corresponding volumetric flux is twice as much as before, while the average shear
stress vanishes:

lim
φ→0

Q̃B = 1, lim
φ→0

S̃B = 0. (4.37a,b)

4.5.3. Deep cell
In the deep-cell limit l� 1, the Couette profile (4.34) applies throughout the cell,

except in a narrow region of O(l) depth about the compound surface. This accordingly
results in the same flux as in the case of a homogeneous solid wall:

lim
l→0

Q̃B =
1
2
, lim

l→0
S̃B = 1. (4.38a,b)

Again, the limits attained as φ→ 0 and as l→ 0 do not commute.
Making use of (4.23), the limits (4.38a,b) readily provide large-|X| approximations

for QB(H(X), l, φ) and SB(H(X), l, φ). Thus, since H(X)∼X2/2 as X→∞, it follows
that

QB(H(X), l, φ)∼
X2

4
as X→∞ (4.39)

and

SB(H(X), l, φ)∼
2

X2
as X→∞. (4.40)
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4.5.4. Shallow cell
For l� 1, where the cell appears shallow, a Hele-Shaw approximation is readily

applied, where the velocity profiles (4.34) and (4.36), respectively, hold in the intervals
0 < Z < φl and φ < Z < l, with the extent of the transition region connecting these
intervals being small compared to l. The corresponding volumetric fluxes (per unit
length in the z-direction) are accordingly 1/2 and 1; see (4.35a) and (4.37a). The
mean flux Q̃B is therefore provided by (4.22a) as the weighted average of these two
values:

lim
l→∞

Q̃B = 1−
φ

2
. (4.41)

The mean shear S̃B is also given as a weighted average. Making use of (4.35b) and
(4.37b) we obtain from (4.22b)

lim
l→∞

S̃B = φ. (4.42)

5. Perpendicular translation
With the form of the longitudinal flow provided in terms of well-defined

cell problems, we now proceed to the analysis of the three flow subproblems
corresponding to perpendicular translation, parallel translation and rotation, as
specified in condition (3.11). We start in this section with the problem of perpendicular
translation, with the goal of calculating F⊥.

5.1. Integral mass balance
We start with the evaluation of P. While this may be accomplished using the
continuity equation (3.5), it is more convenient to employ instead the integral mass
balance at O(h5/2). Consider the volume of fluid within the unit cell that is bounded
between the plane X = 0 and an arbitrary plane parallel to it, say X = X′. Using
boundary condition (3.11a) and recalling that U is an even function of X, we find∫ l

0
dZ
∫ H(X′)

0
dY U(X′, Y, Z)=−lX′, (5.1)

where the right-hand side accounts for the perpendicular motion of the cylinder;
see (3.11a). Substituting (4.2) and making use of definitions (4.2) and (4.8) we
obtain, upon making use of the arbitrariness of X′,

dP
dX
=

X
QP(H(X), l, φ)

. (5.2)

Since H(X) is an even function, we find that dP/dX is an odd function of X – as
expected. In what follows, no further integration of dP/dX is required.

5.2. Resistance
The leading-order resistance is due to the large pressure distribution in the gap. The
associated coefficient (see (2.1) and (3.13)) is accordingly given by

F⊥ =−
∫
∞

−∞

P dX. (5.3)
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Integration by parts gives

F⊥ =− [XP]∞
−∞
+

∫
∞

−∞

X
dP
dX

dX. (5.4)

Note that substitution of the asymptotic form (4.30) into (5.2) implies that dP/dX
decays as X−5 for X→±∞; conditions (3.12) thus necessitate that P decays there
as X−4, implying in turn that the boundary terms in (5.4) trivially vanish. Making use
of (5.2) and noting that H(X) is an even function, we then obtain

F⊥ = 2
∫
∞

0

X2

QP(H(X), l, φ)
dX, (5.5)

or, upon changing to the integration variable H=H(X),

F⊥ = 23/2
∫
∞

1

√
H− 1

QP(H, l, φ)
dH. (5.6)

Last, substituting transformation (4.15a) yields F⊥ as a nonlinear functional of the
standard-cell flux,

F⊥ = 23/2
∫
∞

1

√
H− 1

H3Q̃P(l/H, φ)
dH. (5.7)

5.3. Limiting values
Several approximations readily follow. For φ→ 1, substitution of (4.25a) gives the
familiar scaled drag on a cylinder that approaches a homogeneous solid wall (Jeffrey
& Onishi 1981),

lim
φ→1

F⊥ = 3π
√

2. (5.8)

For φ→ 0 substitution of (4.27) gives

lim
φ→0

F⊥ =
3π
√

2
4

, (5.9)

namely the scaled drag on a cylinder that approaches a free surface (Kaynan &
Yariv 2017). For small l we may employ approximation (4.29a) throughout the entire
integration range in (5.7), obtaining

lim
l→0

F⊥ =π
√

2. (5.10)

As with their underlying limits (4.27) and (4.29a), the limits (5.9) and (5.10) do not
commute. Following the discussion in § 4, the limit (5.10) holds for l� 1/ln(1/φ),
while (5.9) holds for φ � exp(−1/l). An improved small-l approximation may be
obtained if the compound surface is represented via an effective Navier-slip condition.
This procedure is described in appendix B.

