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Abstract
We prove a strictification theorem for cartesian closed bicategories. First, we adapt Power’s proof of coher-
ence for bicategories with finite bilimits to show that every bicategory with bicategorical cartesian closed
structure is biequivalent to a 2-category with 2-categorical cartesian closed structure. Then we show how
to extend this result to a Mac Lane-style “all pasting diagrams commute” coherence theorem: precisely, we
show that in the free cartesian closed bicategory on a graph, there is at most one 2-cell between any parallel
pair of 1-cells. The argument we employ is reminiscent of that used by Čubrić, Dybjer, and Scott to show
normalisation for the simply-typed lambda calculus (Čubrić et al., 1998). The main results first appeared
in a conference paper (Fiore and Saville, 2020) but for reasons of space many details are omitted there;
here we provide the full development.
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1. Introduction
Bicategories arise naturally throughout mathematics and theoretical computer science. Examples
appear in topology (Leinster 2004), categorical logic (Fiore et al. 2007), categorical alge-
bra (Bénabou 1967), semantics of computation (Cattani et al. 1998), and datatype seman-
tics (Abbott 2003), to name but a few. Much of this work owes a debt to the success of the
“Australian school” of the 1970s and 1980s, which emphasised the fruitfulness of studying cate-
gorical constructions in the bicategorical setting (e.g. Street (1972; 1980); Blackwell et al. (1989)).
A crucial part of this work, in which Power played an important role, are fundamental coherence
results. These include coherence for bicategories with finite bilimits (Power 1989a) and a general
result in the framework of two-dimensional universal algebra (Power 1989b).

Why are coherence results – which can often have a rather dry, technical feel – so crucial?
Without them, calculations in higher categories quickly become intractable. Higher category the-
ory entails layers of complexity that do not exist at the 1-categorical level: morphisms (more
generally, k-cells) satisfying axioms up to some higher cell may exist in new relationships, and
specifying their behaviour leads to intimidating lists of axioms. Proofs then become purgatorial
exercises in drawing pasting diagram after pasting diagram, or diagram chases in which an intu-
itively clear kernel is dominated by endless structural isomorphisms shifting data back and forth.
Even at the level k= 2, Lack – certainly a member of the higher-categorical cognoscenti – refers
to (strict) 2-category theory as a “middle way,” avoiding “some of the technical nightmares of
bicategories” (Lack 2010).
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A small example highlights how the step from categories to bicategories blows up the length of
a proof. Consider the following lemma, which is an elementary exercise in working with cartesian
closed categories.

Lemma 1.1.

(1) Every object X in a category with finite products (C,×, 1) has a canonical structure as a
commutative comonoid, namely

(
1 !←− X �−→ X× X

)
.

(2) Every endo-exponential [X⇒ X] in a cartesian closed category (C,×, 1,⇒) has a canonical
structure as a monoid, namely

(
1 idX−→ [X⇒ X] ◦←− [X⇒ X]× [X⇒ X]

)
.

Following the principle that higher categories behave in roughly the same manner as
1-categories so long as care is taken to specify the behaviour of the higher cells, one expects a
version of this result to hold for cartesian closed bicategories. The bicategorical notion of monoid
is called a pseudomonoid or monoidale (Day and Street 1997). In a bicategory B with finite prod-
ucts (×, 1), this is a structure (1 e−→M m←−M×M) equipped with invertible 2-cells α, λ and ρ
witnessing the categorical unit and associativity laws:

1×M M×M M× 1

M

λ∼=
�

e×M

m
ρ∼=

M×e

�

(M×M)×M M× (M×M) M×M

M×M M

α∼=m×M

� M×m

m

m

These 2-cells are required to satisfy two coherence laws, corresponding to the triangle and
pentagon axioms for a monoidal category. Indeed, the prototypical example – obtained by instan-
tiating the definition in Cat – is exactly monoidal categories. Comparing with our categorical
lemma suggests the following.

Conjecture 1.2.

(1) Every object X in a bicategory with finite products (B,×, 1) has a canonical structure as a
commutative pseudocomonoid, with one-dimensional structure

(
1 !←− X �−→ X× X

)
.

(2) Every endo-exponential [X⇒ X] in a cartesian closed bicategory (B,×, 1,⇒) has a canoni-
cal structure as a pseudomonoid, with one-dimensional structure:

1 IdX−−→ [X⇒ X] ◦←− [X⇒ X]× [X⇒ X].

Moreover, in each case the 2-cells witnessing the 1-categorical axioms are canonical choices arising
from the cartesian (closed) structure of B.

Constructing the witnessing 2-cells α, λ, and ρ is relatively straightforward: roughly speak-
ing, one can translate each equality used in the categorical proof into a 2-cell and then compose
these together. The difficulty arises in checking the coherence laws, which entails a series of long
diagram chases unfolding the properties of these composites. It is this extra work that makes bicat-
egorical calculations more burdensome than their strict counterparts: it is not enough to merely
witness the axioms – which corresponds to checking them in a strict setting – one must also check
the witnesses are themselves coherent.

As well as being extra work, these checks are often extremely tedious. Generally, one does not
have to apply clever tricks or techniques, only plough through diagram chases until the result
falls out. This is the case, for example, when one sits down to verify the coherence laws for
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Conjecture 1.2. This leads to a false sense of security: it is tempting to believe that the coherence
axioms “must” work out as expected, and that these extra checks may be omitted. As Power put it
as long ago as 1989 (Power 1989a):

The verification is almost always routine, and one’s intuition is almost always vindicated, but
to check the detail is often a very tedious job. Of course, one should still do it. . . [ignoring
such details] can be dangerous, as illustrated in (Bénabou 1985), because on rare occasions,
one’s intuition fails. . .

Power considers three strategies for doing away with this tedium: ignore it, check each coher-
ence diagram by hand as it arises, or – the “preferable” approach – prove a wholesale coherence
theorem. Such theorems can be roughly divided into two classes. A coherence-by-strictification
result proves that every weak structure (e.g. a bicategory) is weakly equivalent to a strict structure
(e.g. a 2-category). On the other hand,Mac Lane-style coherence – named for Mac Lane’s pithy slo-
gan “all diagrams commute” (Mac Lane 1963) – isolates a class of diagrams and shows that every
diagram in this class commutes. Mac Lane-style coherence can be derived from coherence-by-
strictification in all examples that we know of but, as we show in Section 5, a nontrivial argument
may be required.

In either form, the importance of coherence theorems is attested to by their proliferation. Since
Mac Lane’s classic result for monoidal categories (Mac Lane 1963), a great number of coherence
theorems have been proven, in various guises: notable examples include those of Joyal and Street
(1993); Mac Lane and Paré (1985); Power (1989a;b) and Gordon et al. (1995). Such results often
rely on the Yoneda embedding, which allows one to embed a weak structure (such as a bicategory)
into a strict structure (such as the 2-category of Cat-valued pseudofunctors), or on the sophisti-
cated machinery of two-dimensional universal algebra. Rewriting theory provides an alternative,
syntactic, approach, see for example (Houston 2007) and (Forest and Mimram 2018).

In this paper, we are concerned with a class of bicategories with particularly good structure,
namely cartesian closed bicategories. A cartesian closed bicategory, or cc-bicategory, is a bicategory
equipped with finite products defined as bicategorical limits (bilimits) and exponentials defined as
a bicategorical right adjoint (biadjoint) to every pseudofunctor (− )×A.1 Examples include the
bicategories of generalised species (Fiore et al. 2007) and cartesian distributors (Fiore and Joyal
2015), as well as bicategories of operads (Gambino and Joyal 2017) and concurrent games (Paquet
2020).

Informally, one may think of cc-bicategories as cartesian closed categories “up to isomor-
phism”. To construct cc-bicategorical structure one takes the simply-typed lambda calculus
(equivalently, cartesian closed structure) and replaces each βη-equality with an invertible
2-cell witnessing the reduction. For products, the η-law f = 〈π1 ◦ f , . . . , πn ◦ f 〉 and β-law πi ◦
〈f1, . . . , fn〉 = fi are respectively replaced by natural isomorphisms:

f
∼==⇒ 〈π1 ◦ f , . . . , πn ◦ f 〉

πi ◦ 〈f1, . . . , fn〉 ∼==⇒ fi (i= 1, . . . , n)

These isomorphisms are subject to equations – namely, the triangle laws of an adjunction – which
express natural equalities: for instance, if one η-expands then β-reduces, the composite rewrite is
the identity. A similar story holds for exponentials.

Our main result (Theorem 5.11) is that the free cc-bicategory on a graph has at most one 2-cell
between any parallel pair of 1-cells; this result was was first conjectured by Ouaknine (1997).
In terms of Conjecture 1.2 it guarantees that, once one has constructed the required structural
isomorphisms α, λ, and ρ, then the coherence axioms must hold and that the definitions of
α, λ, and ρ are unique. In fact, by relating the free cc-bicategory to the free cartesian closed
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category (Section 5.2.2), we shall make precise the informal relationship between categorical and
bicategorical cartesian closed structure outlined above and substantiate the following principle.

Principle 1.3. To show that a pseudo structure can be constructed in every cc-bicategory, it suffices
to show that its categorical counterpart – that is, the version in which one considers only the 1-cells
– may be constructed in any cartesian closed category (equivalently, in the simply-typed lambda
calculus).

For example, this principle entails that Conjecture 1.2 follows immediately from Lemma 1.1.

1.1 Outline of the paper
It will prove convenient to define bicategorical closed structure using the biuniversal arrows
of T. Fiore (2006, Chapter 9). We therefore spend Section 2 developing a little of their basic the-
ory. Then, in Section 3, we instantiate this to define cc-bicategories. This is enough machinery to
prove coherence-by-strictification, which we do in Section 4; we also observe a similar approach
applies to closed monoidal bicategories. In Section 5, we deduce Mac Lane-style coherence and
substantiate Principle 1.3.

We assume familiarity with the basic definitions of bicategory theory, including pseudofunc-
tors, biequivalences, and the Yoneda lemma. These are summarised in (Leinster 1998); for a more
extensive introduction, see for example Bénabou (1967) and Borceux (1994).

Notation 1.4.

