

Local SVD inverse of robot Jacobians
Jing Yuan
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hunghom,
Kwoloon (Hong Kong) (P.R. of China)
email: mmjyan@polyu.edu.hk

(Received in Final Form: April 22, 2000)

SUMMARY
This study presents a fast inverse kinematics algorithm for a
class of robots, including PUMA and SCARA. It decom-
poses a robot Jacobian into a product of sub-matrices to
locate singularities. Singular value decomposition (SVD) is
applied to each singular sub-matrix to find a local least-
squares inverse. Perfect inverses are derived for all
non-singular sub-matrices. The proposed algorithm is
extremely fast. A total inverse requires 54 flops for PUMA
and 43 for SCARA. Simulation and experiment are
conducted to test the accuracy and real-time speed of the
algorithm.

KEYWORDS: Robot Jacobian; Inverse kinematics; Singular value
decomposition; Least-squares inverse; Cartesian space control.

1. INTRODUCTION
Most industrial robots have articulated kinematic structures
similar to the arms of human beings. These kinematic
structures enable robots to handle work-pieces with certain
flexibility, but introduce nonlinear mappings between joint
coordinates of robots and Cartesian coordinates of end-
effectors. The Jacobian matrix J(q) plays an important rule
in robot kinematics. It relates Cartesian velocities ẋ � R6 of
the end-effector to joint velocity q̇ � R6 of the robot by

ẋ =� v
� �= J(q)q̇ (1)

where v � R3 is the linear velocity and � � R3 angular
velocity of the end-effector. For a six-joint robot, J(q) is a
square matrix and a function of joint coordinate vector
q � R6. In many industrial applications, it is often desired
to operate a robot such that the end-effector moves along
specific curves or lines in Cartesian space. A computer must
calculate the joint velocity by q̇ = J�1(q)ẋ, so that the
controller can regulate the joint velocity properly.

Unfortunately, J(q) may become singular in certain
configurations known as robot singularities. The neighbor-
hood of a robot singularity is called a robot singular region
where a singular value of the Jacobian becomes smaller than
a prescribed constant �. An ideal inverse kinematics
algorithm should be able to inverse ẋ = J(q)q regardless of
robot singularities. It is expected to obtain a perfect inverse

when J(q) is non-singular or a least-squares solution when
the robot is inside a singular region.

Numerical singular value decomposition (SVD) meets
the expectations at the expense of roughly 12n3 flops per
inversion for an n-joint robot. The computational cost of
numerical SVD prompted a study by Kirćanski and Borić1

that resulted in a symbolic SVD algorithm for robots with
the PUMA kinematic structure (PKS). The symbolic SVD is
faster than numerical SVD by approximately 10 times. An
experimental study by Kirćanski et al. reported a real-time
implementation of the symbolic SVD in a PC for a two-joint
robot.2 For a six-joint robot, however, real-time implementa-
tion of the symbolic SVD was still not manageable with an
available PC.

An alternative to SVD is the damped least squares inverse
(DLSI)3,4 that solves a continuous joint velocity
q̇ = JT(q)[J(q)JT (q) + �I]�1ẋ regardless of robot singular-
ities. Both symbolic SVD and DLSI are well accepted by
researchers. The accuracy of DLSI can be improved by
estimating the singular values of the Jacobian matrix.5–7

Chiaverini et al.8 applied DLSI to a six-joint robot and
proposed the weighted DLSI to distribute the total error in
user-defined directions. The closed-loop inverse kinematics
(CLIK) algorithm9,10 also uses DLSI to resolve the joint
rates or joint accelerations.

This study presents a fast SVD algorithm for robots with
PKS. It only requires 54 flops per inversion – the most
efficient SVD algorithm to the author’s best knowledge.
Some robots, such s the ABB IRb-200, eliminate the elbow
singularity by restricting the range of a joint. The corre-
sponding inverse kinematics problem requires 48 flops by
the proposed method. The algorithm has been tested in a
real-time experiment where a single 33MHz-486 controls a
six-joint Zebra-0 robot (IMI, Berkeley, CA, USA). The
robot manufacturer allows 1.5 milliseconds per sampling
interval for a user program to compute the next target point.
The proposed algorithm managed to resolve joint rate
within the limit for a trajectory that starts in the intersection
of the shoulder and wrist singularities and repetitively
crosses the shoulder singularity. The algorithm can be
extended to other robots with spherical wrists. When
applied to the SCARA robot, for example, only 43 flops are
required to solve the inverse kinematics problem.

