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In the energy stability theory, the critical Reynolds number is usually defined as
the minimum of the first positive eigenvalue R1 of an eigenvalue equation for
all wavenumber pairs (α, β), where α and β are the streamwise and spanwise
wavenumbers of the normal mode. We prove that (cos θ ± 1)R1 are decreasing
functions of θ = arctan(β/α) for the parallel flows between no-slip or slip parallel
plates with or without variations in temperature. Numerical results inspire us to
conjecture that R1 is also a decreasing function of θ for the parallel shear flows
under the no-slip boundary condition and without variations in temperature. If the
conjecture is correct, the least stable normal modes for the energy stability will be
streamwise vortices for these base flows.

Key words: Bénard convection, nonlinear instability, Navier–Stokes equations

1. Introduction

The linear stability theory provides a necessary condition (Re 6 ReL) for a base
flow to be conditionally stable, and the energy stability theory (energy method)
provides a sufficient condition (Re6ReE) for a base flow to be globally stable, where
ReL and ReE are the critical Reynolds numbers for the linear stability and energy
stability, respectively. In the linear stability analysis of parallel flows, Squire’s theorem
implies that the least stable normal modes are two-dimensional waves with spanwise
wavenumber β = 0 (Squire 1933; Knowles & Gebhart 1968). In the energy stability
theory, however, there is no analogue to Squire’s theorem. Actually, the least stable
mode for the energy stability of the plane Poiseuille flow is a streamwise vortex with
streamwise wavenumber α = 0 (Busse 1969; Joseph & Carmi 1969).

Two proofs that the least stable mode for the energy stability of the plane Couette
flow is a streamwise vortex were given by Joseph (1966) and Busse (1972). However,
Joseph’s proof was uncompleted because it failed to exclude the possibility that the
least stable mode might be a two-dimensional wave (Busse 1972); Busse’s proof
required three particular eigenvalues to be calculated first. Consequently, there is
no direct proof (without the need for calculating any particular eigenvalue) that the
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streamwise vortices are the least stable modes for the energy stability, even in the
simplest case of the plane Couette flow.

The critical Reynolds number for the energy stability ReE is usually calculated in
two steps. The first (minimum) positive eigenvalues R1 of an eigenvalue equation are
calculated for all wavenumber pairs (α, β), where α and β are the streamwise and
spanwise wavenumbers, and then the critical Reynolds number ReE is the minimum
R1 in the wavenumber plane.

In this paper, we explore the variations of the positive eigenvalues in the
wavenumber plane, and propose a conjecture on the first positive eigenvalue for
a variety of parallel shear flows. This conjecture implies that the least stable modes
for the energy stability are streamwise vortices for these base flows. We derive
the eigenvalue equation for the energy stability in § 2, and prove two theorems
on the monotonicity of the positive eigenvalues in the wavenumber plane in § 3.
After the numerical results of the energy stability are introduced in § 4, we propose
the conjecture in § 5. Section 6 concludes this work. We consider a special case
in appendix A to show the gap in Joseph’s proof that the least stable mode for
the energy stability of the plane Couette flow is a streamwise vortex. Appendix B
introduces the gradient descent algorithm used in search for the counter-examples to
the conjecture.

2. Eigenvalue equation for the energy stability of plane parallel flows
When the fluctuation in the temperature of the fluid is small, the motion of the

fluid between parallel plates is governed by the Boussinesq equation (Straughan 1992,
p. 56),

∂U∗

∂t∗
+ (U∗ · ∇∗)U∗ =−

1
ρr
∇
∗P∗ + ν∇∗2U∗ +

1
ρr

F∗x ex + [1− γ (T∗ − T∗r )]g, (2.1)

∂T∗

∂t∗
+ (U∗ · ∇∗)T∗ = κ∇∗2T∗ +

1
ρrcp

Q∗, (2.2)

∇
∗
·U∗ = 0, (2.3)(

U∗ ± l∗
∂U∗

∂y∗

)∣∣∣∣
y∗=±h∗

−U∗w,±h∗ = V∗|y∗=±h∗ =

(
W∗ ± l∗

∂W∗

∂y∗

)∣∣∣∣
y∗=±h∗

= 0, (2.4)(
T∗ ± l∗T

∂T∗

∂y∗

)∣∣∣∣
y∗=±h∗

− T∗w,±h∗ = 0, (2.5)

where x∗, y∗ and z∗ are the coordinates in the streamwise, wall-normal and spanwise
directions, respectively; t∗ is the time; U∗= (U∗, V∗,W∗), T∗ and P∗ are the velocity,
temperature and pressure of the fluid, respectively; ρr is the reference density of the
fluid at the reference temperature T∗r ; ν, γ , κ and cp are the kinematic viscosity,
coefficient of thermal expansion, thermal diffusivity and specific heat capacity at
constant pressure of the fluid, respectively; g=−gey is the gravitational acceleration;
ex and ey are the unit vectors in the streamwise and wall-normal directions. Both the
streamwise component of the body force F∗x and the volumetric heat source Q∗ are
functions of only the wall-normal coordinate y∗. The distance between the parallel
plates is 2h∗; U∗w,±h∗ and T∗w,±h∗ are the streamwise velocities and the temperatures of
the walls at y∗ =±h∗.

The region is assumed to be periodic in the streamwise and spanwise directions.
The velocity of the fluid satisfies the slip boundary condition at the walls, and l∗ is
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the slip length. The temperature of the fluid satisfies the convective boundary condition
at the walls, and l∗T is the ratio between the thermal conductivity of the fluid and the
convective heat transfer coefficient of the flow. The no-slip boundary condition and the
fixed temperature boundary condition correspond to l∗ = 0 and l∗T = 0, respectively.

Introducing non-dimensional quantities,

(x, y, z)=
(x∗, y∗, z∗)

h∗
, U=

U∗

U∗c
, t=

U∗c
h∗

t∗, T =
T∗ − T∗r
1T∗c

, (2.6a−d)

P=
P∗ + ρrgy∗

ρrU∗2c

, Fx=
h∗

ρrU∗2c

F∗x , Q=
h∗

ρrcpU∗c1T∗c
Q∗, (l, lT)=

(l∗, l∗T)
h∗

, (2.7a−d)

where U∗c and 1T∗c are the characteristic velocity and temperature difference in the
fluid, we have the non-dimensional governing equation,

∂U
∂t
+ (U · ∇)U=−∇P+

1
Re
∇

2U+ Fxex +
Gr
Re2

Tey, (2.8)

∂T
∂t
+ (U · ∇)T =

1
PrRe
∇

2T +Q, (2.9)

∇ ·U= 0, (2.10)(
U ± l

∂U
∂y

)∣∣∣∣
y=±1

−Uw,±1 = V|y=±1 =

(
W ± l

∂W
∂y

)∣∣∣∣
y=±1

= 0, (2.11)(
T ± lT

∂T
∂y

)∣∣∣∣
y=±1

− Tw,±1 = 0, (2.12)

where the Reynolds number, the Prandtl number and the Grashof number are defined
as

