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Abstract
This paper presents a study of the effects of the durability and level of energy storage technology on energy man-
agement strategies and the performance of hybrid electric turboprops. The results highlight the key role of battery
energy density on the durability of the battery pack and the viability of the concept of hybrid electric aircraft.
Additionally, the trade-off between zero-day environmental compatibility and battery lifetime is identified, caused
by the size of the pack. The effective energy density would decrease with the aging of the cells, leaving a signif-
icant inert mass and increasing fuel consumption. Optimal energy management strategies are suggested in light
of this new information. Higher specific energy of the pack would mitigate this aspect, along with a reduction in
fuel consumption and NOx emissions. Indeed, the improvement of environmental compatibility was found to be
nonlinear with a positive rate, suggesting high returns in investing in great improvements in energy density over
a gradual increase. This result relates to the results of the statistical technological forecast presented in this study,
which, without an increase in funding, predicts the availability of the specific energy required to match the fuel-only
baseline in the 2040–2050 decade.

Nomenclature
Ct a battery cell equivalent capacitance (Farad)
DOH degree of hybridisation
DOD battery depth of discharge
Ecell energy capacity of the cell (Ah)
ebattery energy density of the battery pack (Wh/kg)
Emission total charge required to fly the mission (Ah)
Fflow gas turbine fuel flow (kg/s)
h degree of hybridisation (as defined in the EMS)
k pack-to-cell mass ratio
Icell current in the cell (A)
MTO take-off mass (kg)
Mf fuel mass (kg)
Mb battery pack mass (kg)
Nseries number of cells in series per bar
Nmodules number of modules in parallel in the pack
PB power required by the battery pack
PGT power required by the gas turbine
Psat minimum probability to satisfy a constraint
R0 cell internal resistance (Ohm)
Rt RC transient resistance (Ohm)
Ucell cell capacitance voltage (V)
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Vc RC transient resistance (Ohm)
VOC cell open-circuit voltage (V)
Vsys system nominal voltage (V)

Greek symbol
�DOH slope of the linear degree of hybridisation function
ηE efficiency of the electrical powertrain (propeller-to-battery)
ηGT efficiency of the thermal powertrain (propeller-to-gas turbine)
μDOH average degree of hybridisation of a linear function

1.0 Introduction
Since the beginning of the twentieth century, aeronautical research has been focused on reducing its
global footprint on the environment by reducing emissions. Recent advances in battery technology and
electrified ground vehicles have spurred research and investigation into the electrification of aircraft
propulsion. One domain of research consists of introducing electric power in synergy with internal com-
bustion engines in a hybrid propulsion system. The general idea is to maintain the internal combustion
engines in the ideal operating condition when flying in high power conditions [1]. Finding the correct
amount of electric power to achieve this ideal condition is the objective of the Energy Management
System (EMS).

Both the system parameters and the flight path contribute to the identification of the optimal EMS.
Many authors in the literature have explored the interaction between the flightpath and EMS, both in a
local optimisation and global optimisation fashion with a fixed hybrid electric (HE) propulsion system
configuration [2–4]. On the other hand, there has been little published work on the interaction between
the hybrid propulsion system and the optimal EMS for a design mission, such as the role of the EMS in
battery aging. Additionally, most authors assume a value of battery-specific energy without estimating
the likelihood it will be available in the selected entry-into-service year. Given that this parameter is
critical in the feasibility of HE aircraft, and currently there is a wide gap between the required technology
and the state-of-the-art, it is worth investigating a plausible timeframe of HE adoption starting from past
and future trends in cell energy density.

This paper attempts to address these two points through the application of a set-based design space
exploration framework, previously published by the authors [5]. Section 2 covers a brief overview of the
published literature related to the work presented in this study. Section 3 briefly describes the design
space framework, the technological estimation method, and all the details of the adopted aircraft model.
Details of the test case are presented in Section 4, while results are discussed in detail in Section 5. It
first presents a thorough analysis of the effects of battery energy density, aging, and EMS on the perfor-
mance of the aircraft, alongside a suggested definition of the EMS. Subsequently, the selected values of
specific energy are evaluated in light of their plausible year of technological availability, according to
the statistical analysis. Section 6 summarises the learned aspects with suggestions for future work.

2.0 Review of related work
The electrification of aircraft propulsion has been proposed as a potential solution to reduce the impact
of aviation on the environment and its contribution to climate change. Hybrid-electric (HE) propulsion
is one of the technical solutions investigated to achieve this goal. Two complementary sources of energy
are used in synergy, low-efficiency but high-density fuel with high-efficiency and low-density electricity.
These can be arranged as parallel, i.e. both provide direct power to the propeller shaft, or in series,
where the gas turbine is linked to the propeller through a generator. Although the parallel configuration
is simpler to implement, the mechanical link would alter the operating condition of the gas turbine,
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Table 1. Battery pack energy density values adopted in literature studies of hybrid-electric
regional aircraft

epack (Wh/kg)

EIS (yr) 250–350 500–600 750 1,000 1,500
2025−2030 [7, 19, 20]
2030−2040 [15, 21, 22] [9, 11, 13] [9, 11, 12] [9, 12, 14] [12]
2040−2050 [5, 21] [21]
Not specified [20, 23]

reducing its surge margin [6]. On the contrary, the series layout decouples the gas turbine from the
propulsors, enabling exotic configurations such as boundary layer ingestion (BLI). However, the lower
efficiency of the power chain and its weight can offset the performance benefits of maintaining the gas
turbine in its ideal operating condition [7]. The proposals for HE aircraft range from general aviation
[8], regional and commuter turboprops [9], to 180-passenger single aisle airliners [10]. Nonetheless, the
practical adoption of HE propulsion is limited by the technological development of the battery pack.

Table 1 summarises the adopted pack energy density value for several published works on regional
hybrid-electric turboprop aircraft. These studies often include an expected entry into service (EIS) year
that ranges from 2030 to 2040, with the most widely adopted figure being 2035 [11–15]. The value
adopted for the epack ranges from 500 to 1,500Wh/kg. Both the specific energy and the short time frame
are very optimistic. The current state of the art for cell technology is reported at 260Wh/kg [16], which
is effectively eroded by the packaging material and accessories of the battery pack by at least a factor
of 33% [17]. Furthermore, no provisions are present in the FAR-25/CS-25 regulations for HE aircraft.
Therefore, a 10-year development and certification timeline could be too optimistic, as regulatory bodies
would require more time to draft the relevant regulations [18].

