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Beyond Beatty sequences: Complementary
lattices

Sam Vandervelde

Abstract. By taking square lattices as a two-dimensional analogue to Beatty sequences, we are

motivated to define and explore the notion of complementary lattices. In particular, we present a

continuous one-parameter family of complementary lattices.�ismain result then yields several novel

examples of complementary sequences, along with a geometric proof of the fundamental property of

Beatty sequences.

1 Introduction

Nearly a century ago, Sam Beatty [1] asked readers to show, given irrational numbers
α, β > 1 satisfying 1

α
+ 1

β
= 1, that the sequences ⌊α⌋, ⌊2α⌋, ⌊3α⌋, . . . and ⌊β⌋, ⌊2β⌋,

⌊3β⌋, . . . are complementary, meaning that together these sequences contain every
positive integer exactly once. (Recall that for x ∈ R, the floor function ⌊x⌋ is equal
to the unique integer n for which n ≤ x < n + 1.) Extensions to and generalizations
of this fundamental property of Beatty sequences abound; the definitive bibliography
on complementary sequences, for its time, is contained in [9]. A more recent work,
referencing connections with Wythoff ’s game, is found in [4].

In this paper, we find that taking square lattices as two-dimensional analogues
of Beatty sequences leads in fruitful directions. (Note that our approach is distinct
from that taken in [5].) Section 2 anticipates our main result by highlighting three
curiosities: two families of complementary sequences that we believe to be new, along
with an unusual type of inequality. We next extend the notion of “complementary” to
the setting of square lattices in the plane, enabling us to state and prove�eorem 3.1,
modulo a geometric lemma that is postponed until Section 6. �e gist of this main
result is that, given an irrational number θ > 1, the square lattice defined by the point
(θ , 1) is complementary to its counterpart defined by (1, 1

θ
), meaning that together

these lattices cover each unit square precisely once. Section 4 demonstrates that the
curiosities are all immediate corollaries of ourmain theorem, which is then employed
oncemore in the next section to reveal Beatty’s original result camouflaged within the
diagram of complementary lattices.
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500 S. Vandervelde

2 A Trio of Curiosities

We begin by presenting several pleasant, if not intriguing, observations.�e first two,
at least, appear to be loosely related, and one could believe that the style of argument
for all threemight have a similar algebraic flavor.Whatmay not be as readily apparent
is the fact that all three results (presented in a later section as Propositions 4.1, 4.2,
and 4.3) follow more or less directly from a single underlying diagram involving a
pair of complementary square lattices.

Curiosity 1 For a positive irrational number θ > 1, consider the sequences
an = n + ⌊⌊nθ⌋θ⌋ , bn = n + ⌊⌊n 1

θ
+ 1⌋ 1

θ
⌋ , n ∈ N.

�ese formulas are reminiscent of those given by the Lambek–Moser�eorem [7], which
provides a universal method for generating pairs of complementary sequences, that is,
disjoint sequences whose union is precisely the set of all natural numbers. Selecting θ = π

2
to confirm, we find to our satisfaction that

{an} = {2, 6, 9, 13, 15, 20, 22, 26, 30, 33, 37, 40, 44, 46, 51, . . . },
{bn} = {1, 3, 4, 5, 7, 8, 10, 11, 12, 14, 16, 17, 18, 19, 21, 23, . . . }

do indeed appear to be complementary sequences.1 �e nested floor functions result in
less regularity than in their more well-known relatives, the Beatty sequences [1], which
can be written in the form an = ⌊n(1 + θ)⌋ and bn = ⌊n(1 + 1

θ
)⌋. �e gaps between

consecutive terms in the first sequence are either 2, 3, 4, or 5, whereas a Beatty sequence
only ever features two gap sizes. In general, one can show that the first sequence can
have up to four distinct gap sizes, with the maximum of four only attained when θ > 1.5.
We also note that the case θ = 1

2
(1 +√5) plays a prominent role in the Lucas partitions

discussed in [3].

Curiosity 2 As before, let θ > 1 be a fixed positive irrational number, but this time
consider positive integer solutions to

⌊a + bθ⌋ = ⌊aθ − b⌋, a, b ∈ N.
Let S1 be the set of all values of ⌊a + bθ⌋ (or equivalently, values of ⌊aθ − b⌋) that occur
for solution pairs (a, b). Next, create set S2 in the same manner, using common values
arising from positive integer solutions to

⌊a 1
θ
+ b⌋ = ⌊a − b 1

θ
⌋ , a, b ∈ N.