Re=
U∗c h∗

ν
, Pr=

ν

κ
, Gr=

gγ h∗31T∗c
ν2

. (2.13a−c)

Here we assume l > 0 and lT > 0. When lT > 0, the Nusselt number can be defined
as l−1

T .
The base flow (U0, T0,P0) is a parallel flow (with V0=W0= 0 and only depending

on the wall-normal coordinate y), and satisfies

1
Re

d2U0

dy2
+ Fx = 0, (2.14)

−
dP0

dy
+

Gr
Re2

T0 = 0, (2.15)

1
PrRe

d2T0

dy2
+Q= 0, (2.16)(

U0 ± l
dU0

dy

)∣∣∣∣
y=±1

−Uw,±1 =

(
T0 ± lT

dT0

dy

)∣∣∣∣
y=±1

− Tw,±1 = 0. (2.17)

The governing equation of the disturbance (u, T ′, p)= (U, T, P)− (U0, T0, P0) is

∂u
∂t
+U0

∂u
∂x
+ v

dU0

dy
+ (u · ∇)u=−∇p+

1
Re
∇

2u+
Gr
Re2

T ′ey, (2.18)
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∂T ′

∂t
+U0

∂T ′

∂x
+ v

dT0

dy
+ (u · ∇)T ′ =

1
PrRe
∇

2T ′, (2.19)

∇ · u= 0, (2.20)(
u± l

∂u
∂y

)∣∣∣∣
y=±1

= v|y=±1 =

(
w± l

∂w
∂y

)∣∣∣∣
y=±1

=

(
T ′ ± lT

∂T ′

∂y

)∣∣∣∣
y=±1

= 0. (2.21)

Define the energy of the disturbance as

E(Pr, λ)=
∫
Ω

u2
+ v2
+w2

+ λPrT ′2

2
dV, (2.22)

where λ> 0 is a coupling parameter (Joseph 1966), and dV = dx dy dz. The region is
Ω= (0,Lx)× (−1,1)× (0,Lz), where Lx and Lz are the wavelengths of the disturbance
in the streamwise and spanwise directions, respectively. From (2.18)–(2.21), we have

dE
dt
=

∫
Ω

(
−uv

dU0

dy
− λPrvT ′

dT̃0

dy

)
dV −

1
Re
(‖∇u‖2

+ λ‖∇T ′‖2), (2.23)

where
T̃0 = T0 −

Gr
λPrRe2

y, (2.24)

‖∇u‖2
=

∫
Ω

(
∂ui

∂xj

∂ui

∂xj

)
dV + l

∫ Lz

0

∫ Lx

0

( ∂u
∂y

∣∣∣∣
y=1

)2

+

(
∂u
∂y

∣∣∣∣
y=−1

)2
 dx dz

+ l
∫ Lz

0

∫ Lx

0

( ∂w
∂y

∣∣∣∣
y=1

)2

+

(
∂w
∂y

∣∣∣∣
y=−1

)2
 dx dz, (2.25)

‖∇T ′‖2
=

∫
Ω

(
∂T ′

∂xj

∂T ′

∂xj

)
dV + lT

∫ Lz

0

∫ Lx

0

( ∂T ′

∂y

∣∣∣∣
y=1

)2

+

(
∂T ′

∂y

∣∣∣∣
y=−1

)2
 dx dz,

(2.26)
and the Einstein summation convention is used.

In the energy stability analysis, the critical Reynolds number ReE(Pr, λ) is defined
by

1
ReE(Pr, λ)

=max

∫
Ω

(
−uv

dU0

dy
− λPrvT ′

dT̃0

dy

)
dV

‖∇u‖2 + λ‖∇T ′‖2
, (2.27)

where the maximum is searched among all divergence-free disturbances satisfying the
boundary condition (2.21). Therefore, we have

dE
dt

6

(
1

ReE(Pr, λ)
−

1
Re

)
(‖∇u‖2

+ λ‖∇T ′‖2)6 0, (2.28)

when Re 6 ReE(Pr, λ). We also have E→ 0 when Re< ReE(Pr, λ), because ‖u‖ and
‖T ′‖ are controlled by ‖∇u‖ and ‖∇T ′‖ in the bounded domain according to the
Poincaré inequality.
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The Euler–Lagrange equation corresponding to (2.27) is

∇
2u−

R
2

dU0

dy
v −

∂q
∂x
= 0, (2.29)

∇
2v −

R
2

dU0

dy
u−
λPrR

2
dT̃0

dy
T ′ −

∂q
∂y
= 0, (2.30)

∇
2w−

∂q
∂z
= 0, (2.31)

∇
2T ′ −

PrR
2

dT̃0

dy
v = 0, (2.32)

∇ · u= 0, (2.33)(
u± l

∂u
∂y

)∣∣∣∣
y=±1

= v|y=±1 =

(
w± l

∂w
∂y

)∣∣∣∣
y=±1

=

(
T ′ ± lT

∂T ′

∂y

)∣∣∣∣
y=±1

= 0, (2.34)

where R and q(x, y, z) are the Lagrange multipliers.
From (2.25), (2.26) and (2.29)–(2.34), we have

‖∇u‖2
+ λ‖∇T ′‖2

= −

∫
Ω

(u∇2u+ v∇2v +w∇2w+ λT ′∇2T ′) dV

= R
∫
Ω

(
−uv

dU0

dy
− λPrvT ′

dT̃0

dy

)
dV. (2.35)

Comparing (2.35) with (2.27), we notice that the critical Reynolds number ReE(Pr, λ)
is just the minimum positive eigenvalue R.

Introducing the normal mode (u, v, w, T ′, q)= (û, v̂, ŵ, T̂, q̂) exp[i(αx+ βz)] + c.c.,
where α and β are the streamwise and spanwise wavenumbers, and c.c. denotes the
complex conjugate, we have

(D2
− k2)û−

R
2
(DU0)v̂ − ik(cos θ)q̂= 0, (2.36)

(D2
− k2)v̂ −

R
2
(DU0)û−

λPrR
2

(DT̃0)T̂ −Dq̂= 0, (2.37)

(D2
− k2)ŵ− ik(sin θ)q̂= 0, (2.38)

(D2
− k2)T̂ −

PrR
2
(DT̃0)v̂ = 0, (2.39)

ik(cos θ)û+Dv̂ + ik(sin θ)ŵ= 0, (2.40)
(û± lDû)(±1)= v̂(±1)= (ŵ± lDŵ)(±1)= (T̂ ± lTDT̂)(±1)= 0, (2.41)

where D ≡ d/dy, k = (α2
+ β2)1/2 and θ = arctan(β/α). If we denote the positive

eigenvalues of (2.36)–(2.41) as R1(k, θ,Pr, λ)6R2(k, θ,Pr, λ)6 · · · , then the critical
Reynolds number for the energy stability is

ReE(Pr, λ)=min
k,θ

R1(k, θ, Pr, λ). (2.42)

Note that the nth positive eigenvalue Rn and the corresponding eigenvector may be
only piecewise continuously differentiable where Rn = Rn+1 or Rn = Rn−1 (figure 1).
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FIGURE 1. The fifth and sixth positive eigenvalues for the energy stability of the
parallel shear flow with DU0 = sin(8πy), Pr DT̃0 = 0, l= 0 and k= 1.

