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Abstract

Background. Gray matter (GM) ‘pseudoatrophy’ is well-documented in patients with anor-
exia nervosa (AN), but changes in white matter (WM) are less well understood. Here we
investigated the dynamics of microstructural WM brain changes in AN patients during
short-term weight restoration in a combined longitudinal and cross-sectional study design.
Methods. Diffusion-weighted images were acquired in young AN patients before (acAN-Tp1,
n = 56) and after (acAN-Tp2, n = 44) short-term weight restoration as well as in age-matched
healthy controls (HC, n = 60). Images were processed using Tract-Based-Spatial-Statistics to
compare fractional anisotropy (FA) across groups and timepoints.
Results. In the cross-sectional comparison, FA was significantly reduced in the callosal body
in acAN-Tp1 compared with HC, while no differences were found between acAN-Tp2 and
HC. In the longitudinal arm, FA increased with weight gain in acAN-Tp2 relative to
acAN-Tp1 in large parts of the callosal body and the fornix, while it decreased in the right
corticospinal tract.
Conclusions. Our findings reveal that dynamic, bidirectional changes in WM microstructure
in young underweight patients with AN can be reversed with brief weight restoration therapy.
These results parallel those previously observed in GM and suggest that alterations in WM in
non-chronic AN are also state-dependent and rapidly reversible with successful intervention.

Introduction

Anorexia Nervosa (AN) is an eating disorder with a life-time prevalence up to 0.9% in females
(Smink et al., 2012) and associated with extreme restriction of energy-intake, significantly low
body weight, fear of weight gain and a distorted body image. Despite a recent increase in stud-
ies investigating the neurobiology of AN, the underlying pathophysiology remains largely
unknown and the relationship between brain and illness behaviors is still poorly understood
(Kaye et al., 2013; Phillipou et al., 2014; Seitz et al., 2014; King et al., 2017). Several studies
have reported reductions in gray matter (GM) in the acute state of AN (acAN; Mühlau
et al., 2007; Titova et al., 2013; Seitz et al., 2014, 2015; King et al., 2015) which (partially) nor-
malize during weight restoration therapy (Castro-Fornieles et al., 2009; Friederich et al., 2012;
Mainz et al., 2012; Bomba et al., 2015; Bernardoni et al., 2016). White matter (WM) alterations
in acute patients seem to follow a similar pattern although the number of studies is limited
(Wagner et al., 2006; Lázaro et al., 2013; Seitz et al., 2016).

To examine potential WM pathology associated with AN, a growing number of studies
have used diffusion tensor imaging (DTI; for review see Martin Monzon et al., 2016; King
et al., 2017). DTI enables the evaluation of microstructural properties in WM by quantifying
the translational motion of water molecules in the brain (Basser and Jones, 2002; Jones et al.,
2013). A common metric is a fractional anisotropy (FA), a scalar value of the degree of diffu-
sion anisotropy in brain tissue which is related to the dispersion of fibers in WM (Edwards
et al., 2017). In WM tracts with coherently organized fibers, higher FA is thought to reflect
favorable microstructural properties, such as increased myelination or greater axonal count
(Basser and Pierpaoli, 2011), whereas FA decreases are typically interpreted as reduced WM
integrity (Via et al., 2014). Another common measure is mean diffusivity (MD), a measure
that is related to the neurite density and as such typically negatively correlated to FA
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(Feldman et al., 2010; Lampinen et al., 2017). Further measures
include axial (AD) and radial diffusivity (RD), which represent
the diffusivity along the principal direction of fibers (AD) and
perpendicular (RD) to it (Jones et al., 2013).

Several DTI studies have reported abnormalities in WM
microstructure in acAN compared with healthy controls (HC),
but both the location and direction of alterations (increased v.
decreased anisotropy/diffusivity) has been relatively inconsistent
(Kazlouski et al., 2011; Frieling et al., 2012; Frank et al., 2013;
Yau et al., 2013; Nagahara et al., 2014; Via et al., 2014; Hayes
et al., 2015; Travis et al., 2015; Gaudio et al., 2017). These discrep-
ancies may be due to differences in analysis strategies, neurodeve-
lopmental factors (age), clinical variables such as duration of
illness and lack of statistical power (due to small sample sizes).

To study potential persistent microstructural WM alterations
which might be related to predisposing factors for AN, a few
DTI studies have focused on women recovered from AN
(recAN). Whereas several prior reports suggest intact WM micro-
structure in recAN (Frieling et al., 2012; Yau et al., 2013; Pfuhl
et al., 2016), Shott et al. (2016) found lower WM integrity in
recAN in some WM tracts.

