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We present measurements of mean and conditional number densities, radial distribution
functions (r.d.f.s), velocities and accelerations of sub-Kolmogorov-scale water droplets
entraining at a shearless turbulence–turbulence interface (TTI) and a turbulence–non-
turbulence interface (TNI). We thus look at statistics of an inhomogeneous inertial
particle field in both homogeneous and inhomogeneous turbulence. As in a previous
communication (Gerashchenko, Good & Warhaft J. Fluid Mech., vol. 818, 2011,
pp. 293–303), an active grid produces high-Reynolds number turbulence (Reλ = 275)
on either one or both sides of a splitter plate in a wind tunnel. Sprays seed droplets on
one side of the splitter plate, while screens dampen turbulence in the adjacent flow for
the TNI. Gravitational and inertial effects are isolated by turning of the apparatus with
respect to gravity. We parameterize the droplets under homogeneous conditions, where
it is demonstrated that both the sweeping and loitering effects on the droplet settling
velocities are present. In the inhomogeneous conditions, we show that the droplets are
entrained in bulk, resulting in large-scale clusters and preserving the droplet-ambient
conditions of the seeded side of the flows.

Key words: intermittency, particle/fluid flows, turbulent mixing

1. Introduction
Entrainment, the means by which turbulent flows spread and grow, is fundamental to

all turbulent flows with interfaces, be they interfaces with a laminar flow, or another
turbulent flow with different properties (e.g. length and energy scales). The subject
has been extensively studied in traditional turbulent shear flows (e.g. Townsend 1976)
for both the velocity and passive scalar fields, and for reactions (e.g. Broadwell &
Breidenthal 1982). There have been entrainment studies of turbulent plumes (Turner
1986), the atmospheric boundary layer (Deardorff 1974), stable density interfaces
(Kantha, Phillips & Azad 1977) and clouds (Shaw 2003; Andrejczuk et al. 2004).
Yet, while a significant amount of numerical and experimental work has been done
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372 G. H. Good, S. Gerashchenko and Z. Warhaft

FIGURE 1. Smoke-wire image from Jayesh & Warhaft (1994) demonstrating large-scale
intermittency at the interface between a highly turbulent and relatively quiescent flow. This is
like the TNI case in the present work, albeit in Jayesh & Warhaft (1994) the flow was created
using a combination of a passive grid and damping screens, and there were no droplets.

for the above-mentioned cases, comparatively little is known about the entrainment of
inertial particles, particles which are heavier than their surrounding fluid, such as the
water droplets in clouds, the droplets formed by spray injectors, or the soot particles
formed due to incomplete combustion in diesel engines.

While detailed knowledge is lacking on the entrainment of inertial particles,
considerable work has been done on the effects of turbulence on their settling
velocities (e.g. Murray 1970; Nielsen 1993; Wang & Maxey 1993; Aliseda et al.
2002), their small-scale clustering in isotropic conditions (Squires & Eaton 1991;
Wang & Maxey 1993; Sundaram & Collins 1997; Wood, Hwang & Eaton 2005; Saw
et al. 2008; Salazar et al. 2008), their inertial-scale density fluctuations in isotropic
conditions (Bec et al. 2007) and their mixing and preferential concentration in
complex flows (Lázaro & Lasheras 1989; Longmire & Eaton 1992). It is our objective
here to extend these investigations to explore the effects of entrainment on inertial
particle fields. Our study follows on from the earlier experiments of Gerashchenko,
Good & Warhaft (2011), here forth denoted as GGW.

The smoke-wire photo in figure 1 illustrates the type of entrainment process we
are concerned with. The photo shows no droplets, but rather a turbulent flow (above)
which entrains fluid from the adjacent, quiescent flow below it. At the interface, the
velocity field is intermittent at the large scales. We ask: what is the case when the
turbulent side of the flow is droplet-laden, like at the boundary of a cloud? Might
the particles entrain and cluster at the large scales? What is the role of gravity and
inertia, and how will the entrainment affect the particle dynamics, size and spatial
distributions? How dependent might such large-scale clustering be on the nature of the
entraining velocity field? That is, what is the difference in the clustering characteristics
of a particle field which has been entrained from a droplet-laden, turbulent region into
a dry region which is in one case non-turbulent (figure 1) and in another having the
same turbulence as the droplet-laden fluid?

We examine these questions by looking at two shearless interfaces, a homogeneous,
turbulence–turbulence interface (TTI), and a turbulence–non-turbulence interface (TNI),
similar to that in figure 1. In our flows, water droplets are injected into intense grid
turbulence on one side of a splitter plate; the adjacent, droplet-free flow is either
equally turbulent or nearly laminar. Downstream of the splitter plate an interface forms.
In the preliminary study of GGW, the mean particle density and size profiles were
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reported, as was some information on the mean particle velocities. Gravitational and
inertial effects were isolated by turning the apparatus with respect to the gravitational
field. It was shown that in the absence of gravity, the droplet size distribution did
not change across the interfaces. This means firstly that the large scales (which could
not distinguish between the variously sized droplets based on inertia) are responsible
for the entrainment, and secondly, that the particle-laden side of the flow is entrained
in bulk, such that the air ambient to the droplets remains saturated and they do not
evaporate. When gravity was directed across the interfaces in GGW, the droplets were
selectively transported based on their size. The TTI droplet mean number density
profiles were error functions, while the TNI profiles indicated a sharper fall-off in
the droplet mean number density. The mean velocity measurements of the particles
showed enhanced bulk particle transport for the TTI as compared with the TNI, but
they were unable to discern the effects of gravity.

In the present study, we use the same flow facility as in GGW to investigate the
entrainment mechanism and address the questions we have posed above. Here, we
have expanded the use of the word ‘entrainment’, which may typically describe the
drawing in of quiescent fluid by a turbulent flow (like at the TNI, as in figure 1).
We expand its use to include the entrainment of particle-free fluid by a particle-laden
flow with even the same turbulence (as in the TTI), since we will show that the
effect of the large eddies on the particle field has much in common with the classical
entrainment situation. To this end, we examine the particle velocity field, including
the higher-order moments, the particle radial distribution functions (r.d.f.s), conditional
statistics and acceleration measurements. Apart from background information and a
re-examination of the droplet mean number density data shown in GGW, all of the
results presented here are new.

The outline of the paper is as follows: in § 2 we describe the experimental apparatus.
This is followed by the results section. We first provide documentation on the velocity
field, including higher-order moments and spectra, before describing the properties
of the droplets in homogeneous conditions. We show that the settling speeds of the
polydispersed droplets may be either enhanced or reduced with respect to their Stokes
velocities, due to the competing effects of the turbulence on particle settling (Nielsen
1993), as discussed in § 3.2.2. After parameterizing the droplets, we turn our attention
to the inhomogeneous particle fields of the droplet mixing layers, and investigate
their mean number density profiles, r.d.f.s (defined in § 3.3.2) and some conditional
statistics. This is followed by an analysis of the droplet velocity and acceleration data.
In particular, we discern the subtle effects of gravity and inertia on the particle field,
and show that within the intermittent, large-scale clusters which contain most of the
droplets in the initially dry sides of the flows, the particle and fluid conditions are
similar to those in the droplet-laden side.

2. Experimental set-up
The experimental set-up is the same as in GGW. It allows for six different

configurations: two flows with three gravity cases each. The wind tunnel is divided
with a splitter plate and water droplets are injected via sprays into strongly turbulent
flow on one side (figure 2), downstream of an active grid (Mydlarski & Warhaft 1996;
Kang & Meneveau 2008). The adjacent, droplet-free flow is made either turbulent or
non-turbulent by means of the same active grid or damping screens. Downstream of
the 2.5 m splitter plate there is either a TTI or TNI, and a mixing layer develops.
The mixing layer is kept shearless in both cases, such that only turbulence–turbulence
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FIGURE 2. (Colour online available at journals.cambridge.org/flm) Sketches of the TTI (a)
and TNI (b) flow apparatus. For the sketches, the g+, g− and g0 cases are with gravity
directed down, up and into the page, respectively. The active grid (black dashed line) has
mesh length 10 cm, while the screens (dotted line) have mesh length 2 mm. Sprays inject
droplets into the turbulent side of the flows. The splitter plate (SP) is 2.5 m long and the test
section (TS), where the bulk of the measurements are done, is 1.17 m beyond its trailing edge.

interactions are present (Veeravalli & Warhaft 1989; GGW). The sprays consist of
three 1 mm diameter coflowing air and water nozzles, placed 5 cm downstream of the
active grid (Gerashchenko et al. 2008). As shown in Gerashchenko et al. (2008), by
the time the droplets reach the test section the effect of excess momentum produced
by the sprays is diluted such that no abnormalities in the mean profiles are observed.
The flow configurations (figure 2) may be rotated by 90 and 180◦ such that the splitter
plate is horizontal and gravity either aids (g+) or impedes (g−) droplet transport into
the adjacent flow, or is vertical such that gravity is orthogonal to the mixing layer
(g0).