Observe that the second equation is obtained from the first by dividing the expressions
inside the floor functions by θ. While one might predict that many of the same solution
pairs will surface (which they do), the effect on sets S1 and S2 is dramatic, as the value
θ = √e demonstrates:

1In the language of Lambek–Moser, thismeans f ∗(n) = ⌊⌊n 1
θ
+ 1⌋ 1

θ
⌋ is the inverse function to f (n) =

⌊⌊nθ⌋θ⌋, although it is not obvious from the formulas why this should be so.
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S1 = {1, 5, 11, 12, 15, 16, 22, 29, 33, 39, 40, 46, 50, 57, 63, 64, . . . },
S2 = {2, 3, 4, 6, 7, 8, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 25, . . . }.

Once again, the sets are perfectly complementary, but this time the terms within the sets
appear to be even more erratic than before.

Curiosity 3 Lastly, we turn our attention to a certain collection of four closed intervals.
Let a, b, c, d, m, and n be positive integers with m < c − 1, n > a, and n > d (so that all
expressions below are positive), and define

I1 = [m + b
a

,
m + b + 1

a
], I2 = [n − a

b
,
n − a + 1

b
],

I3 = [ d

c −m
,

d

c −m − 1
], I4 = [ c

n − d + 1
,

c

n − d
].

We claim that the intersection of such a collection of intervals will either be the empty set
or, at most, a single point. For instance, taking a = 6, b = 5, c = 11, d = 10, m = 5, n = 15
yields the intervals

I1 = [ 106 , 116 ] , I2 = [ 95 , 105 ] , I3 = [ 106 , 105 ] , I4 = [ 116 , 115 ] ,
whose intersection is the single point { 11

6
}. (Such examples require some care to construct;

typically, the intersection of all four intervals is empty.) �is property does not seem
particularly noteworthy until it is revealed that the lack of overlap evaporates once we
permit real numbers as opposed to integers. In fact, non-empty intersection appears to
be the rule rather than the exception when we use small real numbers. Counterexamples
persist even for larger real values; for instance, taking a = 4.9, b = 4.2, c = 8.6, d =
7.3, m = 4.1, and n = 11.7 results in an intersection of I1 ∩ I2 ∩ I3 ∩ I4 = [1.694, 1.857],
rounded to four significant digits. �e reader is invited to supply an algebraic proof of
the above claim; the author found this task to be unexpectedly slippery.

3 Unit Square Coverage by Lattices

Recall that the integer lattice in R
2 consists of all points both of whose coordinates

are integers. More generally, given a point (x , y) in the Cartesian plane, we say that
the square lattice based at (x , y) is the set of points

Lx ,y = { (ax − by, ay + bx) ∣ a, b ∈ Z}.
Geometrically, it is the image of the integer lattice under a rotation and dilation
centered at the origin, mapping (1, 0) to (x , y).

�e integer lattice demarcates the unit squares, which for our purposes, will refer
only to squares of side length 1 whose vertices have integer coordinates. Given a
particular unit square and a set S of points in the plane, the coverage of that unit
square by S is computed by adding 1 for each point of S in its interior, adding 1

2
for

each point along one of its edges, and adding 1
4
for each point at a vertex. In this

manner, each point of S contributes a total of 1 towards the coverage of the various
unit squares, in a balanced fashion.
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502 S. Vandervelde

Figure 1: �e pair of lattices L1,2/3 and L3/2,1 cover the unit squares.

Figure 1 illustrates two square lattices: the first is based at (1, 2
3
), denote d L1,2/3

and marked by solid dots; the other is L3/2,1, based at ( 3
2
, 1) and marked by small

circles. �e three shaded squares each have a total coverage of 1; from top-le� to
bottom-right this is because of one interior point, one edge point plus two vertex
points, and two edge points, respectively. In fact, every unit square in the plane has
a coverage of 1 by this pair of lattices—when this occurs, we say that the square
lattices are complementary. Our main result states that there is a continuous family
of complementary lattices of this sort.