• We make free use of the coherence theorem for bicategories (Mac Lane and Paré 1985), writ-
ing simply ∼= for composites of structural isomorphisms in diagrams. When we need to be
explicit, we denote the structural constraints of a bicategory by ah,g,f : (h ◦ g) ◦ f ⇒ h ◦ (g ◦ f ),
lf : Id ◦ f ⇒ f and rg : g ◦ Id⇒ g.

• We write Hom(B,C ) for the bicategory of pseudofunctors, pseudonatural transformations,
and modifications. The Yoneda pseudofunctor B→Hom(Bop,Cat) is denoted Y.

• We denote the structural constraints of a pseudofunctor F :B→C by ψX : IdFX ∼==⇒ FIdX
and φf ,g : F(f ) ◦ F(g)

∼==⇒ F(f ◦ g). When there is no risk of ambiguity, we refer to the triple
(F,ψ , φ) simply as F. When ψ and φ are both the identity, we call F strict.

• We follow the notational convention of Lack (2010) for pseudonatural transformations. Thus,
a pseudonatural transformation (k, k) : F⇒G :B→C consists of a family of 1-cells {kX :
FX→GX}X∈B together with an invertible 2-cell kf : kY ◦ Ff ⇒Gf ◦ kX for every f : X→ Y
in B, subject to the usual axioms.

2. Biuniversal Arrows
Mac Lane’s classic textbook (Mac Lane 1998) makes precise the notion of universal property by
introducing universal arrows. The Yoneda Lemma, limits, and adjunctions are then all charac-
terised in these terms.We adopt a similar approach using the biuniversal arrows of T. Fiore (2006).
As well as providing a uniform way to describe bilimits and biadjunctions – and so products and
exponentials – this perspective is particularly amenable to syntactic description. This will simplify
the construction of the free cc-bicategory in Section 5.2.

We begin by recapitulating the notion of universal arrow and its bicategorical counterpart.

Definition 2.1. Let F : B→C be a functor and C ∈C. A universal arrow from F to C is a pair
(R ∈ B, u : FR→ C) such that, for any B ∈ B and f : FB→ C, there exists a unique f † : B→ R such
that u ◦ Ff † = f .
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It is an exercise to show that every universal arrow (R, u) from F to C is equivalently a chosen
family of natural isomorphisms B(−, R)∼=C(F(− ), C), or – equivalently again – a terminal object
in the comma category (F ↓ C). It follows that a right adjoint to F : B→C is determined by a
choice of objectUC and universal arrow εC : FUC→ C for everyC ∈C. ThemappingU extends to
a functor withUf := (f ◦ εC)† for f : C→ C′. The counit is then ε and the unit η arises by applying
the universal property to the identity: ηB := (idFB)† : B→UFB. If both ε and η are invertible, the
result is an adjoint equivalence.

To define biuniversal arrows, one weakens the isomorphisms defining a universal arrow to
equivalences. We take particular care in choosing how we spell these out. It is generally conve-
nient to require adjoint equivalences; by the well-known lifting theorem (e.g. Leinster (2004),
Prop. 1.5.7) this entails no loss of generality, while providing amore structured object to workwith.
We also go beyond T. Fiore’s definition by requiring that each adjoint equivalence is determined
by a choice of universal arrow.

Definition 2.2. (c.f. T. Fiore (2006)). Let F :B→C be a pseudofunctor and C ∈C . A biuniversal
arrow from F to C consists of a pair (R ∈B, u : FR→ C) and, for every B ∈B, a chosen adjoint
equivalence of categories:

B(B, R) �−→C (FB, C)

(B h−→ R) �→ (FB Fh−→ FR u−→ C)

specified by choosing a family of invertible universal 2-cells as the counit.
Explicitly, a biuniversal arrow from F to C consists of the following data:

• A pair (R ∈B, u : FR→ C),
• For every B ∈B and h : FB→ C, a map θB(h) : B→ R and an invertible 2-cell εB,h :
u ◦ FθB(h)⇒ h, universal in the sense that for any map f : B→ R and 2-cell τ : u ◦ Ff ⇒ h
there exists a 2-cell τ † : f ⇒ θB(h), unique such that

FB FR

C
h

⇓ Fτ †
Ff

FθB(h)

⇓ εB,h

u =
FR

FB C
⇓ τ u

h

Ff (1)

with the 2-cell (idu◦Ff )† : f ⇒ θB(u ◦ Ff ) is invertible for every f : B→ R.

Thus, the mapping θB extends to a functor C (FB, C)→B(B, R) defined on 2-cells by
θB(h

τ=⇒ h′) := (τ ◦ εB,h)†, and this functor is right adjoint to u ◦ F(− ). The counit of this adjunc-
tion is εB,(−) and the unit is ηB,(−) := (idu◦F(−))†. This pattern will be repeated: when asking for an
adjoint equivalence in a definition, we shall consistently ask for a right adjoint to a given arrow.

Remark 2.3. Just as in the categorical case, there is an evident dual notion. A biuniversal arrow
from an object C ∈ C to a pseudofunctor F :B→C is a pair (R ∈B, u : C→ FR) together with
chosen adjoint equivalences B(R, B) F(−)◦u−−−−→C (C, FB).

On the face of it, a biuniversal arrow is only local structure: the data impose a requirement on
each hom-category, but no global constraints. Global structure arises in the following way.
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Lemma 2.4. (c.f.Mac Lane (1998, Section III.2)). Let F :B→C be a pseudofunctor and C ∈ C .
There exists an equivalence of pseudofunctors B(−, R)�C (F(− ), C) in Hom(Bop,Cat) if and
only if there exists a biuniversal arrow (R, u) from F to C.

Proof. For every equivalence of pseudofunctors B(−, R) γ−→C (F(− ), C) one obtains from the
Yoneda Lemma an arrow γR(IdR) : FR→ C. This arrow is biuniversal: indeed, the image of
γR(IdR) under the pseudofunctor C (FR, C)→Hom(Bop,Cat)

(
B(−, R),C (F(− ), C)

)
given by

the Yoneda Lemma is isomorphic to γ , so γR(IdR) ◦ F(− ) is an equivalence in Hom(Bop,Cat).
This may be promoted to an adjoint equivalence by the usual lifting lemma (e.g. Leinster (2004),
Prop. 1.5.7); one obtains the required adjoint equivalence B(B, R)�C (FB, C) at B ∈B by
evaluating at B. The converse is Theorem 9.5 of T. Fiore (2006).

Other standard properties of universal arrows extend to biuniversal arrows in the expected
way. For example, biuniversal arrows are unique up to equivalence, the (− )† operation preserves
both invertibility and naturality, and a Cat-valued pseudofunctor F is birepresentable if and only
if there exists a biuniversal arrow from the terminal category to F.

2.1 Preservation of biuniversal arrows
The notion of preservation of biuniversal arrows will provide a systematic way to define preserva-
tion of bilimits and preservation of biadjoints, and so preservation of cartesian closed structure.
We begin by examining preservation of universal arrows. Using the fact that a right adjoint to
F : B→C is completely specified by a choice of universal arrow

(
UC, F(UC)→ C

)
for each C ∈C

– namely, the counit – it is reasonable to define morphisms of universal arrows analogously to
morphisms of adjunctions (e.g. Mac Lane (1998, Section IV.7)).

Definition 2.5. Let F : B→C and F′ : B′ →C′ be functors and (R, u) be a universal arrow from
F to C ∈C. A pair of functors (K, L) preserves the universal arrow (R, u) if the following diagram
commutes

B C

B′ C′

F

L K

F′

and F′LR=KFR Ku−→KC is a universal arrow from F′ to KC.
Equivalently, one can ask that the functor (F ↓ C)→ (F′ ↓KC) defined by (B, h : FB→ C) �→

(LB, F′LB=KFB Kh−→KC) preserves the terminal object. This is a slight weakening of Mac Lane’s
definition, which asks that the unit (or counit) be preserved on the nose.

The bicategorical translation is as one would expect.

Definition 2.6. Let F :B→C and F′ :B′ →C ′ be pseudofunctors and (R, u) be a biuniversal
arrow from F to C ∈C . Consider pseudofunctors K and L related by a pseudonatural transformation
ρ as in the following diagram:

B C

B′ C ′

F

L ρ⇒ K

F′

(2)

The triple (K, L, ρ) preserves the biuniversal arrow (R, u) if F′LR ρR−→KFR Ku−→KC is a biuniversal
arrow from F′ to KC.
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There are two ways of formulating that a functor F preserves limits: one can ask that the image
of the terminal cone is also a terminal cone, or that the canonical map F( limH)→ lim (FH) is an
isomorphism. Similar considerations apply to preservation of biuniversal arrows.

Lemma 2.7. Consider a square of pseudofunctors K, L, F, F′ related by a pseudonatural transfor-
mation ρ : F′L⇒KF as in (2). For every pair of biuniversal arrows (R, u) and (R′, u′) from F to
C ∈C and F′ to KC ∈C ′, respectively, the following are equivalent:

(1) (K, L, ρ) preserves the biuniversal arrow (R, u),
(2) The canonical map θ ′LR(Ku ◦ ρR) : LR→ R′ is an equivalence, where we write θ ′B′ for the

chosen pseudo-inverse to u′ ◦ F′(− ) :B′(B′, R′)→C ′(F′B′,KC).

Proof. Suppose first that θ ′LR(Ku ◦ ρR) is an equivalence. Since pseudofunctors preserve equiva-

lences, the compositeB′(B′, LR)
θ ′LR(Ku◦ρR)◦(−)−−−−−−−−−→B′(B′, R′) u′◦F′(−)−−−−−→C ′(F′B′,KC) is an equivalence.

Post-composing the counit ε′LR,Ku◦ρR with the the canonical isomorphism yields a natural
isomorphism:

u′ ◦ F′(θ ′LR(Ku ◦ ρR) ◦ (− )
)∼= (

u′ ◦ F′(θ ′LR(Ku ◦ ρR))) ◦ F′(− )∼= (
Ku ◦ ρR

) ◦ F′(− )
Hence Ku ◦ ρR is also a biuniversal arrow.

The converse follows from universality: if (LR,Ku ◦ ρR) and (R′, u′) are both biuniversal arrows
from F′ to KC, then the canonical arrows LR→ R′ and R′ → LR obtained from the universal
property must form an equivalence.