For large l we may again use (4.32) throughout the entire integration range: while it
breaks down when H becomes comparable to l, the integrand in (5.7) is then already
small because of the remaining H−5/2 factor. We accordingly obtain

lim
l→∞

F⊥ =
3π
√

2
4− 3φ

. (5.11)
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FIGURE 3. (Colour online) Variation with l of the scaled drag F⊥ for the indicated
values of φ. The solid curves depict the exact variation, as obtained from (5.7). The
dashed line displays the corresponding drag value (5.9), which corresponds to translation
perpendicular to a free surface, while the dotted lines portray the respective small- and
large-l approximations (5.10) and (5.11). Also shown (thin solid curves) are the Navier-slip
approximations, obtained using (B 4) and (B 5).

5.4. Arbitrary values of l and φ

To evaluate F⊥ for arbitrary values of l and φ, we need to plug into (5.7) the entire
l variation of the standard-cell flux Q̃P (for the same φ value). This variation is
provided numerically by our Fourier-series solution of the standard-cell problem,
which is described in appendix C. The resulting variation of F⊥ with l is shown
in figure 3, where the approach of F⊥ to the diametric limits (5.10) and (5.11) is
evident. Also shown are the respective coefficients obtained using expressions (B 4)
and (B 5) of the Navier-slip approach, detailed in appendix B. While these coefficients
provide improved approximations at small l, they fail at large l where they approach
the small-φ limit (5.9) rather than the Hele-shaw limit (5.11).

6. Parallel translation
6.1. Integral mass balance

For parallel translation, it follows from (3.11b) that the z-averaged flux through the
gap is constant (i.e. independent of x) in a co-moving reference frame. Denoting this
flux by F , the integral mass balance in the gap reads

l−1
∫ l

0
dZ
∫ H(X)

0
dY (U(X, Y, Z)− 1)=F . (6.1)

Substituting the template (4.3) thus gives

dP
dX
=

QB(H(X), l, φ)−H(X)−F
QP(H(X), l, φ)

; (6.2)
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as expected, this expression is even in X. To obtain the flux F , we write the matching
conditions (3.12) in the form ∫

∞

0

dP
dX

dX = 0, (6.3)

where we have accounted for the fact that dP/dX is an even function of X. Changing
to the integration variable H = H(X) and making use of transformations (4.15) and
(4.23) thus gives

F =
(∫

∞

1

dH
H3
√
H− 1 Q̃P(l/H, φ)

)−1 ∫ ∞
1

Q̃B(l/H, φ)− 1

H2
√
H− 1 Q̃P(l/H, φ)

dH. (6.4)

With F determined, the derivative dP/dX is now considered as known.

6.2. Resistance
The averaged coupling coefficient associated with parallel translation (see (2.2b) and
(3.14b)) is given by

C= l−1
∫ l

0
dZ
∫
∞

−∞

dX
∂U
∂Y

∣∣∣∣
Y=H(X)

. (6.5)

Substituting (4.3) and making use of the symmetry of dP/dX gives

C=−2
∫
∞

0
dX

dP
dX

SP(H(X), l, φ)+ 2
∫
∞

0
dX SB(H(X), l, φ). (6.6)

Substituting (6.2) and changing to the integration variable H = H(X) yields, upon
making use of transformations (4.15) and (4.23),

C=−21/2
∫
∞

1

S̃P(l/H, φ)(HQ̃B(l/H, φ)−H−F)
H2
√
H− 1 Q̃P(l/H, φ)

dH+ 21/2
∫
∞

1

S̃B(l/H, φ)
H
√
H− 1

dH.