The paper is organized in the following way: Section 2
presents the algorithm with a detailed analysis of computa-
tional counts. Simulation and experimental results are
presented in Section 3. Section 4 explains a possible

Robotica (2001) volume 19, pp. 79–86. Printed in the United Kingdom © 2001 Cambridge University Press

https://doi.org/10.1017/S0263574700002769 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574700002769

application of the proposed algorithm in conjunction with
the CLIK method. A brief conclusions is given in Section
5.

2. THE FAST SVD INVERSE ALGORITHM
The subject of this section is the Jacobian of PKS. The last
three joints of these robots are rotational with their axes
intersecting at a common point to form a spherical wrist.
Since many industrial robots belong to this class, it is
chosen to be the subject of this study. The result, however,
can be extended to any six-joint robots with spherical
wrists.

Figure 1 shows a PKS skeleton and its home configura-
tion. The ith link is associated with a coordinate frame {oi,
xi, yi, zi} were oi is the origin while xi, yi and zi are the axes.
These symbols are not explicitly labeled in Figure 1.
Instead, each frame is represented by three axes embedded
in a solid cylinder representing the pivot of a joint. The
centre of the ith cylinder is the origin of the ith frame. The
zi axis is the pivot axis, with xi and yi determined by the
right hand rule. The base frame {o0, x0, y0, z0) is attached to
the base cylinder of the skeleton. Other frames are counted
upwards. The sixth frame is not shown in the picture. It is to
be defined by the end user according to the geometric shape
of the end effector. This fact, however, does not affect the
analysis.

The Jacobian can be obtained by a simple method
explained in reference [11]. Let Ji denote the ith column of
J(q), then it is given by

Ji =� zi�1� (o6 �oi�1)
zi�1

�
= � zi�1� di�1

zi�1
� + � zi�1� h

0 � (2)

where di�1 = o4 �oi�1, h = o6 �o4 or di�1 + h = o6 �oi�1. The
wrist of PKS, shown in Figure 1, coincides with o4 where
the last three axes intersect. It is related to the origin of the
sixth frame by h = o6 – o4. Such a notation allows the user to
specify o6 at any point on the end-effector regardless of
Jacobian inverse.

It is a popular approach to express the end-effector
velocity down to the robot wrist by v� = v��� h.12,13 Such
a treatment reduces the inverse kinematic problem to

q̇ = J�1
w (q)� vw

� � (3)

where a block-triangle matrix

Jw (q) =� z0� d0

z0

z1� d1

z1

z2� d2

z2

0
z3

0
z4

0
z5
�

=� J11

J21

0
J22
� (4)

is the Jacobian of the robot wrist, hence the subscript “w”.
One may express Jw(q) as

Jw (q) =� J11

O
O
I3
� � I3

J21

O
I3
� � I3

O
O
J22
� (5)

where I3 is a 3� 3 identity matrix. It is not difficult to see

� I3

J21

O
I3
��1

= � I3

�J21

O
I3
� (6)

Substituting (6) into (5), one obtains

Fig. 1. A PKS skeleton and its home configuration.

Robot Jacobians80

https://doi.org/10.1017/S0263574700002769 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574700002769

J�1
w (q) =� I3

O
O

J�1
22
� � I3

�J21

O
I3
� � J�1

11

O
O
I3
�. (7)

Only two 3� 3 inverse matrices, J�1
11 and J�1

22 , are needed to
construct a 6� 6 inverse J�1

w (q). Let J†
11 and J†

22 denote,
respectively, the SVD least-square inverses of J11 and J22.
Substituting into (7), one may solve (3) in 3 steps:

f1 = J†
11 vw, (8)

f2 = ��J21f1, (9)

f3 = J†
22 f2. (10)

The inverse kinematic solution is given by q̇T = [fT
1 fT

3].
Since the computation of vw is a common exercise

required by all inverse kinematics algorithms, most
researchers, such as Kirćanski and Borić,1 excluded these
computations when comparing efficiency of inverse kine-
matics algorithms. By the same token, total flop count of the
present algorithm is based on (8)–(10). Let Ci, C2 and C3

denote, respectively, flop counts of these steps, then the
present algorithm has a total flop count of C1 +C2 +C3.

2.1 Flop count of f1 = J†
11vw

Table I lists a sub-total of flops needed to obtain f1 = J†
11vw.

