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We present a computational study of cluster-induced turbulence (CIT), where the
production of fluid-phase kinetic energy results entirely from momentum coupling
with finite-size inertial particles. A separation of length scales must be established
when evaluating the particle dynamics in order to distinguish between the continuous
mesoscopic velocity field and the uncorrelated particle motion. To accomplish this, an
adaptive spatial filter is employed on the Lagrangian data with an averaging volume
that varies with the local particle-phase volume fraction. This filtering approach
ensures sufficient particle sample sizes in order to obtain meaningful statistics while
remaining small enough to avoid capturing variations in the mesoscopic particle
field. Two-point spatial correlations are computed to assess the validity of the filter
in extracting meaningful statistics. The method is used to investigate, for the first
time, the properties of a statistically stationary gravity-driven particle-laden flow,
where particle–particle and fluid–particle interactions control the multiphase dynamics.
Results from fully developed CIT show a strong correlation between the local volume
fraction and the granular temperature, with maximum values located at the upstream
boundary of clusters (i.e. where maximum compressibility of the particle velocity
field exists), while negligible particle agitation is observed within clusters.

Key words: homogeneous turbulence, multiphase and particle-laden flows, particle/fluid flow

1. Introduction

The non-trivial interphase coupling encountered in disperse two-phase flows can
often lead to a high degree of segregation from an initially homogeneous distribution
of particles. For example, when subjected to turbulence, the disperse phase may be
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ejected from regions of high vorticity and accumulate in regions of high strain (e.g.
Balachandar & Eaton 2010, and references therein), and under the influence of gravity,
momentum coupling between the phases may lead to the spontaneous generation of
dense clusters (e.g. Agrawal et al. 2001; Capecelatro, Pepiot & Desjardins 2014). In
fluidized bed reactors, clusters have been observed to reduce mixing and interaction
of particles with the transport gas (Shaffer et al. 2013), and may therefore inhibit
reaction rates and heat transfer, potentially lowering operating efficiencies significantly.
Meanwhile, a fundamental understanding of cluster characteristics and their effect on
the carrier phase remains elusive.

In the context of high-inertia particles with response times that are long compared
with the characteristic time scale of the turbulence, individual particle trajectories
will retain information from previous collisions and interactions with distant
turbulent eddies, causing them to deviate from fluid pathlines (Maxey 1987). The
velocities of neighbouring particles may therefore be uncorrelated, while ensembles
of particles collectively respond to large-scale motions of the flow. Dasgupta, Jackson
& Sundaresan (1994) first suggested that the fluctuating particle motion can be
partitioned into a smooth (continuous) field and a random component at the particle
scale referred to as the granular temperature. Later, Février, Simonin & Squires (2005)
provided an exact definition and a computational methodology for partitioning of the
correlated and uncorrelated contributions to the total particle-phase kinetic energy.
In a recent study, Fox (2014) provided a rigorous derivation of a Reynolds-average
turbulence model for collisional fluid–particle flows, demonstrating that the transport
equations must contain separate models for these two contributions. It was shown that
new turbulence production terms arise due to correlations between the particle-phase
volume fraction and fluid-phase velocity fluctuations. At sufficient mass loadings,
the fluid–particle correlations become significant in systems with large variations in
particle concentration. In the absence of mean shear, the production of fluid-phase
kinetic energy results entirely from momentum coupling between the phases, referred
to as cluster-induced turbulence (CIT).

Various mechanisms responsible for the spatial segregation of particles have been
studied extensively in the last two decades. In purely granular systems, clustering
is enhanced via inelastic dissipation (Hopkins & Louge 1991; Goldhirsch & Zanetti
1993) and attenuated via friction (Royer et al. 2009; Mitrano et al. 2013) during
interparticle contact. In the presence of a carrier phase, viscous damping by the fluid
results in clustering of non-dissipative particles (Wylie & Koch 2000). In a recent
study, Yin et al. (2013) compared the relative contributions of these instabilities in
dissipative gas–solid systems. One of the most widely investigated mechanisms is
preferential concentration of particles by coherent vortical structures, first realized
numerically by Eaton & Fessler (1994). Preferential concentration occurs in the
absence of a mean velocity difference between the phases and is most obvious for
dilute flows with low mass loading. When fluid–particle systems are subjected to
a mean body force (e.g. gravity), the relative motion between the phases leads to
additional sources of instability as a result of interphase coupling (Glasser, Sundaresan
& Kevrekidis 1998), giving rise to CIT. While progress in understanding dissipative
instabilities and preferential concentration continues to be made, much less is known
about CIT. The production of large-scale fluid turbulence from particle clusters was
first observed in simulations of a two-dimensional vertical channel by Tsuji, Tanaka &
Yonemura (1994). In our previous work (Capecelatro et al. 2014), it was demonstrated
that the cluster size distribution in wall-bounded flows is constrained by the flow
geometry. It was also shown that the multiphase dynamics in two dimensions differs
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significantly from three-dimensional flow. Three-dimensional homogeneous flows
therefore represent the simplest configuration to study fully developed CIT.

