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This study is motivated by the need to develop stochastic parameterisations for
representing the effects of mesoscale oceanic eddies in non-eddy-resolving and
eddy-permitting ocean circulation models. A necessary logical step on the way to
such parameterisations is the understanding of flow responses to spatially stationary
and localised, time-dependent ‘plunger’ forcings intended to represent transient
eddy flux divergences. Specifically, this study develops an understanding of the
plunger-induced convergence of potential vorticity (PV) fluxes using the linearised
single-layer shallow-water model. Time-periodic solutions are obtained and the
‘footprint’, defined as the time-mean, quasi-linear PV flux convergence, quantifies
the cumulative PV redistribution induced by the plunger. Using the footprint, the
equivalent eddy flux (EEF) is defined such that it succinctly quantifies the extent of
the PV redistribution, and its dependencies on the forcing latitude and the background
flow are examined in detail. For a uniform background flow the EEF is positive for
all forcing latitudes, corresponding to net-poleward PV flux convergence, as expected
by current theory of β-plane Rossby waves. The EEF also has a robust dependence
on the direction and magnitude of a uniform background flow, which is a useful
quality for the EEF to provide a basis for a parameterisation of eddy PV fluxes.
We also examine the PV redistribution due to forcing on top of a Gaussian jet
background flow and find that forcing proximity to the jet core is the primary factor
in determining whether the jet is sharpened or broadened.

Key words: geophysical and geological flows, ocean circulation, shallow water flows

1. Introduction
Transient mesoscale eddies populate almost all areas of the planet’s oceans and play

a leading role in driving the ocean circulation. In order for oceanic general circulation
models (GCMs) to capture the effects of mesoscale eddies on the large-scale flow, fine
grid resolutions of the order of 1 km are required. Although somewhat feasible for
single integrations over decadal time scales, this is often computationally unfeasible
for multiple simulations over climatic time scales. The solution is for governing
equations to be solved on coarse, non-eddy-resolving (or eddy-permitting) grids,
simultaneously including a parameterisation of the eddy effects on the large-scale
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flow. Over recent years there have been numerous studies invoking a range of
techniques in an attempt to define a parameterisation which accurately accounts for
the dynamics not captured on a coarse grid.

1.1. Background
Perhaps the most widely used eddy parameterisation, by Gent & McWilliams (1990)
(hereafter GM), gave rise to substantial improvements in the performance of GCMs
(Danabasoglu, McWilliams & Gent 1994) and replaced the previously used horizontal
diffusion of tracers. Using the basis that the mixing of tracers occurs mostly along
isopycnal layers (Iselin 1939; Montgomery 1940), the parameterisation is formulated
as an extra advective velocity (bolus velocity) (Gent 2011), which acts to ‘flatten out’
isopycnal layers, so that the parameterisation has a diffusive effect. A vital parameter
of the GM parameterisation is the eddy (thickness) diffusivity; research regarding
this parameter has taken place extensively, with many studies aiming to relate the
eddy diffusivity to properties of the large-scale flow by, for example, calling upon
conservation laws (Marshall, Maddison & Berloff 2012; Ivchenko et al. 2013), or
via linear instability theory (Killworth 1997; Eden 2011). Despite improvements in
the performance of GCMs, the diffusive parameterisation approach has its downfalls.
For instance, in the GM parameterisation, a constant-valued eddy diffusivity is
often implemented, but the most realistic eddy diffusivity should have spatial and
temporal dependence (Rypina et al. 2012). Furthermore, eddy diffusion is limited
by its defining assumption; that is, eddies act to flux tracers down their gradients.
Although true for passive tracers, it is not necessarily true for active tracers, such
as potential vorticity (PV), buoyancy or momentum which can flow up-gradient. For
example, eddies can cause PV to flow up the large-scale PV gradient in the eastward
jet extension of a western boundary current (Berloff 2005a; Birner, Thompson &
Shepherd 2013), thus maintaining the sharp PV gradient which characterises the jet.
This phenomenon is not parameterised by GM because neither the effects of Reynolds
stresses nor up-gradient heat fluxes can be captured by it (Starr 1968).

Unlike eddy diffusion, a stochastic parameterisation, using a random forcing term
to represent eddy effects on the large-scale flow, can account for both positive
and negative eddy diffusivities, in theory making it a better suited method for the
simulation of various flows, including western boundary currents and their eastward
jet extensions. The main issues of a stochastic parameterisation include finding how
to relate random-forcing coefficients to the large-scale flow and also to constrain
the parameterised forcing by conservation laws. A common approach is to make
use of an eddy-resolving simulation as a basis for a stochastic parameterisation of a
non-eddy-resolving model. For example, this has been done by quantifying properties
of fluctuations around time-mean values of buoyancy fluxes (Li & von Storch 2013),
by deriving the probability density function of an external PV forcing (eddy source
term) (Porta Mana & Zanna 2014), and by comparing an eddy-resolving simulation
with an equivalent non-eddy-resolving simulation (Berloff 2005c).

Other studies formulate parameterisations of eddy effects by considering the fluxes
of isopycnal thickness (e.g. Eden & Greatbatch 2007), momentum (e.g. Eden 2010) or
PV (e.g. Berloff 2015, 2016). For example, in Eden (2010) spatial maps of the lateral
eddy diffusivity are determined from a suite of primitive equation solutions, with
negative diffusivity found in the region of the zonal jet. The diagnosed diffusivity
is used to parameterise eddy fluxes in terms of diffusion of PV and an additional
rotational PV flux which ensures conservation of momentum. In Berloff (2015) a
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linear, doubly periodic quasi-geostrophic (QG) system is forced by a localised-in-space
and periodic-in-time elementary eddy-like forcing. From resulting solutions, the
dependence of the PV flux convergence (in a quasi-linear approximation) on the
background-flow amplitude is considered and is subsequently used to define a set of
external dipole inputs of PV which form a parameterisation of eddy PV fluxes in a
non-eddy-resolving model. The resulting non-eddy-resolving simulation successfully
exhibits a coherent eastward jet extension, otherwise absent without the eddy effects.
The study of Berloff (2018) builds upon Berloff (2015, 2016) by providing a
simple parameterisation method involving amplification of eddy backscatter in an
eddy-permitting GCM, and results in an improved double-gyre regime.

Similar to Berloff (2015), the present study provides the early stages of an eddy
parameterisation via the analysis of PV fluxes, with the novel use of the shallow-water
model, which in comparison to the QG model is much closer to the primitive
equations used in comprehensive GCMs. Thus, the outline of this paper is as follows.
In § 2 we define the single-layer shallow-water model and develop a method for
solving the set of governing equations for linearised, periodic-in-time solutions. After
outlining the external forcing, solutions are obtained for a range of zonal uniform
background flows and a zonal Gaussian-jet background flow. In § 3 we consider the
PV anomalies corresponding to the reference solutions and begin to examine how PV
is redistributed by defining the ‘footprint’ as the time-averaged PV flux convergence.
In § 3.3 the equivalent eddy flux (EEF), a measure of the PV redistribution, is defined,
and the dependencies of the EEF on the background flow and the forcing latitude
are studied. In § 4 we outline how the shallow-water system used in this study
can be extended to account for forcing with stochastic time dependence. Lastly, § 5
summarises and concludes the findings of the study, highlights the significance and
properties of the EEF and then outlines the multiple avenues for future progression.