(6.7)
Consider now the resistance coefficient F‖ (see (2.2a) and (3.14a)). In view of (3.2),

it is given by

F‖ = l−1
∫ l

0
dZ
∫
∞

−∞

dX

{
PX +

∂U
∂Y

∣∣∣∣
Y=H(X)

}
. (6.8)

Since P is independent of Z, this coefficient is related to C through

F‖ =
∫
∞

−∞

PX dX +C, (6.9)

or, using integration by parts,

F‖ =
1
2

[
X2P

]∞
−∞
−

1
2

∫
∞

−∞

dP
dX

X2 dX +C. (6.10)
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Making use of (4.30) and (4.39), we find from (6.2) that dP/dX decays as X−4 at
large |X|, whereby P decays there as X−3. The boundary terms in (6.10) accordingly
vanish. With dP/dX being an even function of X, we thus obtain

F‖ =−
∫
∞

0

dP
dX

X2 dX +C. (6.11)

Substituting (6.2) and changing to the integration variable H = H(X) yields, upon
making use of transformations (4.15) and (4.23),

F‖ =−21/2
∫
∞

1

√
H− 1(HQ̃B(l/H, φ)−H−F)

H3Q̃P(l/H, φ)
dH+C. (6.12)

With C already determined in (6.5), this completes the solution.

6.3. Limiting values
In the case of motion parallel to a no-slip wall, where φ→ 1, substitution into (6.4)
of (4.25a) and (4.35) gives F = 0. We then find from (6.7) and (6.12) that

lim
φ→1

C= 0, lim
φ→1

F‖ = 2
√

2π, (6.13a,b)

in agreement with the classical results of Jeffrey & Onishi (1981). For motion parallel
to a free surface, where φ→ 0, substitution into (6.4) of (4.27) and (4.37a) gives F =
−2/3. We then find from (6.7) and (6.12) that both C and F‖ vanish, in agreement
with Kaynan & Yariv (2017).

As already explained, the limit of small l coincides at leading order with that of a
no-slip wall, whereby

lim
l→0

C= 0, lim
l→0

F‖ = 2
√

2π. (6.14a,b)

For large l, substituting into (6.4) of (4.32)–(4.33) and (4.41)–(4.42) yields

lim
l→∞

F =−
2φ
3
. (6.15)

From (6.7) and (6.12) we then obtain

lim
l→∞

C=
2π
√

2φ(1− φ)
4− 3φ

, lim
l→∞

F‖ =
2π
√

2φ(2− φ)
4− 3φ

. (6.16a,b)

6.4. Arbitrary values of l and φ

To evaluate C and F‖ for arbitrary values of l and φ, we plug the entire l variation
of the standard-cell quantities (Q̃P, S̃P, Q̃B and S̃B), as obtained using Fourier-series
expansions, into (6.4), (6.7) and (6.12). The results are shown in figures 4 and 5.
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FIGURE 4. (Colour online) Variation with l of the scaled coupling coefficient C for the
indicated values of φ. The solid curves depict the exact variation, as obtained from (6.7).
The dotted line portrays the large-l approximation (6.16a). Also shown (thin solid curves)
are the Navier-slip approximations, obtained using (B 4) and (B 7).
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FIGURE 5. (Colour online) Variation with l of the scaled drag F‖ for the indicated values
of φ. The solid curves depict the exact variation, as obtained from (6.12). The dotted lines
portray the small- and large-l approximations (6.14b) and (6.16b). Also shown (thin solid
curves) are the Navier-slip approximations, obtained using (B 4) and (B 6).

7. Rotation
7.1. Integral mass balance

In the case of rotation about the cylinder axis, it is evident that the z-averaged flux
through the gap is constant in the x, y, z reference frame. Denoting this flux by F ,
integral mass conservation now reads (cf. (6.1))

l−1
∫ l

0
dZ
∫ H(X)

0
dYU(X, Y, Z)=F . (7.1)
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Substituting (4.3) yields
dP
dX
=

QB(H(X), l, φ)−F
QP(H(X), l, φ)

, (7.2)

which, as expected, is even in X.
As in the case of parallel translation, the flux F is determined using (6.3). Changing

to the integration variable H=H(X) and making use of the transformations (4.15) and
(4.23) gives here (cf. (6.4))

F =
(∫

∞

1

dH
H3
√
H− 1 Q̃P(l/H, φ)

)−1 ∫ ∞
1

Q̃B(l/H, φ) dH
H2
√
H− 1 Q̃P(l/H, φ)

. (7.3)

7.2. Resistance
The averaged resistance coefficient T (see (2.2b) and (3.14c)) is

T = l−1
∫ l

0
dZ
∫
∞

−∞

dX
∂U
∂Y

∣∣∣∣
Y=H(X)

. (7.4)

(This expression is the same as (6.5), but now with the velocity component U
appropriate to the rotation problem.) Substituting (4.3) and making use of the
symmetry of dP/dX yields