Just as an equivalence of categories preserves all “categorical” properties, so a biequivalence
preserves all “bicategorical” properties. In particular, biequivalences preserve biuniversal arrows.

In Section 5.2, we shall construct the free cc-bicategory on a graph. Following Gurski (2013),
we shall work with strict universal properties as far as possible: as well as being easier to work
with, this avoids the complexities of the tricategorical setting. Thus, it will be useful to define strict
preservation of biuniversal arrows. The aim of this definition is to ensure that the chosen structure
witnessed by a biuniversal arrow (e.g. a bilimit) is taken to exactly the chosen structure in the
target.

Definition 2.8. Let F :B→C and F′ :B′ →C ′ be pseudofunctors and suppose (R, u) and (R′, u′)
are biuniversal arrows from F to C ∈C and from F′ to C′ ∈C ′, respectively. A pair of pseudofunctors
(K, L) is a strict morphism of biuniversal arrows from (R, u) to (R′, u′) if

(1) K and L are strict pseudofunctors such that KF= F′L,
(2) The data of the biuniversal arrow are preserved: LR= R′, KC= C′ and Ku= u′,
(3) Themappings θB :C (FB, C)→B(B, R) and θ ′B′ :C ′(F′B′, C′)→B′(B′, R′) are preserved, so

that LθB(f )= θ ′LBK(f ) for every f : FB→ C,
(4) For every B ∈B and chosen equivalence u ◦ F(− ) :B(B, R)�C (FB, C) : θB the universal

arrow εB,h : u ◦ FθB(h)⇒ h is strictly preserved, in the sense that KFB,C(εB,h)= ε′LB,Kh.

In bicategory theory, it is usually good practice to specify data up to equivalence, as pseudo-
functors preserve equivalences but may not preserve isomorphisms or equalities. The preceding
definition abuses this convention, and so is not “bicategorical” in style. A consequence is that
an arbitrary biequivalence may not strictly preserve biuniversal arrows. This level of strictness
does, however, provide a way to talk about free bicategories-with-structure using the language of
1-category theory (c.f. Gurski (2006), Proposition 2.10).

Remark 2.9. We distinguish between preservation of biuniversal arrows in the sense of
Definition 2.6 and amorphism of biuniversal arrows as in the preceding definition on the following

https://doi.org/10.1017/S0960129521000281 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000281


Mathematical Structures in Computer Science 829

basis. In Definition 2.6, we require that the image of the given biuniversal arrow is a biuniversal
arrow, but do not specify its exact nature. In the preceding definition, by contrast, we require
that the pair (K, L) takes the biuniversal arrow specified in the source, together with all its chosen
adjoint equivalences, to exactly the corresponding structure specified in the target. Thus, while
preservation of biuniversal arrows is akin to preservation of limits, a morphism of biuniversal
arrows is more like a homomorphism between algebraic structures (e.g. a group homomorphism).

Strict preservation of a biuniversal arrow implies preservation of the corresponding universal
property, in the following sense.

Lemma 2.10. Let F :B→C and F′ :B′ →C ′ be pseudofunctors and (R, u) and (R′, u′) be biu-
niversal arrows from F to C ∈ C and F′ to C′ ∈C ′, respectively. If (K, L) is a strict morphism from
(R, u) to (R′, u′), then L(τ †)= (Kτ )† for every B ∈B, h : B→ R and τ : u ◦ Fh⇒ f .

Proof. It suffices to show that L(τ †) satisfies the universal property of (Kτ )†. For this one observes
that

ε′LB,Kf • F′L(τ †)=K(εB,f ) •KF(τ †) by strict preservation

=K(εB,f • Fτ †)
=Kτ

as required.

A strict morphism of biuniversal arrows (K, L) defines a morphism of adjunctions at every
hom-category. Indeed, it follows directly from Definition 2.8 that the diagram below commutes
for every B ∈B and each functor KFB,C preserves the counit.

B(B, R) C (FB, C)

B′(LB, LR) B′(LB, R′) C ′(F′LB, C′) C ′(KFB,KC)

u◦F(−)

LB,R KFB,C

u′◦F′(−)

2.2 Bilimits
We are now in a position to define bilimits and preservation of bilimits in terms of biuni-
versal arrows. For every pair of bicategories (J ,B), one has a diagonal pseudofunctor � :
B→Hom(J ,B) taking B ∈B to the constant pseudofunctor at B. Explicitly, �B :J →B
takes a 2-cell τ : h⇒ h′ : j→ j′ to the identity 2-cell idB : IdB⇒ IdB : B→ B. The 2-cell ψj :
Id(�B)(j)⇒ (�B)(Idj) is the identity and for a composite j

g−→ j′
f−→ j′′ in J the 2-cell φf ,g :

(�B)(f ) ◦ (�B)(g)⇒ (�B)(f ◦ g) is lIdB : IdB ◦ IdB⇒ IdB. A bilimit is then a biuniversal arrow.

Definition 2.11. A bilimit for F :J →B is a biuniversal arrow from the diagonal pseudofunctor
� :B→Hom(J ,B) to F.

By Lemma 2.4, this definition can be rephrased as a pseudonatural family of adjoint equiva-
lences B(B, bilim F)�Hom(J ,B)(�B, F). It therefore coincides with that of Street (1980) in
terms of birepresentations. We say that a bicategory B is bicomplete or admits all bilimits if for
every small bicategory J and pseudofunctor F :J →B the bilimit bilim F exists in B.

We now define preservation of bilimits as preservation of the corresponding biuniversal arrows,
via the following lemma.
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Lemma 2.12. For any bicategory J and pseudofunctor H :B→C the following diagram
commutes up to canonical isomorphism:

B Hom(J ,B)

C Hom(J ,C )

∼=⇐

�B

H H◦(−)

�C

(3)

Proof. Let us write H∗ :=H ◦ (− ). Unwinding the respective definitions, (H∗ ◦�B)B :J →C
is the pseudofunctor sending every j ∈J to HB, every p : j→ j′ to HIdB and every 2-cell
σ : p⇒ p′ to the identity. This coincides with (�C ◦H)B everywhere except that (�C ◦H)
(B)(j

p−→ j′)= IdHB. So for every B ∈B there exists a pseudonatural isomorphism αB : (H∗ ◦�B)
B⇒ (�C ◦H)B with components αB(j) := IdHB for all j ∈J . The witnessing 2-cell is the evident
composite of H’s unit constraint ψH with structural isomorphisms. Thus, one obtains an invert-
ible 1-cell αB in Hom(J ,C ) for every B ∈B. To extend this to a pseudonatural isomorphism,
one takes αf : αB′ ◦H∗(�Bf )⇒�C (Hf ) ◦ αB (for f : B→ B′) to be the invertible modification
with components given by the structural isomorphism IdHB′ ◦Hf ∼==⇒Hf ◦ IdHB. Then, (α, α) is
the required isomorphism.

Thus, assuming the bilimit exists in C , we say that H preserves the bilimit of F :J →B
if (H∗,H, (α, α)) preserves the biuniversal arrow ( bilim F, λ). By Lemma 2.7, this condition is
equivalent to requiring that the canonical map H( bilim F)→ bilim (HF) is an equivalence.

2.3 Biadjunctions
Recalling that an adjunction is specified by a choice of universal arrows, we define a biadjunc-
tion (Gray 1974) by a choice of biuniversal arrows (c.f. Power (1998)).

Definition 2.13. Let F :B→C be a pseudofunctor. To specify a right biadjoint to F is to specify
a biuniversal arrow (UC, uC : FUC→ C) from F to C for every C ∈ C .

Spelling out the definition, to give a right biadjoint U :C →B to F is to give

• A mapping U : ob(C )→ ob(B),
• A family of 1-cells (uC : FUC→ C)C∈C ,
• For every B ∈ B and h : FB→ C a 1-cell θB(h) : B→UC and an invertible 2-cell
εB,h : uC ◦ FθB(h)⇒ h which is universal in the sense of (1), and such that the unit
ηh := (iduC◦Fh)

† : h⇒ θB(uC ◦ Fh) is invertible for every h.
Notice that the global structure of a right biadjoint is determined by purely local

data. Indeed, Definition 2.2 immediately yields a family of adjoint equivalences uC ◦ F(− ) :
B(B,UC)� C (FB, C) : θB with uC ◦ F(− )� θB, and one obtains the right biadjoint U :
C →B by setting U(C) :=UC on objects, U(C

g−→ C′) := θUC(g ◦ uC) and U(g σ=⇒ g′) :=(
(σ ◦ uC) • εUC,g

)†. By Lemma 2.4, this definition is in turn equivalent to the more common defi-
nition of biadjunction (e.g. Street (1980)), namely a pair of pseudofunctors F :B�C :U together
with a pseudonatural family of equivalences B(B,UC)�C (FB, C).

The biuniversal arrow formulation of biadjoints, relying as it does on universal properties
at each level, is perhaps easiest to work with when it comes to calculations. As we shall see in
Section 5.2, it is also particularly amenable to being expressed syntactically because we shall be
able to construct right biadjoints – and hence cartesian closed structure – without needing global
pseudonaturality conditions.
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In order to define preservation of exponentials, we extract the definition of preservation of
biadjunctions from the definition of preservation of biuniversal arrows.

Definition 2.14. For any biadjoint pair F :B�C :U and pseudofunctor F′ :B′ →C ′, we say
that the triple (K, L, ρ) as below

B C

B′ C ′

F

L ρ⇒ K

F′

preserves the biadjunction if (K, L, ρ) preserves each biuniversal arrow uC : FUC→ C in the sense
of Definition 2.6. If ρ is the identity and (K, L) is a strict morphism of each biuniversal arrow in the
sense of Definition 2.8, we call (K, L) a strict morphism of biadjunctions.

