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Abstract

Propagation of Gaussian X-ray laser beam is presented in collisional quantum plasma and the beam width oscillation is
studied along the propagation direction. It is noticed that due to energy absorption in collisional plasma, the laser
energy drops to an amount less than the critical value of the self-focusing effect and consequently, the laser beam
defocuses. It is found that the oscillation amplitude of the laser spot size enhances while passing through collisional
plasma. For the greater values of collision frequency, the beam width oscillates with higher amplitude and defocuses in
a shallower plasma depth. Also, it is realized that in a dense plasma environment, the laser self-focusing occurs earlier
with the higher oscillation amplitude, smaller laser spot size and more oscillations.
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1. INTRODUCTION

Recent continuous advances in ultra-intense short-pulse
lasers and their various applications motivated the research
activities in this field such as mono-energetic electron gener-
ation, ion block acceleration, and inertial confinement fusion
with the fast igniter scheme (Sari et al., 2005; Koyama et al.
2006; Badziak et al., 2006). When an intense laser beam
propagates in the plasma, due to the induced quivering
motion of electrons, the plasma refractive index changes
(Hora, 1975; Sadighi-Bonabi et al., 2009). In this condition,
the plasma behaves initially similar to a positive lens that de-
creases the laser spot size and continues its focusing and de-
focusing through plasma (Hora, 1985; Faure et al., 2002;
Pukhov, 2003). In order to achieve a better interaction of
laser with plasma, deeper penetration of high-intensity
beams in plasma is required. The self-focusing effect plays
an important role in the recent advances of the laser–plasma
interaction and particularly in fast ignition systems. It is no-
ticed that this effect enables the laser beam to propagate over
several Rayleigh lengths in plasma (Schlenvoigt et al., 2007;
Boyd et al., 2008).
The laser self-focusing has been studied in the interaction

of the laser beam with both homogeneous and

inhomogeneous plasmas (Upadhyay et al., 2002; Varshney
et al., 2006; Kaur & Sharma, 2009; Sharma & Kourakis,
2010). Prakash studied the propagation of a Gaussian laser
beam in a radial inhomogeneous medium with multi-photon
absorption (Prakash, 2005). Furthermore, in the classical
regime, the propagation of intense Gaussian laser beam in
collisional and collisionless plasmas has been studied by
many researchers (Upadhyay et al., 2002; Sharma et al.,
2003; Sharma & Kourakis, 2010; Prakash, 2005; Sodha &
Sharma, 2006; Varshney et al., 2006; Kaur & Sharma,
2009; Etehadi Abari & Shokri, 2012; Gupta et al., 2013;
Jafari Milani et al., 2014). In principle, classical plasma is in-
troduced by high temperature and low density, while quan-
tum plasma is characterized by high density and low
temperature (Shukla, 2009; Chandra et al., 2012). Distinction
between the classical and the quantum models for plasma is
determined by the parameter χ= TF/T, where TF and T rep-
resent the Fermi temperature and the plasma temperature, re-
spectively. If the plasma temperature is equal to or less than
the electron Fermi temperature (χ≥ 1), then the quantum ef-
fects are dominant and the relevant statistical distribution
changes from Maxwell–Boltzmann to Fermi–Dirac. The
Fermi temperature could be defined as follows (Landau &
Lifshitz, 1980):

kBTF = EF = h− 2

2me
(3π2ne)2/3 (1a)
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χ = TF
T

= 1
2
(3π2)2/3(neλ3B)2/3 (1b)

ne represents the electron plasma density. On the other hand,
the quantum effects could be measured by the thermal de
Broglie wavelength, λB= ħ/(mekBT )

1/2 (ħ, me, and kB are
the rationalized Planck’s constant, the electron mass, and
the Boltzmann constant, respectively). λB explains roughly
the spatial extension of the particle wave function by consid-
ering the quantum uncertainty. Therefore, the quantum ef-
fects are important when the de Broglie wavelength of the
electron is equal to or greater than the average inter-electron
distance, n−1/3

e , that is, neλ
3
B ≥ 1 (Manfredi, 2005; Shukla &

Eliasson, 2010). In the classical regime, the de Broglie wave-
length is small enough to ignore overlapping of the wave
functions and quantum interferences and consider the parti-
cles as points. It is realized that the quantum effects get
more effective with the increase in the plasma density or
the decrease in the plasma temperature (Patil & Takale,
2013). Another important parameter in quantum plasma,
characterized as the ratio of the interaction energy, Eint, to
the Fermi energy, EF, is the quantum coupling parameter, gQ,

gQ = Eint

EF
= 2

(3π2)2/3
e2me

h− 2ε0n
1/3
e

(2)