With the availability of increasing computational resources, detailed simulations
are now able to capture such phenomena at moderate Reynolds numbers and
particle concentrations. In order to develop an improved understanding of the
fundamental nature of such flows, and to exploit these simulations to aid in model
development, it is necessary to extract local instantaneous information in a consistent
and accurate manner. The objective of the present work is to evaluate the spatial
characteristics of finite-size inertial particles in a fully coupled turbulent flow, where
interparticle collisions and momentum coupling between the phases control the flow
dynamics. Fully developed gravity-driven CIT is simulated via an Eulerian–Lagrangian
framework, where the unsteady fluid motion is sufficiently captured by the mesh and
the two phases are coupled through the resolved contributions of the fluid stresses and
a drag term. An adaptive spatial filter is introduced which accurately decouples the
instantaneous particle-phase turbulent kinetic energy from the granular temperature,
providing, for the first time, access to the local instantaneous spatial distribution of
these separate contributions in an Eulerian framework.

2. Volume-filtered Euler–Lagrange formalism

In order to resolve the relevant length scales associated with fully developed CIT
while remaining computationally tractable, we employ a mesoscopic formulation based
on volume filtering to describe the fluid–particle system. The mesoscale description
of fluid–particle flows refers to a set of equations that explicitly captures the physics
associated with length scales larger than the individual particles and models the
processes at the particle scale. Unlike in particle-resolved direct numerical simulation
(DNS), where the boundary layers are solved around individual particles (see e.g.
Tenneti & Subramaniam 2014), in mesoscopic formulations the two phases are
coupled via momentum exchange terms (e.g. a drag model) (Fox 2012). This level
of modelling is similar to large-eddy simulation (LES) of single-phase turbulence,
where the large-scale unsteady motions are represented explicitly and the effects of
the smaller-scale motions are modelled. However, unlike in LES, these small-scale
motions are not universal, and fluid-phase velocity fluctuations may arise from
granular agitation at the particle scale, due, for example, to wakes and interparticle
collisions. Given an accurate and consistent set of models for the particle-scale
dynamics, and assuming that mesoscale structures in the flow (e.g. clusters) are
sufficiently resolved and are responsible for generating the majority of fluid-phase
velocity fluctuations, this framework has been shown to accurately reproduce the
relevant physics in two-way coupled fluid–particle flows (Capecelatro & Desjardins
2013; Capecelatro et al. 2014).

2.1. Description of the system
To isolate the effect of turbulence generated by interphase coupling, we consider
a flow initially at rest laden with a random distribution of finite-size particles of
diameter dp subject to gravity. The physical parameters are chosen to correspond to
typical gas–solid flows encountered in engineering and environmental applications.
The dimensionless two-phase parameters that characterize the flow include the particle
to fluid density ratio ρp/ρf = 1000, the average particle-phase volume fraction
〈αp〉 = 0.01 and the Reynolds number Re = τpgdp/νf = 1, where τp = ρpd2

p/(18ρfνf )
is the particle response time, νf is the fluid-phase kinematic viscosity and g is the
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magnitude of the gravity vector g. Combination of these non-dimensional numbers
yields the mass loading φ= ρp〈αp〉/(ρf 〈αf 〉)= 10, where 〈αf 〉= 1−〈αp〉 is the average
fluid-phase volume fraction. To obtain an a priori measure of the mesoscale features
that arise due to the coupling between the phases, previous studies have introduced
a characteristic length scale L= τ 2

p g (see e.g. Agrawal et al. 2001; Igci et al. 2008;
Ozel, Fede & Simonin 2013). This length scale is used in this work to ensure an
appropriate domain size such that the effect of the periodic boundary conditions
is minimized. The simulation is solved on a triply periodic domain of dimensions
64L× 16L× 16L, with a mesh size of 2048× 512× 512, corresponding to a uniform
grid spacing of 1x= 1.75dp, with 55× 106 particles.