The longitudinal and transverse coordinates are defined as x and y, with the
origin at the splitter plate trailing edge; positive y values denote distance into the
droplet injection region. The test section is at x = 1.17 m, which is 0.7 large-eddy
turnover times from the splitter plate trailing edge. The mean tunnel velocity is
U = 2.15 m s−1, with fluctuating longitudinal and transverse components defined as
u and v, respectively. The negative of the transverse velocity, −v, will be presented
in figures such that mean transport across the mixing layers is seen as positive.
Fluid velocity components were measured using a hot-wire anemometer X-array with
3.05 µm tungsten wires (Mydlarski & Warhaft 1996). Droplet size, velocity and linear
(one-dimensional, 1D) density statistics were measured with a two-component Phase
Doppler Particle Analyzer (PDPA, TSI Inc.). Within the droplet-laden side of the flows,
the air is saturated or nearly saturated and calculations show evaporative effects to
be negligible. Droplet size distribution measurements at both the initial condition and
test section confirm this. Given the flight time of the particles to the test section,
calculations do show that a droplet in the ambient conditions of the dry side of the
flows should experience severe evaporative effects, altering their numbers and size
distribution. The g0 droplet size profiles of GGW showed this not to be the case,
however, and the reasons for this are the purview of the present study. Calculations
also show the temperature differences across the interface to be too small to result in
buoyancy effects. The small PDPA measurement volume (300 µm × 50 µm × 50 µm)
and seeding density (mwater/mair ≈ 10−5) allow accurate velocity, size and number
density measurements (Gerashchenko et al. 2008). PDPA and hot-wire measurements
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confirm that the particle and velocity fields are statistically homogeneous in the
z direction, that is, parallel to the splitter plate trailing edge. The number of PDPA
droplet measurements depended on the location, but they were generally of order 104

for the number density and 105 for the velocity data. The difference is due to the
periodic need for number density reference measurements due to long-time fluctuations
in the spray output.

Some droplet acceleration measurements are also shown. These were performed
using a unique, Lagrangian particle tracking system which utilizes a high-speed
camera (Phantom v7.1) attached to a precision, linearly translating sled developed
by Armann Gylfason (Ayyalasomayajula et al. 2006). The sled is pneumatically
driven at the mean flow speed in order to track particles over many frames. The
sled moves outside of and parallel to the wind tunnel’s glass walls. The camera
delivered 8000 frames per second and its resolution was 512 × 512 pixels. The
particles were illuminated by means of forward scattering from a laser beam (Nd-YAG,
20 W, pulse width 120 ns, 40 kHz pulse) connected to the sled via a fibre optic
cable and projected in the Lagrangian frame. The forward scattering was achieved by
reflection of the beam off of a mirror on the far wall of the tunnel, as in Gerashchenko
et al. (2008). (For some measurements, a periscope assembly was introduced to the
sled to measure at various y locations in the gravitational cases, where the splitter
plate is horizontal.) The particles were tracked over a distance of 50 cm, centred at
the test section, through which the sled velocity is constant. This large measurement
window (compared with the PDPA measurement volume) is necessary in order to
achieve adequate particle tracks for determining accelerations statistics. Each movie is
individually postprocessed by subtracting the minimum observed brightness for each
pixel. The particle tracking algorithm developed by the Bodenschatz group (Voth
et al. 2002; Ouellette et al. 2006) was used and the accelerations were calculated
by the convolution of the measured particle tracks with a Gaussian smoothing and
differentiating filter (Mordant, Crawford & Bodenschatz 2004). The acceleration data
shown are based on individual droplet acceleration measurements numbering of the
order of 106.

3. Results
In this section, we characterize the air flows with hot-wire measurements, and this is

followed by the droplet data, which were measured using both PDPA and Lagrangian
particle tracking techniques.

3.1. The velocity field
We begin with velocity profiles of the TTI and TNI and use these to define the
dominant turbulence scales. This is followed by an examination of the velocity spectra
and the fluid velocity moments, the latter of which describe large-scale intermittency
in the flows.

3.1.1. The turbulence interfaces
Longitudinal, u, and transverse, v, velocity root mean square (r.m.s.) components

are shown in figure 3, as is the turbulence dissipation rate, calculated as ε ≈
15(ν/U2)〈(∂u/∂t)2〉 based on Taylor’s hypothesis, where ν is the kinematic viscosity
of air. The values are nearly constant across the TTI, while for the TNI, as shown
by Veeravalli & Warhaft (1989), the profiles are approximately error functions. The
turbulent kinetic energy (k ≈ (1/2)(u2

rms+2·v2
rms)) ratio across the TNI is approximately

30, and the interface is thus dominated by the highly turbulent side of the flow and
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FIGURE 3. (Colour online) Hot-wire profiles of the velocity r.m.s. (filled symbols) and
dissipation (open symbols) at the test section for the TTI (squares) and TNI (circles). The
u and v velocity r.m.s. components have dashed and dotted lines, respectively. To avoid
clutter, error bars are shown at representative locations only.

Re′λ ε ′ (m2 s−3) U (m s−1) u′rms (m s−1) v′rms (m s−1) T.I.′ (%)
275(12) 0.138(0.006) 2.15(0.05) 0.31(0.01) 0.24(0.01) 14.4(0.8)

λ′ (cm) η′ (mm) τ ′η (ms) u′η (cm s−1) `′ (cm) τ ′` (s)
1.3(0.04) 0.397(0.006) 10.5(0.3) 3.8(0.6) 24(2) 0.8(0.09)

TABLE 1. Flow Parameters in the TNI high turbulence, or equivalently, the TTI turbulence,
as signified by the primes. The mean velocity does not vary across the shearless interfaces.
The Taylor microscale and its Reynolds number are defined as λ ≡√15νu2

rms/ε and
Reλ ≡ urmsλ/ν. The turbulence intensity, T.I.′ is defined as u′rms/U.

its scales (GGW). The transverse coordinate, y, is normalized by the integral length
scale, `′, as determined from the longitudinal velocity spectra in the TTI (or the high-
turbulence side of the TNI). Table 1 shows characteristic flow parameters at the test
section, as measured in the high-energy turbulence of the TTI and the high-turbulence
side of the TNI. Primes denote the (constant) values in this turbulence. The turbulence
anisotropy, u′rms/v

′
rms, is around 1.3, consistent with Mydlarski & Warhaft (1996).

The Kolmogorov eddy velocity and time microscales are defined as uη ≡ (νε)1/4 and
τη ≡√ν/ε.

3.1.2. The velocity spectra
Figure 4(a) shows the longitudinal velocity power spectra, F11(κ), across the TNI,

normalized with local dissipation scaling. Energy spectra, κF11(κ), are shown in
figure 4(b), normalized by the high-turbulence side large-eddy scales. The spectra
locations are denoted in the figure 4(b) inset, which also shows the variation of the
mean dissipation length scale, η ≡ (ν3/ε)

1/4. As the TNI is traversed from the high-
to low-turbulence sides, the energy decreases. (This is most evident in figure 4b.)
However, there is some low-energy, large-scale noise on the low-turbulence side,
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FIGURE 4. (Colour online) Power (a) and energy spectra (b) for the TNI, normalized
with local dissipation scaling (a) and the high-turbulence side large-eddy scales (b). The
inset shows the profile of η at the test section; vertical lines illustrate the locations of the
spectra in the main figures (y/`′ ≈ ±1.25,±0.4, 0), with lines from left to right in the inset
corresponding to spectra from bottom to top in the figures. Only three power spectra are
shown to avoid clutter from the collapse (y/`′ ≈−1.25, 0.4, 1.25).
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FIGURE 5. (Colour online) Profiles of the velocity skewness (a) and kurtosis (b). Squares are
TTI profiles at the test section. TNI profiles upstream (t/τ`′ ≈ 0.4, x = 0.7 m), downstream
(t/τ`′ ≈ 1.1, x = 1.8 m) and at the test section (t/τ`′ ≈ 0.7, x = 1.20 m) are denoted by
upward- and downward-pointing triangles and circles, respectively.

present also at the initial condition. Its low energy suggests that it does not play a
significant role in the turbulence dynamics.