�eorem3.1 Let θ > 1 be a positive irrational number.�en the latticesLθ ,1 andL1,1/θ

are complementary.

�is theorem provides a natural generalization of Beatty sequences to a planar
setting, where we interpret complementary Beatty sequences as one-dimensional
lattices (the integer multiples of α and β), in which every unit interval [n, n + 1] for
n ∈ N has a coverage of 1. As we shall see in �eorem 5.1, the Beatty sequences for
α = 1 + θ and β = 1 + 1

θ
reside in a neatmannerwithin the diagramcontaining our pair

of square lattices, and spotting them in this context motivates a pleasing geometric
proof of their complementary nature.

Proof Due to four-fold rotational symmetry, we need only show that unit squares
in the first quadrant have total coverage of 1 by our square lattices. Because the line
x = θy, displayed as a dashed line in Figure 2, plays an important role in the proof by
containing the centers of the various rotations we will need, we refer to it as the pivotal
line. �e integer multiples of the lattice base points, namely, (mθ ,m) and (m, m

θ
)

for m ∈ Z, all lie on the pivotal line. �ese points are indicated by small circles and
solid dots, respectively, and are situated where the pivotal line crosses horizontal and
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A

B

Figure 2: �e pivotal line passing through unit squares for θ ≈ 2.6.
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Figure 3: Rotations of a unit square about lattice points on the pivotal line.

vertical grid lines. Because θ is irrational, none of them coincides with an integer
lattice point, nor with one another, except at the origin.

�ere are three types of unit squares in the first quadrant to consider. �e first is
the single unit square labeled A in Figure 2. It has coverage 1, since the points in our
lattices land on a vertex (the origin) twice, and along an edge once. Next we consider
the remaining unit squares crossed by the pivotal line, such as the square labeled B.
�is also has coverage 1, due to the two lattice points situated where the pivotal line
intersects the boundary.Observe that the solid dots are on vertical sides, so the nearest
other solid dots, which are 1 unit above or below, are too far away to contribute to
coverage. Similarly, the nearest other small circles are θ > 1 units away vertically, so
also cannot land within this unit square.

It remains to analyze the unit squares disjoint from the pivotal line, such as the
one labeled C in Figure 3. Since lattice points off the pivotal line have irrational
coordinates, they must land in the interior of (as opposed to on the edge of) some
unit square. We wish to show that C contains precisely one point in its interior from
among the points in the two square lattices combined.

We adopt a geometric approach. Recall that each square lattice is obtained by
rotating and dilating the integer lattice so that the image of the x-axis is the pivotal
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C

Figure 4: �e pivotal line intersects the set of enclosed segments exactly once.

line. It follows that given a point P in the lattice marked by small circles, the foot
of the perpendicular from P to the pivotal line is itself a lattice point R, as depicted
in Figure 3. Hence, P is located within the unit square C if and only if the image
C′ of that unit square under a 90○ clockwise rotation about R encloses one of the
small circles along the pivotal line, such as P′. Since these occur where the pivotal line
cross horizontal grid lines, it is equivalent to check whether the horizontal segment
enclosed by C′, highlighted in bold in Figure 3, intersects the pivotal line.

In the samemanner, a pointQ in the other lattice is exterior to unit squareC if and
only if the image square C′ under a 90○ rotation about S fails to enclose lattice point
Q′ where the pivotal line meets the corresponding vertical grid line. �is is apparent
on the right in Figure 3; the vertical segment enclosed by C′ (highlighted again in
bold) is situated entirely below the pivotal line. Since C′ does not enclose a solid dot
on the pivotal line, neither does C contain point Q.

�ese observations prompt the following strategy. Suppose we are given a unit
square C in the first quadrant that does not intersect the pivotal line. For each lattice
point R on the pivotal line of the form (mθ ,m) with m ∈ N, find the image of C
under a 90○ clockwise rotation about R and note the horizontal segment enclosed
by the image, marked in boldface in Figure 4. Do the same for each lattice point S
of the form (m, m

θ
), except instead note the vertical segment enclosed by the image.

According to the above discussion, the total number of lattice points of either type
within C is equal to the number of times the pivotal line intersects this collection of
horizontal and vertical segments.