Another point of note is the energy management strategy (EMS) adopted in these studies. Most adopt
one constant value of the degree of hybridisation (DOH) either for the entire mission [9, 12], or different
constant DOHs for each mission segment [11, 19]. Hoelzen et al. [14] proposed a different approach to
EMS, where the electrical energy would be supplied to boost a downsized gas turbine. This strategy is
named ‘power shaving’ and has been adopted to boost cruise in studies published by Spierling and Lents
[15] and Cinar et al. [22]. Its advantage is in keeping the gas turbine in its ideal range and in sizing the
battery pack only for boosting energy, rather than for the entire mission. Therefore, the weight penalty
due to the low specific energy of the cells is reduced. Decerio and Hall [20] also suggested to use electric
power to boost climb. In a previously published study, the authors suggested that climb and cruise were
the mission phases that provided the main contribution to the reduction of fuel consumption and NOx

emissions when hybridised [5].
Only two of the studies reported in Table 1 distinguish between the energy density of the cells and

the energy density of the packaged battery [15, 22]. Most of the publications adopted a conceptual
level of fidelity and focused on the reduction of CO2, fuel consumption and noise of the hybrid-electric
propulsion system. Hence, the detail of the battery pack behaviour was sacrificed for computational
speed, especially when comparing multiple configurations [7, 11, 13, 19]. As a consequence, none of
these studies takes into account the effects of battery pack aging on system performance.

In a real-world application, HE aircraft should be designed to guarantee its reduction in fuel con-
sumption and emissions for a reasonable operating time, to justify its development and acquisition cost.
Therefore, capturing the effects of aging in a conceptual design stage is fundamental. Clarke and Alonso
developed a model that includes both aging effects and thermal management [24]. When applied to an
all-electric commuter aircraft, the battery capacity would drop by 25% after one year of operation.
Similarly, when investigating an electric urban air mobility vehicle [25], the reduction was as high as
45%. This dramatic reduction in energy storage propagates in a reduced range and/or payload. In an HE
aircraft, instead, it increases fuel consumption to compensate for lost energy [26].
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The complexity of the design of an HE aircraft is caused by the uncertainty in its technological
requirements and the knowledge about the behaviour of the system. Recent frameworks applied in HE
designs focus more on simulation and optimisation, without evaluating the impact of technological
uncertainty [11, 27, 28]. The reason is due to the difficulty in predicting the value interval, as no hybrid
electric aircraft has yet reached production. This gap is highlighted in recent state-of-the-art reviews of
HE aircraft [29, 30] and is part of NASA Vision2040 plan [31].

Di Bianchi et al. [32] developed a framework employing probability distribution on technology
parameters and propagating them in an optimisation problem. The output data is processed and pre-
sented with the use of visual analytics tools to interactively explore the design space and build a portfolio
of options. Guenov et al. [33] adopted probability theory as a method to quantify the probability that
a requirement is satisfied. Margins would be adopted to increase the robustness of the requirement,
lowering its uncertainty. Wahler et al. [34] presented a methodology to estimate the probability that a
conceptual design that incorporates innovative technologies will be available in the future. The HE air-
craft design is framed as an optimisation problem to achieve the highest range possible under credibility
constraints, the probability that a technology is achievable by the specified EIS year. These are quan-
tified using probability density functions on relevant quantities such as battery energy density or drag
reduction from natural laminar flow aerofoils.

3.0 Methodology
The methodology section is divided in two main parts: the first one describes the numerical design
methods adopted in this article while the second describes the modelling of the system under design.
Given the large number of possible combinations of input parameters, a novel design space exploration
framework is used to reduce the number of designs to evaluate with the multi-disciplinary optimiser
(Section 3.1). The main technological assumption, the battery energy density, is also evaluated for its
credibility using the probabilistic method presented in Section 3.2. Details for the design model are then
presented, with discussion of the aircraft performance model in Section 3.3 and the battery modelling
in Sections 3.4 and 3.5. Finally, the mission analysis algorithm is presented in Section 3.6 with the
description of the energy management strategy explored and the design mission in Section 3.7.

3.1 Design space exploration methodology
The results presented in this article has been generated by adopting a design space exploration frame-
work developed by the authors, known as PDOPT [35]. This methodology has been developed to explore
design problems featuring a high variance in the design space: many input parameters with wide ranges.
Running a population-based optimiser in the whole design space would be costly, especially if most of it
is not feasible. The problem explored in this study, as described in Section 4, presents a high input param-
eter variability: the total number of combinations to be evaluated are 1,536. PDOPT was demonstrated
to successfully reduce the computational cost by 80% in problems with high variability [5, 36].

While not the focus of this article, the core principles of the framework are reported. For further
details, the reader should consult the previously published literature [5, 35]. Figure 1 presents the pro-
cess for analysing a given design space and producing feasible design points. The central idea is reducing
the number of unfeasible alternatives by estimating the probability of satisfying the constraints of the
multi-disciplinary optimisation problem underlying the design task. Indeed, within PDOPT require-
ments are cast as a constraint over an output quantity calculated by the design model. This probability is
used to decide if the evaluated portion of the design space is worth further exploring with a local opti-
misation algorithm or not. This procedure is akin to reducing the uncertainty of requirements mapping
onto the design space: the range of possible inputs that the designer can choose is reduced, increas-
ing the confidence in finding the suitable designs. Additionally, the constraints are mapped without any
assumptions on the user: the information relating input parameters to quantities of interest is extracted
from the design model directly, increasing the robustness of the approach.
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Figure 1. Methodology flowchart.

Within PDOPT this elimination process is called ‘Exploration Phase’ and incorporates one the core
principles of Set-Based Design [37]: that is focusing on eliminating unfeasible portions of the design
space, rather than selecting the most feasible in the early stages of the design process. Adopting this
approach has been demonstrated to reduce rework caused by design mistakes [38] and increase design
robustness [39, 40]. Each design space portion is called ‘set’, and is evaluated by sampling with a
Gaussian process trained on the design model data. The calculated probability is compared to the thresh-
old value Psat (satisfaction probability) to decide if it is eliminated or not. Using a probabilistic approach
allows to handle those portions of the design space that are crossed by the boundary of the requirement,
hence avoiding eliminating possible feasible solutions.