3.1.3. Large-scale intermittency and ‘bursting’
Figure 5 shows the normalized third and fourth fluid fluctuating velocity moments.

For the TTI case these are close to Gaussian, as expected, while for the TNI case the
values become strongly non-Gaussian and peak in the low-turbulence region. Peaks of
skewness and kurtosis coincide and their displacement grows with the mixing layer, as
does `. There is additionally slight but monotonic growth in the peak magnitudes of
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Droplet group 〈d〉 (µm) 〈Stη′〉 〈Svη′〉 〈St`′〉 〈Sv`′〉
Small 13.8 (0.3) 0.061 (0.002) 0.17 (0.026) 8 (0.9)× 10−4 0.026 (0.001)
Intermediate 27.2 (0.3) 0.225 (0.006) 0.61 (0.01) 3 (0.3)× 10−3 0.096 (0.004)
Large 51.2 (0.5) 0.81 (0.02) 2.2 (0.3) 0.011 (0.001) 0.35 (0.01)
All 22.7 (0.7) 0.2 (0.03) 0.54 (0.01) 2.8 (0.1)×10−3 0.07 (0.002)

TABLE 2. Droplet parameters in the injection side of the flows. Droplets with d 6 20,
20 6 d 6 40 and d > 40 µm belong to the small, intermediate and large droplet groups,
respectively.

both the skewness and kurtosis downstream of the splitter plate. At the test section
the peak location is y/`′ ≈ −1/3, where intermittent, large-scale turbulent ‘bursts’
penetrate into the adjacent, quiescent flow, resulting in the strong departure from
Gaussian statistics (GGW; Veeravalli & Warhaft 1989). The bursting events dominate
the low-turbulence-side velocity moments. As referred to in the introduction, figure 1
(from Jayesh & Warhaft 1994) shows a smoke-wire image of a multi-scale interface
between a very turbulent and relatively quiescent flow generated by a passive grid
and damping screens in a wind tunnel. The interface is similar to the TNI. The fluid
within the interface-penetrating, large-scale ‘bursts’ is quite distinct from that in the
quiescent region and appears to have the same turbulence characteristics as the flow
above. In both the TTI and TNI, it is expected that the large scales which penetrate the
interfaces are also particle-laden and will result in large-scale droplet clusters. (While
such ‘bursts’ for the TTI are indistinguishable in the velocity field, we show that they
are distinguishable by their droplet content.) The role of the large scales and their
intermittency in the droplet entrainment mechanisms for the TTI and TNI will be
discussed in §§ 3.3–3.5.

3.2. The droplets in homogeneous conditions
Here, we describe the droplet size distribution as measured far into the seeded side
of the flows at the test section (y/`′ ≈ 1). We call this the homogeneous region, as it
has neither gradients in the turbulence mean quantities nor in the droplet mean number
density. The primed values of tables 1 and 2 apply for all data here. The relevant
droplet parameters are discussed, as is the resulting bifurcation in settling effects,
whereby the turbulence enhances the settling of the small droplets while diminishing
that of the large droplets as compared with their Stokes velocities.

3.2.1. The droplet size distribution
Figure 6 shows the droplet size (diameter, d) distribution in the homogeneous

region. For the purposes of the present study the distribution has been conditioned
primarily into two groups, d 6 20 µm and d > 40 µm, here forth referred to as the
small and large droplet groups, respectively (delineated in figure 6). The droplet
group Stokes and settling parameters are listed in table 2, and are defined as
Stη ≡ τp/τη and Svη ≡ τpg/uη for the Kolmogorov microscales, and as St` ≡ τp/τ`
and Sv` ≡ τpg/vrms for the large scales of the turbulence, where the particle response
time τp ≡ ρp〈d2〉/18µ and τ` ≡ `/urms. We note that while the full droplet size
distribution can vary strongly as a function of y in the gravitational cases (due
to the selective transport of the droplets, GGW), the variation is weak within the
subdistributions presented here. Both the large- and small-scale settling parameters,
Sv`′ and Svη′ , respectively (table 2), have order one values for the large droplets
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FIGURE 6. (Colour online) Normalized droplet diameter probability distribution as measured
in the droplet bulk (y/`′ ≈ 1) at the test section. Circles, squares and stars represent the small,
intermediate and large droplet groups, respectively, separated by dashed lines. This smoother
p.d.f. was measured under nominally the same conditions as that shown in GGW, but is
based on substantially longer data sets consisting of hundreds of thousands rather than tens of
thousands of measurements.

and comparatively small values for the small droplets. The range of Stη′ values is
similarly comprehensive; St`′ , however, is very small for all droplets, and so we do
not anticipate that the large scales of the flow may effectively discriminate between the
variously sized droplets due to their inertia.

3.2.2. Droplet settling
A number of mechanisms exist by which small, heavy particles may have their

settling velocities enhanced or reduced in turbulent flows, and this requires some
background. Settling enhancement may be facilitated via mass loading (Aliseda et al.
2002) or more generally via the ‘sweeping’ or ‘fast-tracking’ mechanism, by which
falling particles show preference for the downward-sweeping sides of eddies. This
mechanism has been well-documented in experiments (Aliseda et al. 2002; Hill 2005),
direct numerical simulations (DNSs) (Wang & Maxey 1993) and theory (Dávila &
Hunt 2001). The effect is substantial for order one microscale Stokes and settling
parameters (Wang & Maxey 1993). The numerical simulations of Yang & Lei (1998),
however, have also shown this effect to be strongly dependent on the large eddies.

Settling velocity reduction may be achieved for small, tracer-like particles by vortex
trapping (Manton 1974; Tooby, Gerald & John 1977), by nonlinear drag for large,
heavy particles (Mei 1994) or by the loitering effect. The loitering effect, as described
by Nielsen (1993), occurs when the turbulence is weak relative to the particle Stokes
velocities and thus the particles fall too quickly through the flow field to react to the
eddies and spend more time on average in upward-moving regions of the flow. This
may result in a mean settling velocity reduction of up to 40 % when compared with
a particle’s Stokes velocity (Nielsen 1993). Experiments (Murray 1970; Nielsen 1993;
Kawanisi & Shiozaki 2008) have shown the relevant parameter to be Sv`. Transition
from settling enhancement to reduction occurs in the Sv` range 10−1–100, with the
critical value varying with Stokes number (Kawanisi & Shiozaki 2008). When the Sv`
number is sufficiently large, there is a return to the quiescent terminal velocity.

Our droplets are too heavy to undergo vortex trapping and are generally too
small to undergo nonlinear drag due to either large Reynolds numbers or significant
deformation, with only the largest droplets having particle Reynolds numbers based
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FIGURE 7. (Colour online) Settling velocity enhancement versus settling parameter, Sv`,
in the homogeneous, high-turbulence side of the flows with homogeneous particle seeding.
Black circles, open squares and stars represent the small, intermediate and large droplet
groups, respectively. The inset shows the settling velocity normalized by v′rms. The black line
shows the droplet Stokes velocities.

on slip velocity (approximated as Rep ≈ τpgd/ν) greater than order 10−1, or droplet
Weber numbers (We ≡ ρpv

2
Std/σ , σ being the surface tension) greater than order 10−2.

The droplet Sv` range, however, is sufficient for both enhancement of the small
droplet settling velocities by the fast-tracking mechanism and reduction of the large
droplet settling velocities due to the loitering effect. This is shown in figure 7, where,
following the Nielsen (1993) scaling, the settling velocity (W) enhancement is plotted
as a function of Sv` in the homogeneous region. (Whereas Nielsen (1993) adjusted
turbulence levels in a flume seeded with monodispersed particles, in the present
study we observe polydispered particles in a shared turbulent flow.) Clearly, the
measurements show a transition from settling enhancement to reduction to occur in
the Sv` range of 10−1–100, and this is in agreement with Kawanisi & Shiozaki (2008).