Since J11 only involves the first three joint angles, its
analytical version is derivable from Figure 1 as

J11 =
��c1

��s1

0

(l2s2 + l̄3s23)s1

� (l2s2 + l̄3s23)c1

�

l̄3s21s23

� l̄3c1s23

l̄3c23

l̄3 = l3 + l4 (11)

where � = l2c2 = l̄3c23 is the (2,3)th element of J11 without any
on-line computation when Jw (q) is available.

Evidently, (11) depends on the definition of home
position and selections of frames attached to the first three
links. While the expression of (11) may change for different
home configurations or frame selections, the principle
developed here remains valid. One can use (11) without
losing generality. A closer examination of (11) reveals

J11 =
��c1

��s1

0

�s1

c1

0

0
0
1

1
0
0

0
�s2

c2

0
�s23

c23

1
0
0

0
l2

l̄3

0
0
l̄3

(12)

This structure implies an analytical inverse of J11, in the
form of

J†
11 = �4�3�2�1 (13)

where

�1 =
c1

�s1

0

s1

c1

0

0
0
1

, �2 =

1

0

0

0

�s2

�s23

0
c2

c23

,

�3 =

�
1
�

0
0

0� 0.5
1+c3

+ 0.5
1�c3

�
� 0.5

1+c3
�

0.5
1�c3

�
0� 0.5

1+c3
�

0.5
1�c3

�
� 0.5

1+c3
+ 0.5

1�c3
�

and

�4 =

1

0

0

0

l �1
2

� l �1
2

0
0

l̄ �1
3

.

Since �3 contains the shoulder singular value ��� and elbow
singular value 1±c3,

1
� should be replaced by sgn(�)

� , or 0.5
1±c3

by
0.5
� , whenever ��� or 1±c3 is smaller than �. Some industrial
robots, such as the ABB IRb-2000, restricts the range of q3

to eliminate the elbow singularity. Then (13) can be
simplified to

J†
11 = �4

�
1
�

0

0

0
c23

s3

�
c2

s3

0
s23

s3

�
s2

s3

�1. (14)

It is not difficult to verify J†
11J11 = I for either (13) or (14) by

routine multiplications of the sub-matrices.
Table I is based on (13) that corresponds to the worst case

with both shoulder and elbow singularities. It takes 6 flops,
another 6 flops and then 3 flops, respectively, to multiply
�1, �2 and �4 since elements of these sub-matrices are
either pre-computed or available as intermediate variables
from the construction of J11. To count the computations
required for multiplying �3, one needs a further decom-
position

�3 =

1

0

0

0

1

1

0

�1

1

�
1
�

0

0

0
0.5

1+c3

0

0

0
0.5
�

1

0

0

0

1

�1

0

1

1

where 0.5
� replaces 0.5

1�c3
assuming �� < q3 < � and � = cos�1 �.

If �� < q3 �	 < �, then 0.5
1+c3

should be replaced by 0.5
�

instead. The algorithm detects the elbow singularity by a
negligible integer operation in the encoder level using �.
The flop count, shown in Table I, is 2+6+2=10 for
multiplying �3. It includes one flop for detecting the
shoulder singularity, but excludes the computation of 0.5

� – a
pre-computed constant. If the algorithm detects that the
robot is outside the elbow singular region, it automatically
switches to (14) in the first place. That reduces C1 to
6+10+3=19 flops (including one flop for detecting the
shoulder singularity) instead of 25.

2.2 Flop count of f2 = ��J21f1

This is the easiest step where J21 = [z0 z1 z2]. Since
z0 = [0 0 1]T and z1 = z2 = [c1 s1 0]T, one can write

Table I. Flop count of f1 = J†
11vw.

Matrix � �1 �2 �3 �4 C1

Flops 6 6 10 3 25

Robot Jacobians81

https://doi.org/10.1017/S0263574700002769 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574700002769

f2 = ��J21f1 =

�1 � f
 c1

�2 � f
 s1

�3 � f11

,

where f
 = f12 + f13, f1 = [f11 f12 f13]T and � = [�1 �2 �3]T. This
step requires C2 =6 flops.