2.2. Gas–solid description
The flow of solid spherical particles suspended in an incompressible carrier fluid is
solved in an Eulerian–Lagrangian framework, where the displacement of an individual
particle i is calculated using Newton’s second law of motion,

du(i)p

dt
=A(i) +F(i)

c + g, (2.1)

where up = (up, vp, wp) is the instantaneous particle velocity vector, A is the
interphase exchange term and Fc is the collision force modelled using a modified
soft-sphere approach originally proposed by Cundall & Strack (1979). In this work,
we consider inelastic collisions with a coefficient of restitution e= 0.9. The interphase
exchange term is given by

A(i) = 1
τp

(
uf [x(i)p ] − u(i)p

)− 1
ρp
∇p?f [x(i)p ] +

1
ρp
∇ · σ f [x(i)p ], (2.2)

where the fluid-phase velocity vector uf = (uf , vf , wf ), modified pressure gradient ∇p?f
and divergence of the viscous stress tensor ∇ · σ f are taken at x(i)p , the centre position
of particle i. The term ∇p?f is a body force that contains the hydrodynamic pressure
pf and is adjusted dynamically in order to maintain statistically stationary CIT. In real
systems with moderate Reynolds numbers and particle volume fractions, the particles
will experience drag with a nonlinear dependence on these terms (e.g. Tenneti, Garg &
Subramaniam 2011), but for consistency with Fox (2014), the higher-order terms are
neglected here. To account for the presence of the particle phase in the fluid without
requiring resolution of the boundary layers around individual particles, a volume filter
is applied to the constant-density Navier–Stokes equations (Anderson & Jackson 1967),
thereby replacing the point variables (fluid velocity, pressure, etc.) by smoother locally
filtered fields. The resulting fluid-phase equations are given by

∂αf

∂t
+∇ · (αf uf

)= 0 (2.3)

and
∂αf uf

∂t
+∇ · (αf uf ⊗ uf

)=− 1
ρf
∇p?f +

1
ρf
∇ · σ f − ρp

ρf
αpÃ+ αf g. (2.4)

The relationship between the interphase exchange term seen by the fluid, Ã, and that
seen by an individual particle i, A(i), will be made explicit in § 2.3. Further details
on the numerical implementation can be found in Capecelatro & Desjardins (2013).
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2.3. Two-way coupling
To interpolate the fluid variables to the particle location, a second-order trilinear
interpolation scheme is used. To extrapolate the particle data back to the Eulerian
mesh, we apply the volume filtering approach used in deriving the fluid-phase
equations of motion (2.3) and (2.4). We begin by defining a filtering kernel G with
a characteristic length δf , such that G(r) > 0 decreases monotonically with increasing
r, and is normalized such that it integrates to unity. Given a quantity A(i)(t) located
at the centre of particle i at time t, and assuming that G does not vary significantly
over the volume of the particle (i.e. δf � dp), its Eulerian projection is given by

αpÃ(x, t)≈
Np∑
i=1

A(i)(t)G(|x− x(i)p |)Vp, (2.5)

where Np is the total number of particles in a single realization of the flow and
Vp = πd3

p/6 is the particle volume. This expression replaces the discontinuous
Lagrangian data with an Eulerian field that is a smooth function of the spatial
coordinate x. Using (2.5) with A(i) = 1, we obtain the particle volume fraction αp,
and A(i) =A(i) gives the momentum exchange term Ã seen by the fluid in (2.4).

It should be noted that (2.5) will only yield useful information if the spatial
variations in the particle field can be decomposed into contributions on a scale
comparable with the particle spacing and a much larger scale corresponding to
mesoscopic features in the flow (e.g. clusters), provided that the filter size δf is
within these scales. For ratios of 1x/dp≈1, a brute-force implementation of (2.5)
would require looping through a large number of cells for each particle, making this
operation prohibitively expensive. Therefore, the filtering procedure is solved in two
steps (Capecelatro & Desjardins 2013). First, the particle data are transferred to the
nearest neighbouring cells via trilinear extrapolation. The data are then diffused such
that the final width of the filtering kernel is independent of the mesh size. In this
work, G is taken to be Gaussian with a characteristic length scale δf = 8dp, defined
as the full width at half the height of the kernel. This value of δf will be justified in
§ 3.3. To keep the cost low and ensure unconditional stability, the diffusion process
is solved in a single implicit step by utilizing the approximate factorization scheme
of Briley & McDonald (1977).