To the best of the authors’ knowledge, this is the first report of the loitering
effect in wind tunnel turbulence. The loitering effect has been largely overlooked
outside the fields of sedimentation and hydrology. For small Sv`, the turbulence is
strong relative to the particle Stokes velocities. The settling speed of these particles
is insensitive to differences in Stokes velocities, and is instead proportional to the
velocities of the eddies which fast-track them. This is further illustrated in the inset
to figure 7, where W/v′rms is shown to be approximately constant up to Sv` ∼ 1. From
the inset, W/v′rms ≈ 0.1, but there was variation between data sets, with some showing
a proportionality constant closer to 0.2, although the same trend. These values are
within the range documented by Kawanisi & Shiozaki (2008). (The rising velocities
of λ-scale, buoyant particles has also been shown by Friedman & Katz (2002) to be
proportional to 25 % of the turbulence r.m.s. velocity, regardless of Stokes number
variation.) For the large Sv` droplets in our flow (the scatter is due to the relatively
low numbers of these droplets), there is the expected increase in W, although it always
remains less than the droplet Stokes velocities (τpg), as is clear from both the main
figure and the Stokes velocities line in the inset.

The large-scale settling parameter, Sv` ≡ τpg/vrms, may alternatively be expressed as
Sv` ≡ τ`/(`/τpg), the ratio of the characteristic time of a large eddy to the time for
a particle travelling at its Stokes velocity to pass it, and the same interpretation is
true for Svη and the interaction of particles with smaller eddies. Particles which fall
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Study Present Kawanisi &
Shiozaki
(2008)

Aliseda
et al. (2002)

Wang &
Maxey
(1993)

Yang &
Shy

(2005)

Type Active grid Flume & KS Passive grid DNS FWM
Reλ 275 N/A 75 20–60 73–202
urms/uη 8 N/A 2.8–3.7 2.3–4.3 4.4–7.2
`/η 600 N/A 180–205 21–33 43–83
d (µm) 5–75 40–600 5–50 N/A 12–40
Stη 0.007–6 N/A 0.01–5 1–2.7 0.36–1.9
Svη 0.02–15 N/A 10−4–0.014 0.4–4 0.9–6
St` 10−4–0.08 0.0003–0.06 10−3–0.1 0.002–0.012 0.01–10.4
Sv` 10−3–2.5 0.05–5 <0.005 0.1–1.7 0.12–1.4

TABLE 3. Comparison with studies on particle settling. Values are approximate, and for the
present study reflect the full range shown in figures 7 and 8. In the flume studies showing
bifurcated settling effects (Nielsen 1993; Kawanisi & Shiozaki 2008), we note that the
turbulence r.m.s. was estimated from the particle r.m.s. velocities, which is reasonable for
scaling purposes. Those statistics which are either not available or not applicable are listed
as ‘N/A’. For Kawanisi & Shiozaki (2008), KS stands for kinematic simulation. FWM
denotes ‘French washing machine’, a general description of the air turbulence experimental
apparatus of Yang & Shy (2005).

too quickly through the flow field to effectively preference the downward-sweeping
sides of eddies will experience a net reduction in their mean settling velocity, spending
more time ‘loitering’ in upward-moving regions of the flow than they do ‘fast-tracking’
through downward-moving regions. Looking again to the figure 7 inset and the black
line representing the Stokes velocities, it is clear that as a result of both the fast-
tracking and loitering effects, the range of settling velocities observed for the droplet
distribution is much diminished from what is predicted by Stokes drag.

Table 3 compares our parameter range with studies focused on particle settling. It
is evident that there is large scale separation, (`/η)′, in the intense turbulence of the
present flow. This is particularly true when compared with the well-known DNS study
of Wang & Maxey (1993), but also with the experiments of Yang & Shy (2005).
Particle loitering was not observed in Yang & Shy (2005), which has a similar Sv`
range to the present study, but also much greater St` values. Our large-scale droplet
parameters are comparable with the flume study of Kawanisi & Shiozaki (2008).
The settling parameters in our flow are considerably larger than in the passive grid
turbulence study of Aliseda et al. (2002), while the droplet parameters are comparable
in general with Wang & Maxey (1993).

3.3. The droplet mixing layers

We now turn to the particles in the inhomogeneous conditions of the droplet mixing
layers, addressing both their mean droplet number density profiles and r.d.f.s. While
the mean number density profiles describe the droplet mixing layers by their mean
quantities, the r.d.f.s measure how the droplets are spatially distributed. We show that
the mean droplet number density (n) evolves analogously to the (Fickian) diffusion
of a concentration species. This is the case for both the TTI and TNI, despite the
large-scale intermittency of the TNI. We also show the effect of the entrainment on the
r.d.f.s, and lay the groundwork for the proceeding sections.
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FIGURE 8. (Colour online) Droplet number density profiles for the TTI (a) and TNI (b).
Circles and stars denote the small and large droplet groups, respectively, for both the g+
(filled symbols) and g− (open symbols) cases. Open squares denote the g0 small droplet case.
Lines are error function fits for the TTI and finite-element method (FEM) fits for the TNI (see
the text); the insets show the main figure fits shifted to converge asymptotically.

3.3.1. Mean droplet number density profiles
The mean droplet number density (n) profiles for the large and small droplet groups

are shown for the TTI and TNI cases in figure 8. (The droplet number density is
determined from the linear density of droplets measured by the PDPA, and normalized
by the maximum value at that downstream location, nmax . Figure 4 of GGW shows
profiles from the same data sets for the full distribution and for droplets with
d > 50 µm.) There are two important aspects: the shape of the profiles and their
relative positions (abscissa).

The mean droplet number density profiles for the TTI case are error functions
(as reported in GGW). This indicates that for the TTI, n evolves to first-order like
any concentration species does from a step initial condition in a domain with a
homogeneous diffusivity. The TNI case by contrast is strongly inhomogeneous, and
so error function profiles of n are neither expected nor observed. The TNI n profiles
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(figure 8b) are overlaid with solutions from a simple, advection–diffusion model for
n in a domain with variable (turbulent) diffusivity (as opposed to the homogeneous
diffusivity of the TTI mixing layer), which is described in appendix A. The purpose of
the model is to demonstrate what properties of the droplet mixing layers can be easily
modelled, despite a number of simplifying assumptions and the complexities of both
turbulent entrainment and multiscale turbulence. It is evident from the fits that the time
evolution of the mean quantity n may be captured by a simple advection–diffusion
model for the TNI, just like for the TTI.

The insets to figure 8 show the main figure fits artificially shifted to converge at
the tails. Since the first-order effect of the particle settling on the n profiles (as a
function of droplet size) is a lateral shift, we take their shape to be indicative of
the turbulent mixing alone. Here, ‘mixing’ is defined for the mean particle number
density analogously as for a diffusive scalar, that is, as the ability of the flow and
mean number density gradients to cause the mean number density field to become
more uniform. A droplet mixing layer with a more gradual fall-off in its mean droplet
number density is hence more effectively ‘mixed’ than one with a steeper fall-off
and narrower interface, regardless of abscissa. We see in the insets that there is
some discernable change in the profile shapes for the large droplets with gravity as
compared with the small droplet and g0 cases. The large droplet cases have a sharper
fall-off in n for the TTI and TNI g+ cases, but not for the TNI g− case. The more
gradual fall-off in n for the TNI g− large droplet case can be explained by the fact
that its droplets are shifted further into the high-turbulence side of the TNI. The large
droplet g0 case has been omitted to avoid clutter. It was shown in GGW that for the
g0 cases n is insensitive to droplet size, and thus that the large scales which do not
effectively discriminate between the droplets due to their inertia (see St`′ in table 2),
dominate the entrainment. From the inset to figure 8(a), however, it is apparent that
the turbulent mixing may be sensitive to Sv` when gravity is directed across the
interface, with the droplet number density effective diffusivities being diminished for
the large droplets with gravity.