2.3 Flop count of F3 = J†
22 f2

The least squares inverse of J22 is expressed as
J†

22 = (JT
22J22)

†JT
22 (Table II) This step involves two matrix

multiplications. The first one is a multiplication by JT
22 that

requires 3� 5 = 15 flops. The second one is a multiplication
by (JT

22 J22)
†. The three columns of J22 represent the axes of

the spherical wrist. These are unit-length vectors. Partic-
ularly, z4 is always perpendicular to both z3 and z5. This fact
implies

JT
22J22 =

1

0

c5

0

1

0

c5

0

1

.

Therefore (JT
22J22)

† has two versions. Inside the wrist
singular region �� < q5 < �, it has a SVD expression

(JT
22J22)† =

1

0

1

0

1

0

�1

0

1

0.5
1+c5

0

0

0

1

0

0

0
0.5
�

1

0

�1

0

1

0

1

0

1

.

where 0.5
� substitutes 0.5

1�c5
. If �� < q5 �	 < �, then 0.5

1+c5
should

be replaced by 0.5
� instead. This multiplication requires

2+4+2=8 flops. Outside the wrist singular region, (JT
22J22)

†

is a perfect inverse given by

(JT
22J22)�1 =

1
s2

5

0
c5

s2
5

0

1

0

�c5

s2
5

0
1
s2

5

. (15)

It requires 7 flops. Therefore C3 =23 flops and
C1 +C2 +C3 =54 flops. For some industrial robots, such as
ABB IRb-2000, the elbow singularity is eliminated by
limiting the range of q3. The computation is reduced to 48
flops.

2.4 Computation savings from Jacobian construction
The present algorithm does not necessarily require a
complete reconstruction of Jw(q). Step 1 only requires
cosq1, sinq1, cosq2, sinq2, cosq3, sinq3, cos(q2 +q3) and
sin(q2 +q3) plus � = l2cosq2 + l3cos(q2 +q3). This is sign-
ificantly more efficient than constructing a complete J11.
Step 2 uses cosq1 and sinq1 available from step 1. Only step
3 requires J22 plus cosq5 or sinq5. As a whole, the algorithm
saves many computations required to construct Jw (q) in
addition to its fast speed in the inverse process.

2.5 Extension to robots with other kinematic structures
The present algorithm also applies to robot with other
kinematic structures, as stated in the introduction. The six-
axis gantry robot is a trivial example. It has a spherical wrist
and three translational axes, rendering Jw(q) an identity
matrix. The SCARA kinematic structure is another popular
robot kinematic structure, which is suitable for the proposed
algorithm. With a translational joint, SCARA does not have
the shoulder singularity. Its Jw(q) differs from that of PKS
in

J11 =

�s1

c1

0

�s12

c12

0

0

0

1

l1

l2

0

0
l2

0

0
0
1

and

J21 =

0

0

1

0

0

1

0

0

1

0

0

1

.

The SVD inverse of J11 has a cascade form:

J†
11 =

l �1
1

� l �1
1

0

0
l �1

2

0

0
0
1

�†
11

�s1

�s12

0

c1

c12

0

0
0
1

.

The worst case scenario happens when the robot enters its
elbow singular region. In that case, multiplication by �†

11

can be carried out in the following sub-steps

�†
11 =

1
1
0

�1
1
0

0
0
1

0.5
1+c2

0
0

0
0.5
�

0

0
0
1

1
�1
0

1
1
0

0
0
1

where 0.5
� substitutes 0.5

1�c2
assuming �� < q2 < �. If

�� < q2 �	 < �, then 0.5
1 + c2

should be replaced by 0.5
� instead.

Similar to the inverse kinematics of PKS, less computations
are needed when SCARA is outside its elbow singular
region.

With a simpler Jacobian than that of PKS, the inverse
kinematics of SCARA requires less computations. Step 1
requires C1 =6+8+3=17 flops. Steps 2 and 3 require C2 =3
flops and C3 =23 flops respectively. The total flop count is
therefore C1 +C2 +C3 =43.

3. SIMULATION AND EXPERIMENT
The simulation needs a DLSI algorithm as the standard to
compare the accuracy of the proposed algorithm. There are
many different varieties of DLSI. The one chosen here is
given by

q̇ = JT[JJT + �2I]�1ẋ �2 =� 0

� 2 �
 2
min

if
 2
min ≥ � 2;

otherwise
(16)

where
 2
min is the smallest eigenvalue of JTJ and � > 0 is a

prescribed constant that determines the singular regions of a

robot. Let J =�6

i = 1

i uiv

T
i denote the SVD of J, then (16) is

equivalent to

Table II. Flop count of f3 = J†
22f2.