2. Shallow-water dynamics with localised, transient forcing
For the purposes of this study, oceanic-flow response to external plunger forcing

will be modelled using the linearised shallow-water equations in a zonal, β-plane
channel, with no-normal-flow, free-slip boundary conditions in the north and south.
With regards to other topics, the shallow-water system of equations has been widely
used for modelling of the atmosphere (e.g. Arai & Yamagata 1994) and oceans (e.g.
Davey & Killworth 1984; Speich, Dijkstra & Ghil 1995). Research of plunger-induced
solutions to the shallow-water system is novel because earlier studies focused on the
much simpler QG framework. Furthermore, in comparison to Berloff (2015), the
meridional inhomogeneity of the shallow-water model used in this study also allows
for the novel use of (i) latitude-dependent, geostrophically balanced background flows
(ii) solid-wall boundaries in the north and south and (iii) a relatively complex solving
algorithm which invokes both numerical and analytical methods.

2.1. The governing equations
The non-dimensional single-layer rotating shallow-water equations in Cartesian
coordinates (Vallis 2017) are given by

Ro
Du
Dt
− fv =−

∂η

∂x
+

Ro
Re
∇

2u− γ u+ Ro F1, (2.1)

Ro
Dv
Dt
+ fu=−

∂η

∂y
+

Ro
Re
∇

2v − γ v + Ro F2, (2.2)
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Dη
Dt
+ η

(
∂u
∂x
+
∂v

∂y

)
= F3. (2.3)

Here, u and v are the zonal and meridional velocities, respectively, and η is the
sea-surface height (SSH) measured from a flat ocean bottom. These variables depend
on time t and spatial coordinates x and y, aligned with the zonal and meridional
directions, respectively. The operator D/Dt≡ ∂/∂t+ u · ∇ is the Lagrangian (material)
derivative, where u = (u, v), and ∇ is the horizontal gradient operator. Planetary
rotation is represented by the Coriolis parameter f = f0 + βy, where f0 = 1 and
β ≈ 0.93 are selected so as to represent Northern hemisphere mid-latitude dynamics
in an Lx × Ly square ocean domain (Lx = Ly = 1). The Rossby number, defined as
the ratio of the inertial force to the Coriolis force, is Ro ≈ 3.1 × 10−5, and simple
linear bottom friction is governed by the coefficient γ ≈ 4.8 × 10−4. In this study
the system’s dependence on the Reynolds number Re ∈ [Re0/2, 10Re0] will be tested,
where we define the reference Reynolds number Re0 as:

Re0 =
UL
ν0
= 384. (2.4)

Here U = 0.01 m s−1 is the velocity scale, L = 3840 km is the length scale
(dimensional basin size) and ν0 = 100 m2 s−1 is the reference eddy viscosity.
Lastly, the Fi terms for i = 1, 2, 3 are the external-forcing terms to be specified in
§ 2.3. Details regarding the non-dimensionalisation, and how to retrieve dimensional
parameters are given in appendix A.

The system (2.1–2.3) is to be extensively simplified and manipulated so that its
solutions can be efficiently obtained by numerical methods. Firstly, the system is
linearised about a purely zonal background flow U0(y) and corresponding background
SSH H0(y), so that the background state is in (typical for large-scale flows)
geostrophic balance, i.e. given U0:

H0(y)=−
∫

f (y)U0(y) dy+Hflat, (2.5)

where Hflat is the uniform depth of the motionless ocean. The two velocities and the
SSH are replaced by the following:

u=U0(y)+ u′(x, y, t), v = v′(x, y, t), and η=H0(y)+ η′(x, y, t), (2.6a−c)

where primed terms represent deviations from the background state, and are assumed
to be small. The linearised governing equations are:

Ro
(
∂

∂t
+U0(y)

∂

∂x

)
u′ +

(
Ro

dU0

dy
− f
)
v′ =−

∂η′

∂x
+

Ro
Re
∇

2u′ − γ u′ + Ro F1, (2.7)

Ro
(
∂

∂t
+U0(y)

∂

∂x

)
v′ + fu′ =−

∂η′

∂y
+

Ro
Re
∇

2v′ − γ v′ + Ro F2, (2.8)(
∂

∂t
+U0(y)

∂

∂x

)
η′ + v′

dH0

dy
+H0(y)

(
∂u′

∂x
+
∂v′

∂y

)
= F3. (2.9)

It is imposed that the forcing terms and induced ocean dynamics are periodic
in time with frequency ω, so that, for example, F1(x, y, t) = F1(x, y) exp (−2πiωt).
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Considering solutions of a single frequency is the optimal starting point that allows
us to systematically explore the effects of varying other parameters. Importantly, the
system can readily be extended to account for a spectrum of forcing frequencies, thus
allowing for forcing with stochastic time dependence as is shown in § 4. The final
manipulation is the implementation of the Fourier transform in the zonal direction,
exploiting the system’s zonal symmetry. The Fourier transform and its inverse are
defined as

ũ(k; y) ≡ F [u′(x, y)] ≡
∫
∞

−∞

u′(x, y) exp(−2πikx) dx, (2.10a)

u′(x, y) ≡ F−1
[ũ(k; y)] ≡

1
2π

∫
∞

−∞

ũ(k; y) exp(2πikx) dk, (2.10b)

where ũ(k; y) is the Fourier transform of u′(x, y).
The steps detailed in the above paragraph transform system (2.1–2.3) into the

following one-dimensional system of three equations:[
iδRo+ 4π2k2 Ro

Re
+ γ

]
ũ−

Ro
Re
∂2ũ
∂y2
+

[
Ro

dU0

dy
− f
]
ṽ + 2πikη̃= F̃1, (2.11)[

iδRo+ 4π2k2 Ro
Re
+ γ

]
ṽ −

Ro
Re
∂2ṽ

∂y2
+ f ũ+

∂η̃

∂y
= F̃2, (2.12)

iδη̃+ 2πikH0ũ+
dH0

dy
ṽ +H0

∂ṽ

∂y
= F̃3, (2.13)

where δ(k; y;ω)= 2π(U0k−ω). Free-slip, no-normal-flow boundary conditions in the
north and south are given by

∂u′

∂y
= v′ =

∂2v′

∂y2
= 0 at y=±

1
2
. (2.14)

With the above boundary equations, system (2.11–2.13) governs linear shallow-water
channel flow on a β-plane. No-slip boundary conditions were also considered, and this
yielded solutions with negligible differences and, therefore, the effects of varying the
boundary condition will not be considered further.