T =−2
∫
∞

0
dX

dP
dX

SP(H(X), l, φ)+ 2
∫
∞

0
dX SB(H(X), l, φ), (7.5)

namely the same expression as (6.6), but now with dP/dX given by (7.2). Substituting
(7.2) and changing to the integration variable H=H(X) yields, upon making use of
transformations (4.15) and (4.23),

T =−21/2
∫
∞

1

(HQ̃B(l/H, φ)−F)S̃P(l/H, φ)
Q̃P(l/H, φ)H2

√
H− 1

dH+ 21/2
∫
∞

1

S̃B(l/H, φ)
H
√
H− 1

dH. (7.6)

7.3. Limiting values
In the case of rotation about a solid boundary, where φ= 1, substitution into (7.3) of
(4.25a) and (4.35a) gives F = 2/3. We then find from (7.6) that

lim
φ→1

T = 2
√

2π, (7.7)

in agreement with the classical results of Jeffrey & Onishi (1981). In the case of
rotation about a free surface, where φ= 0, substitution into (7.3) of (4.27) and (4.37a)
gives F = 4/3. We then find from (7.6) that

lim
φ→0

T =π
√

2, (7.8)

in agreement with Kaynan & Yariv (2017).
The small-l limit coincides with that of a no-slip wall, namely

lim
l→0

T = 2
√

2π. (7.9)

This limit does not commute with (7.8). For large l, substituting into (7.3) of (4.32)–
(4.33) and (4.41)–(4.42) yields liml→∞ F = 2(2− φ)/3. We then find from (7.6) that

lim
l→∞

T =
2π
√

2(2− φ2)

4− 3φ
. (7.10)
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FIGURE 6. (Colour online) Variation with l of the scaled torque T for the indicated values
of φ. The solid curves depict the exact variation, as obtained from (7.6). The dashed line
displays the drag value (7.8) which corresponds to rotation about a free surface, while the
dotted lines portray the small- and large-l approximations (7.9) and (7.10). Also shown
(thin solid curves) are the Navier-slip approximations, obtained using (B 4) and (B 8).

7.4. Arbitrary values of l and φ
To evaluate T for arbitrary values of l and φ, we plug the entire l variation of the
standard-cell quantities (Q̃P, S̃P, Q̃B and S̃B) into (7.3) and (7.6). The results are
shown in figure 6.

8. Concluding remarks
We have studied the lubrication interaction between a solid cylinder, moving

and rotating arbitrarily in the plane normal to its axis, and a nearby textured
(superhydrophobic) surface. Starting from a first-principles microscale formulation,
we have systematically developed an asymptotically equivalent macroscale model
which, in turn, has allowed us to calculate the hydrodynamic loads exerted on
the cylinder. The (slowly varying) lumped parameters appearing in the macroscale
description are obtained by solving two auxiliary cell problems, both involving a
straight channel where the upper boundary is solid and the lower one is textured.
In the first cell problem, the flow is driven by a unit pressure gradient, with the
boundaries of the channel fixed. In the second cell problem, there is no pressure
gradient; rather, the flow is generated by parallel motion of the upper boundary with
unit speed.

It turns out that the case of squeeze flow due to perpendicular particle motion
is special in that it is affected only by the first, pressure-driven, cell problem. In
particular, the drag on the cylinder in that case is given by a quadrature of a nonlinear
function of a single lumped parameter: the averaged cross-sectional volumetric flux in
the pressure-driven cell problem. We note that it is possible to mathematically recast
the latter flux as the effective slip length used in the lubrication models discussed
in the introduction. In contrast, the case of general rigid-body motion is affected
by both the pressure-driven and boundary-driven cell problems. In fact, we have
seen that calculating the hydrodynamic loads in the cases of parallel translation and
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rotation requires knowledge of two lumped parameters for each of the cell problems:
in addition to the averaged flux, one requires an averaged shear stress. Thus, the
heuristic effective-slip models used to study squeeze-flow interactions cannot be
applied to lubrication interactions involving parallel motion.

It is useful to recapitulate the different approaches used to model lubrication
interactions between solid bodies moving relative to nearby textured surfaces. The
Navier-slip models, where the slip length is an intrinsic surface property, apply for
all modes of relative motions, but are restricted to gaps that are large compared to
the texture period. The effective-slip model, where the slip length is related to the
mean flux in a pressure-driven cell problem, applies in principle to both large and
small gaps, but is limited to perpendicular motion between the two surfaces. The
present approach has none of the above limitations and demonstrates a systematic
framework where the appropriate macroscale model is developed from first principles
using asymptotic tools.