Matrix � JT
22 (JT

22J22)
† C3

Flops 15 8 23

Robot Jacobians82

https://doi.org/10.1017/S0263574700002769 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574700002769

q̇ = �6

i = 1

 i

2
i + �2 vi u

T
i ẋ. (17)

The varying � is intended to render
 i

2
i + �2 = 1

i
when the robot

is outside its singular regions and reduce the approximation
error when the robot is inside singular regions. This
algorithm is computational expensive because of
 2

min.
Several algorithms were proposed [5, 6] to use an estimate

̂ 2

min instead of computing
 2
min. It has been discovered that

the accuracy of
̂ 2
min deteriorates when the two smallest

eigenvalues of J TJ cross over. A better solution is to
estimate the two smallest eigenvalues of J TJ simultane-
ously. That requires more computations.7,8 Since the
accuracy of DLSI depends on the accuracy of
̂ 2

min, (16)
should be the most accurate DLSI algorithm as it uses the
exact value of
 2

min.
Evidently, the proposed method is equivalent to DLSI

when the Jacobian is non-singular. Both produce exact
inverses of ẋ = Jq̇. The two methods take different
approaches in singular regions, and produce different
solutions. The damping of DLSI affects all the singular
values as shown in (17). The proposed method, however,
handles individual singularities separately. In case of the
shoulder singularity, for example, the proposed method only
replaces ��� by � in (14). It does not make any other changes
unless the robot enters the intersection of the shoulder
singular region and other singular regions. Such a treatment
avoids errors in the non-singular directions of the Cartesian
velocity vector. An exact solution is still possible in a
singular region if the Cartesian velocity is orthogonal to the
singular direction.

Both methods are applied to the robot skeleton shown in
Figure 2 with l2 = l̄3 = l3 + l4 = 0.85 meters and l5 = 0.1
meters, which is similar to the kinematic structure of an
ABB IRb 2000. The initial configuration of the skeleton is
plotted in Figure 3, which is the intersection of the shoulder
and wrist singularities.

The inverse kinematics algorithms are supposed to
compute q̇ such that the robot end effector translates along
a linear path with a desired velocity of

ṗT = [0.05, 0.2, 0.2] cos(
	

2
t) = ẋT

p cos(
	

2
t) and � = 0.

Since a robot loses one or more degrees of freedom at its
singularities, its actual movement will inevitably lag behind
the desired trajectory no matter what algorithms are used to
compute q̇, as observed in references [15, 16]. In this study,
both algorithms apply the feedback error correction by
replacing ẋ with ẋd + Ke where ẋd is the desired Cartesian
velocity, K = 20I and e defined in reference 8.

Following the choice of reference 8, � = 0.04 is selected to
prevent numerical overflow. Yet it is still possible that some
of the components of q̇ have excessively large magnitudes,
since the robot joint velocity range is usually much smaller
than the floating point numerical range. For this reason, the
components of q̇ are hard limited according to Table III for
both algorithms. The values of this table are chosen exactly
the same as the joint speed ranges of an ABB IRb 2000.8

There are infinitely many inverse kinematics solutions for
the position and orientation shown in Figure 3. One
alternative solution is shown in Figure 4. The two
configurations share the same wrist center o4. With a proper
q6, the alternative configuration achieves the same end-
effector position and orientation but avoids the wrist

Table III. The joint speed ranges of the robot.

Joint q1 q2 q3 q4 q5 q6

Max speed (rad/s) 2.01 2.01 2.01 4.89 5.24 5.24

Fig. 2. A different view of the robot skeleton.

Fig. 3. Initial configuration.

Robot Jacobians83

https://doi.org/10.1017/S0263574700002769 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574700002769

singularity. A more important difference between these two
configurations is related to the prescribed velocity vector ẋp

For Figure 3, the shoulder singular direction is z1 = [1 0 0]T.
It can be shown that xT

1ẋp = 0.05. The robot is not able to
move in this direction when it is in the shoulder singularity.
A large tracking error is inevitable in such a situation. This
is, however, not the case for Figure 4 where the z1 axis has
been rotated to z1 = [0.2

	0.052 + 0.22 �
0.05

	0.052 + 0.22 0]T. This differ-
ences causes zT

1ẋp = 0. The corresponding shoulder singular
direction is orthogonal to the prescribed velocity vector. If a
robot is at the configuration shown in Figure 4, it has no
difficulty moving in the direction of ẋp.