The subsequent phase, the ‘Search Phase’, recovers the individual design points from the surviving
sets by running optimisation problems bounded by the set limits. This enables to refine and verify the
constraints locally. The result is a dataset of multiple alternative design points that satisfy the constraints.
The Pareto front that is obtained may be contained within a set, however, maintaining the alternatives
allows the designer to restrict the constraints or perform other analyses without requiring re-computation.
This is the case of this study, as the goal is to understand the interaction between the aircraft propulsion
system, the battery pack, and the energy management strategy without any assumption of the best design.
Results are processed using multi-axis techniques such as Parallel coordinates plots [41], which enable
to highlight relationships in combination with scatter plots.

3.2 Likelihood estimation of future battery technology
Since epack is a critical technological parameter for the feasibility of the proposed HE designs, a method
is adopted to estimate the probability of availability. Data have been extracted from the Battery 2030+
Roadmap report [42] from the year 2010 onward, including target values of energy density up to the year
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2030. The dataset includes 35 points from different sources and projects around the world for Lithium-
based batteries. The procedure consists of constructing a linear regression model using Ordinary Least
Squares (OLS) of the cell energy density data. Equations (1) are used to estimate the coefficients of the
linear model yecell = b1 · xyear + b0 and the regression variance σ .

x̄ = 1

n

n∑
i=0

xi

ȳ = 1

n

n∑
i=0

yi

Sxx =
n∑

i=0

x2
i − 1

n

(
n∑

i=0

x2
i

)

Sxy =
n∑

i=0

yixi − 1

n

(
n∑

i=0

yi

n∑
i=0

xi

)

b1 = Sxy

Sxx

b0 = ȳ − b1 · x̄

σ =
n∑

i=0

(yi − ȳ)2 − b1 · Sxy

(1)

Once the coefficients are found, it is possible to predict the mean and variance of the cell energy
density for a specific year Xyear using Equations (2). These statistical parameters describe a Gaussian
distribution centred in μecell and standard deviation σecell .

μecell

(
Xyear

)= b1 · Xyea + b0

σecell

(
Xyear

)=
√

σ 2
[
1 + 1

n
+ Xyear−x̄

Sxx

] (2)

To predict the pack energy density, the relation between epack and ecell must be found through the
pack-to-cell mass ratio k, which is defined as follows:

k = Mpack

Ncells · Mcell

(3)

where Ncells is the number of cells in the pack, Mcell the mass of a single cell, and Mpack the mass of the
entire battery pack. By replacing the definition of energy density e = E/M and remembering that the
pack electric energy is equal to Epack = Ncells · Ecell, the following scaling equation is obtained with a few
algebraic steps:

epack = ecell

k
(4)

which states that the effective energy density of the pack is lower than that of the cell one. Finally, it
is possible to estimate the probability that a specific pack energy density is available in a year Xyear

using:

Pepack

(
Xyear

)= 1 − �

(
k · epack − μecell

(
Xyar

)
σecell

(
Xyear

)
)

(5)

where � is the Gaussian cumulative distribution function. Two scenarios were developed from the same
data set. The first one, labeled ‘conservative’, assumes a linear improvement of the cell energy den-
sity, hence no change in the rate of technological development. In contrast, the second scenario, named
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Table 2. Aircraft properties

Maximum take-off mass 23,000kg Payload mass 5,000kg
Operating empty mass 11,550kg Gearbox efficiency 0.99
L/D Climbout 10.5 Propeller efficiency (Take-Off) 0.64
L/D Climb/Descent 16 Propeller efficiency (Climb) 0.73
L/D Cruise 14.5 Propeller efficiency (Cruise) 0.86
L/D Final 7.5 Propeller efficiency (Other) 0.8

Figure 2. Propulsion system architecture.

‘optimistic’, hypothesises the increment of R&D funding towards energy storage, hence it features an
exponential regression model. The same Equations (1) and (2) can be used using the following regression
model:

log
(
yecell

)= b1 · log
(
xyear

)+ b0 (6)

In addition, two pack-to-cell ratios are used in both scenarios to estimate the impact of battery pack-
aging technology on the availability year. The adopted values are 1.5, commonly used in the published
literature for the design of electrified aircrafts [43], and 2.0 as a more conservative alternative. The
reader should be aware this parameter is heavily influenced by the saftey requirements of the battery
pack, the cooling system and the onboard battery management system. Hence, it is difficult to estimate
in a conceptual design scenario: adopting two extreme values allow to cover the possible outcomes of
this uncertain parameter.

3.3 Aircraft and propulsion model
The selected aircraft is a 50-seater turboprop obtained by retrofitting an ATR-72, where part of the pay-
load mass has been replaced by the mass of the battery pack. Mass and aerodynamic data have been
extracted from information available on the ATR 72-600 [44, 45]. These are presented in Table 2. The
operating empty mass (OEM) figure is kept constant as it is assumed that the mass of the electrical
equipment that is not the battery pack has a marginal contribution to the total take-off mass increment.
Therefore, it has been ignored since this high-level study does not consider the sizing of these compo-
nents. Furthermore, a major assumption is that the OEM does not change with the battery pack mass,
and structural resizing is neglected, therefore, the maximum take-off weight of the reference ATR-72 is
imposed as a constraint.

The propulsion system is a mechanically integrated parallel hybrid propulsion unit, whose power is
provided by a gas turbine and an electric motor, as shown in Fig. 2.
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Table 3. Electric propulsion system parameters

Electric motor efficiency 0.98
Power electronics efficiency 0.985
Cable distribution efficiency (circuit breakers) 0.996
Packaging factor (pack-to-cell mass ratio) 1.5
Cell total capacity (Ah) 7
Cell nominal voltage (V) 3.7
Cell mass (kg) 0.0518

The gas turbine is a thermodynamically equivalent model of the Pratt & Whitney Canada PW127
engine, whose performance data have been generated using the in-house code TURBOMATCH [46,
47]. It is assumed that the electric propulsion component is introduced as a retrofit to the aircraft; hence
the baseline gas turbine is not resized for hybridisation. Constant propeller efficiency has been assumed
for different mission phases. The NOx emissions model is based on the Boeing FuelFlow2 method [48],
which is a simplified P3T3 method useful when manufacturer data is not available. The data required to
model the turboprop emission indice EINOx was collected from Filippone and Bojdo [49].