As Lemma 6.1 will show, the pivotal line intersects this collection of segments
exactly once, but the reason is already visually apparent in Figure 4. �e dotted
segments connecting the endpoints of the boldface segments turn out to be parallel
to the pivotal line, so the boldface segments effectively present a wall with no gaps or
overlap in the direction of the pivotal line. Moreover, the pivotal line cannot coincide
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Figure 5: Subsets of unit squares producing complementary sequences.

with any dotted segment, for this would imply that some lattice point was situated
along an edge of C. �erefore, the pivotal line must cross the collection of segments
in a single location, which completes the proof. ∎

�e theorem actually holds for every nonzero irrational number θ, because the
pairs of square lattices in these cases either match those for θ > 1 (when −1 < θ < 0)
or can be obtained from them via a reflection over the line y = x (when θ < −1 or
0 < θ < 1). �erefore, we only needed to treat the case θ > 1.

�e sequence of points in the first quadrant where the pivotal line intersects
horizontal and vertical grid lines will continue to play a significant role later in the
proofs of �eorem 5.1 and Lemma 6.1. Consequently, the complementary lattices
presented here are closely tied to cutting sequences and Sturmian words, introduced
in [8] and surveyed more recently in [2].

4 The Curiosities Explained

By selecting strategic subsets of unit squares, one can obtain a variety of results
involving complementary sequences. For example, considering the column of unit
squares shaded in Figure 5 leads to Curiosity 1 presented earlier.

�eorem 4.1 Let θ > 1 be irrational and define
an = n + ⌊⌊nθ⌋θ⌋ , bn = n + ⌊⌊n 1

θ
+ 1⌋ 1

θ
⌋ , n ∈ N.

�en the sequences {an} and {bn} are complementary.
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Proof We identify all points in the latticesLθ ,1 andL1,1/θ falling within the shaded
region in Figure 5, defined by 0 ≤ x ≤ 1 and y ≥ 1. Recall that a point P in the first
lattice has the form (mθ − n,m + nθ). Clearly, we must have m, n ≥ 1 in order for P
to be within our region. �e x-coordinate then gives 0 ≤ mθ − n ≤ 1, or equivalently,
n = ⌊mθ⌋, sincem and n are positive.�e particular unit square containing P will rest
on the horizontal grid line

y = ⌊m + nθ⌋ = m + ⌊nθ⌋ = m + ⌊⌊mθ⌋θ⌋, m ∈ N.
�e same reasoning shows that point Q in the second lattice at (m − n 1

θ
,m 1

θ
+ n)

falls within our region whenever 0 ≤ m − n 1
θ
≤ 1, or m − 1 ≤ n 1

θ
≤ m, yielding m =

⌊n 1
θ
⌋+ 1. �is time the unit square containing Q is at height

y = ⌊m 1
θ
+ n⌋ = n + ⌊m 1

θ
⌋ = n + ⌊⌊n 1

θ
+ 1⌋ 1

θ
⌋ , n ∈ N.

According to �eorem 3.1, we know that each unit square in the shaded region
contains exactly one lattice point. It follows that the two sequences, which are the
y-values indexing these unit squares, must be complementary. ∎

One can create variations on this theme by translating the shaded region or
allowing it to extend downwards as well as upwards. However, anomalies arise due
to the existence of lattice points on the edges of unit squares where the lines x = θy
and y = −θx cross our region. For instance, when θ = 3

√
6, the sequences

an = n + ⌊(⌊nθ⌋ − 7)θ⌋ , bn = n + ⌊(⌊n 1
θ
⌋ + 8) 1

θ
⌋ , n ∈ Z

nearly partition the integers, except 4 and −13 each appear in both sequences, while 3
and −15 do not appear in either of them.

By considering a subset of unit squares arranged along a diagonal, we arrive at a
different type of result.

�eorem 4.2 Given θ > 1 irrational, define set S1 to consist of all positive integers n for
which there exist a, b ∈ N with ⌊a + bθ⌋ = ⌊aθ − b⌋ = n. Similarly, define S2 to contain
those positive integers n for which there exist a, b ∈ N satisfying ⌊a 1

θ
+ b⌋ = ⌊a − b 1

θ
⌋ =

n. �en S1 and S2 are complementary sequences.

