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The stability of steady convective exchange flow with a rectangular planform in an
unbounded three-dimensional porous medium is explored. The base flow comprises
a balance between vertical advection with amplitude A in interleaving rectangular
columns with aspect ratio & < 1 and horizontal diffusion between the columns.
Columnar flow with a square planform (§ = 1) is found to be weakly unstable to
a large-scale perturbation of the background temperature gradient, irrespective of A,
but to have no stronger instability on the scale of the columns. This result provides
a stark contrast to two-dimensional columnar flow (Hewitt et al., J. Fluid Mech.,
vol. 737, 2013, pp. 205-231), which, as A is increased, is increasingly unstable to
a perturbation on the scale of the columnar wavelength. For rectangular planforms
with & < 1, a critical aspect ratio is identified, below which a perturbation on the
scale of the columns is the fastest growing mode, as in two dimensions. Scalings
for the growth rate and the structure of this mode are identified, and are explained
by means of an asymptotic expansion in the limit & — 0. The difference between
the stabilities of two-dimensional and three-dimensional exchange flow provides a
potential explanation for the apparent difference in dominant horizontal scale observed
in direct numerical simulations of two-dimensional and three-dimensional statistically
steady ‘Rayleigh-Darcy’ convection at high Rayleigh numbers.
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1. Introduction

The study of convection in porous media has blossomed in recent years, in part
due to its relevance for the long-term fate of geologically sequestered CO, in
underground aquifers (Huppert & Neufeld 2014). Convection in porous media plays
a role in numerous other geophysical processes, including the mixing of brackish
groundwater or the extraction of geothermal energy (Phillips 2009). It also provides
a relatively tractable nonlinear system for the study of chaotic dynamics, instabilities
and structure formation, because of the relative simplicity of Darcy’s law, which is
linear, rather than the full Navier—Stokes equations (Nield & Bejan 2006).
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Statistically steady Rayleigh—Bénard convection has long provided a canonical
setting for the study of convective dynamics and heat transport. The porous analogue
consists of a sealed fluid-saturated porous medium, heated at the base and cooled at
the top, which we will subsequently refer to as a ‘Rayleigh-Darcy’ cell (although
the names of Horton & Rogers (1945) and Lapwood (1948), among others, have also
been linked with this system). The dynamics of flow in a Rayleigh—-Darcy cell is
strongly dependent on the Rayleigh number Ra, which is a dimensionless ratio of
the driving buoyancy forces and the dissipative effects of fluid viscosity and thermal
diffusion in the system. When the Rayleigh number is large (Ra > O(10%)), the flow
is dominated across most of the domain by a remarkably ordered columnar exchange
flow of hot and cold fluid. Near the upper and lower boundaries, heat is carried away
from thin thermal boundary layers into this ordered interior flow by high-wavenumber
‘protoplumes’, which exhibit vigorous episodic bursting and time-dependent dynamics
(Otero et al. 2004; Hewitt, Neufeld & Lister 2012, 2014).

The interior columnar flow has an average horizontal wavenumber k that increases
with the Rayleigh number, and the mechanism that controls this dependence has been
the subject of some investigation (Hewitt, Neufeld & Lister 2013; Wen et al. 2013;
Wen, Corson & Chini 2015). Numerical simulations in two dimensions presented by
Hewitt et al. (2012) showed that the interior exchange flow varies only weakly in
time, and is increasingly well described by a simple steady ‘heat-exchanger’ solution
of the governing equations. This flow comprises a balance between vertical advection
along a background linear temperature gradient with horizontal diffusion between
alternating columns of ascending and descending fluid. Hewitt et al. (2012) extracted
an approximate scaling for the wavenumber of this flow of k ~ Ra®* over the range
1300 < Ra <4 x 10*. Multiple sets of simulations were used to arrive at this scaling,
both to check that there was no discernible effect of aspect ratio and to obtain an
estimate of the statistical uncertainty in the measurements of k from the Fourier
spectrum. More recent numerical simulations by Wen et al. (2015) broadly confirmed
these observations and extended the parameter range to Ra < 99763. At the highest
values of Ra, they found that the interior flow becomes so well ordered that flows
can become ‘locked’ with different numbers of interlacing plumes, and can persist in
such a state for a very long time. As such, multiple simulations for the same value
of Ra give rise to different numbers of plumes, or different discrete wavenumbers,
which suggests that caution is required when extracting an average relationship k(Ra)
over this higher range of Ra.

In an attempt to shed light on the physical basis for the scaling of k(Ra), Hewitt
et al. (2013) investigated the stability of unbounded heat-exchanger flow in a two-
dimensional porous medium. They found that the flow is always unstable, and that
the most unstable mode for large Ra takes the form of a pulsatile perturbation on
the scale of the columns. To apply these results to a finite domain, they formulated a
simple marginal-stability balance between the time scale for growth of the instability
and the time scale for advection across the height of the Rayleigh—Darcy cell. This
scaling argument results in a prediction of k(Ra) that is consistent with the numerical
data, and a hypothesized asymptotic scaling of k ~ Ra*/!*.

In three dimensions, numerical simulations of flow in a Rayleigh—Darcy cell indicate
a slightly stronger scaling for the dominant horizontal wavenumber of approximately
k ~ Ra%> (Hewitt et al. 2014). Again, the structure of the interior appears to adopt
a simple heat-exchanger form, although the dominant horizontal planform of the flow
is not clear. It is important to note that the numerical data in three dimensions are
rather more sparse than in two dimensions, and do not extend to such large values of
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Ra. While this makes it even more difficult to be confident of, for example, precise
exponents or planforms, the data do appear to show a distinctly stronger scaling for
the wavenumber than in two dimensions.

In this paper, we study the stability of unbounded steady single-mode ‘heat-
exchanger’ flow with a rectangular planform in a three-dimensional porous medium.
While a main aim of the study is to try to shed light on the difference between the
observed scalings for k(Ra) in two and three dimensions, we also find an unexpected
richness in the stability properties of the rectangular planform of columnar flow, and
explore this in some detail.

We note that a key weakness of this approach as a means of understanding the
scaling k(Ra) is that it is based on the stability properties of unbounded flow. In
particular, it does not account explicitly for the vigorous dynamics of mixing and
episodic flushing by protoplumes near the upper and lower boundaries. Wen et al.
(2015) noted this issue and explored an alternative approach in two dimensions by
tracking, and then examining the stability of, exact steady nonlinear solutions of
the governing equations in a Rayleigh—Darcy cell at high Ra. They found that, in
general, the dominant mode of instability is strongly localized to the boundaries,
which corresponds to the growth of protoplumes there. We will return to the findings
of Wen et al. (2015) in the discussion in § 5.