The relative shifting of the n profiles (figure 8) is of the order expected from
gravitational settling (GGW). Apart from this, however, we also observed comparable
shifts due to slight difference in the initial conditions for the flows, and these are
discussed in appendix B. Valid comparisons of the profile abscissae may still be made
within a given flow case, however. For example, the shift between the small and large
droplet number density profiles is relatively small for the TTI g− case as compared
with the TTI g+ case. This indicates the broken symmetry of gravity aiding versus
inhibiting the droplet transport.

3.3.2. Droplet r.d.f.s and conditional number densities
The r.d.f. is the established measurement of particle clustering, and is defined

as the average density of the particles in a volume shell/slice at a fixed distance
from a central particle, normalized by the mean density of the particles in the
domain (McQuarrie 1976). Both the r.d.f., g(r), and related pair correlation function,
h(r) ≡ g(r) − 1, have been used to study the inertial clustering of heavy particles
in homogeneous turbulence (e.g. Sundaram & Collins 1997; Wood et al. 2005; Saw
et al. 2008; Salazar et al. 2008). The r.d.f. is of particular interest in cloud physics
because it contains vital information for predicting particle collisions (Shaw, Kostinski
& Larsen 2002; Shaw 2003). (Shaw et al. 2002 computed the pair correlation function
for droplets both within a cloud and for traverses including ambient air). The 1D
r.d.f. is defined as g(r) ≡ (Nr/δr)/(N/L) (e.g. Holtzer & Collins 2002), that is, the
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FIGURE 9. Radial distribution function, g(r), for the g+ case with small droplets for the TTI
(a) and TNI (b). The measurement locations are at y/`′ = 1, 1/4, 0,−1/4 and −1/2 for the
TTI and y/`′ = 5/6, 0,−1/6,−1/3 and −1/2 for the TNI, denoted by the solid line, ×, 4, +
and ♦, respectively.

average number of particle pairs with separation distance r, (Nr, with a bin width
of δr), normalized by the mean droplet linear number density, n ≡ N/L. The droplet
separations were determined using Taylor’s hypothesis and the Eulerian PDPA data.

The important features of our r.d.f.s did not differ qualitatively between the flow
(TTI and TNI) and gravitational cases, nor between the droplet groups (except that
the r.d.f.s are sensitive to the relative positions of the mean number density profiles
of figure 8). Figure 9 thus shows r.d.f.s for the g+ small droplets only, as they are
most numerous and their statistical error is lowest. Looking at the seeded region,
(y/`′ ≈ 1), g(r) is relatively uniform. This is particularly true for the small droplets,
whose Stη (table 2) is too small for significant, small-scale inertial clustering. For the
large droplets (not shown), the values do tend to increase for very small r, consistent
with their order one Stη (Saw et al. 2008). Moving across the droplet mixing layers
to negative y/`′, the magnitude of g(r/`′ < 1) increases strongly and monotonically,
consistent with the decreasing mean number densities (figure 8). There is however a
sharp decrease with r in the r.d.f. through r/`′ ≈ 1. This indicates that the droplets
are organized into integral-scale clusters. There is a dip in g(r) at r/`′ ≈ 2 to subunity
values which grows across the mixing layers. This dip is a result of the droplet-free
gaps between the large-scale clusters. It is useful to refer back to the figure 1 image,
imagining the turbulent bursts to be droplet-laden. The 1D g(r) functions measure
the droplet spatial distribution along lines tracing horizontally through the flow. The
large-scale clustering is indicated where the lines trace through alternating droplet-free
and droplet-laden regions of fluid. Since droplet-laden large scales penetrate both
the TTI and the TNI, the large-scale clusters result for both, despite the absence of
large-scale intermittency in the TTI velocity field. By clustering, we simply mean the
state of the particle field as being spatially correlated rather than randomly distributed.
While the large-scale clusters might be expected (and a passive scalar would likely
behave in a similar way to the particles), it is not entirely obvious since it is not
clear how the time scale of the formation of such clusters compares with that of their
breakup/dispersion as a result of the ambient turbulence.

The large-scale clusters are observed for both the small and large droplet groups.
Unlike for inertial clustering, large-scale clusters due to entrainment should persist
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FIGURE 10. Product g(r) · (n/nmax) for the g+ case small droplets for the TTI (a) and TNI
(b). The measurement locations are at y/`′ = 1, 1/4, 0,−1/4 and −1/2 for the TTI and
y/`′ = 5/6, 0,−1/6,−1/3 and −1/2 for the TNI, denoted by the solid line, ×, 4, + and ♦,
respectively.

as St → 0. In fact, the mechanism should only be less effective for very heavy
particles as St, Sv→∞, since such particles may not effectively follow turbulent
bursts across the interface. We expect some differences in the clustering for the large
and small droplet groups in the presence of gravity due to their Sv` values (table 2).
This is difficult to determine with our r.d.f.s, however, since the two droplet groups
can have very different local mean number densities in the gravitational cases.

The sharp increases in g(r) for r/`′ < 1 (figure 9) are clearly due to the declining
mean number densities (figure 8), but the question remains as to whether the
properties within the large-scale clusters remain unchanged. While figure 9 presents
the r.d.f.s in the typical fashion, it is instructive in our case to correct for the
mean number density differences at each y/`′ location by multiplying the r.d.f.s by
n/nmax . This is done in figure 10, which allows us to see the density changes in the
mixing layers of droplet pairs with various separation distances. The values at the
right end of the r/`′ axes in figure 10 show the local mean number density (since
limr→∞ g(r) = 1), while the values on the left extreme (r/`′ � 1) essentially show
the droplet densities within the large-scale clusters. While the droplet mean number
densities at y/`′ = −1/2 are one and two orders of magnitude less than that in the
source region for the TTI and TNI (figure 8), respectively, the droplet densities within
the large-scale clusters only appear to be diminished by tens of percents. The droplet
densities are thus largely preserved within the large-scale clusters in the entrainment
zone.

Figure 11 shows conditioned profiles of the mean droplet number densities for
the TTI and TNI g0 cases; the unconditioned mean number density profiles are also
shown for comparison. For the conditioned profiles, the large, droplet-free spaces
in the droplet measurement time series are ignored in calculating the mean number
densities. These spaces are identified using a threshold value of the largest droplet
separations in the seeded side of the flows, where there are no large-scale droplet
clusters. The conditional profiles show that the droplet number densities within the
large-scale clusters vary far less than the mean number densities, confirming the results
of figure 10. The profiles also indicate that the conditional densities for the TNI are
in fact higher than for the TTI, which is opposite to the case for the mean profiles.
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FIGURE 11. Conditional (filled symbols) and regular (open symbols) mean droplet number
density profiles for the TTI (squares) and TNI (circles) g0 cases. The unconditioned profiles
are the same as in figure 8.

This is due to the nature of the entrainment mechanism. The droplets are entrained in
droplet-laden, large-scale clusters which break up and disperse over time such that the
droplets become more uniformly distributed. The ambient turbulence of the TTI aids in
this dispersal, while the quiescent conditions of the TNI allow the clusters to endure.
We also note that the conditional profiles are not monotonic in y, and this fits with our
description of the entrainment. The growing droplet mixing layer introduces droplets
to previously droplet-free regions via the clusters described above. The clusters in the
low-mean-density, ‘growth’ region have shorter regional time histories than those in
the central portion of the mixing layer, since the growth region has only clusters which
have recently penetrated to their current position. These droplet clusters have had little
time to break up and disperse, and so it is possible for the droplets and turbulence
within them to retain a state more similar to the source region than to the ‘dispersed’,
or mixed region in between, where the large-scale clusters have had time to break
up are less dense on average. In figure 11, we may then identify the growth regions
by their increase in the cluster-conditioned droplet densities. These regions roughly
correspond to where the unconditioned droplet mean number density n/nmax . 10−2.
Referring back to figure 10, we note that the (n/nmax)g(r/`′� 1) values were similarly
non-monotonic in y.