It is interesting that both methods adjust the joint
positions and velocities in such a way that the robot
manages to avoid the wrist singularity when the end effector
returns to its starting position after one period of the motion.
Although the shoulder singularity can not be avoided, the
robot automatically positions itself to the configuration
shown in Figure 4. As the result, the least-squares inverses
of both methods are able to direct the normal robot motion
along the prescribed path when crossing the shoulder
singularity again.

The simulation results are plotted in Figure 5, which uses
solid lines to plot the results of the proposed method, and
dashed lines to plot the results of DLSI. The tracking error
norms exhibit a large peak at the initial transient period and
then quickly converge to small values. Both methods
demonstrate good tracking performance, with similar joint
velocity profiles as shown in Figure 5.

The proposed method is also tested in a real-time
experiment, using a six-joint Zebra-0 made by Integrated
Motions Inc. (Berkeley, CA, USA). The robot is controlled
by a 33MHz 486, and its control software has a C function
run_user_path() that can test the speed of the proposed
algorithm. When called by a user program, run_user_path()
samples joint angle and end-effector force 140 times per
second. During each sampling interval, it calls a user-
defined function

int next_path_point(vect6 current_angle, vect6 next_
angle, vect6 current_force)

{

next_angle = current_angle + J†(q)(ẋd + Ke)dt;
// user codes here.

}

to provide “current_angle” and “current_force”. The user
must code next_path_point() properly such that it finishes
next_angle = current_angle+J†(q)(ẋd + Ke)dt within 1.5 ms.
If next_path_point() takes more than 1.5 ms to execute, then
run_user_path() will lose synchronization with internal
control functions. It has to abort execution and leave the
robot stopped wherever it is.

Fig. 5. Joint velocities profiles of two methods.

Fig. 4. An alternative configuration.

Robot Jacobians84

https://doi.org/10.1017/S0263574700002769 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574700002769

The proposed algorithm is written as user codes in next_
path_point(), including all necessary computations required
by the inverse kinematics. The Zebra-0 is approximately 1

4

the size of the simulated robot. Therefore the simulated path
must be scaled down by 1

4 to fit the work space of Zebra-0.
It is a constraint of Zebra-0 that each component of next_
angle be within 1 degree of that of current_angle. The
desired speed of the path has to be scaled down to

ṗT = [0.01, 0.05, 0.05] cos(
	

5
t) and � = 0.

The initial configuration of Zebra-0 is chosen to be the same
as that of simulation study – right in the shoulder and wrist
singularities. The experiment runs smoothly with tracking
results similar to that of the simulation. It proves that the
inverse kinematics problem is solvable within 1.5 ms by a
33MHz 486 running debug mode of Microsoft Quick C.
Since the sampling rate of run_user_path() is fixed by the
manufacturer, no attempts are made to increase the
sampling rate and test the maximum speed of the proposed
algorithm.

4 APPLICATION OF THE ALGORITHM
The present algorithm obtains a perfect solution q̇ = J�1(q)ẋ
in the normal region of a robot work space. Let I and O
denote, respectively, an identity and an all-zero matrix.
Then one can write

J†(q) = J�1(q) or � = I�J(q)J†(q) = O (18)

whenever the robot is in its normal region of work space. An
application of the proposed algorithm is to the CLIK
originated by Chiacchio et al.9 A second-order CLIK was
proposed Caccavale et al.10 It can be expressed as

q̈ = J†(q)[ẍd � J̇(q)q̇ + KDė + KPe] (19)

where xd denotes the desired Cartesian trajectory and
e = x�xd the tracking error in Cartesian space. KD and KP

are positive definite gain matrices. Substituting (19) into
robot kinematic equation

ẍ = J(q)q̈ + J̇(q)q̇, (20)

one obtains

ë + KDė + KPe = 0, (21)

whenever the robot is in the normal region of its work space
and (18) becomes valid. It implies an asymptotically stable
control system if the robot stays away from its singular-
ities.

If a robot has to cross one of its singularities, Caccavale
et al. showed that the control loop is still stable10 and the
tracking error is bounded. The error bound was shown
proportional to � = I�J(q)J†(q) and several measures were
proposed to reduce the tracking error. A most effective
measure seems to be an advanced damping scheme similar
to the one given by (16). It requires on-line computation of

2

min and the computation cost will be increased significantly.
According to the results of Section 3, the proposed

algorithm is able to achieve the same objective at a very low
implementation cost. It is therefore an efficient tool for
CLIK. Another potential application of the proposed
algorithm is on-line hybrid force-trajectory tracking, which
is a subject of further study.