Due to the symmetry of (2.36)–(2.41), only the cases with k > 0 and 0 6 θ 6 π/2
need to be considered.

The critical Reynolds number for the energy stability ReE depends on the definition
of the energy of the disturbance (2.22), and is therefore a function of the Prandtl
number Pr and the coupling parameter λ. For given Prandtl number, an optimal critical
Reynolds number for the energy stability can be further defined as the maximum of
ReE(Pr, λ) for all λ> 0 (Joseph 1966).

3. The monotonicity of the positive eigenvalues Rn (n>1) in the wavenumber plane
3.1. The expressions for ∂Rn/∂k and ∂Rn/∂θ

To study the monotonicity of Rn in the (k, θ) plane, we first derive the expressions
of ∂Rn/∂k and ∂Rn/∂θ .

Denote (2.36)–(2.40) as Lû= 0, where

L=


D2
− k2

−
1
2 R(DU0) 0 0 −ik cos θ

−
1
2 R(DU0) D2

− k2 0 −
1
2λPrR(DT̃0) −D

0 0 D2
− k2 0 −ik sin θ

0 −
1
2 PrR(DT̃0) 0 D2

− k2 0
ik cos θ D ik sin θ 0 0

 , û=


û
v̂

ŵ
T̂
q̂

 .
(3.1a,b)

For any λ> 0, assume the geometric multiplicity of the nth eigenvalue Rn(k, θ,Pr)
to be 1 in an open set S⊂ (0,+∞)×[0,π/2]× [0,+∞). If the nth positive eigenvalue
and the corresponding eigenvector of (2.36)–(2.41) are (Rn, ûn) for parameters
(k, θ,Pr)∈S, and are (Rn+dRn, ûn+dûn) for parameters (k+dk, θ +dθ,Pr+dPr)∈S,
we can neglect the higher-order terms and obtain

L(dûn)+ (dk)
∂L

∂k
ûn + (dθ)

∂L

∂θ
ûn + (dPr)

∂L

∂Pr
ûn + (dRn)

∂L

∂Rn
ûn = 0, (3.2)

[dûn ± lD(dûn)](±1)= (dv̂n)(±1)= [dŵn ± lD(dŵn)](±1)= 0, (3.3)
[dT̂n ± lTD(dT̂n)](±1)= 0. (3.4)
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Define the inner product between two vectors û′ and û′′ as

〈û′, û′′〉 =
∫ 1

−1
( ¯̂u′û′′ + ¯̂v′v̂′′ + ¯̂w′ŵ′′ + λ ¯̂T ′T̂ ′′ + ¯̂q′q̂′′) dy, (3.5)

where the overlines denote the complex conjugates. Because L is a self-adjoint
operator with respect to the inner product (3.5) and the boundary conditions (2.41),
(3.3) and (3.4), we have

〈ûn, L(dûn)〉 = 〈Lûn, dûn〉 = 〈0, dûn〉 = 0, (3.6)

and then it follows from (3.2) that〈
ûn,

∂L

∂k
ûn

〉
dk+

〈
ûn,

∂L

∂θ
ûn

〉
dθ +

〈
ûn,

∂L

∂Pr
ûn

〉
dPr+

〈
ûn,

∂L

∂Rn
ûn

〉
dRn= 0. (3.7)

Therefore, we have

∂Rn

∂k
=−

〈
ûn,

∂L

∂k
ûn

〉
〈

ûn,
∂L

∂Rn
ûn

〉 , (3.8)

∂Rn

∂θ
=−

〈
ûn,

∂L

∂θ
ûn

〉
〈

ûn,
∂L

∂Rn
ûn

〉 . (3.9)

The inner products in (3.7)–(3.9) are〈
ûn,

∂L

∂k
ûn

〉
=−2k

∫ 1

−1
(|ûn|

2
+ |v̂n|

2
+ |ŵn|

2
+ λ|T̂n|

2) dy−
1
k

∫ 1

−1
( ¯̂qnDv̂n + q̂nD ¯̂vn) dy,

(3.10)〈
ûn,

∂L

∂θ
ûn

〉
=−

∫ 1

−1
( ¯̂qnη̂n + q̂n

¯̂ηn) dy, (3.11)〈
ûn,

∂L

∂Pr
ûn

〉
=−
λRn

2

∫ 1

−1
(DT̃0)( ¯̂vnT̂n + v̂n

¯̂Tn) dy, (3.12)〈
ûn,

∂L

∂Rn
ûn

〉
=−

1
2

∫ 1

−1
(DU0)( ¯̂unv̂n + ûn

¯̂vn) dy−
λPr

2

∫ 1

−1
(DT̃0)( ¯̂vnT̂n + v̂n

¯̂Tn) dy,

(3.13)

where η̂n = ikûn sin θ − ikŵn cos θ is the wall-normal component of the disturbance
vorticity.

Using (2.36)–(2.41) in (3.10)–(3.13), we have〈
ûn,

∂L

∂k
ûn

〉
=−

2
k

∫ 1

−1
[2(|Dv̂n|

2
+ k2
|v̂n|

2)+ |η̂n|
2
+ λk2

|T̂n|
2
] dy+

1
k3
(Iv + Iη + λk2IT),

(3.14)
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ûn,

∂L

∂θ
ûn

〉
=

Rn

2

∫ 1

−1
(DU0)( ¯̂vnŵn + v̂n

¯̂wn) dy, (3.15)〈
ûn,

∂L

∂Pr
ûn

〉
=

2λ
Pr

IT, (3.16)〈
ûn,

∂L

∂Rn
ûn

〉
=

1
k2Rn

(Iv + Iη + λk2IT), (3.17)

where

Iv =
∫ 1

−1
|(D2
− k2)v̂n|

2 dy+ l[|(D2v̂n)(1)|2 + |(D2v̂n)(−1)|2], (3.18)

Iη =
∫ 1

−1
(|Dη̂n|

2
+ k2
|η̂n|

2) dy+ l[|(Dη̂n)(1)|2 + |(Dη̂n)(−1)|2], (3.19)

IT =

∫ 1

−1
(|DT̂n|

2
+ k2
|T̂n|

2) dy+ lT[|(DT̂n)(1)|2 + |(DT̂n)(−1)|2]. (3.20)

3.2. The dependence of the positive eigenvalues Rn (n > 1) on k

THEOREM 1. For any continuously differentiable real functions DU0 and DT̃0, and
any λ > 0, Pr > 0, l > 0, lT > 0 and θ ∈ [0, π/2], kRn is an increasing function
of k when k > 0, and Rn is a decreasing function of k when 0 < k < k0(l, lT),
where Rn is the nth positive eigenvalue of (2.36)–(2.41) (n > 1), and k0(l, lT) =
min{k′0(l), σ (max{l, lT})}. Here k′0(l) is the solution of the equation

(
√

3k′0) tan(
√

3k′0)+ k′0 tanh(k′0)+ 4k′20 l= 0 (3.21)

in the interval (π/
√

12, π/
√

3); σ(l) is the solution of the equation σ−1 cot σ = l in
the interval (0,π/2]. Specifically, when l= lT = 0 and 0< k< k0(0, 0)= k′0(0)≈ 1.534,
Rn is a decreasing function of k.