2.2. The numerical algorithm
This section describes the numerical algorithm that solves system (2.11–2.14). Firstly,
let N + 1 be the number of grid points in the x and y directions that discretises the
square ocean domain. The set of grid points in x has a corresponding set of N + 1
wavenumbers, K={k1, . . . , kN+1}, say, that discretises the zonal spectral domain. Then,
for each ki ∈K (i= 1 . . .N+ 1), system (2.11–2.14) is solved using a centred-in-space,
second-order finite-difference method. This is done by defining a single state vector
si = (ũ(ki; y), ṽ(ki; y), η̃(ki; y))T, which excludes the relevant north–south boundary
terms, and where the superscript T denotes a transpose. We then use a linear-algebra
algorithm to solve the following system for si:

A si = (F̃1, F̃2, F̃3)
T, (2.15)

where A is the matrix that characterises equations (2.11–2.13), and the right-hand side
is a column vector of the forcing terms. Upon retaining si for every wavenumber ki,
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the two velocities and the SSH are extracted. The fully physical solutions are found
by implementing the inverse fast Fourier transform (IFFT) algorithm, at every latitude
in the discrete y-space, and simultaneously applying their periodic time dependence to
attain u′(x, y, t), v′(x, y, t) and η′(x, y, t). That is, given the half-spectral, half-physical
representation of the zonal velocity, ũ(k; y), for example, the solution u′(x, y, t) is
found via:

u′(x, y, t)=Real(F−1
[ũ(k; y)] exp [−2πiωt]). (2.16)

By testing grid resolutions for N=25 . . .210, it was found that solution errors behave
like 1/(N + 1)2, which is expected for a second-order finite-difference scheme. All
solutions and statistics presented in this study use a 257× 257 grid resolution, which
was proven to be sufficient for the purposes of our study.

2.3. Model set-up: external forcing, background flow and parameter selection
We want the external plunger forcing to be an elementary representation of space–time
correlated, transient eddy forcing, centred at a point (x0, y0) = (0, y0), where x0 = 0
without loss of generality. Thus, we define the continuity equation forcing F3 as a
localised dome-shaped function given by

F3(x, y)=


1
2

Af
(

1+ cos
(

π
r
r0

))
− ε for r 6 r0,

−ε for r> r0.

(2.17)

Here r =
√

x2 + (y− y0)2 is the radial distance from the forcing location (0, y0), r0
is the radial extent of the forcing, A is the arbitrary-forcing amplitude and ε ensures
conservation of mass at all times. The momentum-forcing terms are determined via
geostrophic balance, i.e.

F1 =−
1
f
∂F3

∂y
and F2 =

1
f
∂F3

∂x
. (2.18a,b)

The forcing introduces an extra length scale, r0; we assume that r0�L and r0�Ld
where Ld(y) =

√
Ro H0/f is the barotropic deformation radius. Our choice of r0 is

motivated by baroclinic eddy flux divergences. In a later study we will progress with
this choice of r0 onto the two-layer shallow-water model which is more suitable for
modelling baroclinic eddy effects. With the periodic time dependence defined in § 2.1,
the plunger forcing and the solutions have zero time mean, but the nonlinear self-
interaction of the finite-amplitude solutions is indeed non-zero and has specific spatial
structure considered in previous studies (e.g. Berloff 2005b, 2015; Waterman & Jayne
2012). Note that the nonlinear self-interaction of the solutions is purely diagnostic,
and has no influence on the linearised dynamics.

We consider solutions induced by the above forcing for two types of zonal
background flow: (i) a uniform background flow and (ii) a Gaussian-jet background
flow. By (2.5), a uniform background flow is balanced by a quadratic background
state SSH, H0=−U0y( f0+ (β/2)y)+Hflat, where U0 is constant. We define our zonal
Gaussian-jet background flow as

U0(y)= a
(

exp
(
−

y2
− l2

2σ 2

)
− 1
)
. (2.19)
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Parameter symbol Parameter name Dimensional value Non-dimensional value

L Basin side length 3840 km 1
Hflat Ocean depth 4 km 12 310
dx, dy Grid spacing 7.5 km 0.001953
f0 Base planetary vorticity 0.83× 10−4 s−1 1
β Planetary vorticity gradient 2× 10−11 m−1 s−1 0.9253
γ Linear drag coefficient 4.0× 10−8 s−1 0.4819× 10−5

r0 Forcing radius 90 km 0.02344
ω Forcing/solution frequency 1/60 day−1 74.07
T Forcing/solution period 60 days 0.0135
Re Reynolds number — 384 (=Re0)
Ro Rossby number — 3.138× 10−5

U0 Uniform background flow [−0.5, 0.5] m s−1
[−50, 50]

Umax Gaussian-jet maximum 0.8 m s−1 80
σ Gaussian-jet width 76.8 km 0.02

TABLE 1. Table summarising the parameter space used in the shallow-water simulations.
Both dimensional and non-dimensional values are given when applicable. In some
experiments, the magnitude of a uniform background flow is varied, so the entire range
in which the parameter is varied is given. Values are given to four significant figures.

Here a is the magnitude of the flow, l= Ly/2 is half the basin size, and σ > 0 is a
length scale characterising the cross-jet width. The corresponding SSH is

H0(y)= a
[
βσ 2 exp

(
−

y2
− l2

2σ 2

)
−

√
π

2
f0σ exp

(
l2

2σ 2

)
erf
(

y
√

2σ

)
+ f0y+

β

2
y2

]
+Hflat,

(2.20)
where erf(y)= (2/

√
π)
∫ y

0 exp (−z2) dz is the error function.
Table 1 summaries the reference parameter space, giving both non-dimensional and

dimensional values where appropriate. Note that, for the Gaussian-jet background flow,
a is selected such that the maximum speed of the jet is Umax = 0.8 m s−1.

2.4. Typical solutions
Plotted in figure 1 are snapshots of the periodic solutions, with forcing in the
northern half of the domain and a selection of uniform background flows. In
figure 2 are snapshots of complex amplitude and phase corresponding to a selection
of the solutions in figure 1. The phase maps of the solutions exhibit wave
reflection at the north–south boundaries, as well as a meridional discontinuity in
the zonal velocity phase at the forcing latitude. The flow response is strongest
in the vicinity of the forcing, where its spatial structure is representative of the
corresponding forcing term. Over time, the forcing disturbance is radiated away and
also advected by the background flow, while simultaneously spreading meridionally.
For a stronger background flow, this meridional spreading is reduced, and the
solution becomes meridionally confined for sufficiently strong uniform background
flows. The primary effect of increasing/decreasing the frequency (in the test range
ω∈ [1/80, 1/40] days−1) is the shortening/lengthening of waves in the zonal direction;
due to the purely zonal background flow, the meridional structure of the solutions
remains constrained by the north–south boundaries and the forcing radius. Under
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FIGURE 1. (Colour online) Solutions to the single-layer shallow-water system, linearised
about a uniform zonal background flow and forcing in the northern half of the
domain. Each row corresponds to a solution produced using a different uniform U0;
the dimensional value (units m s−1) is given the left-hand panels. Plotted is the zonal
velocity perturbation (a,d,g,j), meridional velocity perturbation (b,e,h,k), SSH perturbation
(c, f,i,l). Each solution component has been normalised by its maximum absolute value,
as attained by non-dimensional forcing of amplitude unity. The value by which each
solution component has been normalised is given in the bottom left corner in each panel.
Animations show that away from the vicinity of the forcing there is large-scale westward
Rossby wave propagation with phase speed ∼0.1 (m s−1).
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FIGURE 2. (Colour online) Plots of phase (a–c and g–i) and complex amplitude (d–f
and j–l) corresponding to uniform background flows U0 ∈ {0.0, 0.16} m s−1 (indicated in
a,d,g,j). The rows are arranged in pairs such that the phase and complex amplitude of the
solutions are more easily viewed together. The zonal velocity is in (a,d,g,j), the meridional
velocity is in (b,e,h,k), and the SSH perturbation is in (c, f,i,l). Note that the phases are
cyclic data such that a phase of π is equivalent to a phase of −π. The amplitude colour
bar is maximised at 0.5 (rather than 1) so as to better represent the amplitude in the far
field.
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FIGURE 3. (Colour online) Typical solutions to the single-layer shallow-water system,
linearised about a zonal Gaussian-jet background flow. Each row corresponds to a solution
produced using a different forcing latitude y0, indicated in the left-hand panel of each row,
relative to the axis of the jet at y= 0. Plotted is the zonal velocity perturbation (a,d,g),
meridional velocity perturbation (b,e,h), SSH perturbation (c, f,i). Further details are the
same as in figure 1.

variations in the forcing radius, the solutions again remain qualitatively similar, with
the primary effect being increased meridional spreading with increased forcing radius.