In an attempt to further differentiate transient phenomena
(state markers), which may be secondary to acute undernutrition,
from trait effects, two studies have longitudinally investigated
WM microstructure alterations in acAN following partial weight
restoration. A pilot study with a small sample (n = 9) found that
increased FA in bilateral frontal, parietal and temporal areas in
underweight adolescent acAN was partially normalized after
nutritional treatment (Vogel et al., 2016). Another study found
no whole-brain FA differences in acAN at baseline, but a region
of interest (ROI) analysis revealed increased WM anisotropy in
the fronto-accumbal pathway after short-term weight restoration
(Cha et al., 2016). Also, WM alterations have been associated
with AN-related characteristics such as measures of eating dis-
order severity (Cha et al., 2016), anxiety (Kazlouski et al., 2011)
and harm avoidance (Yau et al., 2013). However, replications
are needed since current findings are inconsistent and may pri-
marily be state-related.

Here, we studied the largest cohort of young acutely ill AN
patients (and age-matched female HC) to date, both within the
first days of treatment and again 2–4 months later after partial
weight-restoration. Based on the previous DTI findings [and
related findings for brain GM; see King et al. (2017) for review],
we hypothesized that acAN patients would show evidence for
reduced FA at baseline (acAN-Tp1) in brain areas that are
assumed to be linked to AN symptomatology. For patients after
short-term weight recovery (acAN-Tp2), we expected an at least
partial normalization of WM microstructure compared with base-
line, and no residual differences relative to HC. The current longitu-
dinal study aims to bring some needed clarity to the literature on
WM microstructure in AN. Affirmation of the hypothesis above
would demonstrate that changes in WM microstructure in AN are
more likely to be state-dependent and consequences of undernutri-
tion than reflect premorbid trait markers or permanent ‘scars’.

Methods

Participants

We refer to acAN assessed within 96 hours after beginning nutri-
tional rehabilitation program (timepoint 1) as ‘acAN-Tp1’ and
after achieving partial weight restoration (timepoint 2) as

‘acAN-Tp2’. For the cross-sectional study arm, 56 acAN-Tp1
(12–27 years, 53 restrictive AN) and 56 age-matched HC (12–
28 years) were included. HCs were individually age-matched to
acAN by means of an automated search algorithm for optimal
pairs (Munkres, 1957), resulting in a maximum difference of
58 days between individuals within one acAN-HC pair. The sam-
ple is partially overlapping with the one used in Pfuhl et al. (2016;
see supplementary material [SM] 1.1). For the longitudinal ana-
lyses, 44 acAN-Tp1 (12–23 years, 41 restrictive AN) were reas-
sessed after a body-mass-index (BMI) increase of at least 10%
(acAN-Tp2, 12–23 years). The comparison between acAN-Tp2
and HC (12–23 years) included 44 subjects per group. For a
more detailed description of the sample, see SM 1.1/SM 2.1.

For all participants, current and/or past diagnoses of eating
disorders were obtained using the expert version of the
Structured Interview for AN and Bulimia Nervosa for DSM-IV
(SIAB-EX; Fichter and Quadflieg, 2002). Inclusion criteria for
acAN-Tp1 were a BMI below the 10th age percentile (if younger
than 15.5 years) or a BMI below 17.5 kg/m2 (if older than 15.5
years) and no recent weight gain. HC participants had to be of
normal weight (BMI > 18.5 kg/m2 if older than 18 years, or a
BMI > 10th age-percentile if younger than 18 years), eumenor-
rhoeic, and without any history of psychiatric illness. For each
group additional exclusion criteria were applied – most import-
antly a history of bulimia nervosa or binge eating, substance
abuse, and neurologic or medical conditions (SM 1.3).

The study was approved by the local Institutional Review
Board and all participants gave written informed consent (or
their legal guardians, if underage).

Clinical assessment

To complement information obtained with the SIAB-EX, partici-
pants completed the Eating Disorder Inventory–2 (EDI-2),
the Symptom-Checklist-90-revised (SCL90-R) and the Beck
Depression Inventory II (BDI-II). Intelligence quotient (IQ) was
estimated with short versions of the German adaptation of the
Wechsler Adult Intelligence Scale (WIE; von Aster et al., 2006)
for participants aged 16 years or older, or the German adaptation
of the Wechsler Intelligence Scale for Children (HAWIK;
Petermann and Petermann, 2006) for participants aged 15 years
or younger. Instead of BMI, we used the BMI standard deviation
score (BMI-SDS) for statistical analyses since it provides an index
of weight to height ratio that is corrected for age and gender
(Kromeyer-Hauschild et al., 2001).

Details on psychiatric, psychological and nutritional assess-
ments of acAN patients including measurements of urine-specific
gravity to gauge hydration status (Baron et al., 2015) and serum
leptin as an indicator of nutritional status (Föcker et al., 2011)
are described in SM 1.4.