The following lemmas, which can be proved easily with the variational method, will
be used in the proof of theorem 1.

LEMMA 1. For any l > 0 and any complex-valued function f̂ , if (f̂ ± lDf̂ )(±1) = 0,
then ∫ 1

−1
|Df̂ |2 dy+ l[|(Df̂ )(1)|2 + |(Df̂ )(−1)|2]> [σ(l)]2

∫ 1

−1
| f̂ |2 dy, (3.22)

where σ(l) is the solution of the equation σ−1 cot σ = l in the interval (0,π/2]. The
equality in (3.22) holds when f̂ =C cos(σy), where C is any complex constant.

LEMMA 2. For any l > 0 and any complex-valued function ĝ, if ĝ(±1) = (Dĝ ±
lD2ĝ)(±1)= 0, then∫ 1

−1
(|D2ĝ|2 + k2

|Dĝ|2) dy+ l[|(D2ĝ)(1)|2 + |(D2ĝ)(−1)|2]

> [σ ′(k, l)]2
∫ 1

−1
(|Dĝ|2 + k2

|ĝ|2) dy, (3.23)
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where σ ′(k, l) is the solution of the equation σ ′ tan σ ′ + k tanh k + (σ ′2 + k2)l= 0 in
the interval (π/2, π). The equality in (3.23) holds when ĝ = C′[cos(σ ′) cosh(ky) −
cosh(k) cos(σ ′y)], where C′ is any complex constant.

To prove theorem 1, it is sufficient to prove for any given λ> 0, l> 0 and lT > 0,

∂

∂k
(kRn)> 0, (k> 0), (3.24)

∂Rn

∂k
6 0, (0< k< k0(l, lT)), (3.25)

in each subset S⊂ (0,+∞)× [0,π/2] × [0,+∞) where the geometric multiplicity of
the nth eigenvalue Rn(k, θ, Pr) is 1.

Substituting (3.14) and (3.17) into (3.8), we have ∂Rn/∂k >−Rn/k, and then (3.24)
holds.

Using lemma 1 for η̂n and T̂n, and using lemma 2 for v̂n, we have

Iη > [k2
+ (σ (l))2]

∫ 1

−1
|η̂n|

2 dy, (3.26)

IT > [k2
+ (σ (lT))

2
]

∫ 1

−1
|T̂n|

2 dy, (3.27)

Iv > [k2
+ (σ ′(k, l))2]

∫ 1

−1
(|Dv̂n|

2
+ k2
|v̂n|

2) dy. (3.28)

Substituting (3.26)–(3.28) into (3.14), we have〈
ûn,

∂L

∂k
ûn

〉
>
(σ ′(k, l))2 − 3k2

k3

∫ 1

−1
(|Dv̂n|

2
+ k2
|v̂n|

2) dy+
(σ (l))2 − k2

k3

∫ 1

−1
|η̂n|

2 dy

+
λ[(σ (lT))

2
− k2
]

k

∫ 1

−1
|T̂n|

2 dy. (3.29)

When 0< k 6 k′0(l), we have [σ ′(k, l)]2 − 3k2 > [σ ′(k′0(l), l)]2 − 3[k′0(l)]
2
= 0, because

σ ′(k, l) is a decreasing function of k for any given l > 0. Noticing that σ(l) is a
decreasing function of l when l > 0, we have [σ(l)]2 − k2 > 0 and [σ(lT)]

2
− k2 > 0

when 0 < k 6 σ(max{l, lT}). Therefore, we have 〈ûn, (∂L/∂k)ûn〉 > 0 when 0 < k <
k0(l, lT)=min{k′0(l), σ (max{l, lT})}, and then (3.25) holds because of (3.8) and (3.17).

Specifically, when l= lT =0, we have k0(0,0)= k′0(0) because k′0(0)≈1.534<π/2=
σ(0). Thus we have proved theorem 1.

A direct corollary of theorem 1 is that Rn=O(k−1) when k→ 0. Another corollary
is that the least stable mode in the energy method must have k> k0(l, lT). The contours
of k0 in the (l, lT) plane are plotted in figure 2.

3.3. The dependence of the positive eigenvalues Rn (n > 1) on θ

THEOREM 2. For any continuously differentiable real functions DU0 and DT̃0, and
any λ> 0, Pr > 0, l > 0, lT > 0 and k> 0, (cos θ ± 1)Rn are decreasing functions of
θ when 06 θ 6π/2, where Rn is the nth positive eigenvalue of (2.36)–(2.41) (n> 1).
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FIGURE 2. The contours of k0 in the (l, lT) plane.

To prove theorem 2, it is sufficient to prove for any given λ> 0, l > 0 and lT > 0,

∂

∂θ
[(cos θ ± 1)Rn]6 0 (3.30)

in each subset S⊂ (0,+∞)× [0,π/2] × [0,+∞) where the geometric multiplicity of
the nth eigenvalue Rn(k, θ, Pr) is 1.

Substituting (3.13) and (3.15) into (3.9), we have

1
Rn

∂Rn

∂θ
=

∫ 1

−1
(DU0)( ¯̂vnŵn + v̂n

¯̂wn) dy∫ 1

−1
(DU0)( ¯̂unv̂n + ûn

¯̂vn) dy+ λPr
∫ 1

−1
(DT̃0)( ¯̂vnT̂n + v̂n

¯̂Tn) dy
. (3.31)

(i) When θ =0, we have ŵn=0 from (2.38) and (2.41), and then ∂Rn/∂θ =0 follows
from (3.31). As a result,

∂

∂θ
[(cos θ ± 1)Rn] = 0. (3.32)

(ii) When θ = π/2, if (ûn, v̂n, ŵn, T̂n, q̂n) is an eigenvector corresponding to
the eigenvalue Rn, then ( ¯̂un, ¯̂vn, − ¯̂wn,

¯̂Tn, ¯̂qn) is also an eigenvector corresponding
to the same eigenvalue. In each subset S where the geometric multiplicity of the
eigenvalue Rn is 1, there exists a complex constant C such that ( ¯̂un, ¯̂vn,− ¯̂wn,