3. cc-Bicategories
We now instantiate the definitions of the preceding section to define cc-bicategories. To avoid
confusion with the “cartesian bicategories” of Carboni and Walters (1987), we call a bicategory
with finite products an fp-bicategory. Our definition asks for a right biadjoint to the diagonal
pseudofunctor�(n) :B→B×n (n ∈N) by requiring a choice of biuniversal arrow (π1, . . . , πn) :
�(n)(∏

n(A1, . . . ,An)
)→ (A1, . . . ,An) for every A1, . . . ,An ∈B. We choose to work immedi-

ately with n-ary products for all n – a so-called “unbiased” definition, c.f. (Leinster 2004, Section
3.1) – as opposed to the “biased” definition requiring binary products and a terminal object. This
avoids having to repeatedly distinguish between the unary and nullary cases. Our strictification
theorem (Proposition 4.1) will entail that these two approaches are equivalent: from a biased struc-
ture one can define an unbiased structure by induction, while from an unbiased structure one can
restrict to a biased structure, and these operations are mutually inverse (up to biequivalence).

Notation 3.1. We write A• for a finite sequence A1, . . . ,An (n ∈N).

Definition 3.2. An fp-bicategory (B,�n(− )) is a bicategory B equipped with the following data
for all A1, . . . ,An ∈ ob(B) (n ∈N) and k= 1, . . . , n:

(1) A chosen object
∏

n(A1, . . . ,An),
(2) Chosen projections πk :

∏
n(A1, . . . ,An)→Ak,

(3) For every X ∈ ob(B) an adjoint equivalence

B
(
X,

∏
n(A1, . . . ,An)

) ∏n
i=1 B(X,Ai)

(π1◦−,...,πn◦−)

� �
〈(−)1,...,(−)n〉

(4)

specified by a choice of universal arrows with components� (i)
f• : πi ◦ 〈f1, . . . , fn〉

∼==⇒ fi for i=
1, . . . , n.

We call the right adjoint 〈(− )1, . . . , (− )n〉 the n-ary tupling.
An fp-bicategory has strict products if every equivalence (4) is an isomorphism. When the under-

lying bicategory is a 2-category, one recovers the 2-categorical (Cat-enriched) definition of finite
products.
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Unwrapping the definition as we did for Definition 2.2 yields the following universal
property. For any finite family of 1-cells (fi : X→Ai)i=1,...,n there exists a 1-cell

〈
f1, . . . , fn

〉 :
X→∏

n (A1, . . . ,An) and a family of invertible 2-cells
(
�

(i)
f• : πi ◦

〈
f1, . . . , fn

〉⇒ fi
)
i=1,...,n.

These are universal in the sense that, for any 1-cell g : X→∏
n(A1, . . . ,An) and family of

2-cells
(
αi : πi ◦ g⇒ fi : X→Ai

)
i=1,...,n, there exists a 2-cell p†(α1, . . . , αn) : g⇒

〈
f1, . . . , fn

〉 :
X→∏

n(A1, . . . ,An), unique such that the following diagram commutes for i= 1, . . . , n:

πi ◦ 〈f1, . . . , fn〉

πi ◦ g fi

�
(i)
f•

αi

πi◦p†(α1,...,αn)

Notation 3.3. We adopt standard categorical notation where possible. For instance, we write
A× B for

∏
2(A, B) and f × g (resp. τ × σ ) for the pseudofunctorial action of the product on

1-cells (resp. 2-cells). We denote the terminal object
∏

0() by 1.

Remark 3.4. We shall assume throughout that the unary product
∏

1(− ) is the identity, i.e. that∏
1(A)=A, πA

1 = IdA, 〈f 〉 = f and�f = lf : Id ◦ f ⇒ f .

Example 3.5. The bicategory of spans over a lextensive category (Carboni et al. 1993) has finite
bicategorical biproducts: finite bicategorical products which coincide with finite bicategorical
coproducts (Lack et al. 2010, Theorem 6.2). Biproduct structure is defined using the coproduct
structure of the underlying category (c.f. the biproduct structure of the category of relations).

To define cartesian closed structure on an fp-bicategory (B,�n(− )), we specify a biadjunc-
tion (− )×A� (A⇒−) for every A ∈B. Following Definition 2.13, we define this by requiring
an object (A⇒ B) and a biuniversal arrow evalA,B : (A⇒ B)×A→ B for every A, B ∈B.

Definition 3.6. A cartesian closed bicategory or cc-bicategory is an fp-bicategory (B,�n(− ))
equipped with the following data for every A, B ∈ ob(B):

(1) A chosen object (A⇒ B),
(2) A chosen 1-cell evalA,B : (A⇒ B)×A→ B,
(3) For every X ∈ ob(B), an adjoint equivalence

B(X,A⇒ B) B(X×A, B)

evalA,B◦(−×A)

� �
λ

(5)

specified by a choice of universal arrows εf : evalA,B ◦ (λf ×A)
∼==⇒ f .

We call the functor λ(− ) currying and refer to λf as the currying of f .
A cc-bicategory is strictly cartesian closed if it has strict products and every equivalence (5) is

an isomorphism. When the underlying bicategory is a 2-category, one recovers the definition of
Cat-enriched cartesian closed categories (e.g. Hirschowitz (2013), Section 6), which we call 2-cc
2-categories; the prototypical example is Cat with its familiar cartesian closed structure.

Notation 3.7. As for products, we adopt standard categorical notation such as f ⇒ g (resp.
α⇒ β) where possible.
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The adjoint equivalences (5) give rise to the following universal property. For every
1-cell f : X×A→ B there exists a 1-cell λf : X→ (A⇒ B) and an invertible 2-cell εf :
evalA,B ◦ (λf ×A)⇒ f . This is universal in the sense that for any 1-cell g : X→ (A⇒ B) and
2-cell α : evalA,B ◦ (g ×A)⇒ f there exists a 2-cell e†(α) : g⇒ λf , unique such that the following
diagram commutes

evalA,B ◦ (λf ×A)

evalA,B ◦ (g ×A) f

εf

α

evalA,B◦(e†(α)×A)

Remark 3.8. If α is invertible, then so is the transpose e†(α); likewise if α1, . . . , αn are all invert-
ible, then so is p†(α1, . . . , αn). These both follow from the general theory of (bi)universal arrows:
if (R, u) is a biuniversal arrow from F :B→C to C ∈C and τ : u ◦ Ff ⇒ h : FB→ C is invertible,
then so is τ † : f ⇒ θB(h) : B→ R. To see this, observe (1) that θB is a functor; (2) that the unit ηB
of the adjunction u ◦ F(− )� θB is invertible; and (3) that τ † = θB(τ ) • ηB.

By Lemma 2.4, the definition of cc-bicategories above may be rephrased to parallel the
“hom-set” definition of cartesian closed categories. For every fp-bicategory (B,�n(− )) , one
obtains pseudonatural equivalences B

(
X,

∏n
i=1Ai

)�∏n
i=1B(X,Ai) (for X,A1, . . . ,An ∈ ob(B)

and n ∈N) and for every cc-bicategory (B,�n(− ),⇒) one obtains pseudonatural equivalences
B(X,A⇒ B)�B(X×A, B) (for X,A, B ∈ ob(B)).

Cartesian closed bicategories were first studied by Makkai (1996), who introduced a carte-
sian closed bicategory of categories, “anafunctors,” and natural transformations. Other exam-
ples include the bicategory of operads (Gambino and Joyal 2017), bicategories of concurrent
games (Paquet 2020), and – in the style of models of linear logic – the Kleisli bicategory of a
suitably structured pseudocomonad on a symmetric monoidal closed bicategory with finite prod-
ucts (Paquet 2020, Theorem 2.58); the bicategory of generalised species (Fiore et al. 2007) arises
in this manner. For our purposes, the following further example will be crucial.

Lemma 3.9. (Saville (2020, Chapter 6)). For any small bicategory B, the
2-category Hom(Bop,Cat) has all bilimits, given pointwise, and admits a cartesian closed
structure with exponentials [P,Q](−) :=Hom(Bop,Cat)(Y(−)× P,Q).

4. Coherence-by-Strictification for cc-Bicategories
We are already in a position to prove a coherence-by-strictification result for cc-bicategories.
The argument is a small refinement of Power’s proof of coherence for bicategories with finite
bilimits (Power 1989a, Theorem 4.1). The proof does not go through verbatim, because the expo-
nentials in Hom(Bop,Cat) are not generally strict. The solution is to first strictify the bicategory
B to a 2-category C , then pass to the 2-category [C op,Cat] of 2-functors, 2-natural transforma-
tions, and modifications. This is cartesian closed as a 2-category – and hence as a bicategory – by
general enriched category theory (Day 1970, Example 5.2).

Proposition 4.1. For any small cc-bicategory (B,�n(− ),⇒) , there exists a 2-cc 2-category
(C ,�n(− ),⇒) such that B�C .

Proof. By Power’s result, we may assume without loss of generality that (B,�n(− ),⇒) is a
2-category with 2-categorical products and pseudo-exponentials. In particular, the assumption
that B is a 2-category means it admits a 2-categorical Yoneda embedding Y :B ↪→[Bop,Cat].
Let B denote the closure of ob(YB) under equivalences and factor the Yoneda embedding
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as B
i−→B

j
↪−→ [Bop,Cat], for j the inclusion. By the 2-categorical Yoneda lemma, i is a

biequivalence.
It remains to show that B inherits a cartesian closed structure from [Bop,Cat]: we mimic

Power’s approach. For any P,Q ∈ ob(B), the strict exponential (jP⇒ jQ) exists in [Bop,Cat]. By
definition of B, there exist B, C ∈ ob(B) such that P� YB and Q� YC. Then, since Y certainly
preserves exponentials, (jP⇒ jQ)� (YB⇒ YC)� Y(B⇒ C) and the exponential (jP⇒ jQ) is in
B, as required.

Although not the main focus of this paper, we pause briefly to observe that the preceding
argument can be adapted to closed monoidal bicategories. A monoidal bicategory can be sim-
ply characterised as a one-object tricategory: for a full definition, see (Stay 2016). Closed structure
is then defined in the usual manner.

Definition 4.2. (Day and Street (1997, Definition 5)). A closedmonoidal bicategory is amonoidal
bicategory (B,⊗, I) equipped with a choice of right biadjoint (− )⊗A� (A⇒−) for every A ∈B.

Our strategy is to replace enrichment over Cat with enrichment over Gray, the category of
2-categories and 2-functors equipped with the Gray tensor product (Gray 1974, Theorem I.4.9).

Definition 4.3.

