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Capillary breakup of a liquid torus
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Capillary instability of a Newtonian liquid torus suspended in an immiscible
Newtonian medium is computed using a Cahn–Hilliard diffuse-interface model. The
main differences between the torus and a straight thread are the presence of an axial
curvature and an external flow field caused by the retraction of the torus. We show
that the capillary wave initially grows linearly as on a straight thread. The axial
curvature decreases the growth rate of the capillary waves while the external flow
enhances it. Breakup depends on the competition of two time scales: one for torus
retraction and the other for neck pinch-off. The outcome is determined by the initial
amplitude of the disturbance, the thickness of the torus relative to its circumference,
and the torus-to-medium viscosity ratio. The linearly dominant mode may not persist
till nonlinear growth and breakup. The numerical results are generally consistent with
experimental observations.
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1. Introduction
This study is motivated by the recent experiment of Pairam & Fernández-Nieves

(2009) on the breakup of glycerol tori suspended in silicone oil. They observed that
a torus can either shrink to a single droplet or break down into multiple droplets
depending on the thickness of the torus relative to its circumference. There is a clear
connection to the classical problem of Rayleigh–Tomotika instability of a straight,
infinitely long filament. But here the dynamics involves two additional factors: the
shrinkage of the torus driven by the curvature of the axis that runs along the centre of
the curved filament, and the concomitant flow in the surrounding fluid.

Capillary breakup of liquid filaments is a classical problem in fluid mechanics
(Sirignano & Mehring 2000; Eggers & Villermaux 2008). A long cylindrical liquid
thread becomes linearly unstable to disturbances with a wavelength longer than the
circumference of the thread 2πa, a being the radius of the filament. The most
unstable wavelength is 9.02a for an inviscid filament (Rayleigh 1878), and longer
and dependent on the viscosity ratio for a viscous thread in a viscous surrounding fluid
(Tomotika 1935). The capillary waves grow into the nonlinear regime and ultimately
lead to breakup, and satellite drops may appear depending on the viscosity ratio
(Tjahjadi, Stone & Ottino 1992). Thus, capillary breakup of long straight filaments is
well understood.

† Email address for correspondence: jfeng@math.ubc.ca
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In comparison, we have a rather limited knowledge of the stability of curved
filaments. Experimentally, Pairam & Fernández-Nieves (2009) studied the retraction
and breakup of Newtonian tori in a Newtonian surrounding liquid. McGraw et al.
(2010) and Wu et al. (2010) further considered the breakup of nano-scale polymer and
liquid metal rings on solid substrates. Several theoretical and numerical studies have
appeared in the literature, and most of these have dealt with the more complicated
situation of a liquid ring or torus in contact with a solid substrate. For instance, Wu
(2003) computed the Rayleigh modes on a liquid ring spreading on a solid after
impingement. Bostwick & Steen (2010) considered the static stability of the so-called
torus lift, a liquid ring constrained by a solid ribbon in contact with part of the
liquid surface. Nguyen et al. (2012) carried out molecular-dynamics and long-wave
continuum simulations of the capillary breakup of a nano-scale liquid metal ring
on a solid surface. Gomes (2002) computed the stability of a rotating toroidal gas
bubble constrained between two concentric cylinders. The baseline situation, of a
freely suspended torus in a quiescent medium, seems to have been studied only by Yao
& Bowick (2011); they solved the Stokes flow during the contraction of the torus but
did not investigate its capillary instability.

In this study we simulate the dynamics of a Newtonian torus suspended in a
surrounding Newtonian liquid in three dimensions (3D). The numerical computations
are based on a diffuse-interface formalism, with finite elements on an unstructured
and adaptively generated grid. First we will study the linear growth of a sinusoidal
disturbance on the torus and investigate the effect of the retraction and the axial
curvature on the growth rate. Then we will examine the nonlinear instability and the
final breakup into droplets. Finally the numerical results will be compared with the
experiment.