Proof Given a positive integer n, consider how the unit square whose lower le�
vertex is at (n, n) is covered by the lattices Lθ ,1 and L1,1/θ . If a single point from the
first lattice lands in its interior, then by construction and�eorem 3.1, nwill appear in
S1 but not S2, and vice-versa. �e only other possibility is that the pivotal line passes
through this unit square, intersecting the lower and right edges, as pictured on the
right in Figure 5. Due to the definition of the floor function, only the lattice point on
the lower edge will satisfy the equations, causing this value of n to appear in set S1
only. ∎

As before, variations are possible. For instance, it is not hard to show that if S1
contains all n ∈ Z for which there exist a, b ∈ Z satisfying

⌊a + bθ⌋ = ⌊aθ − b⌋ + 7 = n,
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and similarly S2 consists of all n ∈ Z for which there exist a, b ∈ Z with

⌊a 1
θ
+ b⌋ = ⌊a − b 1

θ
⌋ + 7 = n,

then, once again, S1 and S2 exactly partition Z.

�eorem 4.3 Let a, b, c, d, m, n be positive integers with m < c − 1, n > a, n > d, and
define the closed intervals

I1 = [m + b
a

,
m + b + 1

a
], I2 = [n − a

b
,
n − a + 1

b
],

I3 = [ d

c −m
,

d

c −m − 1
], I4 = [ c

n − d + 1
,

c

n − d
].

�en their intersection will either be the empty set or consist of a single point.

Proof Suppose to the contrary that their intersection were an interval of positive
length, and choose an irrational number θ within that interval. �en θ ∈ I1 is equiv-
alent to m < aθ − b < m + 1, while θ ∈ I2 translates to n < a + bθ < n + 1. In other
words, θ ∈ I1 ∩ I2 means that a point ofLθ ,1 is in the interior of the unit square whose
lower le� vertex is (m, n). In the samemanner, θ ∈ I3 ∩ I4 implies that a point ofL1,1/θ

sits inside the same unit square, which produces a contradiction, by �eorem 3.1. ∎

An instance in which the intersection of the four intervals is a single point corre-
sponds to a unit square in the first quadrant above the pivotal line that nonetheless has
coverage of 1 by complementary lattices due to two edge points, one from each lattice.
�is situation never occurs for irrational values of θ, but does happen in a periodic
fashion throughout the plane when θ is rational.

5 Beatty Sequences and Further Questions

�e author was first entranced by Beatty sequences as a student upon reading
Honsberger’s presentation in [6]. Given that square lattices serve as a suitable two-
dimensional analogue of Beatty sequences, it seems fitting that a pair of Beatty
sequences appears neatly tucked away within the diagram; not on the pivotal line, but
along a secondary linemaking an angle of 45○ with the pivotal line.�ismanifestation
provides a less common, self-contained (in that it does not rely on �eorem 3.1)
approach to understanding the Beatty sequence property.

�eorem 5.1 (Beatty Sequences) Given an irrational number θ > 1, plot the positive
integer multiples of 1 + θ and 1 + 1

θ
. �en each unit interval of the form (k, k + 1) for

k ∈ N contains precisely one of these multiples.

Proof As shown in Figure 6, mark the points where the line x = θy intersects the
horizontal and vertical grid lines in the first quadrant—these are the lattice points
along the pivotal line. Next, rotate the origin by 90○ clockwise about each such lattice
point to obtain other lattice points along a secondary line, which is angled at 45○ with
respect to the pivotal line. Rotating the origin by 90○ clockwise about a point (x , y)
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P’4

P
4

Figure 6: A Beatty sequence appearing within a diagram showing complementary lattices.

gives the point (x − y, x + y), as illustrated by the arrows in Figure 6, which form the
sides of a pair of congruent right triangles. Hence, the y-coordinates of these lattice
points along the secondary line are n + nθ and n + n 1