Figure 3 contains solution snapshots produced with the Gaussian-jet background
state defined in (2.19) and (2.20) with a selected so that the maximum speed of
the jet is 0.8 m s−1 and with jet width σ = L/50 km. These choices are motivated
by the barotropic component of the eastward jet simulated in three-layer wind-driven
double-gyre shallow-water dynamics (not shown) produced using the GOLD ocean
model (Hallberg & Gnanadesikan 2006). Figure 4 displays plots of complex amplitude
and phase corresponding to a selection of the solutions in figure 3. Throughout these
figures, the background flow is fixed, whereas the forcing latitude y0 ∈ {−σ , 0, 3σ/2}
is varied. When the forcing is located far enough away from the jet, the solution
behaves very much like the zero background-flow case since locally U0 ≈ 0. For a
central forcing the perturbation is meridionally confined and advected eastwards by
the jet.
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FIGURE 4. (Colour online) Plots of phase (a–c and g–i) and complex amplitude (d–f
and j–l) with a Gaussian background flow and different choices of forcing latitude, y0
(indicated in a,d,g,j). The zonal velocity is in (a,d,g,j), the meridional velocity is in
(b,e,h,k) and the SSH perturbation is in (c, f,i,l). Other details are the same as in figure 2.

Forcing on the flanks of the jet induces a much more varied response. For example,
varying r0 in the range [60, 90] km induces solutions which are qualitatively and
quantitatively similar, but for larger r0 (approximately greater than 110 km), solutions
become qualitatively dissimilar, with the elimination of the regular alternating eddy
pattern. Varying ω (in the range [1/80, 1/40] days−1) induces only slight qualitative
variations in the solutions, indicating that the forcing and background flow parameters
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are more dominant in determining the flow response. Shifting both the jet and forcing
location meridionally has almost no effect on the solution pattern or its amplitude.

3. Redistribution of potential vorticity

In this section we look at the potential vorticity (PV) in the shallow-water system
and consider how it is redistributed by the plunger forcing.

3.1. Defining potential vorticity
The full PV, q, in the system is defined by

q=
ζ +

1
Ro

f

η
, where ζ =

∂v

∂x
−
∂u
∂y

(3.1)

is the relative vorticity. Note the factor of 1/Ro multiplying the Coriolis parameter,
due to the non-dimensionalisation. We define the PV anomaly induced by the forcing
as

q′ = q−Q where Q=
1

H0

(
1

Ro
f −

dU0

dy

)
(3.2)

is the background PV. See appendix B for the derivation of a PV conservation
equation consistent with governing equations (2.7)–(2.9).

3.2. Potential vorticity redistribution – footprints
To begin to evaluate how PV is redistributed in the system, we define the PV footprint,
P, as the time-mean (denoted by an overbar) PV flux convergence:

P=−∇ · (uq). (3.3)

Here, u= (u, v) is the horizontal velocity vector and q is the nonlinear PV. Note that
here we are assuming a quasi-linear framework, i.e. we deduce nonlinear footprints
from linear solutions. The quasi-linear framework has been successfully adopted in
previous studies as an approximation to the fully nonlinear case (e.g. Berloff &
Kamenkovich 2013a,b; Berloff 2015). To calculate fully nonlinear shallow-water
footprints and compare them with their quasi-linear counterparts would be an
interesting research extension, but is beyond the scope of the present study. All
footprints are calculated using solutions which have been normalised by the forcing
amplitude.

Consider the various terms in P:

P=−
[
∂

∂x
(u′q′)+

∂

∂x
(U0q′)+

∂

∂x
(u′Q)+

∂

∂y
(v′q′)+

∂

∂y
(v′Q)

]
. (3.4)

The assumed time dependence of the solution means that the u′Q and v′Q fluxes
average to zero; U0q′ has a non-zero time average due to the nonlinearity of q′ (i.e.
due to the division by η=H0 + η

′ in (3.1)), but its contribution to P remains several
orders of magnitude smaller than the contributions of zonal eddy PV flux (u′q′) and
meridional eddy PV flux (v′q′) terms. With a zonally periodic system, it is useful to
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consider the zonal average of the footprint, 〈P〉, which gives a measure of the average
PV flux convergence at every latitude. Note that the zonal averaging operation means
that the meridional eddy PV flux provides the only contribution to 〈P〉.

Figure 5 contains plots of the PV anomaly q′, the footprint P and the footprint’s
zonal average 〈P〉 corresponding to the uniform-flow solutions presented in the
previous section. For all uniform background flows considered, the footprint is
characterised by a pool of positive/negative PV flux convergence to the north/south
of the forcing location, consistent with the PV structure in double-gyre circulation
around the eastward jet extension of a western boundary current (Waterman & Jayne
2012). This property of the footprint is a well-known result and may be explained
by considering zonal momentum conservation (Haidvogel & Rhines 1983; Waterman
& Jayne 2012). Away from the forced latitudes we have large-scale westward Rossby
wave and westward momentum propagation. Zonal momentum conservation therefore
requires a convergence of eastward momentum at the forced latitudes, which itself
corresponds to a northward convergence of PV flux. This conclusion may also be
reached by considering the shape of ‘eddies’ which propagate away from the forcing
location. The anisotropic ‘bow-shaped’ eddies, most easily observable in plots of η′
for weaker U0, are responsible for a northward flux of zonal momentum (u′v′ > 0)
south of y0 and a southward flux (u′v′< 0) north of y0 (see Wardle & Marshall (2000),
figure 5, for a clear diagram depicting this phenomenon). This leads to a convergence
of eastward momentum at the forced latitudes, and thus PV flux convergence to the
north of y0.

Fully nonlinear quasi-geostrophic PV footprints are presented in Waterman & Jayne
(2012), and meridional slices of P are presented in Haidvogel & Rhines (1983). In
both these studies, the footprint exhibits a similar dipole structure to those presented
in this study, thus confirming the capability of the quasi-linear framework as an
approximation to the nonlinear case. In the multi-layer quasi-geostrophic system, the
(quasi-linear) footprint dipole structure is negated for westward background flows
(Berloff 2015), and it is hypothesised that the same would occur in the multi-layer
shallow-water system once baroclinicity is introduced, but this extension is left for a
later study.