2. Problem setup and methodology
Consider a Newtonian liquid torus of viscosity µt suspended in an immiscible

Newtonian medium of viscosity µm. Initially the cross-section of the torus is a circle
of radius a0, and the axis through the centre of the cross-section is a circle of radius
R0. Hereafter, we refer to the curvatures due to R−1

0 and a−1
0 as the axial curvature

and azimuthal curvature, respectively. Although non-varicose modes of instability are
possible under external forcing, experiments have shown only varicose necking and
breakup. Thus, we assume symmetry about the mid-plane of the torus, and only need
to consider its top half. Furthermore, we can compute a half or a quarter of the
top half for the growth of odd and even sinusoidal modes (figure 1). A sinusoidal
perturbation of wavelength l0 is imposed on the torus at the start:

(r − R0)
2+z2 = a2

0

[
1+ δ0 cos

(
2πR0

l0
θ

)]2

, (2.1)

where r, z, and θ show the surface of the torus in cylindrical coordinates, k = 2πR0/l0

is the number of waves along the circumference 2πR0, and δ0 is the initial
dimensionless amplitude. In presenting results, k will be called the wavenumber,
though it differs from the usual sense of the word (2πa0/l0). We use the subscript
0 to indicate the initial condition. With contraction of the torus and growth of the
disturbance, a(t), R(t), l(t) and δ(t) all change in time.

The subsequent fluid flow is governed by the Stokes equation; inertia and buoyancy
are negligible in the experiment and will be neglected in the computations. Since
the interface will move, deform and eventually break up, the simulation requires
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(a) (b)

FIGURE 1. (Colour online) (a) A quarter of the top half of a liquid torus for simulating
the capillary growth of an even mode, i.e. with an even number of wavelengths around the
torus. For odd modes, a half of the top half must be used. (b) The interface on the symmetric
mid-plane with and without a sinusoidal disturbance.

an interfacial capturing algorithm. We adopt a diffuse-interface Cahn–Hilliard model,
in which the two fluid components are assumed to mix in a thin but continuous
interfacial region of thickness ε. Thus the interfacial discontinuity is regularized, and
the interfacial evolution, including breakup, can be simulated naturally. The coupled
Stokes and Cahn–Hilliard equations are solved using a finite-element method on an
adaptive unstructured grid. The theoretical model, numerical algorithm and detailed
validations have been described by Zhou et al. (2010). The accuracy and efficiency of
the method have been demonstrated by successful application to an array of interfacial
flow problems (Yue et al. 2006b; Zhou, Yue & Feng 2007; Gao & Feng 2011a,b;
Mehrabian & Feng 2011; Yue & Feng 2011a). Here we only note three salient points
in the methodology (Zhou et al. 2010). First, the interfacial thickness ε has to be
small enough so the numerical results no longer depend on it. This is known as the
sharp interface limit. Second, the thin interface has to be adequately resolved by fine
grids. This requirement is met in our method by local refinement and adaptive refining
and coarsening upstream and downstream of the interface, respectively. Finally, the
Cahn–Hilliard model introduces a diffusion length ld. It is important to computing
moving contact lines (Yue & Feng 2010, 2011b) and morphological changes such
as coalescence and breakup (Yue, Zhou & Feng 2006a). The choice of its value is
discussed below.

For boundary conditions, we assume symmetry on the bottom and planar sidewalls
of the domain of figure 1(a). The top wall is 11a above the top of the torus, on which
we impose zero stresses. The outer cylindrical wall is at least 10a from the torus, and
is solid with vanishing velocity. The outer boundaries are sufficiently removed from
the torus that they do not affect the retraction and capillary instability on it. Toward
the end of the paper, when trying to match the experimental geometry of Pairam &
Fernández-Nieves (2009), we will bring the sidewall closer to the torus.