For gQ≥ 1, the quantum plasma is collisional and for gQ< 1,
it is collisionless and the mean-field effects are dominant
(Manfredi, 2005). Hence, for large plasma densities, the
quantum plasma is collisionless. By considering the Pauli’s
exclusion principle, one could find, with increasing of
plasma density, the average kinetic energy of the plasma
also increases and causes to decrease the quantum coupling
parameter (Manfredi, 2005).
Quantum plasmas is strongly sound in many environ-

ments, that is, in astrophysical systems (Opher et al.,
2001), biophotonics (Barnes et al., 2003), neutron stars
(Chabrier et al., 2002), ultra-cold plasmas (Killian, 2006),
ultra-small electronic devices (Markowich et al. 1990), laser-
produced plasmas (Kremp et al., 1999; Andreev, 2000;
Kremp et al., 2005; Marklund, 2005; Becker et al., 2006),
fast ignition (Hu & Keitel, 1999; Andreev, 2000; Azechi,
2006; Marklund & Shukla, 2006; Shukla & Stenflo, 2006;
Glenzer & Redmer, 2009), micro plasmas (Becker et al.,
2005), quantum well, and quantum diodes (Ang et al.,
2006; Ang & Zhang, 2007). The distribution of electrons
in quantum plasma is explained by the Wigner function
(Wigner, 1932; Hillery et al., 1984; Kozlov & Smolyanov,
2007). In recent years, instabilities in plasma, propagation
of magneto-acoustic soliton and ion-acoustic solitary Fermi
temperature have been studied in quantum plasma physics
(Hussain & Mahmood, 2011; Ghosh et al., 2012; Chandra
& Ghosh, 2012). Eliasson & Shukla (2008) has presented
the fluid equations of quantum plasma and the dielectric
function of an unmagnetized collisionless quantum plasma
has been also introduced (Ali & Shukla, 2006). In 1970,

Mermin derived the dielectric permittivity for collisional
quantum plasma (Mermin, 1970). Moreover, Latyshev de-
rived the dielectric permittivity using a kinetic equation in
the momentum space in the relaxation approximation (Laty-
shev & Yushkanov, 2014).
The nonlinear effects are present more effectively in quan-

tum plasma than in the classical case (Shukla et al., 2006;
Shukla & Eliasson, 2010). In the quantum regime, the laser
spot size oscillates with greater frequency and less amplitude
while propagating deeper in the medium. Therefore, these ef-
fects will result in stronger self-focusing compared with the
classical regime (Shukla et al., 2006; Shukla & Eliasson,
2010; Marklund & Brodin, 2007; Bulanov et al., 2009; Patil
et al., 2013). Despite the fact that the laser self-focusing in col-
lisionless quantum plasma has been studied over the last de-
cades (Manfredi, 2005; Ali & Shukla, 2006; Shukla et al.,
2006, Shukla and Eliasson (2010); Na & Jung, 2009; Habibi
&Ghamari, 2014), the interaction of relativistic laser intensities
with collisional quantum plasma has never been presented.
The current study is devoted to investigate the self-focusing

of the relativistic Gaussian X-ray laser beam in collisional
quantum plasma. Using the ansatz for the electric field in the
wave equation, together with the Wentzel–Kramers–Brillouin
(WKB) and the paraxial approximations, a mathematical for-
mulation for the beam-width parameter in collisional quantum
plasma is obtained. By considering the dielectric permittivity
derived by Latyshev (Latyshev & Yushkanov, 2014), the evo-
lution of the beam-width parameter is introduced along the
propagation direction. It is noticed that in collisional plasma,
the laser beam width initially oscillates along the propagation
direction (focusing) and then defocuses due to divergence
and energy absorption. Greater collision frequencies result in
the higher energy absorption rate, and as a consequence, the
laser spot size oscillates with higher amplitude and defocuses
earlier. Furthermore, the effect of the collision frequency and
the plasma density on the self-focusing conditions is thorough-
ly explained. It is noticed that in denser plasmas, the laser self-
focusing occurs earlier with higher oscillation amplitude,
smaller spot size, and more oscillations.