This paper is laid out as follows. In §2, we outline the equations, the heat-
exchanger base flow and the scalings of the problem. In §3, we present numerical
solutions for square and rectangular planforms. In §4, we explore the limit of long
thin rectangles, for which the growth rate of the most unstable mode approaches the
equivalent two-dimensional result, and derive an asymptotic description for the mode
in this limit. Finally, in §5, we discuss the possible application of these results to
the structure of three-dimensional Rayleigh—-Darcy convection.

2. Set-up
2.1. Governing equations and base flow

We consider convective flow in a homogeneous and unbounded three-dimensional
porous medium. The flow u is incompressible and satisfies Darcy’s law. The density
p of the fluid is linearly related to the temperature 7, which is assumed to be
locally equilibrated between the solid and fluid phases of the medium and satisfies
an advection—diffusion transport equation. These equations are given by

K
Veu=0, u=-—[Vp+ pgzl, (2.1a,b)
uw

_aT
p = po(l —bT), ¢E+u-VT:Dv2T, (2.2a,b)

where K is the permeability of the medium, p is the viscosity of the fluid, p is the
pressure, g is the gravitational acceleration, Z is the unit upwards vertical direction,
po is a reference density, b is the coefficient of thermal expansion and D is the
average thermal diffusivity, all of which are assumed to be constant. The weighted
mass fraction ¢ = [¢ + (1 — ¢)(pscs/pic;)] is defined in terms of the porosity ¢
and the specific heats and densities of the solid and liquid phases, c;, ¢, p; and p;
respectively, and is also assumed to be constant.
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FIGURE 1. A schematic of the base flow (2.5) in the region 0 <x < 2mn/k* and 0 <y <
21t/(£k*) in the (x, y) plane (shown here with & < 1). The pattern periodically repeats
outside this range. The temperature and the sign of the vertical velocity (w) in each
rectangle are marked.

Since the velocity field u = (u, v, w) has vanishing vertical vorticity and divergence,
it can be written in terms of a scalar velocity-potential function s that satisfies

sz
U=V AN A Y2) = Ve . 2.3)
_wxx - 1)/fyy

Given this form, Darcy’s law (2.1b) reduces to V[V + (Kgoob/n)T] =0, where
V= (0, 9,) is the gradient operator in the (x,y) plane. In fact, given that the velocity
is unchanged by the addition of an arbitrary function of z to the velocity potential ¥,
we are free to scale the integrated form of this equation by any function of z, and

can thus set

. Kgpob T.

Vi = (2.4)

Columnar convection in the vertical direction with a rectangular horizontal planform
provides a steady solution to these equations, with horizontal wavevector (k*, £k*) (see

figure 1) and thermal amplitude A*,

Dk (1 +8%)z

Ty = A* cos (k*x) cos (Ek*y) , (2.5q)
Kgpob
KgpobA* . o DR+ EYD
VYo = m cos (k*x) cos (Ek™y) + — < (2.5b)

The horizontal velocities (ug, vy) associated with this solution are zero and the vertical
velocity is wy occos (k*x) cos (Ek*y). A striped planform (i.e. two-dimensional flow with
wavenumber k*) and a square planform are recovered in the limits £ — 0 and £ =1
respectively.
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2.2. Non-dimensionalization

We rescale the problem using the length scale 1/k* of the base columnar flow and a
diffusive time scale to give the dimensionless variables

. k2D k* Kgpob
X.Y.2)=K(xy.2. t=-—t W=y, O=

_ T, 2.6a—d
% D WDk (2.6a—d)

together with U = (U, V, W) =u/(k*D). The governing equations and base columnar
flow become

VW =—0, O, + WO+ Wy,0y — (W + Pyy) O = V2O, (2.7a,b)
@y=AcosXcos&Y — (1 +£%)Z, (2.8a)
1+&H72°
Y, = cosXcoséY + ————, 2.8b
T § G (2.8b)

where the subscripts of X, Y and t denote partial derivatives, and the parameter

_ Kg pob

A=
uDk*

A* (2.9)

is the rescaled and dimensionless amplitude. We note that A can also be thought of as
an effective Rayleigh number for the problem, based on the length and temperature
scale of the columnar flow. We note for later discussion that, if the system were
instead non-dimensionalized with respect to an external temperature and length
scale, as might be the case in a Rayleigh—-Darcy cell of dimensional height L and
temperature difference A, the parameter A would be related to the resultant Rayleigh
number Ra for that system by A :Z*Ra/k*LA :A\Ra/k, where A =A* /A and k= Lk*
would be the dimensionless amplitude and wavenumber with respect to the new
temperature and length scales. We return to use this relationship in the discussion of

§5.

2.3. Linear stability equations

In order to assess the stability of the base flow (2.8), we introduce small perturbations
[®, ¥] of the form

® =Re{G(X, Y)exp[ot +iaZ]}, ¥ =Re{F(X,Y)exp[ot+iaZ]}, (2.10a,b)

where |G|, |F| < 1. Perturbations grow or decay exponentially if the growth rate
Re{o} is positive or negative respectively. The perturbations satisfy the linearized set
of equations

o’F — Fyx — Fyy =G, (2.11a)

060G+ i10A(GcosXcos&Y — FysinX cos&Y —EFycos Xsin&Y)
+ (14 ) (Fxx + Fyy) = —*G + Gxx + Gyy. 2.11b)
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Given the periodicity of the base flow and equations, we can look for expansions of
G and F as Floquet double sums,

+00
(g) =exp[iBX +igyY] ) <g> exp [inX +iEmY], (2.12)

with leading-order horizontal (x and y) wavenumbers S and &y respectively.
Furthermore, due to the symmetries of the problem, we can restrict attention to
the range 0 < 8, y <0.5.

After eliminating F,,, the resultant perturbation equations form an infinite matrix
eigenvalue problem, M,,,; Gy = o G, for a fourth-rank tensor M with coefficients

(1+&)(T7, —a®)

Mn,m,n,m = _1—;,%,,1 2 s (213(1)
—iAa +n4+ 14+ +m+1)]
Mumnirmn = —— 1 1+ E = Y ) } : (2.13b)
n+1,m+1
—iA 1-— -1
Mo nttm 1 = — {1 + Bnt Elym=D)] } (2.13¢)
4 Fn+] m—1
—iA —1- 1
Mn,m,n—l,m-H ¢ {1 ﬂ+n 2%- (y+m+ ) } , (213d)
F —1,m+1
—1 -1
Mn.ntn—lm—l - 1- /3+n —i_zs (y+m ) y (2138)
’ ’ 4 L I—wnfl,mfl i
M, . ;=0 otherwise, (2.13f)

where I'}, =&+ (B +n)* + £°(y + m)* and we have added commas between the
tensor components for clarity. Given an eigensolution G,,, the corresponding matrix
Fum 1s constructed using F, = G,/ I, from (2.11a), and the functions F" and G can
be calculated via (2.12).