Dependent on the direction and magnitude of the background flow, the dipole
structure of the footprint is shifted zonally, with initial observations indicating that
the footprint response is concentrated downstream of the background flow. We can
quantify this more precisely by defining a zonal ‘centre of mass’, namely xshift, of
the footprint:

xshift =

∫ 1/2

−1/2
xP̂ dx∫ 1/2

−1/2
P̂ dx

where P̂=
∫ 1/2

−1/2
|P| dy. (3.5)

The zonal shift is plotted against the uniform background flow U0 ∈ [−0.5, 0.5] m s−1

in figure 6. Excluding weak U0 ≈ 0, the footprint shift is in the same direction
of U0 due to the advection of the forcing disturbance by the background flow.
The maximum shift, |xshift| ≈ 0.1, corresponds to a dimensional footprint shift of
approximately 400 km. With such large values, it is argued that the downstream shift
of the footprint should be accounted for in parameterisations of eddy fluxes. For large
|U0|, the zonal shift becomes saturated, which is possibly due to the unavailability of
eigenmodes with sufficiently large phase speeds.
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FIGURE 5. (Colour online) Potential vorticity anomaly (a,d,g,j), footprint (b,e,h,k) and
footprint zonal average (c, f,i,l) corresponding to the uniform background-flow solutions
presented in figure 1. The dimensional value of the zonal background flow (units m s−1) is
given in the left-hand panel of each row. PV and footprints are calculated using solutions
which have been normalised by the forcing amplitude, from which the zonal average of the
footprint is calculated. The PV and the footprint are re-normalised so that their maximum
absolute values are 1. For optimum presentation, the colour bar range is [−0.5, 0.5], and
the plots are ‘zoomed in’ on the forcing region. The footprint zonal averages have been
scaled up by a factor of 105.

The PV anomalies, footprints and footprint zonal averages corresponding to the
Gaussian-jet solutions in the previous section are presented in figure 7. The footprints,
specifically the zonal averages, indicate that in the presence of a zonal jet the plunger
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FIGURE 6. Zonal shift (dimensionless) of the centre of mass of the footprint plotted
against uniform U0 given in units m s−1. In dimensional units, the maximum zonal shifts
are of the order of 400 km.

does not efficiently redistribute positive/negative PV to the north/south as was the
case with the uniform background flows. Moreover, when forcing on the flanks of
the background jet, net-northward or net-southward PV flux convergences are possible,
which correspond to a sharpening or broadening of the jet profile, respectively. The
behaviour of the footprints in both background-flow cases motivates the definition of
a more succinct measure of the PV redistribution, namely the equivalent eddy flux,
discussed in the next subsection.

3.3. Equivalent eddy fluxes
Here we define the equivalent eddy flux (EEF) as the net PV flux convergence to the
north of a reference latitude y′0, multiplied by a redistribution length scale, minus the
same value evaluated south of y′0. The northern component is

PN ≡ LN

∫
y>y′0

〈P〉 dy where LN =

∫
y>y′0

|y− y′0| |〈P〉| dy∫
y>y′0

|〈P〉| dy
. (3.6)

The equivalent southern quantities PS and LS are defined with y< y′0 in the integration
limits, so that we may define the EEF as follows:

P ≡PN −PS. (3.7)

We define the reference latitude as y′0 as the ‘centre of PV redistribution’, namely, the
centre of mass of |〈P〉|:

y′0 =

∫ 1/2

−1/2
y|〈P〉| dy∫ 1/2

−1/2
|〈P〉| dy

. (3.8)
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FIGURE 7. (Colour online) Potential vorticity anomaly (a,d,g), footprint (b,e,h) and
footprint zonal average (c, f,i) corresponding to the Gaussian-jet background flow solutions
presented in figure 3. The forcing latitude y0 is indicated in (a,d,g). All other details are
identical to those given in the caption of figure 5.

For uniform background flows the reference latitude is the same as the forcing latitude,
i.e. y′0= y0. When forcing on the flanks of Gaussian-jet background flow, however, the
centre of PV redistribution is typically skewed towards the jet core.

To motivate the definition of the EEF (3.6, 3.7), consider the footprint’s dipole
structure as in figure 5, in which case the length scales (LN, LS) may be interpreted
as a measure of the ‘distance’ between the pools of positive/negative PV flux
convergence. If the two pools are located far away from one another, then this
corresponds to a larger extent of PV redistribution, and is quantified by relatively
large length scales. Conversely, if the two pools are located close to one another,
the length scales would be smaller since PV has been redistributed over a shorter
distance.

The EEF is a simple scalar measure of the extent of the meridional PV redistribution,
provided in terms of the footprint. Its simplicity is indeed part of the motivation for
defining it, with the intention that it provides a useful measure of the properties of
the more complicated footprint (which is a two-dimensional scalar field). In Berloff
(2015, 2016) the EEF is used as a basis for a parameterisation of eddy PV fluxes
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FIGURE 8. (Colour online) Plots of the equivalent eddy flux versus uniform background
flow U0 for a range of parameter values. From (a) to (c), parameters varied in each plot
are the forcing radius (r0), the Reynolds number (Re) and the forcing period (T = 1/ω).
Note that the vertical axis scale differs in each plot, and that the green line, representing
the reference parameter selection, is the same in each plot. All EEFs have been scaled up
by a factor of 107.

by providing a scaling factor for dipole inputs of PV in a non-eddy-resolving model.
Subsequent simulations on the coarse-resolution grid exhibit a coherent eastward jet,
which is otherwise absent in such a low-resolution model. We focus on the EEF’s
dependence on: (i) the magnitude and direction of a uniform background flow U0,
(ii) the magnitude and width of a Gaussian-jet background flow and (iii) the forcing
latitude y0 for both uniform and Gaussian-jet background flows.

Plots of the EEF versus uniform background flow U0 ∈ [−0.3, 0.5] m s−1 are
shown in figure 8. The effects of varying three other parameters are considered:
(i) the forcing radius, r0, (ii) the Reynolds number, Re, and (iii) the forcing period,
T=1/ω. First of all, the EEF is positive for all U0∈[−0.3,0.5], and for all parameters
considered, so that in the presence of uniform background flow the plunger forcing
induces a net-northward flux of PV. In the multi-layer shallow-water system, we might
instead expect net-negative upper-layer PV flux convergence for uniform westward
background flows; confirmation of this is left to a later study, but is indeed the case
in the multi-layer quasi-geostrophic system (Berloff 2015).
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The EEF robustly has two local maxima, one for eastward background flow at
U0=Ue, say, and a larger one for westward background flow at U0=Uw. In between,
we have a local minimum for weak eastward flow at U0=Umin. As |U0| grows large,
the EEF decays to a small positive value. We can begin to understand EEF profile
by considering eigenmode decompositions of solutions. When U0=Uw or U0=Ue, a
wide range of eigenmodes are excited, each with relatively large amplitude, resulting
in particularly strong flow responses and therefore large PV redistribution. As the
magnitude of the background flow continues to grow larger, a progressively smaller
set of eigenmodes are excited, resulting in the gradual weakening of the EEF for
large |U0|. For a background flow U0 = Umin, there is no notable excitation of any
eigenmodes, and we observe a correspondingly weak EEF. A second contributor to
the EEF’s behaviour is the extent of the interaction between zonal and meridional
momentum-flow components. The magnitude and direction of U0 dictates the shape
and propagation of the forcing disturbance, and we find that the minimum in the
EEF coincides with the U0-value at which the forcing disturbance does not propagate.
With no propagation, the ‘eddies’ have zonal and meridional momentum components
that remain entirely out of phase with each other, and therefore their interaction
is minimised, resulting in minimal EEF values. This lack of interaction may be
confirmed by considering the correlation between zonal and meridional momentum
components, but an in-depth analysis in this vein is left for a later study.