2. THEORY

The cylindrical coordinate system is used to study the prop-
agation of a Gaussian laser beam along the z-axis. In this co-
ordinate, the scalar wave equation is,

∂2E
∂ z2

+ 1
r

∂
∂r

r
∂E
∂r

( )
+ ω2

c2
ε(r, z)E = 0 (3)

Akhmanov et al. (1968) and Sodha et al. (1974) suggest
the solution of Eq. (3), as the following ansatz:

E(r, z) = A(r, z) exp iωt − i

∫z
0
k(z) dz

( )
, (4)

where k = ���
ε0r

√
ω/c, and e0r is the real part of the linear di-

electric constant. By considering the WKB approximation
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for slowly converging and diverging beams, and neglecting
∂2A/∂z2, the following equation is obtained by substituting
Eq. (4) into Eq. (3):

2ik(z) ∂A(r, z)
∂z

= 1
r

∂
∂r

r
∂A(r, z)

∂r

( )
+ ω2

c2
ε(r, z) − ε0r( ) A(r, z) (5)

The complex amplitude, A(r,z), is expressed below:

A(r, z) = A0(r, z) exp −ik(z)S(r, z)( ), (6)

S(r, z) is the eikonal function which is complex for collisional
plasmas (Wang et al., 2011),

S(r, z) = Sr(r, z) + i Si(r, z), (7)

In this relation, Sr and Si are real functions, where Si repre-
sents the decay of the laser intensity during propagation in
an absorbing plasma. In the paraxial approximation, the di-
electric constant of absorbing plasma can be written similar
to the case of non-absorbing plasma (Wang et al., 2011),

ε(r, z) = ε0(z) + ε2(r, z) (8)

For collisional plasma, the dielectric constant is a complex
function. Therefore,

ε0(z) = ε0r(z) + iε0i(z) (9a)

ε2(r, z) = ε2r(r, z) + iε2i(r, z) (9b)

Substituting A(r,z) and S(r,z) from Eqs. (6) and (7) into Eq.
(5), and separately equating the real and imaginary parts to
zero, Eqs. (10a) and (10b) are resulted,

2
∂Sr
∂z

+ ∂Sr
∂r

( )2

− ∂Si
∂r

( )2

= 1
k2A0

∂2A0

∂r2
+ 1

r

∂A0

∂r

( )
+ 2
kA0

∂A0

∂r
∂Si
∂r

+ 1
k

∂2Si
∂r2

+ 1
r

∂Si
∂r

( )
+ ε2r
ε0r

(10a)

∂A2
0

∂z
+ ∂A2

0

∂r
∂Sr
∂r

+A2
0

∂2Sr
∂r2

+ 1
r

∂Sr
∂r

( )
+ 2A2

0k
∂Si
∂z

+ ∂Si
∂r

∂Sr
∂r

( )

= A2
0k

ε0i + ε2i
ε0r

(10b)

In the next step, Sr and Si are defined (Sodha et al., 1974; Pra-
kash, 2005),

Sr(r, z) = φr(z) +
r2

2f
df

dz
(11a)

Si(r, z) = φi(z) +
r2

2
βi(z) (11b)

where fr and fi represent the axial phase and attenuation
functions, independently; r and f are the radial coordinate

of the cylindrical system and the dimensionless beam-width
parameter, respectively. Considering Eq. (8) and the paraxial
approximation, e2r and e2i of Eq. (9b) are represented,

ε2r(r, z) = r2θr(z) (12a)

ε2i(r, z) = r2θi(z) (12b)

Besides, for the laser beamwith theGaussian intensity distribu-
tion, the real amplitude function, A0, is given as the following:

A0(r, z) = A00

f (z) exp
−r2

2r20 f
2(z)

( )
(13)

A00 and r0 are the initial electric field amplitude and the initial
laser beamwidth, respectively. Expanding A0 in a power series
of r2 and substituting Eqs. (11a), (12a) and (13) into Eq. (10a),
and by separately equating the r independent and r2 terms to
zero, the two following relations are obtained:

dfr(z)
dz

= βi(z)
k(z) −

1

k2(z) r20 f 2(z)
(14a)