3.4. Droplet entrainment and velocity statistics

In this section we examine the droplet entrainment using their velocity data. In
particular, we examine the role of the mean number density gradients and large-scale
clustering on the mean droplet velocities and the moments of the velocity distributions.

3.4.1. Droplet mean velocities and transport
Mean droplet velocity (−Vp) profiles are shown in figure 12. Clearly, the mean

velocities increase across the mixing layers for both the small and large droplet
groups and all flow cases. In GGW we could not discern velocity differences between
the g+ and g− cases due to poorer resolution of the velocity data. Here, we
discern the velocity differences between the small and large droplets; the difference
is generally smaller than that predicted by the droplet group Stokes velocities
(1Sv`′ ≡ 1τpg/v′rms ≈ 0.3, table 2), consistent with the turbulence settling effects
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FIGURE 12. (Colour online) TTI (a) and TNI (b) mean transverse droplet velocity profiles
across the mixing layers. Circles and stars denote small and large droplet groups, respectively,
for both the g+ (filled symbols) and g− (open symbols) cases. The small and large droplet
groups are further distinguished by dotted and dashed lines for the TTI, and mixed-dashed
and solid lines for the TNI. Filled and open diamonds, for the TTI and TNI, respectively,
show the expected mean velocity based on a Fickian mixing model and the g0 number density
profile fits of figure 8. The error bars shown here and for figures 14–15 are 95 % confidence
intervals, and in some cases are similar in size to the data point symbols. They are shown only
for the (less numerous) large droplet data to avoid clutter.

described in § 3.2.2. We note that in figure 12 there is a crossing of the large- and
small-droplet velocity profiles for the TNI g+ case. The other flow case velocity
profiles also show a tendency to converge (at large negative y), but they are not seen to
cross. There are two mechanisms by which these trends may result; the first relates to
gradient-driven transport and may result in crossing, and the second to the intermittent
penetration of the large scales across the interfaces.

The crossing of mean velocity profiles is expected when the mean velocity is tied to
gradients in the local number density field, as it is in Fickian mixing. If the droplet
field shifts due to gravitational settling, so do the velocity profiles. In this scenario, a
shift in abscissa for a given droplet group due to gravitational settling has an effect
opposite to that of the particle settling velocity on the local mean velocity. This is
perhaps best understood in the following way: if a particle g0 case has number density
n0(y, t) and mean velocity profile V0(y, t), where t is the advection time from the
initial condition (t = 0), then, to first order, the g+ case has n+(y, t) = n0(y + Wt, t)
and V+(y, t) = V0(y +Wt, t) +W, where W is the particle settling velocity. While the
W term increases the mean velocity uniformly, the downstream shift in abscissa (Wt)
moves the gravity case down the V0 curve for a local velocity reduction. Eventually,
a crossover in the mean velocities due to differences in W for two differing particle
groups is expected. This is quite clear for the TNI g+ case. Here, we see that the
tails of the large and small droplet number density profiles (figure 8) are separated by
y/`′ ∼ 0.2 near y/`′ = −0.5. In figure 12, such a shift in abscissa corresponds to a
velocity reduction for the TNI g+ large particles of Vp/v

′ ∼ 0.3, which is similar to
the change in the large versus small droplet group Vp difference between this location
(y/`′ =−0.5) and the homogeneous region (y/`′ ≈ 1).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

55
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.552


388 G. H. Good, S. Gerashchenko and Z. Warhaft

Owing to the configuration of the wind tunnel, we were only able to measure the
transverse velocity for the g+ and g− cases. In order to further examine the degree
to which the mean droplet transport is gradient-driven, the theoretical mean droplet
velocities based on a purely Fickian mixing model are also plotted in figure 12 based
on the g0, small droplet group number density profile fits (figure 8). For the TTI case
this has the analytic form

Vp(x, y)≡−Dn

n

∂n

∂y
=−

√
DnU

πx

exp(− (y− yo)
2 /(4Dn(x/U)))

1+ erf ((y− yo)/
√

4Dn(x/U))
. (3.1)

The Fickian model velocities do not account for changes in Vp due to particle
settling. The model profiles are however similar in shape to the measured profiles,
although for the TTI the model values increase more slowly across the interface than
do the measurements. The agreement is particularly good for the TNI. We note that
the TTI cases have greater mean droplet velocities in general.

For the TTI, and the TNI g− case, the velocity difference between the droplet
groups narrows across the particle mixing layers, but the profiles do not cross. The
degree to which this is a result of the shifting effect described above is unclear,
as there is a second mechanism for the convergence. Figure 13 shows the mean
velocity of the droplets conditioned on and as a function of the distance, r, between
adjacent droplets (based on interarrival times). This is shown at y/`′ = −1/4, where
figure 9 demonstrated high degrees of large-scale droplet clustering. It is clear that
the droplets which travel fastest across the interfaces are also those which are
most densely grouped (small r/`′). The fast-moving, dense droplet clusters are swept
unidirectionally by the large scales from the seeded region and thus have the greatest
mean velocities. Since the flux, J, of particles with separation distance r goes as
J(r) ∝ Vp(r) × r−3 (since the volumetric number density goes as r−3), it is clear from
figure 13 that the droplet-laden bursts dominate the particle entrainment. We note
that the mean velocity differences between the droplet groups and gravitational cases
in figure 13 become negligible for small r/`′, as velocities for clustered droplets
within intermittent bursts are determined by the fluid burst velocities and are less
sensitive to the mean droplet number density gradients. Thus, as we traverse the
particle mixing layers from positive to negative y, where there is progressively more
large-scale clustering, we expect both the convergence of the velocity profiles and the
departure from the Fickian model lines (figure 12).

3.4.2. Moments of the droplet velocity distributions
Figure 14 shows the droplet velocity r.m.s. profiles for the v component, normalized

by v′rms. We note that the profiles were qualitatively the same for the u component,
and that when compared with the fluid velocity hot wire measurements, the particle
r.m.s. velocities were greater by ∼10 and 20 % in the homogeneous region for the
u and v components, respectively, presumably reflecting the way the particles sample
the fluid. Moving across the particle mixing layers, there is a decrease in the droplet
velocity r.m.s. for even the TTI case, which has transversely homogeneous turbulence.
In general, particles which sample a fluid velocity probability density function (p.d.f.)
should see a decrease in their velocity r.m.s. when there is a mean number density
gradient. Here, however, the situation is complicated by the bursting.

In the entrainment region, there are both droplets which have crossed the interfaces
well upstream of the test section and have had time to disperse and adjust to the
local fluid velocity field, and still densely clustered droplets recently ejected in bursts
from the seeded region. The velocities of such bursts are associated with those of
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FIGURE 13. (Colour online) TTI (a) and TNI (b) mean droplet velocity as a function of
local droplet separation distance, r, for the g+ (filled symbols) and g− (open symbols) cases.
Circles and stars denote the small and large droplet groups at y/`′ =−1/4.
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FIGURE 14. (Colour online) TTI (a) and TNI (b) droplet (vp)rms profiles across the mixing
layers. Circles and stars denote the small and large droplet groups, respectively, for both the
g+ (filled symbols) and g− (open symbols) cases. The small and large droplet groups are
further distinguished by dotted and dashed lines for the TTI, and mixed-dashed and solid lines
for the TNI. The small droplet TTI and TNI cases are also shown together for comparison (c).

the tail of the high-turbulence fluid velocity p.d.f. (in the seeded side of the flows).
It is expected then that the droplet velocity r.m.s. contribution from the variance of
these burst velocities thus declines as one moves across the particle mixing layers to
where only successively stronger bursts can penetrate, and droplets are observed to be
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FIGURE 15. (Colour online) TTI (a) and TNI (b) droplet velocity skewness profiles across
the mixing layers. Circles and stars denote the small and large droplet groups, respectively,
for both the g+ (filled symbols) and g− (open symbols) cases. The small and large droplet
groups are further distinguished by dotted and dashed lines for the TTI, and mixed-dashed
and solid lines for the TNI. The large droplet TTI and TNI cases are also shown together for
comparison (c).

increasingly clustered at the large scales. As expected, there is a greater reduction in
the droplet velocity r.m.s. for the TNI than for the TTI, due to the sampling of the
low-turbulence fluid velocity field, and possibly more invariant penetration of the fluid
bursts into relatively quiescent rather than highly turbulent fluid.