Two dimensionless numbers quantify the physical problem: the torus-to-medium
viscosity ratio m = µt/µm and the initial aspect ratio of the torus β = R0/a0. The
Cahn–Hilliard model introduces two more parameters: the Cahn number Cn = ε/a0

and a diffusion length scale S = ld/a0. We have used S = 0.02 and Cn = 0.05
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throughout this paper; this ensures the attainment of the sharp interface limit during
torus retraction. The final breakup involves length scales shrinking to zero, and the
finite thickness of the interface and the diffusion within will eventually manifest
themselves. With Cn = 0.05, numerical experiments show that the pinch-off time
increases by less than 5 % when S decreases from 0.02 to 0.004. In presenting results,
we use a0 as the characteristic length and the capillary time tc = a0µt/σ as the
characteristic time, σ being the interfacial tension. The wavelength l, however, will
be scaled by the instantaneous circumference of the cross-section of the torus 2πa to
facilitate comparison with the straight-filament results. Note that tc characterizes the
capillary waves on the torus. The retraction of the torus in the presence of a viscous
external fluid is on the time scale (R0 − a0)µm/σ = tc(β − 1)/m.

3. Results: linear growth of capillary waves
Compared with the Rayleigh–Tomotika instability on a straight filament, several

complications arise on the torus. First, due to the finite circumference of the torus,
only a number of discrete wavelengths are possible for a given aspect ratio β. Second,
the torus has an axial curvature (R−1) which may affect the growth of the capillary
wave. Finally, the contracting torus induces a flow in the surrounding fluid which may
modify the capillary instability as well (Tomotika 1936; Mikami, Cox & Mason 1975).
Under the constraint of quantized wavelengths, the last two effects will be explored
separately.

3.1. Quasi-static retraction: effect of axial curvature
By choosing a large initial aspect ratio β and a small viscosity ratio m, we can
separate the time scales for the growth of the capillary wave and the retraction
of the torus. In physical terms, this corresponds to a thin torus retracting slowly
in a highly viscous bath. The speed of retraction dR/dt decreases in time. As an
indication of its magnitude, dR/dt = −0.0036 at R = 4 for m = 0.033. For larger m,
the retraction speed increases in proportion as expected. Such a quasi-static process
is convenient in that we can probe the effect of the axial curvature on the linear
instability of the torus while excluding the dynamic effect of the retraction-induced
external flow. Furthermore, if we use a small enough initial perturbation and carry
out the simulations on the time scale of torus retraction tc(β − 1)/m, we can record
the linear growth rate at different axial curvatures and wavelengths. Thus a dispersion
relation can in principle be generated in one simulation.

For one such torus with initial aspect ratio β = 5.3 and viscosity ratio m = 0.033,
we impose two wave forms on it (k = 2). Different initial amplitudes (δ0 = 0.005
and 0.01) are tested, and ln(δ/δ0) initially grows linearly in time with a slope α

that is independent of δ0. This confirms that we are in the linear regime, with α

being the growth rate. Over longer times (on the order of tc(β − 1)/m ∼ 100tc), the
growth rate remains independent of δ0 but starts to change in time. This is an effect
of the torus retraction even though the instability is still in the linear regime. Since
the wavenumber k = 2 is fixed, the wavelength shrinks with the retraction, not only
in dimensional terms, but also relative to the thickening filament radius a. Thus,
recording the growth rate as a function of the changing wavelength produces the
dispersion relation in figure 2(a). The growth rate on the torus is some 15 % below
that on the straight filament, although the difference is expected to diminish for larger
β. For β ≈ 10, the difference narrows down to within 5 %. In the limit of R0 � a0,
of course, one recovers the growth rate on a straight circular cylinder. Therefore,
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FIGURE 2. (a) Dispersion relation on a shrinking torus compared to that for a straight
filament. The latter is computed by our diffuse-interface method and agrees with the Tomotika
formula within 4 %. The wavelength l and the growth rate α are made dimensionless by the
instantaneous 2πa and tc, respectively. (b) The linear growth rate decreases with the axial
curvature for a prescribed dimensionless wavelength l0 = 2. The point at 1/β = 0 corresponds
to a straight filament.

the axial curvature on the torus tends to hinder the growth of the capillary waves.
Note also that both the minimum wavelength for instability and the fastest growing
wavelength have shifted slightly to longer waves from those for the straight filament.