1
f (z)

d2f (z)
d2z

= 1

r20k(z) f 2(z)
− βi(z)

( )2

+ θr(z)
ε0r(z) (14b)

Similarly Eqs. (11b), (12b), and (13) are substituted into Eq.
(10b), and these relations are resulted,

2
dfi(z)
dz

= ε0i(z)
ε0r(z) , (15a)

dβi(z)
dz

+ 2
f (z)

df (z)
dz

βi(z) =
θi(z)
ε0r(z) (15b)

More to the point, in quantum plasma physics, by using the
quantum kineticWigner–Vlasov–Boltzmann (WVB) equation
and the Bhatnagar, Gross, and Krook (BGK) collision integral
in the coordinate space, the plasma dielectric function can be
derived (Latyshev & Yushkanov, 2014),

ε= 1+ h− e2

π2γmeωq2

∫
R(k,q,ω,v)kqdk (16)

R(k,q,ω,v) = fk+q/2− fk−q/2

Ek+q/2−Ek−q/2
1− h− (ω + iv)(1− α(q,ω,v))

Ek+q/2−Ek−q/2+ h− (ω + iv)
( )

(17)

1− α(q,ω,v) = ω (B(q,0)−B(q,ω+ iv)
ωB(q,0)+ ivB(q,ω+ iv) (18a)

B(q,ω+ iv) = 1
4π3

∫
fk+q/2− fk−q/2

Ek+q/2−Ek−q/2+ h− (ω+ iv)dk (18b)

Ek = h− 2
k2

2m
, fk = (exp(Ek/kBT)+ 1)−1 (18c)
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where fk and q represent the electron distribution and the wave
vector, respectively. Also, ω and v are the laser frequency and
the collision frequency of the plasma electrons, seperately.
By consideringEqs. (4), (6), (7), and (13), the relativistic factor,

γ= ����������������������
1+ e2EE∗/(m2

eω
2c2)√

, is expressed as a function of the
radial coordinate, r, and the beam-width parameter, f,

γ= 1+ e2

m2
0ω

2c2
A2
00

f 2
exp

−r2

r20 f
2

( )[ ]1/2
(19)

This equation can be expanded in a power series of r2. It
should be realized that by using Eqs. (16)–(18) and (19), the
dielectric constant is calculated and divided into real and imag-
inary parts. Then all parts of the dielectric constant in Eqs. (8)
and (9), that is, e0r, e2r, e0i, and e2i are obtained and according to
Eq. (12), the θr and θi functions are found. It is better to express
Eqs. (14) and (15) in terms of the succeeding dimensionless
variables,

ξ= z/ r20k
( )

, βi = β/ r20k
( )

, φ= kφi (20)

ξ represents the dimensionless distance that is concerned to the
Rayleigh length, and c is the velocity of light in vacuum.By uti-
lizing these dimensionless variables, Eqs. (14) and (15) take
these forms,

f ′′ = f β− 1
f 2

( )2

+ r0ω

c

( )2 p0
2f 3

θr 1+ p0
f 2

( )−3/2

(21a)

β′ = −2f ′

f
β+ r0ω

c

( )2 p0
2f 4

θi 1+ p0
f 2

( )−3/2

(21b)

φ′ = ε0i
2

r0ω

c

( )2
1+ p0

f 2

( )−1/2

(21c)

where e2A2
00/(m2

0ω
2c2) = p0 is the dimensionless quantity pro-

portional to the laser beam power. Assuming a Gaussian inten-
sity distribution and the initial plane wave front, the boundary
conditions are,

f = 1, df /dξ= 0, β= 0, φ= 0 at ξ= 0 (22)

Additionally, from Eqs. (4), (6), (7), (13) and (20), the irradia-
tion intensity, I(r, ξ) is

I(r,ξ) = EE∗ = A2
00

f 2
exp − r2

r20

1
f 2
− β

( )[ ]
exp(2φ)

= A2
00

f 2
exp − r2

r20 F
2

( )
exp(2φ) (23)

and subsequently it is deduced that the modified beam-width
parameter should have the following form:

1
F2

= 1
f 2
− β (24)

In Eq. (23), exp(2φ) is related to the energy attenuation. It
should be realized when the nonlinear absorption in the

plasma is considered, f and F are different parameters. The
axial intensity is determined by f ∝1/ f 2

( )
but the radial inten-

sity depends on both f and themodified beam-width parameter,
F. Therefore, in this manner F (not f ) corresponds to the beam
width, that is, r0F. From now on, for simplicity, “modified
beam-width parameter” is meant by “beam-width parameter”
through the text.