¯̂Tn, ¯̂qn)=

C(ûn, v̂n, ŵn, T̂n, q̂n), and then ¯̂vnŵn + v̂n
¯̂wn = 0. Therefore, we have ∂Rn/∂θ = 0 from

(3.31), and then
∂

∂θ
[(cos θ ± 1)Rn] =−Rn 6 0. (3.33)

(iii) When 0< θ <π/2, using (2.36)–(2.41) in (3.15), we have〈
ûn,

∂L

∂θ
ûn

〉
=−

(sin2 θ)Iv − (1+ cos2 θ)Iη − λk2(sin2 θ)IT

k2 sin θ cos θ
. (3.34)
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Define

I(µ)=
∫ 1

−1
|ĥµ|2 dy+ l[|ĥµ(1)|2 + |ĥµ(−1)|2], (3.35)

for µ ∈R, where
ĥµ = (D2

− k2)v̂n +µDη̂n. (3.36)

Using (2.36)–(2.41) in (3.35), we have

I(µ)= Iv −µ(tan θ)(Iv − Iη − λk2IT)+µ
2

(
Iη − k2

∫ 1

−1
|η̂n|

2 dy
)
. (3.37)

Substituting (3.17) and (3.34) into (3.9), we have

1
Rn

∂Rn

∂θ
=
(sin2 θ)Iv − (1+ cos2 θ)Iη − λk2(sin2 θ)IT

(sin θ cos θ)(Iv + Iη + λk2IT)
, (3.38)

and then

1
Rn

∂

∂θ
[(cos θ ± 1)Rn]

=±
(sin2 θ)Iv − (1± cos θ)2Iη − λk2(sin2 θ)(1± 2 cos θ)IT

(sin θ cos θ)(Iv + Iη + λk2IT)

=−

(sin2 θ)I
(

cos θ ± 1
sin θ

)
+ λk2(sin2 θ)IT + k2(1± cos θ)2

∫ 1

−1
|η̂n|

2 dy

(sin θ)(Iv + Iη + λk2IT)

6 0, (3.39)

where we have used (3.37) for µ= (cos θ ± 1)/ sin θ . Noticing that Rn > 0, we have
proved theorem 2.

According to theorem 2, we have

Rn

(
k,

π

2
, Pr, λ

)
1+ cos θ

6 Rn(k, θ, Pr, λ)6 min


Rn

(
k,

π

2
, Pr, λ

)
1− cos θ

,
2Rn(k, 0, Pr, λ)

1+ cos θ

 ,

(3.40)
for any k > 0, 0< θ 6 π/2, Pr > 0, λ> 0, l > 0, lT > 0 and n > 1. From (2.42) and
(3.40), we have

1
2

min
k>0

R1

(
k,

π

2
, Pr, λ

)
6 ReE(Pr, λ)6 min

k>0
R1

(
k,

π

2
, Pr, λ

)
. (3.41)

Calculating the critical Reynolds number for the energy stability ReE according to
(2.42) requires solving the eigenvalue equation (2.36)–(2.41) for all wavenumber pairs
(α, β) or (k, θ). However, the critical Reynolds number can be estimated by only
solving the eigenvalue equation for the streamwise vortices with α = k cos θ = 0
according to (3.41).

As a direct result of (3.41), the minimum R1 for all two-dimensional waves is also
bounded from below by a half of the minimum R1 for all streamwise vortices, i.e.

min
k>0

R1(k, 0, Pr, λ)>
1
2

min
k>0

R1

(
k,

π

2
, Pr, λ

)
, (3.42)
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for any Pr > 0, λ > 0, l > 0 and lT > 0. Kaiser & Schmitt (2001) have proved an
inequality stronger than (3.42),

min
k>0

R1(k, 0)>
16
27

min
k>0

R1

(
k,

π

2

)
, (3.43)

for Pr DT̃0 = 0 and l= lT = 0.

4. Numerical results
In order to calculate the first positive eigenvalue R1 of the eigenvalue equation

(2.36)–(2.41) for various base flows, we first discretise the equation using 129
Chebyshev–Gauss–Lobatto collocation points, and then solve it with the QZ function
in MATLAB (Dongarra, Straughan & Walker 1996). The first positive eigenvalue R1
is found to decrease with increasing θ for any given k in the energy stability analysis
of the plane Couette flow, the plane Poiseuille flow, the shear flow with a cubic
velocity profile and the inclined buoyancy layer when λ = 1 (figure 3). In figure 3,
we plot the contours of R1 in the (k, θ) plane, instead of plotting them in the usual
wavenumber plane (α, β) as in the previous works (Reddy & Henningson 1993;
Xiong & Tao 2017). Although Sagalakov & Shtern (1971) also plotted their figure 2
in the (k, θ) plane, the contour R1 = 35 in their figure is slightly different from that
in our figure 3(c), implying that R1 increases with increasing θ at (k, θ)≈ (1.9,π/2).
Noticing that their contour R1 = 35 and the boundary θ = π/2 do not intersect at a
right angle at (k, θ) ≈ (1.9, π/2), we believe our result is more accurate. Actually,
we have shown ∂R1/∂θ = 0 at the boundaries θ = 0 and θ = π/2 in the proof of
theorem 2.

Under the no-slip boundary condition and the slip boundary condition with the
slip length l = 0.1, the least stable modes in the energy stability analysis of the
plane Couette flow have (k, θ) = (1.558, π/2) (figure 3a) and (k, θ) = (1.426, π/2)
(figure 3c), respectively. These wavenumbers k are close to the corresponding lower
bounds k0(0, 0)= 1.534 and k0(0.1, 0)= 1.411 given in theorem 1 (figure 2).

When there is temperature variation in the base flow (Pr DT̃0 6= 0), the first positive
eigenvalue R1 may increase with θ , e.g. when DU0 = cos(πy)+ cos(3πy), Pr DT̃0 =

10 sin(πy), λ = 1 and l = lT = 0 (figure 4a). Figure 4(b) shows that theorem 2 still
holds for this base flow.