The simulation above is not ideal in quantifying the effect of the axial curvature R−1

on the growth rate α since the former cannot be prescribed but continues to increase
in time. For this purpose, we have conducted a series of simulations with tori of the
same initial a0, but different initial aspect ratio β in proportion to the wavenumber
k. Thus, these capillary waves have the same initial wavelength (in dimensionless
form l0 = (2πR0/k)/(2πa0) = β/k = 2), and differ only in the axial curvature R−1

0 .
Figure 2(b) plots the initial linear growth rate α as a function of 1/β = a0R−1

0 , the
non-dimensionalized axial curvature. It shows unequivocally that the instantaneous
growth rate decreases with the axial curvature.

3.2. Faster retraction: effect of external flow
To examine the effect of the external flow field on capillary instability of the torus,
we have gradually decreased the viscosity of the suspending fluid to produce faster
retraction of the torus. Even on a straight filament, in the absence of the flow effect
being examined, the ambient viscosity would have affected the growth rate. To remove
this effect and isolate that of the retraction-induced external flow, we compute the ratio
αr between the growth rate on a retracting torus and that on a straight filament, the
latter being calculated from the Tomotika formula using the same viscosities and the
instantaneous filament diameter and wavelength of the torus. This ratio, as a function
of m, demonstrates how the flow affects the growth of the instability. Note that the
torus viscosity µt remains unchanged in this process; it gives a fixed time scale tc

against which the growth rate is measured. The faster retraction is then indicated by an
increasing viscosity ratio m.

Figure 3(a) plots the ratio of growth rates αr against the viscosity ratio m for a
dimensionless wavelength l = 2. With increasing m and hence increasing retraction
speed, the growth rate ratio increases. This implies that the external flow induced
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FIGURE 3. (a) Ratio between growth rate on a torus and that on a straight filament as a
function of the viscosity ratio for a capillary wave of dimensionless wavelength l = 2. (b)
Ratio of growth rates on a straight filament under uniform extensional flow, calculated from
the theoretical result of Mikami et al. (1975).

by the torus retraction has the effect of enhancing the growth of instability. That αr

is below unity reflects the quasi-static effect of the axial curvature discussed in the
preceding subsection.

It is interesting to compare this flow effect with that on a straight filament. Mikami
et al. (1975) computed the effect of a uniform extensional flow on the capillary
instability on a straight filament. The growth rate is written as the sum of two terms
(see their equation (59)). The first, due to the thinning of the filament and advective
lengthening of the wavelength, had previously been computed by Tomotika (1936).
This effect is quasi-static in nature, and its counterpart on the torus has been included
in the analysis of the last subsection. The second term, proportional to the strain rate
G, explicitly accounts for the flow effect. From our torus retraction simulation, we
extract a negative G from the rate of filament thickening, and then compute the two
terms for the same wavelength l = 2. We take the ratio between the total growth rate
and the first term, and plot it as a ratio of growth rates αM in figure 3(b). This is not
the same ratio as that in figure 3(a) since there is no axial curvature. Nevertheless,
the qualitative trend is clear and confirms our observations on the retracting torus: the
compression of a straight filament enhances the growth of capillary instability.

4. Results: nonlinear growth and breakup
The nonlinear instability and breakup of the torus must take place before the torus

contracts onto itself. In this process, the quantized wavelength available and the initial
amplitude of the perturbation are both important factors. Besides, the initial aspect
ratio of the torus and the viscosity ratio are key parameters.

4.1. Fastest mode
On a retracting torus, with the wavelength and filament thickness changing continually,
the initially dominant mode does not necessarily persist till breakup. In fact, the torus
retraction should favour initially longer waves and this is illustrated in figure 4, with
β = 6.7, m = 0.033 and δ0 = 0.02. Based on the dispersion relation for the torus, the
linearly dominant wavelength is l = 2.03 and corresponds to a wavenumber k = 3.3.
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FIGURE 4. Nonlinear evolution of three modes of instability, with wavenumber k = 2, 3 and
4, for β = 6.7, m = 0.033 and initial amplitude δ0 = 0.02; δ is the instantaneous amplitude
of the capillary waves. The curves for k = 2 and k = 3 end in breakup, with the onset of
secondary necking also marked on the latter. The k = 4 mode ends in complete retraction.
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FIGURE 5. (Colour online) Snapshots of the evolving interface on the mid-plane of the torus
for β = 6.7, m= 0.033 and δ0 = 0.02. The interface is given by the level set of φ = 0.