Our analysis shows that, when the clearance between the cylinder and the textured
surface is comparable to the period of the textured surface, the dependences of
the hydrodynamic loads on the clearance exhibit none of the classical power laws
familiar from classical lubrication theory. We illustrate this feature in appendix D
by considering the unsteady mobility problem of a cylinder sedimenting towards a
textured surface under the action of a uniform force field. In light of the above, we
find a non-power-law dependence of the clearance on time, qualitatively similar to the
observations of Chastel & Mongruel (2016) in the case of a solid sphere sedimenting
towards a wetted textured substrate.

In the configuration studied in this part, where the cylinder axis is perpendicular
to the grooves, the geometry is periodic along the direction of that axis, on which
the microstructure varies rapidly. The three modes of rigid-body motion considered
herein are consistent with that orthogonality. The inherent periodicity has allowed for
a natural separation of the fast variation associated with the patterned surface from the
slow variation of the lubricating flow field associated with the cylinder curvature. In
the complementary configuration, where the cylinder axis is parallel to the grooves,
the geometry is no longer periodic. As a consequence, the fast and slow variations
take place along the same direction, hence the above-mentioned separation no longer
applies. Nonetheless, it is evident that an analogous separation can be achieved using
a systematic combination of multiple-scale theory with a lubrication approximation.
This will be the subject of the second part in this sequence.
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Appendix A. Stokes-flow reciprocity

Consider a rigid particle of arbitrary shape that undergoes a rigid-body motion
within a viscous liquid (viscosity µ). The particle motion is completely described
by the rectilinear velocity s of an arbitrary material point O, fixed in the body,
and the angular velocity ω. The linearity of the Stokes equations implies that the
hydrodynamic force and torque (about O) are of the respective forms

−µ(F · s+ D ·ω), −µ(C · s+ T ·ω), (A 1a,b)
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where the resistance dyadics appearing therein are intrinsic geometric properties of the
particle, dependent only on its size and shape. Happel & Brenner (1965) proved that
the coupling tensors C and D are related as

D = C†. (A 2)

The proof given by Happel & Brenner (1965) makes use of the assumption that the
particle moves in an unbounded fluid domain. We here extend their proof to the case
where the particle moves in the vicinity of a compound planar surface consisting of
both no-slip and shear-free patches.

The velocity field v is governed by the continuity and Stokes equations, the no-slip
condition on the particle,

v = s+ω× x, (A 3)

and the condition of far-field decay. In addition, v satisfies homogeneous conditions
on the adjacent surface, which take the form of either the no-slip condition,

v = 0, (A 4)

or the impermeability and shear-free conditions,

n̂ · v = 0, n̂ · σ · t̂= 0. (A 5a,b)

Here n̂ is a unit vector normal to the surface (say, pointing into the liquid), t̂ may
be any unit vector that is parallel to the surface at the point considered, and σ is the
stress field.

In what follows we exploit linearity and decompose v as v′ + v′′, with the stress
field respectively decomposed as σ = σ ′ + σ ′′. Both (v′, σ ′) and (v′′, σ ′′) satisfy
the homogeneous conditions and differential equations that govern the original flow
(v, σ ). They differ in the conditions satisfied at the particle surface, where (A 3) is
decomposed as

v′ = s, v′′ =ω× x. (A 6)

The starting point is Lorentz’s reciprocal theorem (Happel & Brenner 1965), applied
to the subfields (v′, σ ′) and (v′′, σ ′′),∫

dA n̂ · σ ′′ · v′ =

∫
dA n̂ · σ ′ · v′′. (A 7)

Here, the integration domain consists of both the particle boundary and the compound
surface, on which the unit normal n̂ is also pointing into the liquid. (Assuming
sufficient decay rate, the contribution from the fluid boundary at ‘infinity’ trivially
vanishes.)

Since both v′ and v′′ vanish at the no-slip patches, these regions do not contribute to
the integrals appearing in (A 7). Consider now the shear-free patches. Since v′ satisfies
there the impermeability condition (A 5a), it may be written as t̂ |v′|. Making use of
the shear-free condition (A 5b), we then find that these patches do not contribute to
the integral appearing on the left-hand side of (A 7). Similar arguments apply to the
integral appearing on the right-hand side of (A 7). We conclude that (A 7) applies with
the integration domain being the particle boundary. At this stage we can simply follow
the proof as outlined by Happel & Brenner (1965).
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Consider now the problem formulated in § 2, involving an infinite circular cylinder
of radius a near a periodic array of alternating no-slip and shear-free strips. When
the cylinder axis is perpendicular to these stripes, the geometry is periodic, and this
periodicity is consistent with the rigid-body motion

s= êxs‖ + êys⊥, ω= êzω, (A 8a,b)

considered in § 2. The linearity of the Stokes equations implies that expressions (A 1)
still hold, provided they are now understood to represent respectively the force and
torque (about the cylinder axis) per unit length of the cylinder axis, averaged over a
single period of the superhydrophobic surface. The extension of the preceding proof
to this geometry is straightforward and need not be repeated; we therefore conclude
that (A 2) applies here as well.