The differences in the droplet velocity r.m.s. profiles between the droplet groups
or gravitational cases are small. In general, however, we expect the droplet velocity
statistics to be more reflective of the fluid velocity field where the droplets are least
clustered at the large scales, where their mean number density is relatively high. For
the TTI and the high-turbulence side of the TNI, the velocity field has a higher r.m.s.
than that we expect is associated with the bursting droplets. Here, the g+ droplets
have higher velocity r.m.s. than do the g− droplets, consistent with their greater
number density which better reflects the fluid velocity field. For the TNI there is
a switch near y/`′ ≈ 0. The fluid velocity field r.m.s. becomes very small through
this region (figure 3), and we see that the TNI g+ droplet velocity r.m.s. becomes
reduced as compared with the TNI g− droplet cases. While the differences in the
measurements presented in figures 14 and 15 are small (although confirmed by the
confidence intervals), the trends are remarkably consistent with the DNS results of an
analogous mixing layer by Ireland & Collins (2011).

Figure 15 shows the (negative) droplet velocity skewness, such that we may refer
to the velocity being skewed with (positive values) or against (negative values) the
mean transport direction. In the homogeneous regions (y/`′ = 1), the droplet velocity
skewness is nearly zero for both the TTI and TNI, like for the fluid velocity fields.
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FIGURE 16. Profile of the droplet acceleration r.m.s. (symbols) for the full droplet size
distribution (g0 case) in the TNI. The streamwise acceleration data is shown. The dashed line
shows the variation of the Kolmogorov acceleration, aη ≡ (ε3/ν)

1/4, as determined from the
mean dissipation profile for the TNI (figure 3).

Proceeding into the mixing layers where there is little or no large-scale clustering
(0.5 < y/`′ < 1, figure 9), the skewnesses become weakly positive. For y/`′ < 0.5, the
droplet velocity skewness continues to grow positively for the TNI cases, while it
decreases and becomes weakly negative for the TTI cases.

The moments of the droplet velocity p.d.f.s indicate how the droplets sample the
fluid velocity field. Although the TTI velocity field is unskewed, figure 13 clearly
shows that the droplets in the bursting region heavily sample the high-velocity
events that are in the positive tail of the fluid velocity p.d.f. As a result, the
TTI particle velocity p.d.f.s in the bursting region have elongated negative tails
and negative skewnesses. For the TNI, the droplets sample a velocity field which
is largely positively skewed (figure 5) due to its large-scale intermittency, and the
droplet velocity distributions reflect this skewness. Although the shape of the droplet
number density profiles certainly has some effect on the droplet velocity statistics,
the measurements are very consistent in light of the clustered entrainment. Those
droplet groups and flow cases which show comparatively more large-scale clustering
at a particular y/`′ location (see figure 9), also have more negative transverse droplet
velocity (vp) skewness. Where the mean number densities are higher, the vp skewness
is more positive and closer to the velocity field values (figure 5). We lastly note that
the skewed p.d.f.s also have super-Gaussian values of kurtosis, with values reaching
∼4 at y/`′ =−0.5 for the TNI g+ large droplets, and ∼3.5 for the other cases.

3.5. Droplet accelerations

We have thus far documented the large-scale entrainment and clustering of water
droplets in both the TTI and TNI. Given the results of GGW, this has helped explain
the absence of evaporative effects without a full description of the humidity field and
its correlation to the droplet field. While the only distinguishing factor between the air
flows on either side of the TTI may be its vapour content, for the case of the TNI,
the turbulence levels are also quite distinct. In this final section we look at the droplet
accelerations, which, being indicative of the small scales of the turbulence, give us
insight into the particle–fluid interactions in the entrainment zone.
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Figure 16 shows a profile of the droplet acceleration r.m.s. in the TNI. The full
distribution g0 data is shown, as the Lagrangian particle tracking system is unable
to discern particle sizes, and the particle size distribution is not a function of y in
the g0 case (GGW). While the dashed line shows the variation of the Kolmogorov
eddy acceleration, aη ≡ (ε3/ν)

1/4, based on the TNI mean dissipation profile (figure 3),
the symbols show measurements of the droplet r.m.s. accelerations. The streamwise
component is shown, although the measurements are not strongly sensitive to this
choice. We take the r.m.s. values to be the proper scale of the droplet accelerations, as
the mean accelerations are zero in the shearless interfaces. The large error bars are due
to the pixel-limited spatial resolution of the particle tracking system.

Clearly, the droplet accelerations do not differ substantially across the TNI, despite
the large step in the turbulence levels. This indicates that the turbulence within
the bursts and large-scale droplet clusters is similar to that in the high-turbulence,
droplet-laden side of the flows. This is like in the droplet-free, figure 1 image. Since
the sub-Kolmogorov-sized droplets only feel the small scales of the turbulence, and
these small scales do not differ within the fluid bursts which transport the bulk
of the droplets, the particle–fluid interactions remain only weakly changed in even
the TNI. Measurements in the gravitational cases at y/`′ = ±1/4 also showed only
small differences in the acceleration r.m.s., although these differences were also
consistent with changes in the droplet size distributions due to gravity (see GGW).
The acceleration measurements are thus consistent with the general results of the
present study, that the intermittent entrainment mechanism preserves the droplet-
ambient conditions that are present in the injection side of the flows.

4. Conclusions
We have studied the entrainment of inertial particles across two shearless interfaces.

Water droplets injected into the turbulent side of the flows were entrained into a coflow
that was in one case close to laminar (TNI) and in another having the same turbulence
characteristics as the droplet carrier flow (TTI). The effects of gravity were isolated by
turning the apparatus with respect to the gravitational field. The study followed from
the earlier work of Gerashchenko et al. (2011), which focused mainly on the mean
droplet statistics. Here, we have studied higher-order statistics as well as particle pair
and Lagrangian acceleration data.

Our main findings are as follows. In homogeneous conditions, the polydispersed
droplets (ranging in size from a few micrometres to approximately 80 µm, figure 6)
were shown to exhibit both enhanced and reduced settling velocities (compared with
their Stokes velocities in a quiescent flow), depending on their large-scale settling
parameter, the ratio of the characteristic time of an eddy to the time for a particle
travelling at its Stokes velocity to pass it (§ 3.2.2). While the small particles fell
faster than their Stokes velocities in a quiescent flow due to their preference for the
downward-sweeping sides of eddies, the large droplet settling velocities were reduced
due to droplets loitering in upward-moving regions of the flow. This ‘loitering’ effect
appears not to have been previously reported in wind tunnel experiments.

In the particle mixing layers of the TTI and TNI, the mean particle transport
velocities increased across the entrainment region for all particle sizes and for gravity
both aiding and inhibiting the mixing process (g+ and g−, figure 12). Consistent
with the turbulence settling effects, the differences in the mean velocities of the large
and small droplets was smaller than predicted from their Stokes velocities. For the
g+, TNI case, there was a crossing of the large and small droplet velocity profiles,
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with the small droplets travelling faster than the larger ones far into the entrainment
region. This was attributed mainly to the shifting of the mean number density profiles
relative to each other due to gravitational settling (§ 3.4.1). Convergence of the velocity
profiles in this region was observed for the other cases. While the relative shifting
of the number density profiles may be partially responsible for this convergence,
conditional velocity statistics (figure 13) showed that the turbulent bursts which
transport most droplets are insensitive to droplet size and gravitational case, and
thus, that the convergence is expected by this intermittent entrainment mechanism.
Still, a Fickian, mean-gradient mixing model was able to capture the form of the mean
velocity profiles, particularly for the TNI case (figure 12). The droplet r.m.s. velocities
decreased across the entrainment region for both the TNI and TTI, although this was
less pronounced for the latter (figure 14). The ability of a burst of droplets to penetrate
deeply into the entrainment region depends on its energy, and thus the droplet velocity
probability distributions narrow across the particle mixing layers. The skewness of
the droplet velocity distributions was also documented (figure 15), showing that the
droplets in regions with more pronounced large-scale clustering also exhibit more
negative (counter-entrainment) velocity skewness.