3. Solutions
3.1. No flow: A=0
If A=0, there is no columnar flow and the growth rate is

(4B + YD)
a2+ p+

— @+ B+ (3.1

This is the wusual overturning instability of the linearly unstable background
temperature gradient (the Rayleigh mode), and takes the form of large-scale rolls. The
maximum growth rate Re{o} =1 + &2 is attained in the limit of zero wavenumber,
a = f =y =0. Equation (3.1) also gives the growth rate for A > 0 when we only
consider the largest scale of perturbations, such that only one term from the Floquet
sums in (2.12) is included.

3.2. Numerical solutions for A >0

If A>0 and o > 0, then the columnar flow is coupled to the instability. We solve
the eigenvalue problem numerically by first truncating the double sums in (2.12) to
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—N<n<N and —M < m < M for some positive integers N and M. We solve the
resultant N x M matrix equation using an Arnoldi iteration scheme, which returns
the eigenvalue o = o¢(4A, «, B, y; &, N, M) that has the largest real part, and the
corresponding eigenmatrix Gy. For given values of «, B, y and &, we determined
the cutoff integers N and M by sequentially increasing their values until the relative
error in the largest growth rate Re{oy} was below 1073. More precisely, the integers
were increased in one of two ways. For moderate values of &, we set M = |AN],
where | | indicates the integer part and A > 1 is a parameter, and then we sequentially
increased N until the growth rate had converged. For the smallest values of & for
which we computed solutions, we instead first solved the equivalent two-dimensional
problem to determine a suitable value for N(A, «, $). We then used this value for the
corresponding three-dimensional calculation, while sequentially increasing M until the
growth rate had converged. As an illustrative example, the eigenvalue problem for
the most unstable mode at (4, £) = (2!',272) used N =16 and M =22, while that for
(A, &)=(2"7,2719 used N =35 and M = 130. These values are particularly sensitive
to the vertical wavenumber « of the mode: in general, both N and M increased
significantly for larger values of «, which indicates that shorter modes in the vertical
direction have a finer horizontal structure.

By examination of the symmetries of the original perturbation equations (2.8),
we can see that, given any solution (F, G), a new linearly independent solution
can be constructed with the same eigenvalue o by the transformation (X, Y) —
(X + &, Y + n/§). Moreover, two further linearly independent solutions with the
same growth rate can be constructed by only translating in one direction, such that
X—>X+mor Y— Y+ n/&; the eigenvalue for these solutions has the same real
part but an imaginary part with the opposite sign to o. As such, we anticipate four
linearly independent eigenmodes with the same value of Re{oy}, between which the
iteration procedure described above cannot distinguish. We will return to discuss the
effect of these independent solutions in § 3.3 below.

3.2.1. Recap of solutions for a two-dimensional planform: & =0

In the limit of a striped planform (£ =0), both the base profile and the perturbations
are two-dimensional. The structure of the instability in this case has been discussed
in detail by Hewitt et al. (2013), and is briefly recapped here. The base state, which
consists of a columnar exchange flow along a linear background temperature gradient,
is always unstable to a roll-like perturbation of the base temperature gradient (the
standard Rayleigh mode). For amplitudes A < 17.2, this large-scale perturbation
with zero wavenumber is the most unstable mode. For larger amplitudes, a new
instability of the columnar flow is the most unstable, which has a dominant horizontal
wavenumber S = 0.5, such that it has a periodicity double that of the base flow
(often referred to as a subharmonic instability). As A — oo, the growth rate of this
mode increases like Ref{o,,} ~ A*°, while the corresponding vertical wavenumber
a,, ~ A™"° and vertical phase speed c,, = —Im{o,,}/a,, = +A. In this limit, the
‘columnar’ mode takes the form of a claw-like positive pulse of temperature centred
on an upwelling (downwelling) of the base flow, with an identical but opposite-signed
pulse on the neighbouring upwelling (downwelling), resulting in propagation in the
positive (negative) vertical direction, and in growth. The resultant instability of the
flow develops into a ‘chequerboard’ of either pulses or depletions of the background
columns.
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FIGURE 2. (Colour online) Density maps and contours of the maximum growth rate
Re{o,} maximized over y for each value of («, 8) for a square base planform (£ =1)
and different amplitudes: (a) A=0, (b) A=1, (¢c) A=4, (d) A=10, (¢) A=100 and (f)
A =500. The most unstable mode always has « ==y =0.

3.2.2. Square planform: &€ =1

For a given value of @ and B, we denote by o,(c, B; &) the eigenvalue with the
largest real part maximized over y. Figure 2 shows contours of the growth rate Re{o,}
for a square planform of convection (£ =1), and for different values of the amplitude
A. For A=0, the growth rate is given by (3.1) and maximized at « = =y =0, where
Re{o,} =1+&2=2 (figure 2a). As A is increased, the contours bend slightly around
B =0.5, and the most significant variation in the growth rate becomes confined to an
increasingly narrow region near o =0 (e.g. figure 2¢,f). However, the mode with zero
wavenumber remains the most unstable. Thus, the large-scale overturning instability
of the background density gradient remains the dominant instability, irrespective of
the strength of the square columnar flow, and there is no transition to a ‘columnar’
most unstable mode. This behaviour is quite different from the two-dimensional case
(¢ — 0) discussed above.

3.2.3. Rectangular planform: & <1

Given that the most unstable mode is coupled to the columnar flow for a two-
dimensional planform, it seems likely that a similar instability will be present with a
rectangular three-dimensional planform, provided that the aspect ratio & is sufficiently
small. Furthermore, since no such instability is present for a square planform, there
must be a transition in the stability properties of the columnar flow as the aspect ratio
of its planform is decreased from one.

Contours of the growth rate Re{o,} are shown in figure 3(a—d) for various values
of the aspect ratio &. As & is decreased, the growth rate grows around a point
centred on 8 = 0.5 and o > 0, which indicates the presence of a new mode of
instability which is linked to the base columnar flow with double its periodicity
in the X-direction. For sufficiently small values of &, this new mode has a larger
growth rate than the overturning instability of the background temperature gradient
(figure 3d). Interestingly, as the aspect ratio is reduced, the growth rate becomes
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FIGURE 3. (Colour online) Density maps and contours of the maximum growth rate for
A =32 and different aspect ratios. (a—d) The growth rate Re{o,} maximized over y for
each value of (¢, 8). (e-h) The growth rate Re{o,} for fixed 8 =0.5 as a function of y
and «. The aspect ratios are (a,e) £ =1, (bf) £ =0.5, (c,g) £ =0.25 and (d,h) £ =0.125.
As & is decreased from £ =1, a local maximum appears at 8 =0.5 and « > 0, and the
growth rate of this mode becomes independent of y.

(a) 3.0 D) (c) 10°
25
2.0
15
1.0
0.5

0.5

& 107!