(1) A Gray-monoid is a monoid in Gray.
(2) A pseudo-closed Gray-monoid is a Gray-monoid (C,⊗, I) equipped with a choice of right

biadjoint (− )⊗A� (A⇒−) for every A ∈C.
(3) A Gray-closed Gray-monoid is a Gray-monoid (C,⊗, I) equipped with a choice of

Gray-enriched right adjoint (− )⊗A� (A⇒−) for every A ∈C.

Thus, a Gray-monoid is pseudo-closed if it is equipped with closed structure as a monoidal
bicategory. For an explicit definition of Gray-monoids see e.g. (Day and Street 1997, Section 1).

Proposition 4.4. Every closed monoidal bicategory (B,⊗, I,⇒ ) is biequivalent, as a closed
monoidal bicategory, to a Gray-closed Gray-monoid.

Proof. Since a monoidal bicategory is a one-object tricategory, the coherence theorem for tricate-
gories (Gordon et al. 1995) entails that B is monoidally-biequivalent to a Gray-monoid G . Write
this F : G �B :G. Then G acquires a pseudo-closed structure with (X⇒ Y) :=G(FX⇒ FY), so
without loss of generality we may assume B is a pseudo-closed Gray-monoid.

By a standard fact of enriched category theory (e.g. (Kelly 1982)), the underlying cate-
gory of the Gray-enriched functor category [Bop, Gray] is the category of Gray-functors and
Gray-natural transformations. Since Gray is symmetric monoidal closed, complete and cocom-
plete, Gray-enriched Day convolution makes [Bop, Gray] into a Gray-enriched closed monoidal
category

(
[Bop, Gray],�, YI,�

)
and the Yoneda functor Y becomes a Gray-enriched strong

monoidal functor (Day 1970).
We now emulate the argument for cc-bicategories. Let B be the closure of

ob(YB)⊂ [Bop, Gray] under equivalences. Factor Y as B
i−→B

j
↪−→ [Bop, Gray]. By the

Yoneda lemma, i is a biequivalence. We claim that B inherits a closed monoidal structure from
[Bop, Gray].

First, the unit YI is certainly in B. Next, if P,Q ∈B, then P� YA and Q� YB for some
A, B ∈B. Then jP� jQ ∈ [Bop, Gray] and we have jP� jQ� YA� YB� Y(A⊗ B) ∈B as
required. Now we want to show (jP� jQ) ∈B. We argue as above, using the fact Y preserves
the closed structure: (jP� jQ)� (YA� YB)� Y(A⇒ B) ∈B.

Finally, i preserves the closed monoidal structure because Y preserves this structure.
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5. From Coherence-by-Strictification to Mac Lane-Style Coherence
We now turn to proving a Mac Lane-style coherence result from Proposition 4.1. The strat-
egy is reminiscent of the normalisation-by-evaluation argument of Čubrić et al. (1998). While
Proposition 4.1 requires remarkably little technical machinery, our approach to Mac Lane-style
coherence requires two further components: a suitable notion of cc-pseudofunctor (Section 5.1)
and a construction of the free cc-bicategory (Section 5.2).

5.1 Cartesian closed pseudofunctors
We define preservation of products and exponentials as preservation of the corresponding biuni-
versal arrows. Thus, while a cartesian closed functor preserves products and exponentials up to
isomorphism, its bicategorical counterpart preserves products and exponentials up to equivalence.

Definition 5.1.

(1) An fp-pseudofunctor (F, q×) : (B,�n(− ))→ (C ,�n(− )) is a pseudofunctor F :B→C
equipped with specified adjoint equivalences:

〈Fπ1, . . . , Fπn〉 : F
(∏n

i=1Ai
)
�

∏n
i=1(FAi) : q×A• (6)

for every A1, . . . ,An ∈ ob(B) (n ∈N).
(2) A cc-pseudofunctor (F, q×, q⇒) : (B,�n(− ),⇒)→ (C ,�n(− ),⇒) is an fp-pseudo-

functor (F, q×) equipped with specified adjoint equivalences:
sA,B : F(A⇒ B)� (FA⇒ FB) : q⇒A,B (7)

for every A, B ∈ ob(B), where sA,B : F(A⇒ B)→ (FA⇒ FB) is the exponential transpose of
F(evalA,B) ◦ q×A⇒B,A.

As it has been throughout, the extra data are right adjoints: thus, we assume that
〈Fπ1, . . . , Fπn〉 � q× and sA,B � q⇒. Instantiating Definition 2.8, we obtain the definition of a
strict cc-pseudofunctor.

Definition 5.2.

(1) An fp-pseudofunctor (F, q×) is strict if F is strict and satisfies
F
(∏

n(A1, . . . ,An)
)=∏

n(FA1, . . . , FAn)

F(πA1,...,An
i )= πFA1,...,FAn

i
F〈t1, . . . , tn〉 = 〈Ft1, . . . , Ftn〉

F� (i)
t1,...,tn =� (i)

Ft1,...,Ftn
q×A1,...,An

= Id�n(FA1,...,FAn)

with adjoint equivalences canonically induced by the 2-cells p†(rπ1 , . . . , rπn) :
Id
∼==⇒ 〈π1, . . . , πn〉.

(2) A cc-pseudofunctor (F, q×, q⇒) is strict if (F, q×) is a strict fp-pseudofunctor and F satisfies
F(A⇒ B)= (FA⇒ FB)
F(evalA,B)= evalFA,FB

F(λt)= λ(Ft)
F(εt)= εFt
q⇒A,B = IdFA⇒FB
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with equivalences canonically induced by the 2-cells

e†(evalFA,FB ◦ κ) : Id(FA⇒FB)
∼==⇒ λ(evalFA,FB ◦ Id(FA⇒FB)×FA)

for κ the canonical isomorphism IdFA⇒FB × FA∼= Id(FA⇒FB)×FA.

In the 1-categorical setting, a product-preserving functor (F, q× = 〈Fπ1, . . . , Fπn〉−1) satis-
fies q× ◦∏n

i=1 Ffi = F(
∏n

i=1 fi) ◦ q× for every family (fi :Ai→A′i)i=1,...,n. This extends to the
bicategorical setting. Indeed, for any fp-pseudofunctor (F, q×) : (B,�n(− ))→ (C ,�n(− ))
one can translate the 1-categorical proof into a composite of canonical 2-cells natf• :
q×A′• ◦

∏n
i=1Ffi⇒ F(

∏n
i=1fi) ◦ q×A• so that (q×, nat) becomes a pseudonatural equivalence∏n

i=1 (F(− ), . . . , F(= ))⇒ (
F ◦∏n

i=1
)
(−, . . . ,= ) in Hom

(∏n
i=1 B, C

)
. In the next section, we

make this “translation” precise.

5.2 The free cc-bicategory on a graph
Our statement of Mac Lane-style coherence will be that the free cc-bicategory on a graph is locally
an equivalence relation (we implicitly assume every graph under consideration is directed). In
Section 5.2.1, we construct this cc-bicategory and prove the required freeness universal proper-
ties. Then, in Section 5.2.2, we make precise the relationship between the free cc-bicategory on a
graph and the free cartesian closed category on the same graph. In Section 5, we shall use this to
substantiate Principle 1.3.

5.2.1 Constructing the free cc-bicategory
Our construction is in the style of the equational presentation of cartesian closed cate-
gories of Lambek and Scott (1986, Section I.3). For a type-theoretic presentation, constructed
as the syntactic model of a type theory in the style of the simply-typed lambda calculus,
see (Saville 2020, Chapter 5).

The axiomatisation is simplified by the use of biuniversal arrows. An alternative approach
would be to encode the projection, pairing, currying, and application operations, together with
a unit and counit for each of products and exponentials, subject to naturality, invertibility, the
triangle laws, and congruence conditions (c.f. Hilken (1996); Ouaknine (1997)). Instead, for each
of products and exponentials, we require only two 2-cell introduction rules and four equations to
specify the required adjunctions.

Notation 5.3. Let G be a graph.We write G0 for the set of nodes in G and G̃0 for the set generated
by the grammar A1, . . . ,An, C,D ::= B |∏n(A1, . . . ,An) | C⇒D (where B ∈G0 and n ∈N). For
A, B ∈G0, write G(A, B) for the set of edges from A to B.

Construction 5.4. For any graph G, define a cc-bicategory F [G] as follows. For objects, set
ob(F [G]) := G̃0. The 1-cells, 2-cells and equational theory are defined by the deductive system of
Figures 1, 2a, 2b. The equational theory makes (� (1), . . . ,� (n)) and ε universal arrows; to ensure
the adjunctions (4) and (5) are adjoint equivalences, we must also require each unit is invertible.

We abuse notation by denoting whiskering in the usual manner.

For any graph G, the bicategory F [G] is locally groupoidal: every 2-cell is invertible. This is
proven by a straightforward induction on the 2-cells in Figures 1 and 2, using Remark 3.8 for the
p†(−, . . . ,=) and e†(−) cases.

Restricting to strict cc-pseudofunctors yields a strict free property for F [G]. Recall that every
bicategory B has an underlying graph with nodes the objects of B and a unique edge A� B
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Bicategorical structure, 1-cells

c ∈G(A, B)
c ∈F [G](A, B) IdA ∈F [G](A,A)

f ∈F [G](A, B) g ∈F [G](X,A)
f ◦ g ∈F [G](X, B)

Bicategorical structure, 2-cells

f ∈F [G](A, B)
idf ∈F [G](A, B)(f , f )

τ ∈F [G](A, B)(f ′, f ′′) σ ∈F [G](A, B)(f , f ′)
τ • σ ∈F [G](A, B)(f , f ′′)

τ ∈F [G](A, B)(f , f ′) σ ∈F [G](X,A)(g, g′)
τ ◦ σ ∈F [G](X, B)(f ◦ g, f ′ ◦ g′)

f ∈F [G](B, C) g ∈F [G](A, B) h ∈F [G](X, B)
af ,g,h ∈F [G](X, C)

(
f ◦ (g ◦ h), (f ◦ g) ◦ h)

f ∈F [G](A, B)
rf ∈F [G](A, B)

(
f , f ◦ IdA

) g ∈F [G](A, B)
lg ∈F [G](A, B)(IdB ◦ g, g)

Equational theory
The smallest congruence≡ such that:

• Every F [G](A, B) forms a category with composition the • operation and identity on
f ∈F [G](A, B) given by idf ,

• The operation (f , g) �→ f ◦ g is functorial with respect to this category structure,
• The families of 2-cells a, l and r are invertible, natural and satisfy the triangle and
pentagon laws of a bicategory.