3. Results and discussion

3.1. Degree of particle segregation
The simulation is run until the initial transient is complete and the flow reaches
a statistically stationary state. Throughout this study, the subscript ‘1’ is used to
denote components in the streamwise (gravity-aligned) direction, and the spanwise
directions are denoted by subscripts ‘2’ and ‘3’. As depicted in figure 1(a), the
resulting particle field is highly unsteady with strong segregation in volume fraction.
Figure 1(b) suggests that the fluid phase is entrained by the clusters, leading to
strong vertical velocities in dilute regions of the flow. This behaviour is evident
in figure 2(a), where the vertical slip velocity between the phases is observed to
decrease with increasing volume fraction. The degree of particle segregation can be
quantified by the probability density function (p.d.f.) of the particle volume fraction
(Pozorski & Apte 2009). For a homogeneous distribution of particles, the p.d.f.
is given by the discrete Poisson distribution (Squires & Eaton 1991). As seen in
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FIGURE 1. The instantaneous field of fully developed CIT showing (a) the particle-phase
volume fraction and (b) the vertical component of the fluid velocity with isocontours of
αp = 3〈αp〉 shown in blue.

figure 2(b), the instantaneous particle field displays a higher frequency of regions
containing more particles, as well as regions devoid of particles, in comparison with
the Poisson distribution, indicative of a highly clustered field. Moreover, using the
mean and variance particle volume fraction extracted from the simulation, the form of
the p.d.f. is seen to closely resemble a log–normal distribution, indicating a potential
opportunity for future modelling efforts.

3.2. Spatial decomposition of the particle velocity field
The averaging operator 〈(·)〉 is used throughout to denote a particle average when
applied to a Lagrangian quantity and a volume average when applied to an Eulerian
quantity. Due to the statistical stationarity of the flow, 〈(·)〉 is neither a function of
the spatial coordinate x nor of time t at steady state. For a single realization of the
flow, the total particle-phase fluctuating energy is given by

κp = 1
2
〈u′p · u′p〉, (3.1)

where u′p=up−〈up〉 is the total fluctuation in particle velocity with the property〈u′p〉=
0. In order to decompose κp into its spatially correlated contribution and fluctuations
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FIGURE 2. Results from a single realization of fully developed CIT: (a) the normalized
slip velocity conditioned on αp; (b) the p.d.f. of αp (—), the corresponding log–normal
distribution (©) and the Poisson distribution (– –).

at the particle scale, the volume filtering procedure discussed in § 2.3 is employed.
By applying A(i) = u(i)p in (2.5), we obtain the local mean particle velocity ũp in
an Eulerian frame of reference. Analogous to Favre averaging in variable-density
flows, the phase average (PA) denoted by 〈(·)〉p= 〈αp(·)〉/〈αp〉 is useful in multiphase
modelling. Note that PA Eulerian terms are identical to particle-average Lagrangian
terms, e.g. 〈ũp〉p = 〈up〉. Fluctuations about the PA velocity are expressed as
ũ′′p(x, t) = ũp(x, t) − 〈ũp〉p, with 〈ũ′′p〉p = 0. It is important to note that u′p 6= ũ′′p,
and therefore 〈ũ′′p〉 6= 0 in general. Using this definition, the PA particle turbulent
kinetic energy is defined as

kp = 1
2
〈ũ′′p · ũ′′p〉p. (3.2)

A quantitative measure of the local uncorrelated particle agitation is given by the
granular temperature Θ , which is defined using the residual component of the
instantaneous particle velocity,

Θ(x, t)= 1
3

˜δup(t) · δup(t), (3.3)

where δup(t) = up(t) − ũp[xp(t), t]. With these definitions, the total particle-phase
fluctuating energy κp corresponds to the sum of the PA turbulent kinetic energy kp
and the PA granular temperature 〈Θ〉p. The distinction between kp and 〈Θ〉p is crucial
in turbulence modelling. For instance, in the context of moderately dense particulate
flows, 〈Θ〉p is needed to evaluate the particle-phase viscosity and pressure, which
arise due to collisions. Thus, failure to separate these two contributions will lead to
a gross overprediction of the collision rate (Fox 2014). Moreover, previous works
(Hrenya & Sinclair 1997; Février et al. 2005) have shown that the dissipation of
kp enters as a source term for 〈Θ〉p. This is analogous to single-phase flow where
dissipation of turbulent kinetic energy leads to viscous heating.