Re{oo}lg

2
10° 102 10* 10° 108
o o A

FIGURE 4. (Colour online) (a,b) The maximum growth rate Re{op} at fixed § =0.5 and
y =0 for different aspect ratios £ of the base state as marked and (a) A=2°, (b) A=25.
In each case, the dashed line shows the two-dimensional result (i.e. the limit & — 0). (¢)
The critical aspect ratio &., below which the columnar mode is the most unstable mode.

essentially independent of y, as shown in figure 3(e—h), which indicates that the new
columnar mode is independent of the periodicity of the flow in the Y-direction.

The presence of a new mode can be seen more clearly in figure 4(a,b), which shows
the growth rate at fixed § =0.5 and y =0 as a function of the vertical wavenumber
«. For square planforms with & =1, the growth rate decreases monotonically with «
from o =0, as discussed above, but for smaller aspect ratios there is a local maximum
in Re{o*} at o > 0, which becomes a global maximum as & is decreased past some
critical value &.. As & is decreased further and the base planform becomes increasingly
long in the Y-direction, the growth rate of this columnar mode increases towards the
two-dimensional result.

More formally, we define the critical aspect ratio &. to be the largest value of & such
that Re{o*(a, B =0.5; £)} > Re{c*(0, 0; £)} = 1 + £? for some « > 0. Calculations of
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FIGURE 5. (Colour online) Data (dots) as a function of aspect ratio &, for different A.
(a—c) The maximum growth rate 0" =Re{o,,}, with the corresponding vertical wavenumber
a@,, and the propagation speed c,, for A=2'7, which tends towards the corresponding values
in two dimensions (black dashed) as & — 0. (d—f) The scaled deviation from the two-
dimensional results for the same three quantities, and for A =2'' (black circles), A =2
(blue stars), A =2'7 (red squares) and A =2%° (green triangles). The black dashed lines
have unit slope. (g—i) The same data having been scaled by a suitable power of A as
marked, together with the asymptotic predictions for & — O (black dashed), taken from
(4.13) (see the asymptotic analysis in §4).

&. extracted using a root-finding algorithm (figure 4c) show that &  approaches one
very slowly as A — oo, and that §. — 0 as A approaches the critical value of 17.2,
below which the background overturning instability is always the most unstable mode.

We define o0 =0,,(A, §) to be the eigenvalue with the largest real part maximized
over o, B and y, and denote the corresponding wavenumbers at which this value
is attained by «,,, B, and y,,. The vertical phase speed corresponding to this mode
is given by ¢, = —Im{o,}/a,,. As discussed above, for & < &.(A), B, =0.5 and o,
becomes independent of y. We therefore choose to set y, = 0 in all subsequent
calculations.

Figure 5(a—c) shows how o,, «, and c,, calculated for a fixed large amplitude A,
approach the corresponding two-dimensional values o,,, «,, and c,, as & is decreased
towards zero. The deviation from the two-dimensional values scales linearly with &
for each of these measures (figure 5d—f), and also has a systematic dependence on
the amplitude A (figure 5g—i). The data indicate that

Re{o,,} — Re{o,,} ~£A*°Refo,,} ~EAT, (3.2a)
Oy — oty ~ EA, ~ EAY, (3.2b)
Cn— Cyy ~EAT00, ~EADS, (3.20)
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FIGURE 6. (Colour online) Data (dots) as a function of A, for different aspect ratios £.
(a—c) The maximum growth rate 0" =Re{o,,}, with the corresponding vertical wavenumber
o,, and the propagation speed c,,, together with the two-dimensional results (black dashed
lines), which exhibit asymptotic scalings of Re{o,p} ~ A*°, ayp ~A~1° and cp ~ A as
A — 00. (d—f) The relative deviation from the two-dimensional results, scaled by the aspect
ratio &, for the same three quantities. The dashed lines show the asymptotic predictions for
& — 0 taken from (4.13) (see asymptotic analysis in §4). The quantities deviate from the
asymptotic predictions as A — oo, as discussed in §4.3. The different symbols correspond
to & =1/5 (black circles), £ =1/10 (blue stars), £ =1/20 (red squares), & =1/40 (green
triangles), £ =1/80 (pink dots) and £ =1/160 (grey crosses).

as £ — 0 and for large A, given the scalings for the two-dimensional quantities
reported in §3.2.1. We will derive and explain these scalings via an asymptotic
analysis in the limit of small £ in §4 below.

If, instead, we fix the aspect ratio and consider the limit A — oo, we find that
the growth rate and the corresponding vertical wavenumber gradually deviate from
the two-dimensional values (figure 6a—c). Indeed, while the deviation from the two-
dimensional values shows the same scalings as identified in (3.2) above (figure 6d—f)
for relatively low amplitudes, the quantities diverge as A — oco. Results for smaller
values of £ remain closer to the two-dimensional data up to higher amplitudes, but
still follow a different trend for sufficiently large values of A.

3.3. Planform of instability

The approach of the maximum growth rate towards the two-dimensional value can in
part be understood by an examination of the corresponding eigenmodes. Figure 7(a)
shows profiles in the (X, £Y) plane of a temperature perturbation @ that gives
the maximum growth rate for a base state with a relatively large amplitude. This
particular mode has a negative phase speed, and the corresponding background
planform is shown in figure 7(c). For & = &., the mode takes the form of a weak
cold pulse, centred on a cold background column in the background flow, and a
neighbouring warm pulse centred on the next downwelling column in the X-direction,
with only weak perturbations affecting the surrounding upwelling columns. As &
is decreased, this pattern becomes increasingly concentrated around £Y = 2nm or
&Y = (2n+ 1)m, with large regions of negligible perturbation between pulses. For very
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FIGURE 7. (Colour online) Eigenmodes for A =2'7. (a) The temperature perturbation @)
at a fixed depth z with y =0, for £ =&, =0.573 (far left), £ =272 (middle left), £ =27
(middle right) and & =270 (far right). The perturbations are periodic, with period 47 in
the X-direction and 2w /£ in the Y-direction. (b) A set of linearly independent solutions
with the same aspect ratios as in (a). The solutions in (a) and (b) have the same growth
rate and the same (negative) phase speed; any linear combination of these modes is also a
solution. (¢) Contours of the corresponding background temperature field. (d) Temperature
perturbations O (X, Y=0) for the modes shown in (a), with £ =£, (black), £ =272 (blue),
€ =27% (red) and £ =27'° (green). The dashed line shows the corresponding background
temperature profile ®, at Y =0 for reference.

small aspect ratios, regions of near-zero perturbation cover the vast majority of the
plane (figure 7a; right-hand plots): pulses decay rapidly away from the centre of the
background columns and appear to become completely isolated from neighbouring
pulses in the Y-direction. In addition, the temperature perturbation across a pulse in
the X-direction (figure 7d) tends towards a double-peaked or claw-shaped sinusoidal
profile as £ — 0, with maxima or minima located on either side of the background
downwelling columns. This is the profile of the two-dimensional columnar instability.