Electric motors, power electronics, and cabling are modeled with a single constant efficiency param-
eter, the values of which have been adopted from Ref. (50). The battery pack is modeled with a Thevenin
equivalent circuit, as explained in Section 3.4. The TMS is assumed to keep the battery temperature at
25 ◦C. A TMS will be designed and modeled, and its dynamic off-design performance impact on the
battery temperature and its operation will be investigated in the final paper.

3.4 Battery model
To capture in detail the efficiency of the battery pack and its behaviour when subjected to different energy
management strategies, a Thevenin equivalent circuit model (Fig. 3) was developed [51]. Equations (7)
describe the behaviour of a single battery cell. Reference (52) provided the equations for the behaviour
of the lumped components VOC, R0, Ct, Rt under different values of depth of discharge DOD, while the
properties of the cell are presented in Table 3. The cell mass is scaled to match the selected battery
pack energy density, without changing the capacity of the cell itself, and thus not invalidating the ECM
model. The pack-to-cell mass ratio is 1.5, taken from the battery model of the NASA X-57 Maxwell
[43]. However, this value is optimistic, as the safety and certification requirements would increase the
insert mass of the pack [17].

dVC

dt
= Icell(t)

Ct

− VC(t)

Rt Ct

dDOD

dt
= Icell(t)

Ecell

Ucell = VOC − Vt − Icell R0

PB = Ucell Icell (Nseries × Nmodules)

(7)

The power provided to the cell is calculated by dividing the required battery power at the pack termi-
nals. The pack is composed of groups of cells in series called modules, which are arranged in parallel
to each other to meet the required capacity. The battery pack sizing procedure is as follows:

1. Calculate the number of cells in series for each module to meet the nominal system voltage:
Nseries = Vsys

Vcell

2. Increment the energy required to fly the mission by a guessed factor m: Etotal = m · Emission
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Rt(DOD)

R0(DOD)

−
+VOC(DOD)

Icell

Ct(DOD)

+ −
VC

+

−

Ucell

Figure 3. Thevenin electric model for a battery cell.

3. Calculate the number of modules to meet the required energy: Nmodules = Etotal
Ecell

4. Simulate the cell discharge by solving the ODE system in Equation (7) after dividing the pack
power by the total number of cells Pcell = PB

NseriesNmodules

5. Repeat steps 2–4 by changing m, until the pack depth of discharge matches the target of 80%.
6. Calculate the total mass of the pack by multiplying the number of cells by the cell mass. This

value is then increased by the pack-to-cell mass factor k to account for the mass overheads caused
by the wiring and casing.

With the battery pack properly sized, the circuit model is run to evaluate the efficiency of the battery
pack and its discharge characteristics. In this model we ignore the C-rate of the cell, which may further
reduce the maximum current between each module. This may require more modules in parallel than the
ones required by the required capacity in certain situations. Since this information is dependant on the
brand and type of the battery, it has been neglected for simplicity.

3.5 Battery ageing model
The holistic ageing model developed in Ref. (53) was adopted to model the loss of energy and capacity
of the cell and the growth of its internal resistance, as it is put into operational use. Equations (8) are
used to update the equivalent circuit model parameters (cell capacity, capacitance and resistance) with
the contributions from calendar ageing (parameter α) and cycle ageing (parameter β). The first is pro-
portional to the number of days of use t, while the second is proportional to the total lifetime charge Q
that has passed through the cell.

C = C0 ·
(

1 − αc · t0.75 − βc ·√Q
)

R = R0 · (1 + αr · t0.75 + βr · Q
) (8)

The update procedure is performed after one iteration of the ageing simulation, where the results of
the equivalent circuit dynamics of 7 (current, voltag, and depth of discharge) are used to calculate the
parameters of the ageing model. Specifically, calendar ageing is affected by storage temperature T and
storage voltage V (Equation 9), while cycle ageing is proportional to the root mean square voltage Vrms

and the difference in depth of discharge of the operating cycle �DOD (Equation 10). For the purpose
of this study, storage temperature is kept constant as it is assumed that the thermal management system

https://doi.org/10.1017/aer.2024.140 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.140


10 Spinelli et al.

maintains it in the ideal range.

αc = (7.543 · V − 23.75) · 106 · e− 6976
T

αr = (5.270 · V − 16.32) · 105 · e− 5986
T

(9)

βc = 7.348 · 10−3 · (Vrms − 3.667)
2 + 7.600 · 10−4 + 4.081 · 10−3 · �DOD

βr = 2.153 · 10−4 · (Vrms − 3.725)
2 + 1.521 · 10−5 + 2.798 · 10−4 · �DOD

(10)

The battery pack ageing simulation is performed by running the mission analysis and updating the cell
parameters after a certain amount of time has passed. This study evaluates the battery pack performance
after one year of operations, assuming two flights per day, seven days per week. A five-day time step
was selected as an adequate trade-off between computational cost and error.

3.6 Mission analysis method
Figure 4 presents the procedure used to find the burned fuel mass and the mass of the battery pack for the
specified mission. After an initial guess of the fuel mass Mf and the battery pack mass Mb, the take-off
mass of the mission MTO is calculated and updated iteratively until both the fuel and battery pack masses
converge. Two nested loops are used, the innermost for Mf and the outermost for Mb.