For shear flows under the no-slip boundary condition (l= 0) and without variations
in temperature (Pr DT̃0 = 0), we define

J(k, θ, a)=−
1
R1

dR1

dθ
=−

∫ 1

−1
(DU0)( ¯̂v1ŵ1 + v̂1

¯̂w1) dy∫ 1

−1
(DU0)( ¯̂u1v̂1 + û1

¯̂v1) dy
, (4.1)

where we have used (3.31). Here DU0=
∑

m>0 amTm(y), Tm is the Chebyshev polynomial
of degree m, and a= (a0, a1, . . .) is the coefficient. We also define

Jmin(k, θ)=min
a

J(k, θ, a). (4.2)

Note that R1 and DU0 only appear in the form of R1DU0 in (2.36)–(2.41), provided
that Pr DT̃0= 0. The eigenvector û1 therefore does not change when DU0 is multiplied
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FIGURE 3. The contours of the first positive eigenvalue R1 for the energy stability of
various base flows. (a) The plane Couette flow with the no-slip boundary condition
(DU0 = 1, Pr DT̃0 = 0 and l= 0) (Reddy & Henningson 1993). (b) The plane Poiseuille
flow with the no-slip boundary condition (DU0 =−2y, Pr DT̃0 = 0 and l= 0) (Reddy &
Henningson 1993). (c) The plane Couette flow with the slip boundary condition (DU0 =

(1+ l)−1, Pr DT̃0 = 0 and l= 0.1). (d) The plane Poiseuille flow with the slip boundary
condition (DU0 = −2(1 + 3l)−1y, Pr DT̃0 = 0 and l = 0.1). (e) The shear flow with a
cubic velocity profile (DU0 = 1− 3y2, Pr DT̃0 = 0 and l= 0) (Sagalakov & Shtern 1971).
( f ) The inclined buoyancy layer (DU0 = −0.5L2e−y′(sin y′ − cos y′), Pr = 0.72, DT̃0 =

−0.5L2e−y′(sin y′ + cos y′), λ= 1 and l= lT = 0, where y′ = L(y+ 1) and L= 20) (Xiong
& Tao 2017).

by a non-zero real constant, and then J(k, θ, Ca) = J(k, θ, a) for any real constant
C 6= 0.

We use two methods to approximate Jmin at (kj, θs), where kj = 10−1+( j−1)/5

(1 6 j 6 11) and θs = (s/20)π (1 6 s 6 9). In the following calculations, 65
Chebyshev–Gauss–Lobatto collocation points are used. In the first calculation, for
given wavenumber pair (kj, θs), Jmin is approximated by the minimum of J(kj, θs, a)
among all a such that |am| 6 5 (0 6 m 6 5) are integers and am = 0 for m > 6
(figure 5a). In the second calculation, Jmin is approximated with a gradient descent
method among all a such that am (0 6 m 6 15) are real numbers and am = 0 for
m > 16. The minimum found with the gradient descent method is generally a local
minimum, and depends on the initial value of the coefficient a. The result shown
in figure 5(b) is the minimum of J calculated from 100 sets of initial a that are
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FIGURE 4. The contours of R1 (a) and (1+ cos θ)R1 (b) for the energy stability of the
mixed convection with DU0= cos(πy)+ cos(3πy), Pr DT̃0=10 sin(πy), λ=1 and l= lT =0.
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FIGURE 5. The contours of Jmin in the wavenumber plane approximated with two methods:
(a) Jmin is approximated by the minimum of J for all DU0 =

∑
06m65 amTm(y), where Tm

is the Chebyshev polynomial of degree m, and |am|6 5 (0 6 m 6 5) are integers; (b) Jmin
is approximated by the local minimum of J among all DU0 =

∑
06m615 amTm(y) with a

gradient descent method.

randomly chosen. The detail of the gradient descent algorithm will be introduced in
appendix B. In both calculations, we did not find J < 0 for any base flow at any
(kj, θs) (1 6 j 6 11 and 1 6 s 6 9), which means R1 is probably a decreasing function
of θ for the base flows that we have examined. Note that J = 0 when θ = 0 or
θ =π/2, according to the proof of theorem 2.

5. Conjecture
In the parallel shear flows without variations in temperature, we have DT0 = 0 and

Gr= 0, and then DT̃0= 0 due to (2.24). Under this circumstance, Pr, λ and lT have no
influence on the eigenvalue equation (2.36)–(2.41). According to the numerical results
in § 4, we propose the following conjecture:

CONJECTURE 1. For any continuously differentiable real function DU0, if DT̃0 = 0
and l= 0, then the first positive eigenvalue of (2.36)–(2.41) R1(k, θ) is a decreasing
function of θ when 0 6 θ 6π/2 for any k> 0.

If conjecture 1 is correct, the least stable mode for the energy stability of any
parallel shear flow between no-slip walls without variations in temperature will be a
streamwise vortex, because

ReE =min
k>0

R1

(
k,

π

2

)
(5.1)

follows from (2.42), and θ =π/2 implies the streamwise wavenumber α= k cos θ = 0.
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Conjecture 1 implies that
∂R1

∂θ
6 0 (5.2)

in each subset S ⊂ (0, +∞) × [0, π/2] where the geometric multiplicity of the first
eigenvalue R1(k, θ) is 1.

According to (3.9), (3.11) and (3.17), conjecture 1 is equivalent to the following
conjecture:

CONJECTURE 2 (A conjecture equivalent to conjecture 1). For any continuously
differentiable real function DU0, if DT̃0 = 0, l= 0, k > 0 and 0 6 θ 6 π/2, then the
eigenvector corresponding to the first positive eigenvalue of (2.36)–(2.41) satisfies

−

∫ 1

−1
( ¯̂q1η̂1 + q̂1

¯̂η1) dy > 0. (5.3)

Now the monotonicity of the eigenvalue in conjecture 1 has been transformed to a
more tractable inequality of the eigenvector in conjecture 2, where more mathematical
tools can be used in the proof, such as the lemmas used in the proof of theorem 1.

Using (3.15) instead of (3.11), we have another condition which is equivalent to
(5.3),

R1

2

∫ 1

−1
(DU0)( ¯̂v1ŵ1 + v̂1

¯̂w1) dy > 0. (5.4)

When DT̃0 = 0, we have T̂1 = 0 from (2.39) and (2.41), and then IT = 0. The
condition (5.3) is therefore also equivalent to

(1+ cos2 θ)Iη − (sin2 θ)Iv > 0 (5.5)

after using (3.34) instead of (3.11).

6. Conclusion
In this paper, we explore the monotonicity of the positive eigenvalues of the

eigenvalue equation for the energy stability of plane parallel flows in the (k, θ)
plane, where k = (α2

+ β2)1/2 and θ = arctan(β/α), and α and β are the streamwise
and spanwise wavenumbers of the normal mode. We prove that the nth positive
eigenvalue Rn decreases with increasing k when 0 < k < k0(l, lT), and kRn increases
with k when k > 0. We also prove that (cos θ ± 1)Rn are decreasing functions of θ
when 06 θ 6π/2. The above results apply to all parallel base flows between no-slip
or slip parallel plates with or without variations in temperature, including the plane
Couette flow, the plane Poiseuille flow and the inclined buoyancy layer. When there
is temperature variation in the base flow, the difference between T0 and T̃0 should be
noted, i.e. (2.24). If T0 instead of T̃0 is given, the above results hold for any given
Gr/(λPrRe2).