As previously mentioned, the symmetries of the equations permit a linearly
independent solution with the same eigenvalue. This solution is shown in figure 7(b),
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FIGURE 8. (Colour online) (a) The decay of the perturbation temperature in the
Y-direction for £ =271, The profiles here are taken along the line X =5m/2, for modes
that are aligned as in figure 7(a), for which there is a temperature maximum at (X, Y) =
(57/2,0) (this maximum is scaled to one here). (b) The distance Y, over which profiles
decay in the Y-direction, as defined in the main text. The colours and symbols correspond
to A =2'" (black dots), A =2 (blue star), A =2'" (red squares) and A = 2?° (green
crosses).

and consists of the same pattern of pulses translated by (w, m/€). By taking any
linear combination of these two solutions, one can construct a family of admissible
eigenmodes which, for small &, takes the form of a ‘chequerboard’ pattern of pulses
centred on every column in the Y-direction of the base profile, with an arbitrary
relative magnitude between each pair of neighbouring pulses.

This observation suggests that perturbations centred on a particular column of the
base flow do not interact with perturbations on the neighbouring column in the Y-
direction, which, in turn, suggests that the growth rate will be independent of the
periodicity of the eigenmode in the Y-direction. This suggestion is consistent with the
previously observed independence of the maximum growth rate on the wavenumber
y, which dictates the periodicity in the Y-direction.

The large regions of near-zero perturbation between neighbouring pulses are the
result of a strong modulation of the perturbation in the Y-direction. Figure 8(a) shows
the decay of the perturbation away from the centre of a pulse, which takes a Gaussian-
like form with a weak dependence on the amplitude A. Using such profiles, we define
a decay length Y, to be the distance in the Y-direction from the centre of a pulse to
the point where the magnitude of the perturbation has fallen to 10 % of its original
value, averaged over X. The decay length scales with Y, ~£~1/? as & — 0 (figure 8b),
and displays a very weak dependence on A (which we identify in the asymptotic
analysis of §4 as Y; ~ £ Y2A~1/18) Thus, despite the apparent localization of the
perturbation in £Y space, the envelope of the modulation actually grows like &~1/2
as £ - 0.

Finally, we note that two eigenmodes complementary to those shown in figure 7
could be constructed by the translation X — X 4 m; these modes would have the same
growth rate but would consist of pulses centred on neighbouring upwelling, rather than
downwelling, columns of the background flow, and would have a positive, rather than
negative, phase speed.

4. Asymptotic analysis in the limit £ — 0

In order to further understand how the three-dimensional instability of the columnar
structure approaches the two-dimensional instability in the limit of long thin columns,
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we undertake an asymptotic expansion of the linear perturbation equations in the
joint limit £ — 0 and A — oo. In this section, we first give a brief review of the
two-dimensional problem (see Hewitt et al. (2013) for more details) and then outline
the scalings in three dimensions that give rise to the behaviour reported in (3.2). A
detailed description of the asymptotic solution is given in appendix A.

We consider the limit of large A and, based on the symmetries of the governing
equations, restrict attention to solutions [G, F] that are even under reflection about
X =0 and odd under reflection about X ==+£m. These solutions correspond to boundary
conditions F'(0) =G'(0) =0 and F(rt) = G(w) =0.

4.1. Two-dimensional flow

We first revisit the two-dimensional problem, for which the equations reduce to
G+F'=a’F, oG+ieA[GcosX —F'sinX]+F'=G' —a’G, (4.1a,b)

where F and G are functions of X alone. The asymptotic expansion in the limit A —
oo and o < 1 gives leading-order outer solutions of G=sinX and F =sinX — X+ 7 in
(0, 2m], with 0 = —izA + o *. These solutions cannot satisfy the boundary conditions at
X =0, and instead match to a thin boundary layer there. A balance between horizontal
diffusion, advection and growth, together with the form of the outer solution for small
X, suggests scalings

= @A)"'X, s=(Ad) c*, g=(@A)'G, f=(@A'F, a*=aA"’

(4.2a—e)
for the inner region, while (4.1) becomes
ix2
f// +g= (OfA)lM )l(lil'(l) 0[2F= 0*9/41'[, <S _ 1';) g— U?f(; :g//' (43Cl,b)

Equation (4.3) is solved subject to g'(0) =f'(0) =0 and f — —¥?/2 — oa*/*7X as
X — 00. The third of these boundary conditions, which comes from matching to the
leading-order outer solution, can be shown to impose two constraints on solutions
of (4.3), and thus determines the dispersion relationship s(«*). Numerical solution of
these equations gives a maximum for s(*) at o* =0.332, such that the leading-order
maximum growth rate occurs at vertical wavenumber o =0.33247!° and is Re{o*} =
(@A) *Refs(a*)} = 0.2308A%°.

4.2. Three-dimensional flow

In three dimensions, we look for solutions in the limit £ <« 1 that resemble the two-
dimensional solutions but are subject to a ‘slow’ modulation in the Y-direction (i.e.
over a scale larger than the O(1) variation in the X-direction). As in two dimensions,
we set 0 = —iaA + o*, with o* to be determined. The governing equations in the
outer region are

G+Fux=oF—Fpy <1, (4.4a)
(1 —cos X cos £Y)G + (sin X cos £Y)Fy = O((aA) ™), (4.4b)

which have the leading-order solution

F=aY)[sinXcoséY —X+ 7], G=a(Y)sinXcos&Y (4.5a,b)
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for some modulating amplitude a(Y) to be determined. We again expect an inner
region near X =0, where

G+F = lim (0®F — Fyy} = mt(a*a — ayy), (4.6a)

X2 52y2
0*G —iaA [(2 + > ) G+iXFX} = Gyx + O(FE*Y?, Fxy). (4.6b)
A balance of the terms that are independent of £ in (4.6) gives the two-dimensional
scalings for the inner region, as in (4.2). A further balance of the relative magnitudes
of the first-order correction terms in (4.6a) and (4.6b) gives ayy/(aa®) ~ £E*Y?/X?, or
Y ~ (E*aA) 1B ~ E712A-YI8 given X ~ (@A)~"'/* as in (4.2). The relative size § of
each of these correction terms is 8 ~ &(a3A)Y/4 ~ £A3/°,
We therefore introduce a stretched coordinate in the Y-direction,

57=(§4Ol5A)1/8Y=Ol*S/SEI/ZAI/IS Y, (47)

together with scalings for the inner region,

i=(@A)'*X, 5= (aA) 0", (4.8)
g=(@A)'*G/aY), [=(aA)/*F/a(Y), o*=aA'’, '
and the scale
§=E(@A) = HEAY, (4.9)
at which we expect a correction to the leading-order two-dimensional solutions.
The equations in the inner region near X =0 become
g+f"=mmn, (4.10a)
i
with boundary conditions g'(0) =f"(0) =0 and f' — —X?/2 — mnX as X — oo, where
Sayy 8iy?
= (1-“”) and xzs—%. (4.11a,b)
a

Equations (4.10) are identical in form to the eigenvalue problem in two dimensions
(4.3), and so the eigenvalue dispersion relationship X'(n) that results from solving
(4.10) is precisely the relationship s(«*) that we found previously, continued into the
complex plane. In particular, since y is just a parameter in (4.10), we can expand 7
and ¥ in powers of § about their two-dimensional values, to deduce both the size
of the corrections to the growth rate, phase speed and vertical wavenumber, and the
structure of the modulation function a(Y).