Thus, k = 3 or k = 4 should initially produce the fastest growth. Indeed, the two
modes grow at comparable rates at the beginning. But as the torus shrinks, the k = 3
mode maintains a high growth rate while the growth rate for k = 4 declines, leading
eventually to retraction, not breakup. This can be rationalized by noting that for a
retracting torus with a fixed wavenumber k, the wavelength gets shorter in time, in
dimensional terms and especially relative to the growing thickness a. Thus the initially
longer wave (k = 3) is favoured over the shorter one (k = 4). The k = 2 mode grows
more slowly but does lead to breakup.
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FIGURE 6. (a) The pinch-off time decreases with increasing initial amplitude of disturbance.
β = 5.3, m = 0.033, k = 2. The solid curve is the best fitting by (4.1). (b) The critical initial
amplitude δc decreases with the initial aspect ratio β. The solid curve is the best fitting by
(4.2).

The breakup of the torus into droplets is depicted by snapshots in figure 5 for
k = 3, starting from an initial perturbation of amplitude δ0 = 0.02. Primary necking
proceeds at three points around the circumference of the torus until t = 678, when two
secondary necks emerge around each primary neck. At t = 748 the torus breaks down
into three primary drops and three satellite droplets. In time these all relax toward a
spherical shape.

4.2. Pinch-off time versus retraction time
From the preceding discussion, it is clear that the breakup of the torus depends
on the competition of two time scales: tp needed for the neck to pinch off, and ts

needed for the torus to shrink onto itself. This competition can be affected by multiple
factors. For example, the k = 4 mode of figure 4 can survive till breakup if the initial
perturbation has a sufficiently large amplitude; δ0 defines tp. Besides, the breakup
depends on the initial aspect ratio β and the viscosity ratio m, each having a role in ts.
These three factors will be examined in turn.

Figure 6(a) demonstrates the dependence of the pinch-off time tp on the initial
amplitude δ0 for β = 5.3, m = 0.033 and k = 2, which is the initially dominant mode.
If δ0 is below a critical value δc ≈ 0.02, no breakup occurs. For δ0 > δc, the torus
breaks up into two principal drops and two satellite droplets, and tp decreases with
increasing δ0 as expected. Besides, the faster the breakup, the larger the satellite
droplets. The critical amplitude δc decreases with increasing initial aspect ratio β, as
shown in figure 6(b). The thinner, longer torus offers a longer ts within which breakup
can take place. In the β range shown, k = 2 persists till breakup for all δ0 > δc; no
other modes emerge from noise to overtake the imposed k = 2 mode.

The viscosity ratio m = µt/µm is another parameter that modulates the competition
between pinch-off and retraction. Our results show that the torus retraction is more
influenced by the matrix viscosity µm while the necking and pinch-off more by the
torus viscosity µt. As m increases from 0.033 to 0.05 and 0.1, the critical amplitude
δc increases from 0.02 to 0.03 and 0.07. For m = 0.5 even δ0 = 0.18 is unable to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

57
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.572


Capillary breakup of a liquid torus 289

Breakup

0

0.2

0.4

0.6

0.8

1.0

200 400 600 800 1000
t

FIGURE 7. Effect of the viscosity ratio on the growth of disturbance. β = 5.3, δ0 = 0.02
and k = 2.

break down the relatively viscous torus before it contracts into a single drop, often
entrapping a droplet of the ambient fluid in the centre (Yue et al. 2006b).

Figure 7 illustrates the effect of m on the growth of an initial disturbance with k = 2,
which is the initially dominant mode for all the m values considered here. Since time
is scaled by tc = a0µt/σ , using the torus viscosity, increasing m can be conveniently
thought of as due to a decreasing µm. As µm decreases, the initial growth rate of the
capillary wave increases. However, the retraction of the torus becomes faster as well.
Numerical experiments show that the latter has the upper hand. Thus, for lower µm,
δ reaches a maximum quickly and then declines, due to the thickening of the torus
and the effective shortening of the wavelength. It is for the largest matrix viscosity, at
m = 0.033, that the slow retraction offers the capillary disturbance sufficient time to
grow till breakup, despite the slower linear growth rate.