The analysis is performed by splitting the entire mission into small parts and, calculating for each of
them the power required to fly its phase, using the altitude h, velocity V , and climb rate Vz prescribed
by the mission. This power is then divided between the two powertrains with the specified degree of
hybridisation DOH, and chain efficiencies are applied to calculate the power required by the gas turbine
PGT and by the battery pack PB. The burned fuel mass is calculated by multiplying the current fuel flow
Fflow of the gas turbine by the elapsed time and summed over all the phases of the mission. Once the
fuel mass is converged, the total charge is calculated and used to size the battery pack according to the
procedure explained in 3.4. After the battery pack is sized, the degradation condition is evaluated. The
procedure simulates one year of operational life, updating the energy capacity and internal resistance
every five days. At each step, the original energy management DOH is scaled proportionally, without
changing its topology, to avoid the battery going above the 80% depth of discharge. Since the capacity of
the cells reduces as it ages, more fuel is required to carry out the same mission, therefore it is reasonable
to adopt as a representative variable for battery aging the ratio between the original fuel consumption
and the fuel consumption after one year of use (Equation 11).

rdegr = Mfuel, 1 year use

Mfuel, fresh battery

(11)

3.7 Design mission and energy management profile
The selected mission profile is shown in Fig. 5, which has been adopted by the FutPrint50 [54] project
as a maximum range design mission, including a flight to an alternative airport to account for fuel
reserves. The main flight stage is 432nm (800km) and the alternative stage is 51nm (95km) with a 30-
minute holding pattern. The average climb rate is 996ft/min (5.059m/s), while the cruise speed is 268kt
(137.78m/s).

It is assumed that the aircraft would have exhausted its energy reserves (fuel and batteries) at the end
of the entire flight. Electric power use is restricted to the climb and cruise phases of the main portion
of the mission. Since the focus of this study is in energy modelling, short flight segments such as take-
off are ignored. However, in a real world scenario the take-off phase is important to size the maximum
power of the electrical motor and gas turbine. Furthermore, using electrical power in this segment would
reduce aerodrome noise, which is an important pollutant.
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Figure 4. Mission analysis method flowchart.

Energy management strategies are defined as a continuous piecewise linear DOH function throughout
the mission, with values ranging from 0 to 1 (Fig. 6), as detailed in Ref. (5). These parameters allow for
a flexible definition of the shape of the EMS in each phase. In total, four parameters describe a complete
energy management strategy for a full mission analysis.

4.0 Test case
The design space exploration test case is formulated as an optimisation problem, as shown in Equation
(12). For this study, we consider linear energy management segments, applied to the climb and cruise
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Figure 5. Mission profile.
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C
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Figure 6. Linear energy management strategy adopted for this study.

phases, and the energy density of the battery pack. The input values for the PDOPT framework are
presented in Table 4. Within the explored alternatives of pack energy density, the 750Wh/kg value was
added as a highly futuristic technological scenario. The selected figures of merit are the total fuel burned
during the mission Mf , the mass of the emitted NOx, and the ratio of the mass of burned fuel after one
year of operation to the original amount with a fresh battery pack.

given X = {ebattery, h0cl, h1cl, h0cr, h1cr}
minimize

X
Mfuel, MNOx , rdegr

subject to MTO ≤ 23000 kg (Psat ≥ 0.5)

(12)

The last objective is to study the effects on system performance of aggressive hybridisation when the
battery pack is fresh. While it is not directly a battery pack parameter, it is an indicator of how much
the capacity of the cell has degraded over one year of operation. Indeed, to meet the same target 80%
of DOD, the energy management system must use more power from the gas turbine powertrain, leading
to higher fuel consumption and higher emissions. Within the simulation code, the battery pack is sized
such that it would reach 80% DOD at the end of the mission, in other words it would be fully discharged
after delivering all its electrical energy according to the EMS it is sized to.

The take-off mass MTO is restricted to the maximum take-off mass of ATR-72, and introduced as
a probabilistic constraint to the exploration step, with a minimum satisfaction probability Psat of 50%.
Areas of the design space that fall below this threshold are discarded and not considered for optimisation.

Results are compared to the baseline, which is the same ATR-72 model without electric propulsion
and loaded with the same payload. The values of the baseline are presented in Table 5.

5.0 Results
Figure 7 presents the Pareto front solutions produced by the design space exploration framework. Three
main results are clear from this graph. First, a high ebattery produces higher values of rdegr overall. However,
when comparing equal values of fuel burn reduction, the battery ages slower when the specific energy is
higher (Fig. 7(a)). As will be discussed later, this is caused by the mass of the cells and not by cell aging
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Table 4. Input parameters

Parameter Values
Pack energy density (Wh/kg) ebattery [350,400,450,500,550,750]
Start Climb DOH h0cl (0,1) divided into 4 levels
End Climb DOH h1cl (0,1) divided into 4 levels
Start Cruise DOH h0cr (0,1) divided into 4 levels
End Cruise DOH h1cr (0,1) divided into 4 levels

Table 5. Baseline quantities

Take-off mass 17,792kg
Burned fuel 1,242kg
NOx emission 8.59kg

Figure 7. Pareto front of the three objectives with different battery pack energy densities.

(Fig. 10). With more energy per unit of mass, fewer cells are required to achieve the same reduction
in fuel consumption. The airplane is less heavy; hence, when the capacity fades over time, the dead
weight of the batteries has a smaller impact on fuel consumption. Instead, when all the mass available
for batteries is used, the rate of degradation is higher because of the higher extra dead weight. It can
be noted here that the rate of improvement of both fuel consumption and NOx emissions increment
non-linearly with ebattery. This aspect will be discussed in detail in Section 5.6 with its technological
implications.
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Parallel coordinates with selections. Pareto front with selections.

(a)

(b)

Figure 8. Effects of battery energy density on the energy management strategies.

Secondly, the rate of degradation and the other two objectives compete, most evidently, with the
reduction of fuel consumption. This trade-off is important for airline operators, where the cost of fuel
and the cost of battery maintenance would compete.

Finally, the results indicate that the pack energy density should be greater than 400Wh/kg to reduce
the emissions and fuel consumption above the baseline (Fig. 7(b)). This sets a technological requirement
of a minimum 600Wh/kg energy density for individual cells, which would be available no earlier than
the year 2040 according to the prediction in Section 5.6.

While not the focus of this study, the results also agree with previously published work by the authors
[5], where the hybridisation of the climb segment affects mainly the NOx emissions (as a high power
mission phase), where CO2 emissions are mainly affected by the hybridisation of the cruise segment
(the longest in the flight). This study did not include effects of the battery energy density nor the degra-
dation of the cells, which the present work seeks to extend. More details can be found in the published
literature [5].