The details of this calculation are described in appendix A. The balance at O(6)
gives predictions for the correction S («y, o¢y) to the eigenvalue o*, where o* = o +
Sa; + 0(8%). The most unstable mode occurs at a saddle point of Re{S;} (figure 9a), as
discussed in appendix A. The balance at O(§) also provides, as a solvability condition,
an ordinary differential equation (ODE) for the modulation function a, with a Gaussian
solution a = exp (—dy*/2) for a certain complex constant d.
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FIGURE 9. (Colour online) (a) Contours of the correction to the growth rate Re{S;} as
a function of the wavenumbers ¢y and «;, as defined in appendix A. The saddle point
(otg, 1) = (0.332, —0.059) is marked by a cross. (b) The width Y, of the profiles in the
y-direction, as defined in figure 8(b), scaled by A~'/!® and compared with the predicted
width from the asymptotic analysis (4.12) (dashed line). (¢) Temperature profiles in the Y-
direction for £ =27!!, as in figure 8(b), scaled by A~"/!® and compared with the Gaussian
asymptotic prediction in (4.12) (dashed). In (b) and (c), the colours correspond to A =2!!
(black), A =2'"* (blue), A=2"" (red) and A =2% (green).

4.3. Summary of asymptotic analysis

The resulting leading-order temperature G and horizontal velocity dF/dX perturbations
of the most unstable mode, away from the thin boundary layer around X =0, are

G =exp (—dg A°Y?/2) sin X cos £Y, (4.12q)
oF I 1/9y2
a—XzeXp (—d& AY°Y?/2)[cos X cos £Y — 1], (4.12b)
with
a=0pA " + & EAY 4+ .., (4.13a)
Re{o} = SeA"° + S, 6A7° + ... | (4.13b)
c=A+cEAY ... | (4.13¢)
where

d=a)*'d=043-0.134i, o=0332, & =ay " 'e;=-0.135,  (4.14a—c)

So =Re{So} =0.2308, 8, =a; *Re(S;} = —0.1099, (4.15a,b)
S,

1=y Im {Sl _ “10} — —0.743. (4.16)
2(10

The profiles are modulated in the Y-direction like a Gaussian wavepacket that
decays over a length Y, ~&~"/2A=Y/'8 In fact, since Re{d} > Im{d}, the period of the
oscillation is greater than Y,, and the profile is dominated by the Gaussian decay. The
asymptotic prediction of Y, gives excellent agreement with the numerical results of
the Floquet analysis (figure 9b), as does the predicted Gaussian envelope (figure 9c).
The correction terms for the growth rate, wavenumber and phase speed also all give
very good agreement with the numerical results (see the dashed lines in figures 5g—i
and 6d-f). Given that this asymptotic analysis relies on an expansion in powers of
8§ ~ EA'3, it is evident that the expansions will break down if A > £73, as can be
observed in the numerical solutions shown in figure 6(d—f).
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4.4. Physical mechanism of modulation

In two dimensions, the most unstable mode propagates with the maximum speed |c| =
A of the background flow (Hewitt et al. 2013). Away from the thin boundary layers,
it constitutes a neutral balance between horizontal advection of the base temperature
field and vertical advection of the resultant thermal perturbation by the base flow. The
mode grows exponentially in time because of the influence of horizontal diffusion in
the thin boundary layers between neighbouring cells, which introduces an imbalance
in the vertical phase of the perturbation.

We have found that the most unstable mode for long thin columnar exchange flow
in three dimensions takes the same leading-order form, but is modulated in the Y-
direction. In order to briefly discuss the physical basis for the modulation, we consider
a perturbation centred on Y = 0. Outside the boundary layers, the Y-dependence of
the perturbation induces weak variations in the vertical velocity (~Wyy + Wyy ~ Fxx +
Fyy) and vertical pressure gradients (~¥,, ~ «>F) gradients away from Y = 0. While
these variations have no effect on the leading-order neutral interior balance discussed
above, they do provide a perturbation to the temperature in the boundary-layer regions
(through the right-hand side of (4.6a)). The Y-dependence of the background flow
does not itself affect the dominant balances in the outer region at all.

Within the boundary layers, however, the locally quadratic variation of the
background profile in the Y-direction weakens the base vertical velocity away from
Y =0, and so reduces the vertical transport of the perturbation temperature field (as
demonstrated by the term proportional to Y? on the left-hand side of (4.6b)). As
such, the temperature profile at the edge of the boundary layer is modulated in the
Y-direction, which balances the perturbations from the outer region in such a way as
to impose the Gaussian form of the envelope a(Y). Weaker vertical advection in the
boundary layer also adjusts the vertical phase of the temperature perturbation, which
is the basis for the correction to the growth rate of the mode at O(3).

5. Relevance for the spatial scales of high-Rayleigh-number convection

High-Ra convection in a three-dimensional Rayleigh—Darcy cell is dominated by
vertical columnar exchange flow in the interior, driven by the growth and merging
of high-wavenumber time-dependent protoplumes at the upper and lower boundaries.
The interior flow has a dominant cross-sectionally averaged wavenumber k(Ra), and
is fairly well described by a simple steady heat-exchanger model, as in (2.5). One
of the motivations of this work was to explore whether the stability of unbounded
heat-exchanger flow has any implications for the observed wavenumber k in a three-
dimensional Rayleigh—Darcy cell.

We first observe that there is a simple upper bound for the scaling of k(Ra), given
the heat-exchanger framework, which is provided by a balance between O(1) vertical
advection along a background temperature gradient and O(k*/Ra) horizontal diffusion
between columns. Such a balance gives a bound of k ~ Ra'/?: if the exponent were
any larger, vertical advection would not be strong enough to transport heat across the
domain and the heat flux would vanish asymptotically.

5.1. The situation in two dimensions

In two dimensions, the flow appears to adopt a weaker scaling than the Ra'/? bound,
with numerical data over the range 1300 < Ra < 4 x 10* suggesting a scaling of
approximately k ~ Ra®* (Hewitt et al. 2012). Despite the statistical scatter in the data,
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compensated plots of k/Ra' for different trial exponents A confirm that the trend in
the data is distinctly weaker than Ra'/? (see Hewitt et al. 2013). As discussed in the
introduction, more recent numerical results (Wen et al. 2015) over a larger range of
Ra reveal significant scatter in the data for k(Ra) at higher values of Ra, and indicate
that caution is required when averaging the wavenumber for these higher values.