The maxima of the EEF are extremely sensitive to Re in the explored range of
values, and we ran individual simulations to test this sensitivity further. With the
background flow fixed at U0 = Uw, we gradually increase Re through the range
[2Re0, 10Re0], and find that the EEF initially continues to grow larger but quickly
becomes weakly insensitive to further adjustments to Re. It is argued that this
saturation is physical rather than being due to grid resolution limitations. Another
notable property of the EEF is the shift of the maxima toward larger |U0| as the
forcing period shortens, which can be explained by the (inviscid) Rossby wave
dispersion relation:

ω=U0k−
βk

k2 + l2
, (3.9)

where k and l are the zonal and meridional wavenumbers, respectively. Excited
wavenumbers k have the same sign as U0, so that U0k> 0. Therefore, if we shorten
the forcing/solution period, i.e. increase ω, then the available modes shift toward
larger k, or the same k modes become available at larger U0.

Plotted in figure 9 is the equivalent eddy flux versus forcing latitude, y0, for a
selection of r0, Re and T , with zero background flow fixed throughout. The presence
of the northern/southern boundaries in the system causes the EEF to oscillate as y0
is varied. These oscillations grow larger near the boundaries, but the EEF remains
positive so that we retain the net-northward convergence of PV flux domainwide.
For non-zero uniform background flows, the oscillations in the EEF are suppressed
depending on the availability of channel modes for that particular U0.

In figure 10 plots of the EEF versus y0 with the reference Gaussian-jet background
flow are displayed. Away from the (central) jet region, the EEF closely resembles
the corresponding EEF curves for U0 = 0 in figure 9, whereas in the jet region the
EEF profile is more complicated. In this jet region we interpret a positive EEF as
a net sharpening of the jet, attained via eastward acceleration of the jet core and
westward acceleration (recirculation) of the jet flanks. On the other hand, a negative
EEF corresponds to a net broadening of the jet profile, attained by deceleration of the
jet core and eastward acceleration of the jet flanks. Here we reiterate that the EEF
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FIGURE 9. (Colour online) Plots of the equivalent eddy flux against plunger forcing
latitude, y0, for various values of forcing radius (a), Reynolds number (b) and forcing
period (c). The shallow-water system has been linearised about a zero background flow.
The green line in each plot corresponds to the reference parameter set-up. All EEFs have
been scaled up by a factor of 107.
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FIGURE 10. (Colour online) Plots of the equivalent eddy flux against plunger forcing
latitude, y0, for various values of forcing radius (a), Reynolds number (b) and forcing
period (c). Here the shallow-water governing equations are linearised about the reference
Gaussian-jet background flow (black dashed line). Other details are the same as in
figure 9.

and its interpretations are purely diagnostic, as they are formulated in the quasi-linear
approximation with no feedback into the dynamics of the shallow-water model in
this study. For forcing located on the outer jet flanks (|y0| ∈ [0.03, 0.05]), typical
flow response is dominated by waves with short zonal wavelengths whose meridional
propagation towards the jet core is inhibited by turning lines (O’Rourke & Vallis
2013, 2016). This results in localised nonlinear self-interaction and positive EEFs via
a similar mechanism as in the uniform background-flow case. On the inner jet flanks
(|y0| ∈ [0.01, 0.03]), plunger interaction with the jet core induces zonally large-scale
waves (|k|6 4) that straddle the jet core. As in O’Rourke & Vallis (2013, 2016), the
nonlinear self-interaction of these waves acts to decelerate the jet core and accelerate
the flanks, thus broadening the jet profile, quantified by a negative EEF. Forcing
centred on the jet core (y0 ∈ [−0.01, 0.01]) induces a small positive EEF.

We also experiment with the maximum jet speed and jet width, varying one at
a time. Figure 11 displays the EEF plotted against forcing latitude (central third
of the domain only) and either maximum Gaussian-jet speed (left) or jet width
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FIGURE 11. (Colour online) Equivalent eddy flux against plunger-forcing latitude y0, and
either maximum jet speed (a) or jet width (b). The jet width and the maximum jet speed
are fixed at their reference values in the left and right plots, respectively. In each plot, the
black contours correspond to zero background PV gradient, outlining two lobes inside of
which the background PV gradient is negative. Forcing latitudes are limited to the central
third of the domain. All other parameters are as in the reference set-up (table 1). EEFs
are scaled up by 107.

(right). The behaviour described in the above paragraph persists for all jet widths
considered (σ ∈ [0.015L, 0.045L] km), and for maximum jet speeds in the range
Umax ∈ [0.6, 1.2] m s−1. However, for weak jets such that Umax ∈ [0.4, 0.6] m s−1

(left-hand plot) this scenario breaks down as we have negative EEF values on the
outer jet flanks. Here the plunger forcing does not interact directly with the jet
core, but nonetheless excites large-scale zonal waves that propagate into the jet core,
uninhibited by turning lines. Again these large-scale waves decelerate the core of the
background jet, and accelerate the flanks.

To summarise the main results of this section, we find that the plunger forcing
induces a northward PV flux convergence for uniform zonal background flows. The
extent of this redistribution, quantified by the EEF (figure 8), has a maximum for weak
westward flow and a secondary maximum for eastward flow. With robust dependence
on uniform U0, the EEF can be used to provide a basis for a parameterisation of eddy
PV fluxes, as has been done in the quasi-geostrophic system (Berloff 2015, 2016).
Plunger forcing on the outer flanks of a Gaussian jet acts to sharpen the jet profile,
whereas a plunger forcing closer to the jet core, such that there is direct interaction
with the jet core, is likely to broaden the jet profile.

4. Extension to stochastic forcing
In this section we extend the shallow-water system used in this study to account for

external forcing with stochastic time dependence, S(t), so that Fi(x, y, t)=Fi(x, y)S(t),
i = 1, 2, 3. Fourier transforming equations (2.7)–(2.9) in time (as well as x), yields
governing equations similar to (2.11)–(2.13):[

iδRo+ 4π2k2 Ro
Re
+ γ

]
ũ−

Ro
Re
∂2ũ
∂y2
+

[
Ro

dU0

dy
− f
]
ṽ + 2πikη̃= S̃(w)F̃1, (4.1)
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FIGURE 12. An example Gaussian process, multiplied by a Planck-taper window to ensure
zero values at the beginning and end of the forcing interval. The time series has 512 time
samples with a decorrelation time scale τ = 50 time units.