The following subsections explore the data in detail, analysing the interaction between ebattery, rdegr,
EMS, and battery life alongside the performance of the aircraft compared to the baseline.

5.1 Effects of ebattery on energy management strategies
Figure 8 presents the resulting optimal energy management strategies for each level of battery energy
density. Since the strategies are all linear segments, the input variables have been decomposed into an
average value, the midpoint of the segment, and a discrepancy, the slope of the segment, as shown in
Equation (13). ⎧⎪⎪⎨

⎪⎪⎩
μDOH = h1 + h0

2

�DOH = h1 − h0

2

(13)

Higher values of energy density allow for higher values of average DOH, both in climb and cruise.
More flight power can be provided by the electrical source at the same maximum take-off mass limit.
The climb segment is more hybridised than the cruise segment. Regarding the slope of the segments,
the cruise phase presents a positive slope directly correlated with the energy density. However, the climb
segment presents a negative slope with some exceptions, mainly when ebattery is 550Wh/kg. In conclusion,
more specific energy in the battery pack enables more hybridisation and more flexibility in the slope of
the segments, because it is possible to store more electrical power onboard for the same amount of
maximum take-off mass.
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5.2 Effects of rdegr on energy management strategies
Figure 9 presents for three different levels of battery energy density the effect of the degradation param-
eter rdegr over the other variables. Battery life was calculated as the number of days after which the
electrified aircraft matches the fuel consumption of the baseline conventional aircraft (see Fig. 10(a)).
It is correlated with rdegr, where the battery lasts the longest with low degradation EMS. All three tech-
nological scenarios feature similar correlations between rdegr and the average values of DOH: the higher
the electrical power demand, the faster the cell degradation. On the other hand, �DOH is concentrated
around zero when rdegr is the lowest. It spreads without a specific trend at values of high degradation. It
can be concluded that the average electrical power requirement drives the degradation of the cell, rather
than the specific value over time.

5.3 Effects of ebattery on rdegr and battery life
Eight specific points, two per ebattery value, were selected for analysing the history of battery degradation
over one year of operation. Each pair consists of designs with the lowest fuel consumption at zero days
and the longest battery life, as defined in the previous Section 5.2. Figure 10 presents these results on
two scales: fuel consumption relative to the conventional baseline and relative to the zero-day condition.
The original three values of ebattery from Ref. (55) were simulated for a year, as their battery life was less
than 365 days. On the contrary, the additional scenario of a battery with 750Wh/kg was simulated until
reaching the end-of-life condition.

As shown in Fig. 10(a) the battery lifetime is longer with higher ebattery and, respectively, the gap from
the lowest degradation to the highest is larger for each case. At the most extreme value of 750Wh/kg,
the lifetime is above 1,000 days. On the contrary, Fig. 10(b) shows that rdegr grows faster when ebattery

is greater and the degradation is high; the opposite is true when the degradation is low. This relative
behaviour is present also with the battery pack of 750Wh/kg, however, both curves are shifted towards
higher growth of relative fuel consumption increase. The cause is the more intense usage of electrical
energy due to the high energy density. When the pack ages and its effective energy density goes down,
fuel consumption grows faster to compensate for the lost electrical energy. Nonetheless, the large margin
in energy density allows the propulsion system to improve over the baseline for a much longer time (see
Fig. 10(a)).

Despite the differences between the eight scenarios, the actual degradation of the cell (capacity deple-
tion and growth of internal resistance) is identical (Fig. 10(c) and (d)). Indeed, the parameters that would
affect cell degradation, such as the temperature, initial state of charge, and depth of discharge, are iden-
tical for all the cases. This would change if partially recharging the airplane after one flight is introduced
in the analysis, a scenario that has been suggested by the authors for regional aircraft operations [56].
More flights could be carried out per day, at the cost of using the battery from a partial state of charge,
accelerating the aging of the cells.

Comparing the geometry of the battery packs of these six cases (Table 6) shows that the number of
cell modules is correlated with the parameter rdegr of Fig. 10(b): the higher this quantity, the faster the rate
of degradation. While each cell ages at the same rate, the airplane is carrying more weight, and therefore,
with less electrical power compensating for the inefficiency of the extra weight, the fuel consumption
grows faster as the battery ages. In summary, the effective specific energy of the pack decreases with
cell aging, eroding the benefits calculated on day zero, with a leveraging effect caused by the size of
the battery pack. Therefore, more specific energy from the start enables the battery to last longer before
servicing, as demonstrated by the 750Wh/kg battery pack case.

5.4 Effects of ebattery on aircraft performance
Figure 11 presents the percentile change in fuel consumption, energy consumption and take-off mass
relative to the baseline. It contains three selections of the Pareto front for each level of battery pack
technology. The values refer to the day-zero condition.
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Figure 9. Effects of degradation on the energy management strategies.
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Time history of relative M f Time history of rdegr

Time history of cell capacity fade Time history of internal resistance growth

(a) (b)

(c) (d)

Figure 10. Degradation histories of extreme points for each ebattery case.

All investigated cases are less efficient than the baseline, requiring more energy to fly the same mis-
sion. The specific energy of the fuel is at least 20 times higher than that of the batteries, increasing the
take-off mass when trading one source for the other. Hence, the heavier airplane requires more energy
to fly, despite the lower fuel consumption. When the take-off mass is constrained, the energy consump-
tion decreases as the specific energy increases (Fig. 11(b)). In this situation, the higher efficiency of the
electrical power chain compensates for the power required to fly heavier aircraft.

All three scenarios show a reduction in fuel consumption when ebattery is above 400Wh/kg.
Specifically, the scenario with the highest battery pack life (Fig. 11(c)) has a constant reduction of fuel
consumption (around 2%), except for the battery pack of 750Wh/kg. At the same time, the take-off mass
goes down, as fewer batteries are used to compensate for the reduction in effective energy density, aside
from when the energy density is high enough to completely compensate for the degradation of the cells.