Our theorems are also illustrated with the computations of the energy stability of
various basic flows when the coupling parameter λ= 1. The first positive eigenvalue
R1 is found to decrease with increasing θ in the computations for many parallel shear
flows under the no-slip boundary condition and without variations in temperature.
Therefore, we conjecture that R1 is a decreasing function of θ for all parallel shear
flows between no-slip walls without variations in temperature. We also propose an
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equivalent conjecture to relate the monotonicity of the eigenvalue to an inequality of
the eigenvector (5.3), and derive two equivalent expressions of (5.3), which are (5.4)
and (5.5).

If our conjecture is correct, then the least stable mode for the energy stability of
any parallel shear flow under the no-slip boundary condition and without variations
in temperature must be a streamwise vortex. The importance of this conjecture to the
energy stability theory is similar to the importance of Squire’s theorem to the linear
stability theory. Actually, Squire’s theorem implies that the neutral stable Reynolds
number for the linear stability always increases with θ for given k> 0; our conjecture
anticipates the opposite for the energy stability.

In the special case with DT̃0 = DU0, l = lT > 0 and λ = 1, we prove that (1 +
Pr2)1/2Rn(k, θ, Pr) only depends on k and (1 + Pr2)−1/2 cos θ in appendix A, and
explain why the proof by Joseph (1966) is not completed to prove that the least stable
mode for the energy stability of the plane Couette flow is a streamwise vortex.
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Appendix A. A special case with DT̃0 =DU0, l= lT > 0 and λ= 1

THEOREM 3. For any continuously differentiable real function DU0 and any l= lT >0,
if DT̃0=DU0 and λ= 1, then there exist functions {fn}n>1 of k and (1+Pr2)−1/2 cos θ
such that

Rn(k, θ, Pr)= (1+ Pr2)−1/2fn(k, (1+ Pr2)−1/2 cos θ), (A 1)

where Rn is the nth positive eigenvalue of (2.36)–(2.41) (n > 1).

To prove theorem 3, we rewrite the eigenvalue equation (2.36)–(2.41) by introducing
φ = arctan(Pr) and R′n(k, θ, φ)= (1+ Pr2)1/2Rn(k, θ, Pr).

When DT̃0 =DU0, l= lT > 0 and λ= 1, we have

L′(k, θ, φ, R′n)ûn = 0, (A 2)

(ûn ± lDûn)(±1)= v̂n(±1)= (ŵn ± lDŵn)(±1)= (T̂n ± lDT̂n)(±1)= 0, (A 3)

where

L′ =



D2
− k2

−
cos φ

2
R′n(DU0) 0 0 −ik cos θ

−
cos φ

2
R′n(DU0) D2

− k2 0 −
sin φ

2
R′n(DU0) −D

0 0 D2
− k2 0 −ik sin θ

0 −
sin φ

2
R′n(DU0) 0 D2

− k2 0

ik cos θ D ik sin θ 0 0


.

(A 4)
After a similar discussion as in § 2, we have〈

ûn,
∂L′

∂k
ûn

〉
dk+

〈
ûn,

∂L′

∂θ
ûn

〉
dθ +

〈
ûn,

∂L′

∂φ
ûn

〉
dφ+

〈
ûn,

∂L′

∂R′n
ûn

〉
dR′n= 0, (A 5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

78
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.785


810 X. Xiong and Z.-M. Chen

and then

∂R′n
∂θ
=−

〈
ûn,

∂L′

∂θ
ûn

〉
〈

ûn,
∂L′

∂R′n
ûn

〉 , (A 6)

∂R′n
∂φ
=−

〈
ûn,

∂L′

∂φ
ûn

〉
〈

ûn,
∂L′

∂R′n
ûn

〉 , (A 7)

where〈
ûn,

∂L′

∂θ
ûn

〉
=−

∫ 1

−1
( ¯̂qnη̂n + q̂n

¯̂ηn) dy=
R′n cos φ

2

∫ 1

−1
(DU0)( ¯̂vnŵn + v̂n

¯̂wn) dy, (A 8)〈
ûn,

∂L′

∂φ
ûn

〉
=

R′n
2

∫ 1

−1
(DU0)[(sin φ)( ¯̂unv̂n + ûn

¯̂vn)− (cos φ)( ¯̂vnT̂n + v̂n
¯̂Tn)] dy. (A 9)

From (A 2)–(A 3), we have

(D2
− k2)ĝn = 0, (A 10)

(ĝn ± lDĝn)(±1)= 0, (A 11)

where ĝn = (sin θ sin φ)ûn − (cos θ sin φ)ŵn − (sin θ cos φ)T̂n. Then we have ĝn = 0,
which leads to

(cos θ sin φ)
〈

ûn,
∂L′

∂θ
ûn

〉
= (sin θ cos φ)

〈
ûn,

∂L′

∂φ
ûn

〉
, (A 12)

because of (A 8) and (A 9), and then

(cos θ sin φ)
∂R′n
∂θ
= (sin θ cos φ)

∂R′n
∂φ

, (A 13)

where we have used (A 6), (A 7) and (A 12).
For given k > 0, the tangent direction of the contour of R′n at any point (θ0, φ0)

in the (θ, φ) plane is therefore parallel to (cos θ0 sin φ0, − sin θ0 cos φ0), which
is just the tangent direction of the contour of cos θ cos φ at the same point.
Consequently, R′n(k, θ, φ) only depends on k and cos θ cos φ, which means that
(1 + Pr2)1/2Rn(k, θ, Pr) only depends on k and (1 + Pr2)−1/2 cos θ . Theorem 3 is
therefore proved.

According to the proof of theorem 3, we have

R′1
(

k,
π

2
, φ
)
= R′1

(
k,

π

2
,
π

2

)
= R′1

(
k, θ,

π

2

)
, (A 14)

for any 06 θ 6π/2 and 06 φ6π/2. Note that there is no singularity in (A 2)–(A 3)
when φ =π/2 (Pr→+∞).

Theorem 3 is an extension of the work by Joseph (1966), who studied the case
with DU0=DT̃0= 1 and l= lT = 0. He implicitly used an expression similar to (A 13)
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FIGURE 6. The contours of R′1 for DU0 =DT̃0 = 1, k= 1, λ= 1 and l= lT = 0. The
boundaries θ =π/2 and φ =π/2 constitute the contour R′1 ≈ 23.33.

to declare that R′1 is independent of φ along the line θ = θ0(k, φ), where θ0(k, φ)
satisfies R′1(k, θ0, φ) = minθ R′1(k, θ, φ). minθ R′1(k, θ, φ) is therefore independent of
φ, and then minθ R′1(k, θ, 0) = minθ R′1(k, θ, π/2) = R′1(k, π/2, 0), where (A 14) has
been used. He concluded from θ0(k, 0)=π/2 that the minimum R′1 is achieved by a
streamwise vortex in the case of the plane Couette flow (φ = 0).