Making use of the Cartesian coordinates of § 2, the only fixed vectors provided by
the geometry considered in that section are êy, the unit vector perpendicular to the
superhydrophobic surface, and êz, the unit vector in the periodicity direction. Since the
averaged force and torque are necessarily independent of the latter, the true tensors F
and T must therefore adopt the respective forms

F = êyêy f⊥ + (I − êyêy) f ‖, T = a2
[êyêyt⊥ + (I − êyêy)t‖], (A 9a,b)

while the pseudo-tensor C is of the form

C = ε · êy ac, (A 10)

in which ε is the isotropic triadic. (The introduction of a into expressions (A 9) and
(A 10) renders the pertinent resistance coefficients dimensionless.) Substitution of
(A 8), (A 9) and (A 10) into (A 1) and making use of (A 2) readily yields (2.1) and
(2.2), where we simply write t instead of t‖.

Appendix B. Navier-slip approach
A common methodology for handling microstructured surfaces involves replacing

the exact dynamic conditions (2.7) and (2.8) at y = 0 by the coarse-grained Navier
conditions,

u= b‖
∂u
∂z
, w= b⊥

∂w
∂z
, (B 1a,b)

wherein b‖ and b⊥ are the respective slip lengths (normalised by a) appropriate
for an imposed shear flow parallel and perpendicular to the grooves. In the present
configuration of flat menisci, the parallel and perpendicular slip coefficients have been
respectively obtained by Philip (1972a) as b and b/2, wherein

b=
2lh
π

ln sec
π(1− φ)

2
. (B 2)

Since w trivially vanishes here, conditions (B 1) are equivalent to those pertinent for
an isotropic surface of slip length b.

In the inner region, where the z-coordinate is rescaled by h (see (3.1c)), the exact
conditions (3.8) and (3.9) are accordingly replaced by the Robin condition

U = B
∂U
∂Z

at Z = 0, (B 3)
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where

B=
2l
π

ln sec
π(1− φ)

2
. (B 4)

The resulting near-contact problem of a cylinder that moves in the vicinity of an
isotropic slippery surface, described by conditions (3.7) and (B 3), has been solved by
Kaynan & Yariv (2017), who provide the following expressions for the leading-order
drag coefficients (defined in (3.13) and (3.14)):

F⊥ =
3π

4
√

2B2
(3+ 6B+ 2B2

− 3
√

1+ 4B), (B 5)

F‖ = 4
√

2π
(1+ 2B+ 2B2)

√
1+ 4B− 1− 4B

√
1+ 4B− 1− 2B+ 10B2 + 8B3

, (B 6)

C=−2
√

2π
1+ 6B+ 8B2

− (1+ 4B+ 2B2)
√

1+ 4B
1+ 2B− 10B2 − 8B3 −

√
1+ 4B

, (B 7)

T = 2
√

2π(2+ B)
4B2
− 3B− 1+ (B+ 1)

√
1+ 4B

8B3 + 10B2 − 2B− 1+
√

1+ 4B
. (B 8)

With B being proportional to l, formulae (B 5)–(B 8) represent, upon an appropriate
contraction, the variation of the drag coefficients with l for any value of φ. Now,
according to the Navier model (B 3), the large-B limit represents an approach to a
free surface. It is clear, however, that the very concept of a slip length breaks down
in the large-l limit. It follows that the above heuristic approach fails to predict the
correct hydrodynamic resistance in that limit. On the other hand, that approach appears
plausible in the small-l limit, where the flow in the vicinity of the compound surface
Y = 0 corresponds to that of a semi-bounded homogeneous shear about that surface
(Kirk, Hodes & Papageorgiou 2017) – the very situation for which an intrinsic Navier
condition is approximately applicable.

Appendix C. Semi-analytic solution of the standard-cell problems
C.1. Pressure-driven cell problem

The standard-cell flow ŨP(Y, Z) is governed by (4.4)–(4.7), with H set to unity. The
quantities of interest are the corresponding average flux Q̃P (see (4.8)) and shear S̃P

(see (4.9)). It is convenient to solve the ‘flipped’ problem, where the no-slip boundary
is at Y ′ = 0 and the compound boundary is at Y ′ = 1, in which Y ′ = 1− Y .