Hewitt et al. (2013) suggested that the wavenumber adopts a weaker scaling than
k~ Ra'’? because of a two-dimensional version of the columnar instability mechanism
that we have discussed in this paper. Specifically, they identified a simple scaling
balance between the asymptotic growth rate Re{o,p} of the most unstable mode and
the time scale for propagation of the instability across the domain, which suggested
that the flow in a Rayleigh-Darcy cell would be unstable to a columnar instability
if k> O(Ra*'*). According to this simple argument, the flow in a Rayleigh-Darcy
cell is forced at the boundaries by high-wavenumber protoplumes, but coarsens due to
instabilities of the columnar exchange flow until the wavenumber reaches this scaling.
The argument relies on two key assumptions. First, away from the upper and lower
boundaries, the interior flow behaves like an unbounded heat-exchange flow. Second,
at the upper and lower boundaries, the perturbations to the interior flow associated
with protoplume merging and mixing provide sufficient noise to remove any slowly
growing perturbations that arrive on incoming columns and to seed a broad spectrum
on outgoing columns.

Wen et al. (2015) approached the problem from a different direction, by noting
that the formulation in an unbounded domain may have limited applicability to a
finite domain where the boundaries play such a dominant role in the dynamics.
They instead found exact steady solutions to the governing equations in a finite
domain, which had a qualitatively similar structure to the fully time-dependent flow,
comprising thin thermal boundary layers and an interior columnar exchange flow.
They studied the stability of this base state in detail, and identified two types of
instability, characterized by ‘bulk’ or ‘wall’ modes, with the latter strongly localized
to the upper and lower boundaries. They found that, in general, the wall modes had a
significantly larger growth rate than the bulk modes, unless the columnar wavelength
of the base state was very short. They further argued that the nonlinear evolution
towards fully developed statistically steady flow resulted, in general, from an interplay
of these two modes: the wall mode drives apart wide columns by the growth of small
plumes from the boundaries, and the bulk mode drives coarsening of narrow columns.
In fact, while the great advantage of this approach is that it includes explicitly the
upper and lower boundaries of the domain, the essence of the argument is broadly
consistent with the view of Hewitt et al. (2013), in which the growth of protoplumes
from the boundary drives apart wide columns, while narrow columns coarsen via a
columnar instability.

5.2. The situation in three dimensions

Data from direct numerical simulations of convection in a three-dimensional Rayleigh—
Darcy cell give an average wavenumber k &~ 0.17Ra%3?*%% over a range 1750 < Ra <
2 x 10* (Hewitt et al. 2014; also shown in figure 11). It is important to reiterate the
limitations of these data: the computations are numerically intensive, and so the data
are both fairly sparse and possibly affected by restriction from the size of the domain,
as discussed by Hewitt er al. (2014). Nevertheless, the data appear to show a scaling
that is systematically stronger than that in two dimensions.

One aim of this study was to undertake a similar stability argument here to that of
Hewitt et al. (2013), by using the stability of unbounded heat-exchanger flow with a
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FIGURE 10. (Colour online) (a) The growth rate of the most unstable mode maximized
over 8 and y as a function of o for A spaced logarithmically between A = 32 and

A =2048. (b) The corresponding phase speed, scaled by A, and (c) the corresponding

horizontal wavenumbers B and y, which increase like «!/? before jumping to B=y =1/2.

(d) The largest vertical wavenumber o, below which the phase speed is zero (black
circles), together with the minimum wavenumber «,,;, that would fit in the domain given
the data for k(Ra) from the simulations of Hewitt er al. (2014) (red dashed) or the
predicted scaling of k(Ra) in (5.1) (blue solid). In either case, the most unstable mode
with & 2 &, is a columnar mode with 8=y =0.5 and growth rate Re{oc} — 1 as A — oo.

square planform to predict the wavenumber in the bounded three-dimensional cell. In
order to make use of the results for an unbounded domain, it is evidently necessary
that the perturbations have a vertical scale that is much smaller than the height of the
finite domain. In other words, since a Rayleigh—Darcy cell of (dimensional) depth L
has dimensionless depth Lk* =k, where k is the wavenumber of the background flow
non-dimensionalized by the depth of the domain (see the scalings in § 2.2), the vertical
wavenumber o of any unstable mode must satisfy « 3> Cpin = T0 /k. Here, k = k(Ra),
where Ra = Ak/A is the usual Rayleigh number and A is the dimensionless amplitude
of the base columnar flow (see §2.2). Thus, if kK ~ Ra" in the Rayleigh-Darcy cell,
then o, ~A~1=" 1In particular, if n = 1/2, then «,,;, ~A~', while smaller values
of n give a weaker decay for o,,;,(A).

We have already found that the most unstable mode with a square planform in
an unbounded domain is simply the usual Rayleigh mode of the background linear
temperature gradient, with growth rate Re{o'} =2, zero phase speed and wavenumber
o =0. This mode evidently cannot be contained in a finite cell, and so we must instead
examine the most unstable mode that satisfies the constraint o > «,,;,. Contour plots
of the growth rate (e.g. figure 2) show that a region of relatively large growth rate
becomes increasingly localized about & =0 as A is increased. This behaviour is more
clearly revealed in figure 10(a—c), which shows the maximum growth rate and the
corresponding phase speed and horizontal wavenumbers as functions of the vertical
wavenumber «. As « is increased from zero, the growth rate decreases slightly and

the horizontal wavenumbers increase like «'/? (in fact, they satisfy 82+ y2~+/2a, as
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FIGURE 11. (Colour online) The predicted wavenumber from (5.1) (red dashed), together
with data from direct numerical simulations (red circles) of three-dimensional convection
(Hewitt et al. 2014). The corresponding prediction and results for two-dimensional
convection, taken from Hewitt et al. (2013), are shown for comparison (black line and
stars).

can be predicted by maximizing the growth rate in (3.1) for o > 0). The phase speed
|c| initially remains zero. However, at some critical o = «.(A), there is a change in
this behaviour: the maximizing wavenumbers jump to 8 =y = 0.5, the phase speed
jumps up to |c¢| = O(A) and there is a discontinuity in the slope of the growth rate.
We denote modes with o < a, as large-scale Rayleigh-like modes, which have small
horizontal wavenumber and zero phase speed, and those with o > «,. as columnar
modes, which propagate and have double the wavelength of the background columnar
flow. For o > o, the growth rate drops towards a plateau with Re{o}~1 and |c|~A
(figure 10a,b).