The competition between time scales can be represented by scaling arguments. As
noted earlier, the shrinkage time ts ∼ tc(β − 1)/m. The pinch-off time can be taken
as that required for the disturbance to grow from the non-dimensionalized initial
amplitude δ0 to 1: tp = − ln δ0/αm, where the fastest growth rate αm can be estimated
from the Tomotika solution: αm ∼√m/tc (Cohen et al. 1999). Therefore, we can write

tp = tc
c1√
m

ln
(

1
δ0

)
, (4.1)

and c1 = 40.6 gives a reasonably good fitting to the numerical data in figure 6(a).
Furthermore, equating this tp with the shrinkage time ts gives us the critical initial
amplitude for breakup:

δc = exp
(
−c2

β − 1√
m

)
, (4.2)

which fits the data in figure 6(b) well with c2 = 0.16. Given that much of the necking
and pinch-off is nonlinear, these linearly based scaling relationships work remarkably
well.
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FIGURE 8. (a) Determining the initial amplitude of perturbation δ0 from the variation of the
thickest radius at versus the thinnest radius an on the torus. Both radii are normalized by the
initial value a0. (b) Determining the interfacial tension σ from the temporal variation of an.
β = 5.3, k = 2 and m= 0.033.

5. Comparison with experiment
As far as we know, the only prior experiment on the breakup of a freely suspended

torus is that of Pairam & Fernández-Nieves (2009). With Newtonian glycerol tori
in a Newtonian oil bath, these authors reported that thick tori shrink to one droplet
while thin ones break down into a number of droplets through Rayleigh–Tomotika
instability. We match the liquid viscosities and flow geometry in the experiment, where
the torus is confined in a cylindrical drum, with the top and sidewalls being some 6a
away from the outer edge of the torus. Our numerical experimentation shows that this
confinement is essential for slowing down the torus retraction and allowing breakup.
Still two uncertainties complicate a direct comparison. The first is the initial amplitude
of perturbation δ0. In the experiment, the torus is generated by releasing a glycerine
jet into silicone oil while the drum rotates. There is a complex flow history, and it
is not obvious how to gauge the magnitude of the initial perturbation. The second is
the interfacial tension σ in the experiment. It was not reported and cannot be made
available to us. We determine δ0 and σ first by fitting the experimental data.

First note that the capillary time tc is the only time scale of the problem, and the
only role of σ is to lengthen or compress tc. Thus, in figure 8(a) we plot the radius at

of the thickest part of the torus against the thinnest radius an at the neck. Such a curve
should be independent of tc. Among numerical results starting from different δ0 values,
δ0 = 0.01 agrees very closely with the experiment. So we take δ0 = 0.01 to be the
initial amplitude for this case. Now plotting the temporal variation of the neck radius
in figure 8(b) gives us a fitting of σ = 31.8 mN m−1, close to handbook values (Pizzi
& Mittal 2003).

With the δ0 and σ values determined, we compare the number of primary drops
N between the simulation and the experiment for a range of torus aspect ratio β

(figure 9). All the simulations have started with the fastest linear mode for the β

value. The results agree with the experiment except for β = 4, where the simulation
predicts complete retraction, while the experiment reported N = 1, breakup at a single
primary neck for the k = 1 mode. We cannot explain this at present; possibly this
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FIGURE 9. Comparison between the predicted and observed number of primary drops after
breakup, for tori with five initial aspect ratios β; m = 0.033 and δ0 = 0.01. N = 0 and 1 refer
to, respectively, complete retraction with no breakup and breakup at a single primary neck.

experiment had a different δ0 from that fitted in figure 8(a) for β = 5.3. Numerical
experimentation indicates that δ0 = 0.02 would lead to breakup at a single neck. In all
the cases leading to breakup, N corresponds to the fastest linear mode. Even though
the wavelength and filament thickness both change during the retraction, we have
never seen the linearly dominant mode yielding to a nascent mode in the nonlinear
stage. This reflects the fact that there is a limited time window for growth and it is too
short for another mode to emerge spontaneously from random noise.
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