The droplet r.d.f.s were used to show the droplet spatial organization throughout the
flows. Radial distribution functions have traditionally been used to show small-scale
(inertial) clustering in isotropic particle fields, where inertial particles are centrifuged
out of the regions of high vorticity into regions of high strain (Shaw et al. 1998).
Here, we have shown the large-scale clustering of droplets due to the intermittent
entrainment process. This clustering was evident in the velocity fields of not only the
inhomogeneous TNI, but the homogeneous TTI as well (figure 9). The large-scale
clustering presented in increased magnitudes in the r.d.f.s for r/`′ < 1 and decreased
magnitudes for order one r/`′, representing the droplet-free gaps between large-scale
clusters.

At the small scales, there was little change in the nature of the r.d.f.s as compared
with in the homogeneous, droplet-laden side of the flows. Thus, the bursting associated
with the entrainment appears not to affect the small-scale clustering. Lagrangian
measurements of the droplet accelerations (figure 16) also showed little change in
this small-scale quantity for even the strongly inhomogeneous TNI velocity field.
The ability of the entrainment process to transport large, macroscale bursts without
affecting the small-scale properties is consistent with the earlier finding of GGW, that
the droplet size distribution does not change across the interfaces for the g0 cases, in
which gravity does not play a role (GGW, figure 5a). The lack of a change in the
particle size distribution for the g0 cases indicates that the large-scale bursts transport
the droplet-laden fluid in bulk. Evaporative effects thus appear to be negligible in our
flows. Conditional statistics of the mean droplet number densities (figure 11) showed
that, as may be expected, the large-scale clusters were more dense in the TNI than
for the TTI, where the background turbulence is more effective in dispersing the
particles. Both the conditional statistics and the r.d.f.s provided information on the
time histories of the large-scale droplet clusters. In particular, the droplet-laden bursts
which have penetrated farthest across the growing mixing layers may have properties
more similar to their source region than to the intermediate, centre portion of the
mixing layer (figure 11 and related discussion). In this central region, droplet clusters
transported earlier by smaller turbulence scales will have had more time to break up
and disperse, and their droplets will be more uniformly distributed and less dense as a
result (§ 3.3.2).
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FIGURE 17. (Colour online) TNI profiles of urms upstream (t/τ`′ ≈ 0.4, x = 0.7 m),
downstream (t/τ`′ ≈ 1.1, x = 1.8 m) and at the test section (t/τ`′ ≈ 0.7, x = 1.20 m), denoted
by upward- and downward-pointing triangles and circles, respectively. The form of the error
functions plotted at each x location is discussed in appendix A.

The experiments help in our understanding of cloud boundaries, whether they be at
the floors, sides or ceilings of clouds. As noted in GGW, the experimental parameters
(with the exception of the low Reynolds numbers) are in the range observed in typical
cumulous clouds (Siebert et al. 2010). The Sv` range of the experiment (0.03–0.35)
and clouds (10−3–100) is noteworthy, as some micrometeorological models which
neglect the role of turbulence in droplet coalescence and cloud evolution rely on
Stokes velocity differences between large and small droplets (Shaw 2003), which may
actually be diminished due to turbulence. The results relate more broadly to particle
entrainment in environmental flows, like the atmospheric boundary layer, as well as to
industrial and energy-related applications concerned with the mixing or dispersion of
heavy particles.
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Appendix A. The TNI droplet mixing layer model
Here, we describe the simple advection–diffusion model used for the TNI droplet

mixing layer, where the droplet mean number density is treated like a diffusive species
and hot-wire data has been used to inform a domain with an inhomogeneous turbulent
diffusivity. We begin with the downstream evolution of the urms profiles for the TNI
case in figure 17. These are approximately error functions, so we first model the urms

evolution as a diffusive process as well. The form of the error functions plotted in
figure 17 is determined from the analytical solution to the 1D advection–diffusion
equation of a concentration species with step initial condition in a domain with
homogeneous diffusivity, D. In a high-Péclet-number regime in two dimensions, where
an advective scale (U) dominates the diffusive scale, the Taylor approximation t = x/U
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may be used. The profiles were fit with the adapted form

urms(x, y)= u′min +
(

u′max − u′min
2

)[
1+ erf

(
y− yo√

4Du(x/U)

)]
, (A 1)

where u′min, u′max , yo and Du are fitting parameters, the former two being the asymptotic
urms values for a given error function fit. The three urms profiles are reasonably
well-approximated using a constant diffusivity, Du, of the turbulence r.m.s. Since
u′max ∝ (xg)

−m/2, where xg is the distance from the active grid and with m the
turbulence decay constant (e.g. Comte-Bellot & Corrsin 1971), and since the other
parameters did not vary significantly between fits at different downstream locations,
the mixing layer urms may be approximated by a single equation in two dimensions.
(We note that while the TTI droplet number density error function fits mentioned
in the text indicate that the turbulence decay is not of primary importance, since
they indicate a homogeneous diffusivity, we have chosen here to model the TNI flow
profiles with the decay, as they were measured.) The figure 17 fits are calculated
based on this single equation, and it is apparent that the TNI urms evolution may be
modelled in this manner. Given Dn ∝ urms` (where Dn is the diffusivity of the droplet
number density), ` ∝ (xg)

1−m/2 (disregarding its transverse variation) and the previous
result for urms(x, y), Dn(x, y) may be modelled to within a constant of proportionality.
Using this, a simple, steady-state advection–diffusion finite-element model was created
with a two-dimensional spatial domain, where a concentration species representing n
advects/diffuses from a stepped boundary condition. (The mean streamwise velocity is
input into the model.)

The resulting model fits were thus determined for figure 8(b). We note that the
model constants produced diffusivities (Dn) in agreement with those of the TTI
figure 8(a) error function fits (of the form of (A 1)), but that these were nearly an
order of magnitude smaller than predicted by the urms` scaling, and this may be
indicative of stirring/entrainment at the subintegral scales.

Appendix B. The role of initial conditions
As mentioned in the text, there is some shifting of the mean droplet number density

profiles due to experimental initial conditions. This is known in particular from the
g0 cases, where for the TTI the inflection point of the mean droplet number density
profile (an error function) is displaced from y = 0, and for the TNI, where the profile
is found to be yet further displaced when compared with matching profiles from
both our model (appendix A) and the DNS results of an analogous mixing layer by
Ireland & Collins (2011). The causes of these shifts may be: (i) a deficit in the mean
droplet number density near the splitter plate at the initial condition for both the
TTI and TNI (due to the reduced particle flux in the spitter plate boundary layer);
and (ii) the flow asymmetry for the TNI. Figure 18(a) shows the droplet number
density initial condition, which is not perfectly (uniformly) mixed before the end of
the splitter plate by the grid turbulence. A TTI diffusion model, a simplified version
of that described for the TNI in appendix A, was used to show anticipated number
density profiles resulting from both a uniform initial condition and one with a linear
deficit. The resultant profile is the same in shape, but there is a shift of abscissa on
the order of the number density displacement thickness of the deficit, and this result
has been confirmed with the help of DNS (Peter Ireland, private communication). We
find the TTI and TNI g0 cases to be shifted by ∼5 and ∼8 cm into the turbulent,
seeded region, respectively. The additional displacement in the TNI case could be
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FIGURE 18. (Colour online) Mixing layer displacements due to the droplet mean number
density initial condition (at x ≡ 0) (a) and the diffusion of the splitter plate momentum
deficit (b). In (a), the circles are the measured initial condition; the vertical line (y/`′ ≈ 0.13)
denotes the displacement thickness of the number density profile. The dashed lines are FEM
solutions (see appendix A) for the test section based on a uniform profile and one with
a linear deficit matched to the measured profile. In (b), hot-wire mean velocity profiles
(normalized by the average velocity at their respective downstream location) are shown
between the splitter plate trailing edge and the test section. Measurement stations are at
t/τ`′ ≈ 0.003, 0.064, 0.186, 0.427, 0.611 and 0.7, where t = x/U, denoted by stars, asterisks,
pluses, multiplication signs, dots and circles, respectively.

explained by more efficient mixing of the momentum deficit from the splitter plate
boundary layers into the high-turbulence side, as shown in the hot-wire wake profiles
of figure 18(b).
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