[
iδRo+ 4π2k2 Ro

Re
+ γ

]
ṽ −

Ro
Re
∂2ṽ

∂y2
+ f ũ+

∂η̃

∂y
= S̃(w)F̃2, (4.2)

iδη̃+ 2πikH0ũ+
dH0

dy
ṽ +H0

∂ṽ

∂y
= S̃(w)F̃3, (4.3)

where ũ ≡ ũ(k; y; ω) is the Fourier transform in x and t of u′, and δ(k; y; ω) =
2π(U0k + ω). Stochastically forced solutions may then be obtained by implementing
the algorithm detailed in § 2.2 for a spectrum of forcing frequencies, Ω , say.

As an example, we model the time dependence as a Gaussian process, S∗(t),
multiplied by a Planck-taper window, w(t), to impose that S(t)= S∗(t)w(t)= 0 at the
beginning and end of the forcing interval. This stochastic process, shown in figure 12,
is modelled over 512 time samples and has exponentially decaying autocorrelation
with characteristic time scale τ = 50 time units. The spatial dependence of Fi remains
the same as defined in § 2.3.

Figure 13 contains plots of PV redistribution diagnostics corresponding to the
stochastically forced solutions with uniform background flow, U0 = 0.08 m s−1. The
flow response (not shown) and the PV anomaly are extremely similar to the case
of periodic time dependence (figure 1), but the PV footprint is noticeably different.
The footprint now has a multiple dipoles aligned zonally, due to modes of varying
frequency interacting with each other. Nonetheless, the zonally averaged footprint
retains much the same properties as in the case of periodic forcing.

5. Summary and applications

Since simulations of eddy-resolving models are often computationally unfeasible,
a parameterisation of eddy effects on the large-scale flow is required. Defining
such a parameterisation via understanding of potential vorticity (PV) fluxes is
one of numerous avenues for accounting for the effects of turbulent eddies in a
non-eddy-resolving ocean model. Most commonly implemented in general circulation
models (GCMs) is the parameterisation of Gent & McWilliams (1990) which assumes
that eddies act to flux tracers down their large-scale gradient and along isopycnal
surfaces. For a constant thickness diffusivity, k, this parameterisation equates to
down-gradient diffusion along isopycnals, but it is understood that k should in fact
have spatial dependence (Rypina et al. 2012), and numerous studies have attempted to
define such space-dependent k (e.g. Killworth 1997; Eden 2011; Marshall et al. 2012;
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FIGURE 13. (Colour online) PV snapshot (a), footprint (b) and zonally averaged footprint
(c) corresponding to the stochastically forced solutions. Other details are the same as in
figure 5.

Ivchenko et al. 2013). Although allowing for improvements in the performance of
GCMs (Danabasoglu et al. 1994), the diffusive approach naturally fails in regions of
‘anti-diffusive’ flows. For example, near eastward jets active tracers such as buoyancy,
momentum and PV may be fluxed up their large-scale gradient (Starr 1968). A
stochastic parameterisation (e.g. Berloff 2005c; Porta Mana & Zanna 2014) can allow
for both positive and negative eddy diffusivities, making it a more suitable method
for the parameterisation of up-gradient fluxes of active tracers. The aim of such a
parameterisation is to define a random-forcing term which accounts for the missing
eddy effects and is closed on the large-scale flow. The present study is a logical
step towards a stochastic parameterisation as it develops an understanding of flow
responses to a localised, periodic plunger forcing, which is intended to represent
transient eddy flux divergences.

In this study, the single-layer shallow-water system, set-up in a β-plane channel,
is linearised about a latitude-dependent zonal background flow and corresponding
geostrophic sea-surface height. The plunger-induced footprint – defined in the quasi-
linear framework as the time-averaged PV flux convergence – and its dependence
on background-flow parameters and plunger characteristics is the primary focus. For
uniform background flows, a typical footprint consists of a pool of positive/negative
PV flux convergence to the north/south (poleward/equatorward) of the forcing location,
which corresponds to a net-positive convergence of PV flux to the north. A similar
footprint dipole structure has been observed in the fully nonlinear quasi-geostrophic
system (Haidvogel & Rhines 1983; Waterman & Jayne 2012), thus promoting the
capabilities of the quasi-linear approximation adopted in this study. Dependent on
the uniform background flow, the dipole structure of the footprint is shifted zonally.
This shift, downstream of the background flow, can be as large as 400 km, and
therefore should be accounted for in a parameterisation of eddy fluxes. The footprint
behaviour is more obscure for a Gaussian-jet background flow, thus motivating the
definition of a more succinct measure of the meridional PV redistribution, namely, the
equivalent eddy flux (EEF). The EEF is calculated by separately integrating the zonal
average of the footprint to the north and south of the forcing latitude, multiplying
by a length scale over which the plunger redistributes PV meridionally, and then by
subtracting the southern component from the northern one. The result is a scalar value
quantifying the extent of the meridional PV redistribution by the plunger forcing.
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For uniform background flows, the EEF remains positive for all plunger forcing
latitudes corresponding to northwards PV flux convergence. Keeping the forcing
latitude fixed, the EEF has a robust bimodal structure when plotted against uniform
background flow U0 ∈ [−0.3, 0.5] m s−1 (see figure 8): one maximum for weak
westward background flows, one smaller maximum for eastward background flows
and a minimum in between for weak eastward flow. The maxima occur for
U0 = Uw ∈ [−0.031,−0.018] m s−1 and U0 = Ue ∈ [0.018, 0.081] m s−1, respectively
(dependent on forcing radius, latitude, frequency and Reynolds number). As the
uniform background flow grows larger in magnitude, the EEF tends to a small
positive value. The behaviour of the EEF may be attributed to two properties of the
solutions. Firstly, eigenmode decompositions indicate that a wide range of modes are
excited for U0 ≈ Uw and U0 ≈ Ue, which results in relatively strong flow responses,
and therefore a large EEF. Secondly, in our solutions the shape and propagation of
the forcing disturbance determines the extent of interaction between eddies of zonal
and meridional momentum. It is found, for example, that the minimum in the EEF
coincides with the U0-value at which the forcing disturbance does not propagate.
With no propagation, eddies of zonal and meridional momentum remain isotropic,
and out of phase with one another. This results in a lack of interaction and minimal
EEF values. These ideas are to be explored in more detail in a later study.

We also considered the PV redistribution in the presence of a Gaussian-jet
background flow. We find that the proximity of the forcing to the jet core plays
a crucial role in determining the nature of the PV redistribution. On the outer
flanks of the jet, we generally have strong positive EEF values, corresponding to a
sharpening of the jet profile which is attained by eastward acceleration of the jet core
and westward acceleration of the flanks. On the inner flanks of the jet, where the
forcing interacts directly with the jet core, large-scale zonal waves are excited which
act to decelerate the jet core (O’Rourke & Vallis 2013, 2016) and broaden the jet
profile. Note that all conclusions regarding EEFs are diagnostic and are a quasi-linear
approximation to the nonlinear case. To compare our findings to the fully nonlinear
case would be a worthwhile extension.