There is a clear discontinuity in overall behaviour for the high energy density pack and the other
low energy density ones, indicating a possible technological tipping point. Indeed, for the low energy
densities (as pointed out in Section 5.3) the design takes advantage of the increased specific energy to
reduce the number of cells in the battery pack and hence contain the increment of fuel consumption
caused by the cells aging and the heavy aircraft. On the contrary, with a battery pack of high specific
energy, the margin of fuel consumption reduction is wide enough to accommodate the performance
degradation, thus the optimiser is no longer forced to compromise on the size of the battery pack.

https://doi.org/10.1017/aer.2024.140 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.140


18 Spinelli et al.

Table 6. Details of the selected design points for discussion

ebattery Pack life Mfuel Mbattery TOM
(Wh/kg) (Days) rdegr Ncells Nseries Nmodules (kg) (kg) (kg)
450 24 1.0838 44,880 136 663 1,211.2 5,181.8 22,943
500 121 1.0957 46,784 136 344 1,172.6 5,248.1 22,970
550 271 1.1085 112,608 136 828 1,136.9 5,302.5 22,989
750 1,022 1.0009 112,608 136 1,107 983.3 5,199.1 22,990

450 48 1.0299 32,096 136 236 1,228.7 1,839.8 19,618
500 158 1.0197 21,080 136 155 1,225.7 1,085.2 18,860
550 310 1.0168 18,224 136 134 1,222.9 851.9 18,624
750 1071 1.0003 112,608 136 826 1,056.3 3,879.3 21,485

Pareto midpoint. Lowest M f .

Highest battery pack life. Position of points on the Pareto front.

(a) (b)

(c) (d)

Figure 11. Aircraft performance at representative points in the Pareto front.

It should be noted that the highest battery life points do not correspond to the lowest rdegr. Minimising
only that objective would entail for most designs, not including any battery pack at all. The fuel
consumption would stay identical as the object causing its increment is missing (see Fig. 13(d)).

In general, the Pareto midpoint balances the two extreme cases, with an increase in energy consump-
tion between 7–7.5%. The three scenarios show that when the battery technology is fixed, the choice
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Figure 12. Effects of ebattery on performance objectives.

of EMS affects the efficiency of the aircraft, via the increase in battery pack mass. Finally, as cells age,
more fuel will be required, increasing the inefficiency in energy consumption.

A final point is to investigate the increment of performance with the increase of ebattery. Previous
results already suggested a non-linear trend. Figure 12 shows the best-observed improvement for each
value of the pack energy density. Two trend lines, one linear and one quadratic, were fitted to the original
data set (350–550 Wh/kg) of the previous study [55]. The rate of improvement is non-linear but sub-
quadratic, as the new data point falls between the two lines. The nonlinearity stems from the ability
of the optimiser to use more electrical energy, which is more efficient and cleaner than fuel, with less
weight penalty. Therefore, investing in the improvement of battery technology would have significant
returns. This aspect will be explored in the discussion of the technological availability of Section 5.6.

5.5 Suggested energy management strategies
From the knowledge obtained in the previous sections, it was found that the average value of DOH for
each segment is correlated with the energy density of the battery and the amount of maximum take-off
mass. More DOH is allocated in the climb segment than in the cruise segment, while the slope increases
in the cruise and is ambiguous for the climb. Because in this study the battery pack is sized to match
the EMS at day zero, the average value of DOH drives the increment of fuel consumption as the battery
ages through the mechanism explained in Section 5.3.

Figure 13 presents the EMS of the three scenarios analysed in the previous section plus the EMS with
the least rdegr. They present the trends described so far, which show no clear preference for the slope of
the DOH function in the climb. Higher ebattery allows for higher average DOH throughout the mission
when fuel consumption is the priority (Fig. 13(b)). In contrast, when battery life is maximised, the higher
energy density is used to reduce the amount of battery mass through a reduction of DOH (Fig. 13(c)).
As pointed out previously, this condition does not correspond to the EMS of minimum degradation.
Instead, the minimum rdegr is obtained when no hybridisation is used (Fig. 13(d)). Although in practice
this is an undesirable result, it further exhibits the relation between the battery mass and the increment
of fuel consumption as the battery pack ages: no increment is present if no batteries are used.

In summary, the presented EMS should be used as a general recommendation considering the identi-
fied interactions between pack energy density, battery aging, and environmental requirements. They are
limited by the selected design mission, the aircraft design selected as the starting point, and the merit
figures selected for the analysis. Consequently, designers should perform their optimisation study for
their specific application and use the presented results as a sanity check.
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Figure 13. EMS of the three scenarios analysed in Section 5.4, compared to the lowest rdegr EMS.

5.6 Probability of achieving the expected technological requirements
The discussion presented so far underlined the importance of ebattery for the feasibility of the scenarios
presented in this study and hybrid-electric propulsion. However, most studies do not quantify the uncer-
tainty of their timelines; instead, they assume a year far in the future to justify their assumption. In this
last section, the probability of technological availability is estimated with a regression analysis of cur-
rent and expected specific cell energy densities. The intention is to quantify when it is reasonable to
expect the required values ebattery to be given the history of cell technology development.

Data have been extracted from the Battery 2030+ Roadmap report [42] from 2010 onward. Two
scenarios are presented, one conservative and one optimistic. The first assumes that the cell energy
density will improve linearly over time (Fig. 14(a)). The second scenario assumes that it will improve
exponentially (Fig. 14(b)). Ordinary Least Squares (OLS) have been used to construct the regression
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Conservative trendline of Cell energy density. Optimistic trendline of Cell energy density.

Conservative probability of pack availability. Solid

line is k = 1.5, dashdot line is k = 2.0.

Optimistic probability of pack availability. Solid line

is k = 1.5, dashdot line is k = 2.0.

(a) (b)

(c) (d)

Figure 14. Statistical modeling of future battery technology.

models using standard procedures. Both models have a satisfactory correlation (R2 = 0.83 and R2 = 0.78,
respectively) and good modeling (the P values of the F test are lower than 1−10 in both cases).

The energy density of battery packs is lower than that of cell packs because of the inert mass added
by the cooling system, packaging, and control electronics. Two values of the pack-to-cell ratio, 1.5 and
2.0, have been used to evaluate the impact of this technological uncertainty on the final pack energy
density. Figure 14(c) and (d) present these results for the values of ebattery, which could match or improve
on the baseline.