3.3. The filtering procedure for the extraction of particle statistics
Evaluation of the particle-phase statistics, in particular kp and 〈Θ〉p, requires the
introduction of a separation of length scales into the averaging procedure. To
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accomplish this, we employ an averaging volume that adapts to the local particle
field, allowing for a sufficient number of particles to be sampled in dilute regions of
the flow, while remaining optimally compact in dense clusters. Given an ensemble of
identical (i.e. monodisperse) particles, and assuming that there are no sharp gradients
in the volume fraction, an averaging volume will sample Np particles with a filter
size

δf (αp)=
(
Npd3

p

αp

)1/3

. (3.4)

Since δf is a function of αp, which itself is a filtered quantity and is thus a function
of δf , (3.4) cannot be solved directly. Instead, αp is initially computed with a constant
filter size δf ,0, which is then applied to (3.4). The resulting volume fraction field can
then be used to recompute (3.4) in an iterative process. It was found that αp converges
rapidly to a reference solution regardless of the choice of δf ,0 or Np. Negligible error
was observed after a single iteration, with values of δf ,0 = 8dp and Np = 10 yielding
the best results.

While the accuracy of the instantaneous multiphase statistics is dependent upon
the sample size used when averaging, two-point Lagrangian statistics account for the
spatial distribution of particles as a continuous function of particle-pair separation and
therefore do not require a specific averaging volume. Thus, they can be used to assess
the accuracy of the filtering procedure in extracting Lagrangian data. An important
statistical measure of the spatial distribution of particles is the radial distribution
function (r.d.f.), defined as the number of particle pairs found at a given separation
normalized by the expected number of pairs found in a homogeneous distribution
(McQuarrie 1976). It can be expressed as

g0(rei)=

〈 Np∑
m=1

Np∑
n 6=m

δ(x− x(m)p )δ(x+ rei − x(n)p )

〉
〈 Np∑

m=1

δ(x− x(m)p )

〉 〈 Np∑
m=1

δ(x+ rei − x(m)p )

〉 , (3.5)

where δ is the Dirac delta function, r > dp is the separation between two particles
n 6=m and ei is the unit normal vector in the i direction. With this definition,
g0= 1 represents a homogeneous distribution of particles and g0> 1 implies clustering.
Similarly, we define the trace of the two-point velocity correlation as

R(rei)= 1
2

〈 Np∑
m=1

Np∑
n6=m

δ(x− x(m)p )δ(x+ rei − x(n)p )u
′(m)
p · u

′(n)
p

〉
〈 Np∑

m=1

Np∑
n 6=m

δ(x− x(m)p )δ(x+ rei − x(n)p )

〉 . (3.6)

Due to the homogeneity of the flow, (3.5) and (3.6) are functions of the pair separation
only, but in the presence of gravity the statistics may exhibit strong anisotropy and
therefore depend strongly on the directionality of rei.

Starting from the one-particle p.d.f., Février et al. (2005) showed that for dilute
(non-collisional) suspensions of inertial particles in isotropic turbulence, two-point
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FIGURE 3. Comparison of Lagrangian and Eulerian two-point statistics showing (a)
the r.d.f. and (b) normalized two-point velocity correlations. The lines correspond to
Eulerian statistics obtained with the adaptive filter (3.4) with δf ,0 = 8dp and Np = 10,
and the symbols correspond to two-point Lagrangian statistics. The black lines and circles
correspond to a pair separation computed in the streamwise direction (re1), and the blue
dashed lines and triangles correspond to a pair separation computed in the spanwise
direction (re2).