5 CONCLUSION
This paper presents a fast inverse kinematics algorithm for
a class of six-joint robots, including PUMA and SCARA.
The algorithm decomposes the Jacobian into a product of
sub-matrix and solves the SVD inverse in the local sense.
The algorithm is extremely fast, with each inverse costing
54 flops for PUMA and 43 for SCARA respectively.
Simulation and experiment are conducted to test the
proposed algorithm with good tracking performance.

References
1. M.V. Kirćanski and M.D. Borc, “Symbolic singular value

decomposition for a PUMA robot and its application to a
robot operation near singularities,” Int. J. Robotics Research
12, No. 5, 460–472 (1993).

2. M.V. Kirćanski, N. Kirćanski, D. Leković and M. Vuko-
bratović, “An experimental study of resolved acceleration
control of robots at singularities: damped least-squares
approach”, ASME J. Dynamic Systems, Measurement and
Control 119, No. 1, 97–101 (1997).

3. C.W. Wampler II, “Manipulator inverse kinematic solutions
based on vector formulations and damped least-squares
methods,” IEEE Trans. Syst., Man, Cybern. SMC-16, 93–101
(1986).

4. Y. Nakamura and H. Hanafusa, “Inverse kinematic solutions
with singularity robustness for robot manipulator control,”
ASME J. Dyn. Syst., Meas., Contr. 109, 163–171 (1986).

5. C.A. Klein and B.E. Blaho, “Dexterity measures for the dsign
and control of kinematically redundant manipulators”, Int. J.
Robot Res. 6, No. 2, 72–83 (1987).

6. I. Spangelo, J.R. Sagli and O. Egeland, “Bounds on the largest
singular value of the manipulator Jacobian,” IEEE Trans.
Robot. Auto. 9, 93–96 (1993).

7. S. Chiaverini, “Estimate of the two smallest singular values of
the Jacobian matrix: Application to damped least-squares
inverse kinematics,” J. Robotic Syst. 10, No. 8, 991–1008
(1993).

8. S. Chiaverini, B. Siciliano and O. Egeland, “Review of the
damped least-squares invrse kinematics with experiments on
an industrial robot manipulator,” IEEE Trans. Control Systems
Technology 2, No. 2, 123–134 (June 1994).

9. P. Chiacchio, S. Chiaverini, L. Sciavicco and B. Siciliano,
“Closed-loop inverse kinematics schemes for constrained
redundant manipulators with task space augmentation and
task priority strategy,” Int. J. Robotics Research 10, 410–425
(1991).

10. F. Caccavale, S. Chiaverini and B. Siciliano, “Second-order
kinematic control of robot manipulators with Jacobian
damped least squares inverse: theory and experiments,” IEE
Trans. Mechatronics 2, No. 3, 188–194 (Sept 1997).

11. M. Spong and M. Vidyasagar, Robot Dynamics and Control
(J. Wiley & Son, New York, 1989).

12. J.M. Hollerbach and G. Sahar, “Wrist-partitioned inverse
kinematic acceleration and manipulator dynamics,” Int. J.
Robotics Research 2, No. 4, 61–76 (1983).

13. R.P. Paul and H. Zhang, “Computational efficient kinematics
for manipulators with spherical wrists based on the homoge-
neous transformation representation,” Int. J. Robotics
Research 5, No. 2, 32–44 (1986).

14. G.H. Golub and C.F. Van Loan, Matrix Computations 2nd Ed.
(Baltimore, MD: Johns Hopkins University Press, 1989).

Robot Jacobians85

https://doi.org/10.1017/S0263574700002769 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574700002769

15. L. Sciavicco and B. Siciliano, “Coordinate transformation: a
solution algorithm for one class of robots,” IEEe Trans. Syst.
Man, Cyber. 16, 550–559 (1986).

16. Y.T. Tsai and D.E. Orin, “A strictly convergent real-time
solution for inverse kinematics of robot manipulators,” J. of
Robotics Syst., 4, 447–501 (1987).

Robot Jacobians86

https://doi.org/10.1017/S0263574700002769 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574700002769