Figure 1: Rules for F [G]: bicategorical structure.

for each 1-cell f :A→ B in B. We do not distinguish notationally between a bicategory and its
underlying graph, and write ι for the canonical inclusion G ↪→F [G].

Lemma 5.5. For any graph G, cc-bicategory (C ,�n(− ),⇒) and graph homomorphism h :
G→C there exists a unique strict cc-pseudofunctor h� :F [G]→C such that h� ◦ ι= h.

Proof. We define h� in the obvious manner. On objects, set

h�(B) := h(B) for B ∈G0

h�
(∏

n(A1, . . . ,An)
) :=∏

n
(
h�A1, . . . , h�An

)
h�(B⇒ C) := (h�A⇒ h�B)

The action on constants c ∈G(A, B), identities and composition is determined by the requirement
that h� is strict and satisfies h� ◦ ι= h. Similarly, for products and exponentials the action of h� is
determined everywhere except on p†(α1, . . . , αn) and e†(α). For these, we set

h�
(
p†(α1, . . . , αn)

) := p†(h�α1, . . . , h�αn)
h�

(
e†(α)

) := e†(h�α) (8)
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Finite-product structure, 1-cells

(1≤ i≤ n)

π
A•
i ∈F [G]

(∏
n(A1, . . . ,An),Ai

) (ti ∈F [G](X;Ai))i=1, ... ,n
〈t1, . . . , tn〉 ∈F [G]

(
X;

∏
n(A1, . . . ,An)

)

Finite-product structure, 2-cells

(ti ∈F [G](X;Ai))i=1, ... ,n
(1≤ i≤ n)

�
(i)
t• ∈F [G](X;Ai)

(
π
A•
i ◦ 〈t1, . . . , tn〉, ti

)
(
αi ∈F [G](X;Ai)(πA•

i ◦ u, ti)
)
i=1, ... ,n

p†(α1, . . . , αn) ∈F [G]
(
X;

∏
n(A1, . . . ,An)

)
(u, 〈t1, . . . , tn〉)

Finite product structure, equational theory

• αk ≡� (k)
t• •

(
πk ◦ p†(α1, . . . , αn)

)
if (αi : u⇒ ti : X→Ai)i=1,...,n and k ∈ {1, . . . , n},

• γ≡p†(� (1)
t• • (π1 ◦ γ ), . . . ,� (n)

t• • (πn ◦ γ )
)
if γ : u⇒〈t1, . . . , tn〉 : X→∏

n(A1, . . . ,An),
• p†(α1, . . . , αn)≡ p†(α′1, . . . , α′n) if αi ≡ α′i : πA•

i ◦ u⇒ ti for i= 1, . . . , n,
• Every� (i)

t• and ςt := p†(idπ1◦t , . . . , idπn◦t) is invertible.

(a) Finite-product structure

Closed structure, 1-cells
To simplify notation, we write t× B for the (derived) arrow 〈t ◦ π1, Id ◦ π2〉, and likewise on
2-cells.

evalB,C ∈F [G](B⇒ C× B;C)
t ∈F [G](X× B;C)
λt ∈F [G](X, B⇒ C)

Closed structure, 2-cells

t ∈F [G](X× B, C)
εt ∈F [G](X× B, C)

(
evalB,C ◦ (λt× B), t

)
u ∈F [G](X, B⇒ C)

α ∈F [G](X× B, C)
(
evalB,C ◦ (u× B), t

)
e†(α) ∈F [G](X,A⇒ B)(u, λt)

Closed structure, equational theory
• α≡ εt •

(
evalB,C ◦ (e†(α)× B)

)
for every α : evalB,C ◦ u× B⇒ t : X× B→ C,

• γ ≡ e†(εt • (
evalB,C ◦ (γ × B)

))
for every γ : u⇒ λt : X→ (A⇒ B),

• e†(α)≡ e†(α′) if α ≡ α′ : evalB,C ◦ (u× B)⇒ t : X× B→ C,
• Every εt and ηu := e†(ideval◦(u×B)) is invertible.

(b) Closed structure

Figure 2: Rules for F [G]: cartesian closed structure.
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For uniqueness, it suffices to show that any strict cc-pseudofunctor preserves p†(−) and e†(−) as
in (8). This follows from Lemma 2.10.

We are now justified in calling F [G] the free cc-bicategory on G. Its strict freeness univer-
sal property entails an up-to-equivalence universal property which will play a crucial role in our
proof of Mac Lane-style coherence. We write t :A1, . . . ,An→ B and τ : t⇒ t′ :A1, . . . ,An→ B
for 1-cells and 2-cells in F [G], respectively.

Lemma 5.6. Let G be a graph, (B,�n(− ),⇒) be a cc-bicategory and h :G→C a graph
homomorphism. Then for any cc-pseudofunctor (F, q×, q⇒) satisfying F ◦ ι= h there exists a
pseudonatural adjoint equivalence F� h� between F and the canonical cc-pseudofunctor extend-
ing h.

Proof. We construct a pseudonatural transformation (k, k) : F⇒ h� such that each component
kX forms an adjoint equivalence kX � k�X ; write vX : IdFX

∼==⇒ k�X ◦ kX and wX : kX ◦ k�X
∼==⇒ Idh�X for

the unit and counit of this adjunction, respectively. One then obtains the required pseudo-inverse
(k�, k�) : h�⇒ F, by defining k�f to be the mate of kf (see e.g. (Lack 2010, Section 2.1)). Because
kf , vX , and wX are all invertible, so is k�f . The equivalence F� h� witnessed by (k, k) and (k�, k�)
extends to an adjoint equivalence with unit v and counit w.

We define kX and k�X by mutual induction. Recall that we write sA,B for the canonical map
λ
(
F(evalA,B) ◦ q×A⇒B,A

) : F(A⇒ B)→ (FA⇒ FB).

kB := FB =−→ hB
IdhB−−→ hB =−→ h�B for B ∈ B

k�B := h�B =−→ hB
IdhB−−→ hB =−→ FB

k(∏n A•) := F
(∏

nA•
) 〈Fπ1,...,Fπn〉−−−−−−−→∏n

i=1F(Ai)
∏n

i=1 kAi−−−−−→∏n
i=1h�Ai

k�(∏n A•)
:=∏n

i=1h�Ai

∏n
i=1 k�Ai−−−−−→∏n

i=1F(Ai)
q×A•−−→ F

(∏
nA•

)

k(X⇒Y) := F(X⇒ Y)
sX,Y−−→ (FX⇒ FY)

k�X⇒kY−−−−→ (h�X⇒ h�Y)

k�(X⇒Y) := (h�X⇒ h�Y)
kX⇒k�Y−−−−→ (FX⇒ FY)

q⇒X,Y−−→ F(X⇒ Y)

It remains to construct the witnessing 2-cells kt : kB ◦ Ft⇒ h�(t) ◦ kA. The construction is long
but not especially enlightening, so we leave the full details for Section A.

5.2.2 cc-Bicategories as CCCs “up to isomorphism”
We can now make precise the statement that the free cc-bicategory on a graph is a cartesian
closed category “up to isomorphism.” In conjunction with our main theorem, this will enable
us to justify Principle 1.3.

Definition 5.7. For any graph G, let F[G] denote the free cartesian closed category on
G (see e.g. (Lambek and Scott 1986, Section 1.3)). Explicitly, the objects are ob(F[G]) := G̃0 and
the morphisms are defined inductively by taking the rules defining 1-cells in F [G]. The equational
theory is the smallest congruence containing the identity and associativity laws of a category, together
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with the rules:
si = πi ◦ 〈s1, . . . , sn〉 (� (i))
t= 〈π1 ◦ t, . . . , πn ◦ t〉 (ς)
u= evalA,B ◦ (λu×A) (ε)
v= λ(eval ◦ (v×A)) (η)

where (si : X→Ai)i=1,...,n, t : X→∏
n(A1, . . . ,An), u : X×A→ B, and v : X→ (A⇒ B).

There exist evident mappings �− � : F[G]→F [G] : (− ) taking an object or 1-cell to its
correlate.

Definition 5.8. For any graph G and A, B ∈F [G], define an equivalence relation ∼=A,B on
ob(F [G](A, B)) by setting t∼=A,B t′ if and only if there exists a (necessarily invertible) rewrite t

∼==⇒ t′
in F [G].

Lemma 5.9. Let G be a graph. For any A, B ∈ G̃0, the mappings �− � and (− ) determine a bijec-
tion ob(F [G](A, B))/∼=A,B ∼= F[G](A, B) between morphisms in the free cartesian closed category
and∼=A,B-equivalence classes of 1-cells in the free cc-bicategory.

Proof. Suppose σ : t⇒ t′ :A→ B in F [G]. We need to show that t≡ t′. If σ is a structural iso-
morphism, this follows from standard properties of syntactic substitution. If σ is a counit� (i) or
ε, then t and t′ are related by the corresponding equation in Definition 5.7. If σ = p†(α1, . . . , αn) :
u⇒〈t1, . . . , tn〉 then, arguing inductively, we have πi ◦ u≡ ti for i= 1, . . . , n. But then

u (ς)= 〈π1 ◦ u, . . . , πn ◦ u〉 = 〈t1, . . . , tn〉
as required. The e†(α) case is similar, while the • and ◦ cases follow directly from the induc-
tion hypothesis.

Going the other way, induct on the definition of t≡ t′ in F[G]. If≡ is a reflexivity or symmetry
law, one takes the identity 2-cell or uses the fact every 2-cell in F [G] is invertible. If ≡ arises by
transitivity or the congruence laws, the required 2-cell is defined by composing those given by the
induction hypothesis. Next, if≡ is an unit or associativity axiom for a category, the corresponding
rewrite � t �⇒ � t′ � is a structural isomorphism in F [G].

Finally, for the cartesian closed structure, if≡ is either (� (i)) or (ε) in Definition 5.7, the equa-
tion is witnessed by the corresponding 2-cell. If it is either (ς) or (η), the equation is witnessed by
the relevant unit: either p†(Idπ1◦t , . . . , Idπn◦t) or e†(ideval◦(t×B)).