θ
, for n ∈ N, precisely the positive

integermultiples of 1 + θ and 1 + 1
θ
.Wewish to show that each horizontal strip k < y <

k + 1 for k ∈ N contains one such lattice point.
�is is nearly self-evident from the diagram. �e k-th point Pk(xk , yk) along the

pivotal line marks the k-th instance where this line meets a horizontal or vertical
grid line. �erefore, to reach it by moving along gridlines (the taxicab distance), we
must travel k “blocks,” plus a fraction of a block. In other words, k < xk + yk < k + 1,
illustrated by arrows for P4 in Figure 6. But the y-coordinate of the rotated point is
equal to xk + yk , as noted previously. Hence, the k-th lattice point P′k (and only this
point) along the secondary line lies in the strip k < y < k + 1, as desired. ∎

One can readily extend the notion of “complementary” to any number of lattices
by requiring, as before, that the total coverage of each unit square by the set of
lattices be equal to 1. However, beyond several isolated instances, further examples
of complementary lattices are not readily forthcoming. �ere is the example of

L11/10, 3/10 , L3,2 , L3,2 , L3,2 ,

which can be manually verified, since L3,2 is a subset of L11/10, 3/10, so we need
only examine 13 unit squares and then invoke periodicity. More generally, empirical
evidence suggests that for n ∈ N, taking a = (n2 + 2)/(n2 + 1) and b = n/(n2 + 1)
results inLa ,b and three copies ofLn ,2 being complementary. (We permit ourselves to
include the same latticemultiple times to form a collection of complementary lattices,
which is thus technically a multiset.)
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Since every square lattice contains the origin, clearly we can have at most four
lattices in a complementary set. �is comment prompts several questions.

Question 1 Uspensky [10] has shown that if k sequences, each of the form {⌊nα i⌋}
for n ≥ 1, are complementary, then k ≤ 2. Does a similar result hold for complementary
lattices?More precisely, disregarding the four unit squares having one vertex at the origin,
if k lattices provide total coverage of 1 to all remaining unit squares in the plane, must it
be the case that k ≤ 4?
Question 2 Do there exist other continuous families of complementary lattices, such
as the pair featured in �eorem 3.1, or other discrete families, such as the set just noted
above?

Question 3 What sorts of results can be found if we permit the lattices to be translated
away from the origin? In particular, does there exist a continuous family of five or more
complementary lattices of this sort?

To illustrate the latter question, observe that L15/13, 3/13, three copies of L3,3, and a
fi�h lattice L3,0 translated by (1.5, 1.5) exactly cover all unit squares.

6 The Geometric Lemma

Recall that in the proof of �eorem 3.1, given an irrational θ > 1, we mark where
the pivotal line x = θy meets horizontal and vertical gridlines in the first quadrant,
which occurs at the points (mθ ,m) and (m, m

θ
) for m ∈ N. Label these points as

P1 , P2 , P3 , . . . , ordered by distance from the origin. �ese are the points of Lθ ,1 and
L1,1/θ in the first quadrant that lie along the pivotal line. In our proof that these lattices
are complementary, a key step involved knowing that certain segments were parallel
to the pivotal line. We now present a synthetic proof of this fact.

To set the stage, let C be a unit square in the first quadrant. For each k ≥ 1, rotate
C clockwise by 90○ about Pk to obtain the image square C k . If Pk is situated on a
vertical gridline, letAkBk be the vertical segment enclosed byC k lying along a vertical
gridline, with Ak below Bk . Otherwise, when Pk lies along a horizontal gridline, let
AkBk be the horizontal enclosed segment, with Ak to the right of Bk . (Note that
because Pk is not an integer lattice point, there is no ambiguity since the enclosed
segment cannot coincide with an edge of C k .) A portion of the set-up is illustrated
in Figure 7.

Lemma 6.1 With all geometric objects as defined above, segment BkAk+1 is parallel
to the pivotal line.

Proof To orient the reader, these segments are indicated with short dashes on
the le� in Figure 7. Observe that points Pk and Pk+1 cannot both be on horizontal
gridlines, since the slope of the pivotal line is 1

θ
< 1, so there are three cases to consider,

depicted by segments B3A4, B4A5, and B5A6. �e arguments are fairly similar, so we
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Figure 7: Rotations of a given unit square defining segments AkBk .

will only present the proof for B4A5 in detail, which represents the case that Pk is on
a vertical gridline and Pk+1 is on a horizontal gridline.