Defining

ŨP =−
Y ′2

2
+Λ, (C 1)

we find that Λ is governed by the following:

(i) Laplace’s equation,

∂2Λ

∂Y ′2
+
∂2Λ

∂Z2
= 0 for 0< Z < l, 0< Y ′ < 1; (C 2)

(ii) the Dirichlet condition,
Λ= 0 at Y ′ = 0; (C 3)
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(iii) the mixed conditions at Y ′ = 1,

Λ=
1
2

for 0< Z <φl,
∂Λ

∂Y ′
= 1 for φl< Z < l; (C 4a,b)

and (iv) the symmetry conditions,

∂Λ

∂Z
= 0 at Z = 0, l. (C 5)

Once Λ is determined, the flux and mean shear are given by (cf. (4.14))

Q̃P = l−1
∫ l

0
dZ
∫ 1

0
dY ′Λ(Y ′, Z)−

1
6
, S̃P =−l−1

∫ l

0
dZ

∂Λ

∂Y ′

∣∣∣∣
Y ′=0

. (C 6a,b)

The most general solution of (C 2) which satisfies the homogeneous conditions (C 3)
and (C 5) is given by the Fourier series

Λ= A0Y ′ +
∞∑

n=1

An sinh knY ′ cos knZ, (C 7)

wherein kn = nπ/l. Substitution into (C 6) gives Q̃P = A0/2 − 1/6 and S̃P = −A0,
respectively. To determine Q̃P and S̃P we need to calculate the Fourier coefficients
{An}

∞

n=0 using the inhomogeneous conditions (C 4). Substitution of (C 7) yields, upon
affecting the change of variables Z = lζ , the dual series equations

A0 +

∞∑
n=1

An sinh kn cos nπζ =
1
2

for 0< ζ < φ, (C 8a)

A0 +

∞∑
n=1

knAn cosh kn cos nπζ = 1 for φ < ζ < 1. (C 8b)

By forming the inner product of these equations with cos mπζ (m= 0, 1, 2, . . .) on
the interval ζ ∈ [0, 1], we obtain an infinite linear system of equations governing the
unknowns {Am}

∞

m=0. Owing to the presence of the hyperbolic functions, the coefficients
multiplying these unknowns diverge exponentially fast as m increases. It is therefore
convenient to employ the scaled coefficients Ãn=An cosh kn (see Lauga & Stone 2003).
These are readily obtained using controlled truncation.

C.2. Boundary-driven cell problem

Consider next the boundary-driven standard-cell flow ŨB(Y, Z), with the goal of
calculating the average properties Q̃B and S̃B. Defining

ŨB(Y, Z)= 1− Y ′ +Λ(Y ′, Z), (C 9)

where Y ′ = 1− Y , we find that Λ is governed by the following:
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(i) Laplace’s equation,

∂2Λ

∂Y ′2
+
∂2Λ

∂Z2
= 0 for 0< Z < l, 0< Y ′ < 1; (C 10)

(ii) the Dirichlet condition,
Λ= 0 at Y ′ = 0; (C 11)

(iii) the mixed conditions at Y ′ = 1,

Λ= 0 for 0< Z <φl,
∂Λ

∂Y ′
= 1 for φl< Z < l; (C 12a,b)

and (iv) the symmetry conditions,

∂Λ

∂Z
= 0 at Z = 0, l. (C 13)

Once Λ is determined, the flux and mean shear are given by

Q̃B = l−1
∫ l

0
dZ
∫ 1

0
dY ′Λ(Y ′, Z)+

1
2
, S̃B = 1− l−1

∫ l

0
dZ

∂Λ

∂Y ′

∣∣∣∣
Y ′=0

. (C 14a,b)

The solution for Λ is again of the form (C 7), where now the Fourier coefficients
satisfy the dual series equations

A0 +

∞∑
n=1

An sinh kn cos nπζ = 0 for 0< ζ < φ, (C 15a)

A0 +

∞∑
n=1

knAn cosh kn cos nπζ = 1 for φ < ζ < 1. (C 15b)

Once solved, following the method described for the pressure-driven cell problem,
the average flux and shear are obtained as Q̃B = A0/2+ 1/2 and S̃B = 1− A0.