3. RESULTS

By means of the fourth-order Runge–Kutta method, Eqs.
(21) are numerically solved under the boundary condi-
tions given by Eq. (22). Equation (23) is plotted with
plasma and laser parameters as follows: ω= 1.778 ×
1020 s−1, T= 1000 °K, r0= 20 μm, ne= 4 × 1022 cm−3,
and p0= 1. The plasma temperature and density are
chosen in a way that the conditions of collisional quantum
plasma, that is, gQ≥ 1 and neλ

3
B ≥ 1, are satisfied. As the

laser beam in collisional plasma is focused, the spatial
diffraction becomes stronger and it grows until becoming
predominant. The laser spot size increases after a mini-
mum value and converges again, showing an oscillatory
behavior.
Figure 1 makes a comparison for the laser self-focusing

effect between two distinct mediums, a collisional plasma
with v= 0.5ωp (dashed curve) and a collisionless plasma
(solid curve). It is noticed that initially the beam-width pa-
rameter shows similar oscillations to ξ for both cases. Due
to energy absorption in the collisional plasma, the laser
beam power reduces and when it becomes lower than the crit-
ical value of the self-focusing, the diffraction effects over-
come the focusing. Accordingly, F initially oscillates with
ξ (self-focusing) and then defocuses due to energy absorp-
tion. For the collisional plasma, however, the oscillation am-
plitude of the laser beam width enhances by passing through
the plasma, and the laser beam defocuses at a few Rayleigh
lengths.
Figure 2 shows the dependency of the beam-width

parameter on the propagation distance for various collision
frequencies, v= 0.2ωp (solid), 0.5ωp (dash), and 0.9ωp

(dash-dot). For greater collision frequencies, the laser absorp-
tion rate increases. Therefore, the oscillation amplitude of the
beam width enhances and the laser beam defocusing occurs
sooner.
Figure 3 compares the beam-width parameter for different

plasma densities, ne= 4 × 1022 cm−3 (solid), ne= 4 × 1021

cm−3 (dash-dot), and ne= 1021 cm−3 (dash). In denser plas-
mas, the self-focusing length is reduced, and the laser spot
size acquires a smaller minimum and higher oscillation am-
plitude. These results are valid for both collisional and colli-
sionless quantum plasmas (Patil & Takale, 2013). In other
words, higher plasma densities induce earlier laser self-
focusing. Also, by increasing the plasma density, energy ab-
sorption increases subsequently and the laser beam defocuses
quicker.
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4. CONCLUSION

The propagation of relativistic Gaussian X-ray laser beam is
studied in collisional quantum plasma. In this scheme based
on the obtained equations for the beam-width parameter,
the laser power becomes lower than the critical value of
the self-focusing effect. Therefore, the divergence effects
overcome the self-focusing effects and the laser beam defo-
cuses after a few oscillations in the plasma. On account of

energy absorption in the plasma, it is found that in the prop-
agation of the laser beam through collisional plasma, the os-
cillation amplitude of the laser beam width increases. In
addition, it is noticed that for the greater collision frequen-
cies, the laser energy absorption rate enhances and the laser
spot size oscillates with higher amplitude and defocuses
sooner. Furthermore, for higher densities in collisional plas-
mas, early and soon self-focusing with smaller spot size
could be achieved.

Fig. 1. Comparing the beam-width parameter for the collisionless plasma (solid) and the collisional plasma with v= 0.5ωp (dash) at
T= 1000 K, ne= 4 × 1022 cm−3.

Fig. 2. Variation of the beam-width parameter with ξ for different collision frequencies, v= 0.2ωp (solid), v= 0.5ωp (dash),
and v= 0.9ωp (dash-dot) with the temperature and density similar to the case of Fig. 1
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