The footprints and EEFs provide a basis on which a future parameterisation of
eddy PV fluxes can be built, and their robust dependence on background flow and
forcing parameters is useful for closing a parameterisation on the large-scale flow. In
the quasi-geostrophic framework, the footprints and EEFs have previously been used
to define an eddy parameterisation to be included in a non-eddy-resolving model. In
Berloff (2015), a series of PV dipoles are scaled by the footprint and strategically
placed (motivated by eddy-resolving simulations) to form an external forcing in a non-
eddy-resolving model. In the resulting simulation a coherent eastward jet extension
– otherwise absent in the non-eddy-resolving model – forms, thus highlighting the
capabilities of the so-called plunger footprint method. It will be the aim of a future
study to apply this method in the shallow-water system, and thus define an eddy
parameterisation in a nonlinear shallow-water model.

In comparison to previous studies, in particular Berloff (2015), the present study
is novel due to its use of the β-plane shallow-water model which is inhomogeneous
with latitude, as opposed to the homogeneous quasi-geostrophic model. We also have
latitude-dependent forcing terms, background velocity and background sea-surface
height which provide other novel aspects. Furthermore, in Berloff (2015), in which
a doubly periodic domain is used, analytic methods are sufficient to calculate
plunger-induced solutions, whereas here we must invoke both numerical and analytic
methods in order to solve the governing equations in a singly periodic domain.
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The findings of the present study highlight numerous options for further progression.
(i) To consider equivalent eddy fluxes of momentum (zonal and meridional) and
buoyancy would be worthwhile, since a parameterisation of eddy momentum fluxes or
eddy buoyancy fluxes can be more directly included in a primitive equation model; a
parameterisation of eddy PV fluxes will require a mapping of the parameterisation into
prognostic variables. (ii) Extending the EEF analysis to the multi-layer shallow-water
system will allow for a more comprehensive eddy parameterisation, as the effects
of baroclinic instability will begin to be modelled. (iii) We have shown that the
shallow-water solver used in this study can account for forcing with stochastic
time dependence, but upgrading the algorithm to a time stepping method would
be a worthwhile extension. (iv) To consider how the energetics of the shallow-water
system depend on the forcing and background-flow parameters would be an interesting
extension. For example, do the maxima of the EEF correspond to highly energetic
solutions? (v) In this study we employ the quasi-linear approximation to produce
PV footprints which are qualitatively similar to footprints produced in the fully
nonlinear quasi-geostrophic system (Haidvogel & Rhines 1983; Waterman & Jayne
2012). A desirable extension would be to compute fully nonlinear footprints in the
shallow-water system, allowing for further testing of the quasi-linear approximation.

Appendix A. Shallow-water equation non-dimensionalisation
The dimensional shallow-water equations for a single fluid layer are:

Du
Dt
− fv =−g

∂η

∂x
+ ν∇2u− γ u+ F1, (A 1a)

Dv
Dt
+ fu=−g

∂η

∂y
+ ν∇2v − γ v + F2, (A 1b)

Dη
Dt
+ η

(
∂u
∂x
+
∂v

∂y

)
= F3. (A 1c)

The additional parameters not present in the non-dimensional set of (2.1–2.3)
are the viscosity ν and the vertical acceleration due to gravity g. For the non-
dimensionalisation, the velocity scale is U = 0.01 m s−1 and the length scale is
L = 3840 km, which is the basin size. The Lagrangian derivatives and forcing
terms are scaled using the advective time scale, Tadv = L/U, while the Coriolis
parameter is scaled by itself. The ocean depth η is scaled by considering geostrophic
balance. Table 2 presents a summary of the dimensional scales and the dimensionless
parameters. Substitution of these parameters into system (A 1a–c) yields system
(2.1)–(2.3).

Appendix B. Conservation of potential vorticity
The shallow-water potential vorticity is given by:

q=
ζ +

1
Ro

f

η
. (B 1)

This quantity is nonlinear, so in order to derive a conservation equation for PV in the
linear shallow-water framework used in this study, we must linearly approximate it.
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U = 0.01 m s−1, L= 3840 km, Tadv = L/U,
û= u/U, v̂ = v/U, η̂= gη/( f0UL),
x̂= x/L, ŷ= y/L, t̂= t/Tadv ,

f̂ = f /f0 = 1+ β̂ ŷ, β̂ =
Lβ
f0

, γ̂ = γ /f0,

F̂1 =
U2

L
F1, F̂2 =

U2

L
F2, F̂3 =

g
f0U2

F3,

Ro=U/Lf0, Re=UL/ν.

TABLE 2. A summary of the dimensional scalings and dimensionless parameters.

This approximation is

qlin =

ζ ′ −U0,y +
1

Ro
f

H0
+

U0,y −
1

Ro
f

H2
0

η′, (B 2)

=
ζ ′

H0
+Q

(
1−

η′

H0

)
, (B 3)

where the subscript y denotes a derivative with respect to y. For simplicity, we
immediately drop the subscript ‘lin’. To define a prognostic equation for the linearised
q, we manipulate the linearised governing equations (2.7)–(2.9). Differentiating the
zonal momentum equation (2.7) by y and the meridional momentum equation (2.8)
by x gives:

Ro
(
∂

∂t
+U0

∂

∂x

)
u′y = −RoU0,yu′x + ( f − RoU0,y)yv

′
+ ( f − RoU0,y)v

′

y − η
′

xy

+
Ro
Re
∇

2u′y − γ u′y + RoF1,y, (B 4)

Ro
(
∂

∂t
+U0

∂

∂x

)
v′x =−fu′x − η

′

xy +
Ro
Re
∇

2v′x − γ v
′

x + RoF2,x. (B 5)

Subtracting (B 4) from (B 5) gives a prognostic equation for the eddy relative vorticity:

Ro
(
∂

∂t
+U0

∂

∂x

)
ζ ′=−RoH0Q∇ · u′− Ro(H0Q)yv′+

Ro
Re
∇

2ζ ′− γ ζ ′+ Ro(F2,x − F1,y).

(B 6)
Now, from the continuity equation (2.9), we have an expression for the eddy

divergence:

∇ · u′ =−
H0,y

H0
v′ −

1
H0

Dtη
′
+

1
H0

F3. (B 7)

Substituting this into (B 6) gives:

Ro
(
∂

∂t
+U0

∂

∂x

)
ζ ′ = RoQ

(
H0,yv

′
+

(
∂

∂t
+U0

∂

∂x

)
η′ + F3

)
−Ro (H0Q)y v

′
+

Ro
Re
∇

2ζ ′ − γ ζ ′ + Ro(F2,x − F1,y). (B 8)
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Taking the derivative of η′ to the left-hand side and dividing by (RoH0) yields an
expression for the linearised PV:(

∂

∂t
+U0

∂

∂x

)
q =

QH0,y

H0
v′ −

(H0Q)y
H0

v′ +
1

Re
1

H0
∇

2ζ ′

−
γ

Ro
ζ ′

H0
+
(F2,x − F1,y)

H0
+

1
Ro f −U0,y

H2
0

F3. (B 9)

The first two terms on the right-hand side may be expressed more succinctly, giving
the equation for the conservation of PV in the linearised shallow-water system:(

∂

∂t
+U0

∂

∂x

)
q=Qyv

′
+

1
Re

1
H0
∇

2ζ ′ −
γ

Ro
ζ ′

H0
+
(F2,x − F1,y)

H0
+

Q
H0

F3. (B 10)
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