Eulerian statistics can be computed by introducing averages conditioned on a given
fluid-flow realization, where the Eulerian r.d.f. is given by

g̃0(rei)= 〈αp(x, t)αp(x+ rei, t)〉
〈αp(x, t)〉 〈αp(x+ rei, t)〉 , (3.7)

and the trace of the Eulerian two-point velocity correlation can be written as

R̃(rei)= 1
2
〈αp(x, t)αp(x+ rei, t)ũ′′p(x, t) · ũ′′p(x+ rei, t)〉

〈αp(x, t)αp(x+ rei, t)〉 . (3.8)

A key result found in the work by Février et al. (2005) is that the mesoscopic Eulerian
contribution to the particle-phase velocity accounts completely for the two-point
Lagrangian spatial correlations, such that g0(rei)= g̃0(rei) and R(rei)= R̃(rei). Figure 3
shows comparisons between the two-point Lagrangian correlations (3.5) and (3.6) and
two-point Eulerian statistics (3.7) and (3.8) computed using the adaptive filter in
the streamwise (re1) and spanwise (re2) directions. In the limit of pair separation
r→ 0, the two-point velocity correlations remain smaller than κp, indicating a finite
granular temperature. Overall, the adaptive volume filter yields excellent predictions
of the spatial correlation of particle position and velocity, providing confidence that
the instantaneous spatial distribution is accurately captured from Lagrangian data.
Note that the spanwise velocity correlations in figure 3(b) do not approach zero
at maximum pair separations, suggesting that the domain size might not be large
enough. It remains to be known whether or not the cluster size distribution scales
with the size of the domain, and thus we present the largest simulation that remains
computationally feasible.
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FIGURE 4. Two-dimensional planes from a single realization of fully developed CIT.
(a) Granular temperature and (b) divergence of the filtered particle-phase velocity. The
black lines show isocontours of αp = 3〈αp〉. A supplementary movie is available at
http://dx.doi.org/10.1017/jfm.2014.194.

3.4. Instantaneous results

The adaptive volume filter is applied to an instantaneous field from the simulation
using the parameters employed in figure 3. As shown in figure 4, negligible granular
temperature is observed within clusters, while maximum values exist just upstream of
clusters, where the filtered particle velocity field is locally compressive, i.e. ∇ · ũp< 0.
This behaviour is analogous to a highly compressible gas, where the dilatation of
the fluid velocity results in compressive heating (Wilcox 2006; Rumsey 2009). Here,
compressive heating will yield local regions of high granular pressure, resulting in
increased drag and a reduction in cluster fall velocity. As opposed to the reduction
in fluid drag seen in clusters due to entrainment of the surrounding fluid, the change
in cluster fall velocity due to enhanced granular pressure should arise even in the
absence of a carrier phase. Similar behaviour was first observed by Goldhirsch &
Zanetti (1993) in the context of a gas–solid homogeneous cooling system. They
showed that viscous heating is the dominant effect leading to the development of
volume fraction inhomogeneities in dissipative granular flows in the absence of
any external forcing (i.e. gravity). In a recent derivation of the Reynolds-average
two-equation model for fluid–particle flows, Fox (2014) showed that viscous heating
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acts as a source term in the transport of PA granular temperature. This is consistent
with the results shown in figure 4.

4. Conclusions and future outlook

In this work, we present results that are part of a long-term study in which we
analyse the turbulence characteristics in fully coupled gravity-driven particle-laden
flows. We introduce a canonical flow that isolates the effects of momentum coupling
between the two phases on the production of fluid-phase turbulence, which we refer
to as CIT. The flow is solved in an Eulerian–Lagrangian framework with special
care taken during interphase exchange processes to decouple the particle diameter to
mesh size ratio. Starting from a random distribution of particles subject to gravity,
after an initial transient the flow becomes statistically stationary or fully developed
CIT, with a p.d.f. of particle volume fraction that closely resembles a log–normal
distribution. The normalized slip velocity |uf −up|/(τpg) is observed to be significantly
greater than unity in dense regions of the flow, indicating that clusters have lower
drag than individual particles. An adaptive spatial filter is employed to separate the
instantaneous particle-phase turbulent kinetic energy and granular temperature, and
represent them as Eulerian fields. Excellent agreement with two-point Lagrangian
statistics is observed, verifying the capability of the filter to accurately extract local
instantaneous data. The instantaneous volume-filtered data suggest that granular
temperature appears at the upstream boundary of clusters where the particle velocity
field is highly compressible, analogously to shock waves in compressible gas flow.
Because the fluid-phase turbulence is generated by momentum coupling with the
particles, its properties cannot be predicted a priori. It remains to be seen how the
local and Reynolds-averaged statistics depend on the key dimensionless parameters,
the importance of interparticle collisions in determining the turbulence characteristics,
and the mechanisms that determine the cluster size distribution.
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