The critical wavenumber «,(A) decreases like A~! (figure 10d), as can be understood
by observing that the correction terms to the Rayleigh mode for o« < 1 in (2.13) scale
with O(xA). According to the data for k(Ra) from the direct numerical simulations
of Hewitt et al. (2014), the smallest wavenumber «,,;,, = 7/k that could be contained
within the domain similarly decreases like A~!, but is an order of magnitude larger
than o, (figure 10d). Thus, as in two dimensions, the most unstable mode that can be
contained within the cell is a columnar mode, with phase speed |c| & A, but, unlike
in two dimensions, it has growth rate Re{c}~ 1. A repeat of the argument presented
by Hewitt et al. (2013) suggests that the base flow could be unstable if the time scale
for propagation across the domain were greater than the time scale for growth of the

instability, such that k/A > 1/Re{o} 2 1. Given that Ra =Ak/ﬁ (see §2.2), this balance

gives instability when
~ 1/2
AR
k> ( a ) > 0.4Ra'", (5.1)

~ \ Re{o}

given A~0.2 (Hewitt et al. 2014). This is the same scaling as the upper bound
identified above, and is a stronger scaling than the equivalent prediction of k ~ Ra®/!*
in two dimensions. It is also consistent with the data from direct numerical
simulations, for which k ~ Ra%>**%% as can be seen in figure 11.
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The result of this argument is thus consistent with the hypothesis that the
wavenumber of the interior columnar flow in two-dimensional and three-dimensional
high-Ra convection in porous media adopts different scalings because of the different
stability properties of the columnar flow. Under this hypothesis, the interior flow is
always forced at the boundaries by vigorous mixing of protoplumes (which have a
wavenumber ~Ra), and must coarsen to at least a wavenumber of k ~ Ra'/? in order
to transport sufficient heat across the domain. In two dimensions, the interior flow
is unstable to a columnar instability that drives coarsening of the columns down
beyond this bound to an asymptotic wavenumber k ~ Ra>'*. In three dimensions,
the corresponding instability is weaker, and drives coarsening only to an asymptotic
wavenumber k ~ Ra'/?. In other words, the instability saturates the upper bound in
three dimensions.

6. Summary

In this paper, we have studied the stability of convective columnar exchange
flow in an infinite three-dimensional porous medium. The flow, which consists of
a rectangular sinusoidal planform of interleaving hot and cold columns with aspect
ratio £ < 1 on a linear background temperature profile, is always unstable to a
large-scale overturning of the background gradient with maximum growth rate 1+ &2.
Unlike in two dimensions, for a square planform (§ = 1), this mode remains the
most unstable irrespective of the amplitude A of the convective flow. However, flow
with a rectangular planform (£§ < 1) can become more unstable to a perturbation of
the columnar flow, with double the periodicity of the base flow, which has a growth
rate that increases with A. This mode becomes the most unstable below a critical
aspect ratio £.(A), and, in the limit £ — 0, the growth rate of this mode approaches
the two-dimensional value Re{o,p} ~ A*°. By means of an asymptotic expansion in
the joint limit A — oo and & — 0, we found the manner in which the growth rate,
phase speed and corresponding vertical wavenumber approach their two-dimensional
counterparts, and found that the flow is modulated in the long (Y) direction by a
Gaussian profile that decays over a distance ~A~1/18&-1/2,

Following the approach of Hewitt et al. (2013), we considered the relevance of
these results for the spatial scales of convection in a three-dimensional Rayleigh—-Darcy
cell. Such an approach gives rise to a hypothesized scaling of k ~ Ra'/? for the average
horizontal wavenumber of the interior flow in the cell, which is a stronger scaling than
in two dimensions and is consistent with data from numerical simulations.
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Appendix A. Details of the asymptotic solution

In §4, we outlined the outer solution and relevant scalings for the structure of the
instability in the limit A — oo and & — 0. The governing equations for the inner
region, quoted in (4.10), provide an eigenvalue problem for X(1), where ¥ =5 —
8iy?/2, n=a*/*(1 — 8az;/a), s = (@A)""?c* and a* =aA'”’. The goal of the analysis
is to determine the corrections to the growth rate Re{o*} and wavenumber o* for
non-zero aspect ratio £, which we expect to enter at O(8), where § = a* ¥/*£A%° (see
§4.2 for the origin of these scalings).
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For ease of notation, we first introduce the scaled eigenvalue S = o*/A*° = a*!/2s,
which satisfies

§ = /2 — o112 [2(77)4_&;2] . (A1)
We then expand S and o* to give
o =ag+do;+---, S=S+85+---, (A2a,b)
and equate powers of § in (A 1) to obtain
So=at? 2@, =a1§z(; +ay [ly; - CZ‘A} : (A3a,b)

where we have introduced the notation A = ag/ 42/((13/ ), and X' = 93X /9n. Equation
(A 3a) is simply the two-dimensional dispersion relationship. Equation (A 3b), together
with the boundary conditions a(0) =1, a/(0) =0, and a bounded as y — oo, provides
an ODE for the modulation function a and an eigenvalue problem for the dispersion
relationship S;(«g, ;). The solution of (A 3b) is a Gaussian wavepacket,

o o /i
a(y) =exp (—=dy’/2), d= A (Ada,b)

with eigenvalue

EN
Si =0 — +day A. (A5)
8“0

The maximum growth rate is obtained when Re{dS/da} = 0, which, after expanding
in powers of 8, occurs when

N S
J:iRO’ 7l=iR|’ (A6a,b)
o dog

for real constants R,, R;. These two conditions determine the values of oy and «;
respectively at which the growth rate is maximum.

We compute X’ and calculate the constant R, by taking the derivative of (4.10) with
respect to n, which gives a new eigenvalue problem for X(n). The first constraint
(A 6a) gives ap=0.332, as in two dimensions, together with Ry= —0.0233, E/(ag/ 4) =
—1.06 + 1.54i and d =1.708 — 0.5341, while the second constraint (A 6b) gives o =
—0.059. The resultant eigenvalue pair at this wavenumber pair is (S, S;) = (0.2308 —
0.182i, —0.0481 + 0.14i).

We note that the first term on the right-hand side of (A 5) is purely imaginary when
the growth rate is maximized (from (A 6a)), and so the correction to the growth rate
Re{S,} is independent of «;. As a consequence, Re{S;(xg, ov;)} is actually a stationary
point in both the «(- and «;-directions, and, since S; varies linearly with ¢, it must
be a saddle point. Numerical computation of Re{S (o, 1)} confirms this prediction
(figure 9a). This feature of the solutions arises because the corrections at O(§) satisfy
the same eigenvalue relationship X' (n) as at leading order. As a result, the correction
to the wavenumber can only affect the phase speed of the perturbation, since it is
a real perturbation to a dispersion relationship that is already maximized over the
real axis. Correction to the growth rate instead requires a perturbation of 1 into the
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complex plane, which is provided by the modulation function a(Y), via the parameter
d in (AS). We note that this correction is negative: the growth rate is slightly damped
by the slow variation of the base state in the Y-direction.
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