Let Q be the intersection of the gridlines through P4 and P5. Rotating C about P4
is equivalent to translating C up by QP4 to C′, rotating by 90○ clockwise about Q,
then translating down again, illustrated on the right in Figure 7.�e advantage to this
sequence of steps is that we “pick up the enclosed segment” in the process. In other
words, the upper edge of C within the vertically translated square C′ ultimately maps
to segmentA4B4.�is is because, by construction, the image of C extends a horizontal
distance of QP4 beyond a vertical gridline.

In the samemanner, rotatingC about P5 is equivalent to translatingC to the le� by
distance QP5, rotating by 90

○ clockwise about Q, then translating to the right again.
�is time the le� edge of C, within the horizontally translated square, eventuallymaps
to A5B5. �e crucial observation to make is that point R, the upper le� vertex of unit
square C, maps to R′ under both rotations, then is translated to B4 in one case and to
A5 in the other. �erefore, segment B4A5 is parallel (and in fact congruent) to P4P5,
as desired. ∎

We note that the geometric lemma may also be verified via coordinate geometry,
starting with the observation that a rotation by 90○ clockwise about Pk(xk , yk)maps
a point (u, v) to the point (v − yk + xk ,−u + xk + yk). One would then proceed to
argue that the slope of segments P3P4 and B3A4 are equal, for instance. �e reader
can fill in the remainder of this satisfying demonstration.

Acknowledgement �e author is immensely grateful to the referees, whose detailed
feedback led to numerous improvements in the presentation of these results. �e
original question of whether it might be possible to hit every unit square in the plane
was posed to the author by a sixth grade student at Proof School, during a team
research project. �anks for asking such a great question, L.K. Finally, the diagrams
appearing throughout the paper were designed by Cole Kissane, a recent graduate of
Proof School.

https://doi.org/10.4153/S0008439520000594 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000594


Complementary Lattices 511

References

[1] S. Beatty, Problems and solutions: Problem 3173. Am. Math. Month. 33(1926), 159.
[2] J. Berstel, Recent results on extensions of Sturmian words. Int. J. Algebra Comput. 12(2002),

371–385. http://dx.doi.org/10.1142/S2181967020095X

[3] L. Carlitz, R. Scoville, and V. E. Hoggatt Jr., Lucas representations. Fibonacci Quart. 10(1972), no.
1, 29–42.

[4] A. S. Fraenkel and D. Krieger,�e structure of complementary sets of integers: A 3-shi� theorem.
Int. J. Pure Appl. Math. 10(2004), 1–49.

[5] Y. Hashimoto, A geometric approach to Beatty sequences in higher dimensions. Bull. Aichi Univ.
Educ. Nat. Sci. 60(2011), 13–21.

[6] R. Honsberger, Ingenuity in mathematics. Random House, New York, NY, 1970.
[7] J. Lambek and L. Moser, Inverse and complementary sequences of natural numbers. Am. Math.

Monthly 61(1954), no. 7, 454–458. http://dx.doi.org/10.2307/2308078

[8] M. Morse and G. A. Hedlund, Symbolic dynamics II: Sturmian sequences. Am. J. Math. 61(1940),
1–42. http://dx.doi.org/10.2307/2371431

[9] K. B. Stolarsky, Beatty sequences, continued fractions, and certain shi� operators. Canad. Math.
Bull. 19(1976), no. 4, 473–482. http://dx.doi.org/10.4153/CMB-1976-071-6

[10] J. V. Uspensky, On a problem arising out of the theory of a certain game. Am. Math. Monthly
34(1927), 516–521. http://dx.doi.org/10.2307/2299838

Proof School, 973 Mission St, San Francisco, CA 94103

e-mail: svandervelde@proofschool.org

https://doi.org/10.4153/S0008439520000594 Published online by Cambridge University Press

http://dx.doi.org/10.1142/S2181967020095X
http://dx.doi.org/10.2307/2308078
http://dx.doi.org/10.2307/2371431
http://dx.doi.org/10.4153/CMB-1976-071-6
http://dx.doi.org/10.2307/2299838
mailto:svandervelde@proofschool.org
https://doi.org/10.4153/S0008439520000594

	1 Introduction
	2 A Trio of Curiosities
	3 Unit Square Coverage by Lattices
	4 The Curiosities Explained
	5 Beatty Sequences and Further Questions
	6 The Geometric Lemma