5.3 Proving coherence
Finally, we come to proving Mac Lane-style coherence. Fix a graph G, a cc-bicategory
(X ,�n(− ),⇒) and a graph homomorphism h :G→X . Now let (C ,�n(− ),⇒) be a
2-cc 2-category and (F, q×, q⇒) : (X ,�n(− ),⇒)→ (C ,�n(− ),⇒) be any cc-pseudofunctor.
The underlying mapping of F determines a graph homomorphism F0 :X →C and F ◦ h� is a
cc-pseudofunctor so, applying Lemma 5.5 and Lemma 5.6, one obtains the following diagram:

C

X

G F [G]

F
F0◦h

h h�

(F0◦h)�
�
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Denote the equivalence (F0 ◦ h)� �=⇒ F ◦ h� by (k, k). For any 1-cell t : X→A in F [G], one
therefore obtains an iso-commuting square:

(F ◦ h�)X (F ◦ h�)A

(F0 ◦ h)�X (F0 ◦ h)�A
kt∼=kX

(F◦h�)t

kA

(F0◦h)�t
Moreover, the naturality condition on a pseudonatural transformation requires that, for any 2-cell
τ : t⇒ t′ : X→A in F [G], the following commutes:

kA ◦ (F ◦ h�)(t) kA ◦ (F ◦ h�)(t′)

(F0 ◦ h)�(t) ◦ kX (F0 ◦ h)�(t′) ◦ kX
kt

kA◦(F◦h�)(τ )

kt′

(F0◦h)�(τ )◦kX

(9)

But the cartesian closed structure of C is strict and the definition of the pseudofunctor (F0 ◦ h)�
only employs the canonical 2-cells of the cc-bicategory structure. Hence, arguing by induction on
the definition of the extension cc-pseudofunctor defined in Lemma 5.5, one sees that (F0 ◦ h)�(τ )
is the identity for every 2-cell τ . It follows that (9) degenerates to the following:

kA ◦ (F ◦ h�)(t) kA ◦ (F ◦ h�)(t′)

(F0 ◦ h)�(t) ◦ kX (F0 ◦ h)�(t′) ◦ kX
kt

kA◦(F◦h�)(τ )

kt′ (10)

Now, since (k, k) is an equivalence, every component kX has a pseudo-inverse. Let us denote this
by k�X . From (10), one sees that the following commutes:

(F ◦ h�)(t) (F ◦ h�)(t′)

(k�A ◦ kA) ◦ (F ◦ h�)(t) (k�A ◦ kA) ◦ (F ◦ h�)(t)

k�A ◦
(
kA ◦ (F ◦ h�)(t)

)
k�A ◦

(
kA ◦ (F ◦ h�)(t′)

)

k�A ◦
(
(F0 ◦ h)�(t) ◦ kX

)
k�A ◦

(
(F0 ◦ h)�(t′) ◦ kX

)

∼=

(F◦h�)(τ )

∼=

∼=
(k�A◦kA)◦(F◦h�)(τ )

∼=

k�A◦kt
k�A◦

(
kA◦(F◦h�)(τ )

)
k�A◦kt′

Hence, (F ◦ h�)τ is completely determined by a composite of 2-cells, none of which depend on τ .

Proposition 5.10. Let (X ,�n(− ),⇒) be a cc-bicategory , (C ,�n(− ),⇒) be a 2-cc 2-category,
and (F, q×, q⇒) : (X ,�n(− ),⇒)→ (C ,�n(− ),⇒) be any cc-pseudofunctor. Then if h :
G→X is a graph homomorphism and τ : t⇒ t′ is any 2-cell in F [G], the 2-cell (F ◦ h�)(τ ) in
C is completely determined by t and t′. Hence, for any parallel pair of 2-cells τ , σ : t⇒ t′ in F [G],
one has the equality (F ◦ h�)(τ )= (F ◦ h�)(σ ).

Together with Proposition 4.1, one obtains Mac Lane-style coherence.
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Theorem 5.11. For any graph G and any pair of parallel 2-cells τ , σ : t⇒ t′ in F [G], the equality
τ ≡ σ holds.

Proof. Let h := ι :G ↪→F [G] be the inclusion graph homomorphism and F be the biequivalence
between a cc-bicategory and a 2-cc 2-category arising from Proposition 4.1. By Lemma 5.5 we have
ι� = idF [G] so F ◦ ι� is a composite of biequivalences and hence a biequivalence itself. It follows
that F ◦ ι� is locally fully-faithful, so τ ≡ σ if and only if (F ◦ ι�)(τ )= (F ◦ ι�)(σ ). The latter holds
by Proposition 5.10, so τ ≡ σ as claimed.

We finish by substantiating Principle 1.3. Suppose we want to show a pseudo structure P can
be constructed in any cc-bicategory, and we know its strict counterpart S is constructible in every
cartesian closed category. By Lemma 5.9, we can translate the sequence of equations showing the
existence of S into a composite of 2-cells; these form the structural data for P. It remains to show
the composites thus constructed satisfy the coherence laws on P. But this follows immediately
from Theorem 5.11.
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Note
1 It is an unfortunate accident of terminology that there is no connection to the “cartesian bicategories” of Carboni et al.
(Carboni et al. 2008; Carboni and Walters 1987), nor to the “closed cartesian bicategories” of Frey (2019).
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Appendix A. The proof of Lemma 5.6
In the main body, we construct adjoint equivalences kX : FX� h�X : k�X . Denote the unit and
counit of these equivalences by vX : IdFX⇒ k�X ◦ kX and wX : kX ◦ k�X⇒ Idh�X , respectively, and
assume without loss of generality that they satisfy the two triangle laws. Moreover, for any
cc-pseudofunctor (F, q×, q⇒), write
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u×A• : Id(F�iAi)⇒ q×A• ◦ 〈Fπ1, . . . , Fπn〉
c×A• : 〈Fπ1, . . . , Fπn〉 ◦ q×A• ⇒ Id(∏i FAi)

u⇒A,B : IdF(A⇒B)⇒ q⇒A,B ◦ sA,B
c⇒A,B : sA,B ◦ q⇒A,B⇒ Id(FA⇒FB)

for the 2-cells witnessing the adjoint equivalences (6) and (7).
It remains to construct the witnessing 2-cells kt : kB ◦ Ft⇒ h�(t) ◦ kA. To do this, we require

names for some of the canonical 2-cells in a cc-bicategory. These 2-cells provide witnesses for
standard equations in a cartesian closed category.

Construction A.1. Let (B,�n(− )) be an fp-bicategory. We define the following natural families
of invertible 2-cells:

(1) For (hi : Y→Ai)i=1,...,n and g : X→ Y, define

post(h•;g) :
〈
h1, . . . , hn

〉 ◦ g⇒ 〈
h1 ◦ g, . . . , hn ◦ g

〉
to be p†(α1, . . . , αn), where each αk is defined to be

πk ◦
(〈h1, . . . , hn〉 ◦ g) ∼==⇒ (

πk ◦ 〈h1, . . . , hn〉
) ◦ g � (k)◦g===⇒ hk ◦ g

(2) For (hi :Ai→ Bi)i=1,...,n and (gi : X→Ai)i=1,...,n, define

fuse(h•;g•) :
(∏n

i=1hi
) ◦ 〈

g1, . . . , gn
〉⇒ 〈

h1 ◦ g1, . . . , hn ◦ gn
〉

to be p†(β1, . . . , βn), where each βk is defined by the diagram

πk ◦
((∏n

i=1hi
) ◦ 〈g1, . . . , gn〉) hk ◦ gk

(
πk ◦

∏n
i=1hi

) ◦ 〈g1, . . . , gn〉 (
hk ◦ πk

) ◦ 〈g1, . . . , gn〉 hk◦
(
πk◦〈g1, . . . , gn〉

)
∼=

βk

� (k)◦〈g1,...,gn〉 ∼=

hk◦� (k)

(3) For (hi :Ai→ Bi)i=1,...,n and (gj : Xj→Aj)j=1,...,n define �h•,g• :
(∏n

i=1hi
) ◦ (∏n

i=1gi
)

⇒∏n
i=1(higi) to be the composite 〈a−1h1,g1,π1 , . . . , a

−1
hn,gn,πn〉 • fuse(h•;g1 ◦ π1, . . . , gn ◦ πn).

This 2-cell witnesses the pseudofunctoriality of
∏

n (−, . . . ,= ).

For cartesian closed structure, we have one further canonical transformation.

Construction A.2. Let (B,�n(− ),⇒) be a cc-bicategory. For g : X→ Y and f : Y ×A→ B, we
define push(f , g) : λ(f ) ◦ g⇒ λ

(
f ◦ (g ×A)

)
as e†(τ ), for τ the composite:

evalA,B ◦
(
(λf ◦ g)×A

)
f ◦ (g ×A)

evalA,B ◦
(
(λf ×A) ◦ (g ×A)

) (
evalA,B ◦ (λf ×A)

) ◦ (g ×A)

eval◦(�f ,g )−1

τ

∼=

εf ◦(g×A)

where�f ,g : (f ×A) ◦ (g ×A)⇒ (fg ×A) is as in Construction A.1(3).
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Finally, in a cartesian category, it is often useful to “unpack” an n-ary tupling from inside a
cartesian functor in the following manner:

〈Fπ1, , . . . , Fπn〉 ◦ F〈f1, , . . . , fn〉 =
〈
F(π•) ◦ F

〈
f1, , . . . , fn

〉〉
= 〈

F(π• ◦
〈
f1, , . . . , fn

〉
)
〉

= 〈
Ff1, , . . . , Ffn

〉

In an fp-bicategory, one obtains a natural family of 2-cells we call unpack.