The two scenarios are considerably different, even for the same value of k. Under the conservative
scenario and k = 1.5, 2040 is the earliest date at which a 400Wh/kg battery pack is expected to be avail-
able with 55% confidence. On the contrary, the optimistic scenario estimates the year 2034 for the same
value and confidence. This difference is more pronounced for higher energy densities. In the conserva-
tive scenario, in 2050 there is a 60% chance that a battery pack with 500Wh/kg is available, while in the
optimistic scenario, the year 2038 is indicated. For a very high value of 750Wh/kg, the availability is
predicted far in the future, with the earliest date being 2045 on the most optimistic conditions. This value
of energy density might be achievable earlier with other technologies, for instance, fuel cells driven by
PowerPaste [57].

Furthermore, the assumed pack-to-cell ratio significantly affects the predicted availability. In the con-
servative scenario, the technological gap is on average 15 years, up to 18 years for the highest value
of energy density. This reduces to five years if the optimistic scenario is assumed. The full range of
predictions is presented in Table 7.

As noted above, this analysis leads to different conclusions on the feasibility of hybrid-electric air-
craft. While the conservative scenario is the most likely, the automotive and renewable sectors have been
heavily investing in the development of the technology, which could accelerate the rate of development.
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Table 7. Predicted years of ebattery technological availability

Conservative Optimistic

k 1.5 2.0 1.5 2.0

P 50% 90% 50% 90% 50% 90% 50% 90%
eb (Wh/kg) 400 2,039 2,043 2,052 2,057 2,034 2,038 2,039 2,043

450 2,044 2,048 2,058 2,063 2,036 2,040 2,041 2,045
500 2,049 2,053 2,064 2,070 2,037 2,042 2,043 2,047
550 2,053 2,058 2,071 2,077 2,039 2,044 2,044 2,049
750 2,072 2,079 2,096 2,105 2,045 2,050 2,049 2,055

Indeed, the comparison shown in Fig. 12 suggests the potential for significant performance improve-
ment, which is shown to be nonlinear, hence targeting the development of cells with higher energy
density would have a better return on investment.

Furthermore, availability is affected by the packaging factor k, which cannot yet be accurately pre-
dicted, as it is affected by both material technology and the safety requirements in the battery pack.
However, most of the technological timeframes proposed in Table 1 are unrealistically optimistic unless
a significant breakthrough in storage technology materialises.

6.0 Conclusions
In this work, the interaction between battery energy density and energy management strategy on bat-
tery pack aging, fuel consumption and environmental compatibility was analysed. The application of a
probabilistic design space exploration framework generated data that shed light on the optimal power
schedule and the minimal technological requirements.

The specific energy of the batteries was identified as a key driver in the achievable reduction of
fuel consumption and emissions, setting the maximum achievable amount of DOH in the EMS. This
parameter affects the life of the battery pack, increasing its effective use before the fuel consumption of
the airplane is identical to the baseline. Fuel consumption and NOx emissions were found to improve with
increasing specific energy at an increasing rate. This suggests that investing in energy storage technology
would yield better returns rather than gradual improvement. Achieving a pack energy density above
550Wh/kg would strongly mitigate the performance degradation due to battery aging, further indicating
the need for investment in this technological improvement.

Finally, 400Wh/kg was identified as the minimum specific energy required to improve baseline emis-
sions. This translates into a requirement of cells with 600Wh/kg specific energy, expected to be available
between the years 2034–2040, depending on the technological scenario. Battery packs with higher spe-
cific energy, required to make hybrid-electric propulsion feasible, are predicted to be available in the
2038–2050 time window. However, this prediction is conditioned by the current trend of technological
improvement and a fixed 1.5 pack-to-cell mass weight ratio. Higher values of pack-to-cell mass ratios
would shift this scenario further in the future up to 15 years. This coefficient relates to the safety, and
potentially there is a trade-off between energy density, durability and safety. In addition, for such tech-
nology to become a solution in the real world then aspects of scalability and industrialisation should be
considered.

The inclusion of cell aging in the battery model introduced additional considerations in the defini-
tion of EMS. While striving for the highest DOH possible is beneficial for the immediate reduction of
emissions, it shortens the operational life of the battery pack. The mechanism of this phenomenon was
identified not in the rate of aging of the cells, which was identical in every case studied, but in the num-
ber of batteries employed in each specific case. In fact, as the batteries aged, the effective energy density
of the pack decreased, requiring the aircraft to consume more fuel. This effect is stronger with a heavier

https://doi.org/10.1017/aer.2024.140 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.140


The Aeronautical Journal 23

battery pack. Therefore, when trying to minimise the effects of degradation, the optimiser identified the
designs with the least number of cells, taking advantage of the higher energy density when possible. As
a result, EMS should be moderated to avoid quickly degrading zero-day performance.

The knowledge obtained in this study is limited to a single mission. Introducing different operat-
ing missions would provide more insight into the trade-off between battery ageing and reducing fuel
consumption and emissions. This would be of interest to airline operators employing hybrid-electric
aircraft, minimising direct operating costs and programming maintenance, for instance, by matching
battery pack and gas turbine maintenance schedules.

Another possible extension is to introduce operating conditions that would directly affect cell aging.
The scenario presented in this paper assumed full discharge and recharge of the battery pack after each
flight. However, partial recharging and discharging are necessary for high-volume operations and fast
turnaround of the aircraft [56]. This would introduce stresses that would directly affect the health of
cells. Finally, the assumption of constant cell temperature could be relaxed with the introduction of a
seasonal effect or a thermal management system cooling model [58].

Finally, the insights obtained in this study requires further validation as the model used did not take
into account the cell chemistry and the impact of new energetic materials. These would affect the ageing
modelling and the timeline prediction. However, the reader should appreciate the difficulty in this task
and the level of multi-disciplinary expertise required to model and predict these trends in a credible way.
As discussed in Section 2.0, many studies of hybrid-electric aircraft completely ignore this aspect and
prefer to select arbitrarily a year and pack energy density. It is of interest of the aeronautical community
and stakeholders to have realistic assumptions and realistic goals, as the current climate emergency calls
for immediate and rapid intervention for introducing sustainable and net-zero technologies.
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