Appendix D. Sedimentation: breakdown of h−3/2 drag scaling
In our dimensionless notation, where length variables are normalised by a, the

period of the microstructure has been denoted 2lh, where h is the instantaneous
clearance. Since the period is a fixed quantity, this notation necessitates that l varies
with time when considering an unsteady process for which h diminishes with time.
In that case it is convenient to define the period as 2λh0, where h0 is the value of
h at zero time. The scaled period λ is independent of time, while the instantaneous
value of l is given by

l= λh0/h. (D 1)

Recall also that, in our dimensionless notation, where forces per unit length are
normalised by µs⊥h−1/2, the hydrodynamic drag on the cylinder (per unit length in
the z-direction) is, at leading order, h−1F⊥(l, φ). Making use of (D 1), we find that
the dimensional drag (per unit length) is

µs⊥
F⊥(λh0/h, φ)

h3/2
. (D 2)
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Owing to the dependence of F⊥ upon h, the drag no longer possesses the classical
h−3/2 power law.

We illustrate the ramifications of this unconventional feature by considering a
sedimentation process, assuming a constant (e.g. gravity) external force that pushes
the cylinder towards the surface. The dimensional magnitude of the external force (per
unit length) is denoted by µs0h−3/2

0 . Comparing to (D 2) we note that s0 represents
a characteristic settling speed at time zero; a natural time scale is then provided
by ah0/s0. Using that scale to define the dimensionless time τ , the instantaneous
dimensional speed s⊥ may be related to the time variation of h:

s⊥ =
s0

h0

dh
dτ
. (D 3)

Substituting into (D 2), the dimensional drag (per unit length) is then given by

µs0
F⊥(λh0/h, φ)

h0h3/2

dh
dτ
. (D 4)

A force balance between the above and the external force yields the following ordinary
differential equation governing h/h0:

F⊥(λh0/h, φ)
(h/h0)3/2

d(h/h0)

dτ
=−1. (D 5)

The time variation of h/h0 is independent of h0, depending only upon λ and φ.
Integration then gives ∫ 1

h/h0

F⊥(λ/η, φ)
η3/2

dη= τ . (D 6)

For an approach to a homogeneous solid or free surface, we employ the respective
expressions (5.8) and (5.9). In these cases closed-form integration gives

h/h0 = (1+ τ/6π
√

2)−2 (D 7)

for an approach to a solid surface and

h/h0 = (1+ 2τ/3π
√

2)−2 (D 8)

for an approach to a free surface. In both cases h/h0 scales as τ−2 for large τ . This
scaling is also eventually attained in the general case, since as τ →∞ the left-hand
side of (D 6) must be dominated by the lower limit of the integration interval,
implying that h/h0→ 0. With η being small near that lower limit, the relevant drag
is that pertaining to large l. Making use of (5.11) we therefore obtain

h/h0 ∼
72π2

(4− 3φ)2
τ−2 for τ→∞. (D 9)

In figure 7 we show the time evolution of h/h0 for φ = 0.5 and λ = 1, obtained
by solving (D 6) using (5.7). At sufficiently large times the scaled period l becomes
large whereby F⊥ is approximately given by (5.11); the time variation of h/h0 thus
approaches the power law (D 9). By that time, h/h0 is of order 10−3.
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FIGURE 7. (Colour online) Variation with τ of h/h0 for λ= 1. The solid curve depicts
the solution of (D 6) for φ = 0.5. The two dashed curves represent the limits φ = 1 and
φ = 0, respectively, given by (D 7) and (D 8).
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FIGURE 8. (Colour online) Same as figure 7, but for λ= 0.1.

More enlightening is the comparable evolution for the smaller period λ = 0.1,
described in figure 8. With λ being small, F⊥ is approximately given by the small-l
approximation (5.11) for moderate h/h0; the time evolution is accordingly identical
to that of a cylinder approaching a homogeneous solid surface, namely (D 7). Only
when h/h0 becomes comparable to λ does the h−3/2 drag scaling break down and the
time evolution ‘detaches’ from approximation (D 7). At sufficiently large times, the
scaled period l eventually becomes large and the time variation of h/h0 approaches
the power law (D 9). Corresponding to these trends we see that the curve representing
the time variation of h/h0 with τ is initially concave, but eventually becomes convex.
This is in contrast to the limits of solid and free surface, where the simple relations
(D 7) and (D 8) necessitate that the curve is concave throughout on a log–log scale.
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Figure 8 suggests that, by the time asymptotic regime (D 9) is attained, h/h0 is of
order 10−5. Practically speaking, this means that sedimentation over a small-periodicity
surface (i.e. with the period being small compared to the initial clearance) will be
affected by short-range (e.g. van der Waals) interactions with the surface long before
the power law (D 9) is approached. Such sedimentation processes are hence crucially
affected by the breakdown of the h−3/2 scaling law for the drag.
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