Construction A.3. For any fp-pseudofunctor (F, q×) : (B,�n(− ))→ (C ,�n(− )) the invertible
2-cell unpackf• : 〈Fπ1, , . . . , Fπn〉 ◦ F〈f1, , . . . , fn〉⇒

〈
Ff1, , . . . , Ffn

〉 : FX→∏n
i=1 FBi is defined to

be p†(τ1, , . . . , τn), where τk (k= 1, , . . . , n) is given by the following diagram:

πk ◦
(〈Fπ1, , . . . , Fπn〉 ◦ F〈

f1, , . . . , fn
〉)

Ffk

(πk ◦ 〈Fπ1, , . . . , Fπn〉) ◦ F
〈
f1, , . . . , fn

〉

F(πk) ◦ F
〈
f1, , . . . , fn

〉
F

(
πi ◦

〈
f1, , . . . , fn

〉)

τk

∼=

� (k)◦F〈f1,,...,fn〉

φF
πk ,〈f•〉

F� (k)

We now construct kt by induction on t.

Construction A.4. (Defining natt). Composition and identities. For identities, the definition is
forced upon us by the unit law of a pseudonatural transformation. We define

kIdA := kA ◦ F(IdA)
kA◦(ψF

A)
−1

======⇒ kA ◦ IdF(A) ∼==⇒ Idh�(A) ◦ kA

The definition for maps of the form t ◦ u : Z→ B is forced by the composition law of a
pseudonatural transformation. Using that h� is a strict pseudofunctor, we define

kB ◦ F(t ◦ u)
(
h�(t) ◦ h�(u)) ◦ kZ

kB ◦ (F(t) ◦ F(u)) h�(t) ◦ (
h�(u) ◦ kZ

)

(kB ◦ Ft) ◦ Fu
(
h�(t) ◦ kA

) ◦ Fu h�(t) ◦ (kA ◦ Fu)

kB◦(φFt,u)−1

kt◦u

∼=

∼=

kt◦F(u) ∼=

h�(t)◦ku
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Constants. Let c ∈G(A, B). Then we must have F(c)= h(c)= h�(c), so kc is the composite of
structural isomorphisms:

kB ◦ Fc= IdhB ◦ Fc
∼=−→ Fc= h�(c)

∼=−→ h�(c) ◦ IdhA = h�(c) ◦ kA

Product structure. We define kπk and k〈t1, ... ,tn〉 by the commutativity of the following diagrams:

kAk ◦ Fπk h�(πk) ◦ k(∏n A•)

kAk ◦ (πk ◦ 〈Fπ•〉)
(
πk ◦

∏n
i=1 kAi

) ◦ 〈Fπ•〉
(
kAk ◦ πk

) ◦ 〈Fπ•〉
(∏m

i=1 kAi ◦ 〈Fπ•〉
) ◦ F(〈t1, . . . , tm〉) h�(〈t1, . . . , tm〉) ◦ kX

(∏m
i=1 kAi

) ◦ (〈Fπ•〉 ◦ F(〈t1, . . . , tm〉)) 〈h�(t•)〉 ◦ kX

(∏m
i=1 kAi

) ◦ 〈F(t•)〉 〈kA• ◦ F(t•)〉 〈h�(t•) ◦ kX〉

kπk

kAk◦� (−k)

∼=

∼=

� (−k)◦〈Fπ•〉

k〈t1, ... ,tm〉

∼=

(
∏

i kAi )◦unpack

fuse 〈kt1 , ... ,ktm 〉

post−1

The cases for the evaluation map and currying require more work but are similar in spirit.

Evaluation map. We are required to give an invertible 2-cell filling the diagram

F
(
(A⇒ B)×A

)
FB

F(A⇒ B)× F(A)

h�(A⇒ B)× h�A (h�A⇒ h�B)× h�A h�B

(k(A⇒B) × kA) ◦ 〈Fπ1, Fπ2〉 keval⇐

〈Fπ1,Fπ2〉

FevalA,B

kB

k(A⇒B)×kA

eval

To this end, first define an invertible 2-cell δA,B applying the counit ε as far as possible:
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evalh�A,h�B ◦
(
k(A⇒B) × kA

)

evalh�A,h�B ◦
(
(k�A⇒ kB) ◦ sFA,B × kA

)

(
evalh�A,h�B ◦

(
(k�A⇒ kB)× h�A

)) ◦ (sFA,B × kA)
((
kB ◦ evalFA,FB

) ◦ (
Id(FA⇒FB) × k�A

)) ◦ (sFA,B × kA)
(
kB ◦

(
evalFA,FB ◦

(
sFA,B × FA

))) ◦ (
Id(FA⇒FB) × k�AkA

)

(
kB ◦

(
F(evalA,B) ◦ q×A⇒B,A

)) ◦ (
Id(FA⇒FB) × k�AkA

)

(
kB ◦

(
F(evalA,B) ◦ q×A⇒B,A

)) ◦ (
Id(FA⇒FB) × IdFA

) (
kB ◦ F(evalA,B)

) ◦ q×A⇒B,A

δA,B

∼=

ε(k◦eval◦(Id×k�))◦(sFA,B×kA)

∼=

k◦ε(F(eval)◦q×)◦(Id×k�k)

k◦Feval◦q×◦(Id×v−1A )

∼=

Then define keval to be the composite

kB ◦ F(evalA,B) evalh�A,h�B ◦
((
k(A⇒B) × kA

) ◦ 〈Fπ1, Fπ2〉)

(
kB ◦ F(evalA,B)

) ◦ IdF((A⇒B)×A)

(
kB ◦ F(evalA,B)

) ◦ (
q×A⇒B,A ◦ 〈Fπ1, Fπ2〉

)

(
kB ◦

(
F(evalA,B) ◦ q×A⇒B,A

)) ◦ 〈Fπ1, Fπ2〉
(
evalh�A,h�B ◦

(
k(A⇒B) × kA

)) ◦ 〈Fπ1, Fπ2〉

∼=

keval

(kB◦F(evalA,B))◦u×A⇒B,A

∼=

δ−1A,B◦〈Fπ1,Fπ2〉

∼=
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Currying. Suppose t : Z×A→ B. By induction, we are given kt filling

F(Z×A) FB

FZ× FA

h�(Z)× h�(A) h�(Z×A) h�B

(kZ × kA) ◦ 〈Fπ1, Fπ2〉
〈Fπ1,Fπ2〉

kt⇐

Ft

kB

kZ×kA

h�t

and we are required to fill the diagram:

FZ F(A⇒ B)

(
FA⇒ FB

)

h�Z (h�A⇒ h�B)

kZ kλt⇐

F(λt)

(k�A⇒ kB) ◦ sFA,B

sFA,B

(k�A⇒kB)

h�(λt)

Our strategy is the following. Writing cl for the clockwise composite around the preceding diagram,
we define a 2-cell:

ζA,B : evalh�A,h�B ◦ (cl× h�A)⇒ h�(t) ◦ (kZ × h�A)

so that e†(ζA,B) : cl⇒ λ
(
h�(t) ◦ (kZ × h�A)

)
; by Remark 3.8 and the induction hypothesis this is

invertible. We then define kλt as the composite:

cl e
†(ζA,B)====⇒ λ

(
h�(t) ◦ (kZ × h�A)

) push−1====⇒ λ
(
h�t

) ◦ kZ = h�(λt) ◦ kZ
The 2-cell ζA,B is defined in stages. First, we set υA,B to be the following composite, where we write∼=
for composites of� and structural isomorphisms:

evalh�A,h�B ◦ (cl× h�A)

(
evalh�A,h�B ◦

(
(k�A⇒ kB)× h�A

)) ◦ ((
sFA,B ◦ F(λt)

)× h�A
)

((
kB ◦ evalFA,FB

) ◦ (Id(FA⇒FB) × k�A)
) ◦ ((

sFA,B ◦ F(λt)
)× h�A

)

(
kB ◦

(
evalFA,FB ◦

(
sFA,B × F(A)

))) ◦ (
F(λt)× k�A

)

(
kB ◦

(
F(evalA,B) ◦ q×A⇒B,A

)) ◦ (
F(λt)× k�A

)

∼=

εk◦eval◦(Id×k�)◦(sFA,BF(λt)×h�A)

∼=

kB◦ε(F(eval)◦q×)◦(F(λt)×k�)
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Next, we define θA,B to be the composite:

F(evalA,B) ◦
(
q×A⇒B,A ◦ (Fλt× FA)

)
Ft ◦ q×Z,A

F(evalA,B) ◦
(
q×A⇒B,A ◦

(
λt× FIdA

))
F
(
evalA,B ◦ (λt×A)

) ◦ q×Z,A

F(evalA,B) ◦
(
F(λt×A) ◦ q×Z,A

) (
F(evalA,B) ◦ F(λt×A)

) ◦ q×Z,A

θA,B

F(eval)◦q×◦(F(λt)×ψF
A)

F(eval)◦nat

F(εt)◦q×

∼=

φF(eval,λt×A)◦q×

We can now define ζA,B as follows:

evalh�A,h�B ◦ (cl× h�A) h�(t) ◦ (
kZ ×A

)

(
kB ◦

(
FevalA,B ◦ q×A⇒B,A

)) ◦ (
F(λt)× k�A

)

(
kB ◦

(
FevalA,B ◦

(
q×A⇒B,A ◦ (F(λt)× FA)

))) ◦ (
FZ× k�A

)

(
kB ◦

(
Ft ◦ q×Z,A

))
◦ (

FZ× k�A
)

(kB ◦ Ft) ◦
(
q×Z,A ◦

(
FZ× k�A

))

(
h�(t) ◦ ((kZ × kA) ◦ 〈Fπ1, Fπ2〉)

) ◦ (
q×Z,A ◦

(
FZ× k�A

))

((
h�(t) ◦ (kZ × kA)

) ◦ (
〈Fπ1, Fπ2〉 ◦ q×Z,A

))
◦ (

FZ× k�A
)

h�(t) ◦ (kZ × kA) ◦ IdFZ×FA ◦
(
FZ× k�A

)

h�(t) ◦ (kZ × kAk�A)

υA,B

ζA,B

∼=

kB◦θA,B◦(FZ×k�A)

∼=

kt◦q×◦(FZ×k�A)

∼=

h�(t)◦(kZ×kA)◦c×Z,A◦(FZ×k�A)

∼=

h�(t)◦(kZ×wA)

This completes the definition of kλt .

To show that (k, k) is indeed a pseudonatural transformation, we need to check the naturality
condition and the two axioms. Naturality is a straightforward check for each case outlined above.
The two axioms – corresponding to the identity and composition cases – hold by construction.
This completes the proof of Lemma 5.6.
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