Although the conclusion of Joseph (1966) has been verified by previous computation
(Reddy & Henningson 1993) and our computation (figure 6), there is a gap in his
proof: equation (A 13) cannot guarantee ∂R′1/∂φ = 0 if ∂R′1/∂θ = 0 at θ = 0 (Busse
1972). Actually, theorem 2 and theorem 3 cannot rule out the possibility that R′1 may
be (1+ cos θ cos φ)−1 or 1− cos θ cos φ + cos2 θ cos2 φ, and minθ R′1(k, θ, 0) may be
achieved at θ = 0 or 0< θ <π/2.

Appendix B. The gradient descent algorithm for Jmin

When Pr DT̃0 = 0, l= 0 and DU0 =
∑

06m6M amTm(y), where Tm is the Chebyshev
polynomial of degree m, and a= (a0, a1, . . . , aM) is the coefficient, we have

L′′(k, θ, a, R1)û1 = 0, (B 1)
û1(±1)= v̂1(±1)= ŵ1(±1)= 0, (B 2)

where

L′′ =


D2
− k2

−
1
2 R1(DU0) 0 −ik cos θ

−
1
2 R1(DU0) D2

− k2 0 −D
0 0 D2

− k2
−ik sin θ

ik cos θ D ik sin θ 0

 , û1 =

 û1
v̂1
ŵ1
q̂1

 , (B 3a,b)
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and then

L′′(dû1)+ (dR1)
∂L′′

∂R1
û1 +

∑
06m6M

(dam)
∂L′′

∂am
û1 = 0, (B 4)

(dû1)(±1)= (dv̂1)(±1)= (dŵ1)(±1)= 0, (B 5)

at given (k, θ).
Define the inner product between two vectors û′ and û′′ as

〈û′, û′′〉 =
∫ 1

−1
( ¯̂u′û′′ + ¯̂v′v̂′′ + ¯̂w′ŵ′′ + ¯̂q′q̂′′) dy. (B 6)

It is straightforward to examine that L′′ is a self-adjoint operator with respect to this
inner product and the boundary conditions, and then we have

〈û1, L′′(dû1)〉 = 〈L
′′û1, dû1〉 = 〈0, dû1〉 = 0, (B 7)

and then it follows from (B 4) that〈
û1,

∂L′′

∂R1
û1

〉
(dR1)+

∑
06m6M

〈
û1,

∂L′′

∂am
û1

〉
(dam)= 0. (B 8)

The inner products in (B 8) are〈
û1,

∂L′′

∂R1
û1

〉
=−

1
2

∫ 1

−1
(DU0)( ¯̂u1v̂1 + û1

¯̂v1) dy=
1

k2R1
(Iv1 + Iη1)> 0, (B 9)〈

û1,
∂L′′

∂am
û1

〉
=−

R1

2

∫ 1

−1
Tm( ¯̂u1v̂1 + û1

¯̂v1) dy, (B 10)

where

Iv1 =

∫ 1

−1
|(D2
− k2)v̂1|

2 dy, (B 11)

Iη1 =

∫ 1

−1
(|Dη̂1|

2
+ k2
|η̂1|

2) dy, (B 12)

and η̂1 = ikû1 sin θ − ikŵ1 cos θ .
Without loss of generality, we assume

−
1
2

∫ 1

−1
(DU0)( ¯̂u1v̂1 + û1

¯̂v1) dy= 1. (B 13)

For 0 6 m 6 M, from (B 8), (B 9) and (B 13), we have

∂R1

∂am
=−

〈
û1,

∂L′′

∂am
û1

〉
. (B 14)
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From (B 4), (B 5) and (B 14), we have

L′′
∂û1

∂am
=

〈
û1,

∂L′′

∂am
û1

〉
∂L′′

∂R1
û1 −

∂L′′

∂am
û1, (B 15)

∂ û1

∂am
(±1)=

∂v̂1

∂am
(±1)=

∂ŵ1

∂am
(±1)= 0. (B 16)

Equation (B 13) also requires∫ 1

−1

[
(DU0)

(
∂ ¯̂u1

∂am
v̂1 +
¯̂u1
∂v̂1

∂am
+
∂ û1

∂am

¯̂v1 + û1
∂ ¯̂v1

∂am

)
+ Tm( ¯̂u1v̂1 + û1

¯̂v1)

]
dy= 0. (B 17)

Substituting (B 13) into (4.1), we have

J(k, θ, a)= 1
2

∫ 1

−1
(DU0)( ¯̂v1ŵ1 + v̂1

¯̂w1) dy, (B 18)

and then

∂J
∂am
=

1
2

∫ 1

−1

[
(DU0)

(
∂ ¯̂v1

∂am
ŵ1 +

¯̂v1
∂ŵ1

∂am
+
∂v̂1

∂am

¯̂w1 + v̂1
∂ ¯̂w1

∂am

)
+ Tm( ¯̂v1ŵ1 + v̂1

¯̂w1)

]
dy.

(B 19)
Noticing that J(k, θ,Ca)= J(k, θ,a) for any real constant C 6=0, instead of searching

for the minimum of J, we search the minimum of

J′(k, θ, a)= J(k, θ, a)+

( ∑
06m6M

a2
m − 1

)2

(B 20)

to avoid the potential blow-up of ‖a‖. Therefore, we have

∂J′

∂am
=
∂J
∂am
+ 4am

( ∑
06m′6M

a2
m′ − 1

)
. (B 21)

The minimum of J is calculated with the AdaMax algorithm (Kingma & Ba 2017),
which is a gradient-based optimisation algorithm. The detailed algorithm is as follows:

(i) For given wavenumber pair (k, θ), randomly choose initial a such that ‖a‖ = 1.
Set t= 0, s= (s0, s1, . . . , sM)= 0 and r= (r0, r1, . . . , rM)= 0.

(ii) Solve the eigenvalue equation (B 1)–(B 2) for the first positive eigenvalue R1 and
the corresponding eigenvector û1. Equation (B 13) is satisfied by scaling û1.

(iii) Solve (B 15)–(B 16) for a particular solution ∂û1/∂am (0 6 m 6 M). Noticing
that (∂û1/∂am)+Cû1 is also a solution of (B 15)–(B 16) for any complex constant C,
we require ∫ 1

−1

[
(DU0)

(
¯̂u1
∂v̂1

∂am
+ ¯̂v1

∂ û1

∂am

)
+ Tm( ¯̂u1v̂1)

]
dy= 0, (B 22)

and then (B 17) holds naturally.
(iv) For 0 6 m 6 M, calculate ∂J′/∂am from (B 19) and (B 21).
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(v) Set t + 1 to be the new t. For 0 6 m 6 M, set 0.9sm + 0.1∂J′/∂am as the new
sm; set max{0.999rm, |∂J′/∂am|} as the new rm; set am− 0.002sm/((1− 0.9t)rm) as the
new am. Repeat (ii)–(v) until t= 10 000 or until J cannot be decreased in the last 1000
steps. The parameters here are recommended by Kingma & Ba (2017).
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