Magnetic resonance imaging (MRI) acquisition

T1-weighted structural (1.0 mm3 isotropic voxel resolution) and
diffusion-weighted images (2.4 mm3 isotropic voxel resolution,
32 diffusion sensitizing gradients, b = 1300 s/mm2) were acquired
between 8 and 9 am after an overnight fast using standard
sequences with a 3 T whole-body MRI scanner (TRIO; Siemens,
Erlangen, Germany) equipped with a standard 12-channel head
coil (details in SM 1.2).
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Image processing and statistical analyses

Preprocessing

Diffusion-weighted images were quality controlled with a custo-
mized automated pipeline in DTIPrep (Oguz et al., 2014, no
images had to be discarded) and then further processed with
FSL’s Diffusion Toolbox (FDT; University of Oxford Centre
for Functional MRI of the Brain, http://www.fmrib.ox.ac.uk/).
Datasets were corrected for eddy currents and head motion, non-
brain tissue was stripped and diffusion tensors were fitted to each
voxel. FSL’s Tract-Based-Spatial-Statistics (TBSS) was used to
generate voxel-wise FA maps for each participant and skeleto-
nized with a minimum FA = 0.2 (Smith et al., 2006).

Statistical analyses

Independent samples t tests were performed to assess differences
between acAN-Tp1 and HC (Fig. 1a), while in the longitudinal
arm paired t test was used for differences between acAN-Tp1 and
acAN-Tp2 (Fig. 1b-d). To correct for multiple comparisons we
used FSL’s ‘randomise’, a nonparametric permutation-based
algorithm (Winkler et al., 2014). Specifically, potentially significant
clusters were identified using the threshold-free cluster

enhancement method (Smith and Nichols, 2009). Then, voxels
were reported as significant if they had a false positive rate α <
0.05, after whole-brain family-wise error correction (FWE).
Anatomic localization of the clusters was based on WM regions
of ‘JuelichHistological Atlas’ (Eickhoff et al., 2005). For each cluster
showing a significant difference in FA, we extracted cluster size,
localization, corrected p and t values. Then, p and t values were
averaged across all voxels affiliated to the cluster to obtain a sum-
mary measure of diffusion properties in these regions (SM 2.2).
Finally, clusters that showed significant FA-differences in the voxel-
wise analysis served as ROI for the analyses of MD, AD and RD.
This was done by intersecting the atlas region on the skeleton
with the corresponding significant clusters. From the intersections,
MD, AD and RD values were extracted and the difference between
the two groups was then calculated in SPSS 23 (IBM Corp., USA).

Exploratory analyses

To further explore whether FA changes were significantly related
to illness severity, we calculated correlations between mean FA
values extracted from significant clusters with clinical variables
using SPSS 23. Specifically, we correlated baseline FA values
with BDI-II total score, EDI-2 total score, SCL90-R anxiety

Fig. 1. Regions with a significant difference in FA
from whole-brain TBSS analysis ( p < 0.05 FWE cor-
rected). For visualization purposes the suprathres-
hold clusters were thickened with tbss_fill (FSL).
(a) Reduced FA in acAN-Tp1 compared with HC in
the corpus callosum (489 voxels), coordinates (x, y,
z in mm): 0, 8, 22; (b) Increased FA in acAN-Tp2 com-
pared with acAN-Tp1 in the corpus callosum (685
voxels), coordinates (x, y, z in mm): −3, 4, 23; (c)
Increased FA in acAN-Tp2 compared with acAN-Tp1
in the fornix (2111 voxels), coordinates (x, y, z
in mm): −2, −15, 20; (d) Decreased FA in acAN-Tp2
compared with acAN-Tp1 in the right corticospinal
tract (1801 voxels; 169 voxels), coordinates (x, y, z
in mm): 26, −15, 20. Green: represents major white
matter tracts with a minimum FA value of 0.2 across
the sample. Red-yellow: significant clusters. Peak
voxels, t-values and the clusters association on
atlas regions can be found in SM 2.2. Abbreviations:
FA, fractional anisotropy; TBSS, tract-based spatial
statistics (FSL); FWE, family-wise error; acAN-Tp1,
acute anorexia nervosa patients at timepoint 1 (base-
line); acAN-Tp2, acute anorexia nervosa patients at
timepoint 2; HC, healthy controls; SM, supplementary
material.
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score and BMI-SDS in the patient group (SM 2.5 Table 6). Given
the role of the corticospinal tract in motor functioning (Krakauer
and Ghez, 2000) and that excessive physical exercise is common
in AN (Ehrlich et al., 2009; Gümmer et al., 2015), we also
explored relationships of FA and hyperactivity as measured with
SIAB-EX (SM 2.5.1). For the longitudinal analysis, we calculated
correlations between differences in FA values and differences in
BDI-2 score, EDI-2 score, SCL90-R anxiety score and percentage
increase of BMI-SDS from Tp1 to Tp2 (Table 1).

Results

Clinical and demographic values

Clinical and demographic characteristics are summarized in
Tables 2 and 3 (for an extended version see SM 2.1). No differ-
ences were found between acAN-Tp1 and HC in age and IQ.
As expected, BMI and BMI-SDS were lower in acAN-Tp1 relative
to HC, while EDI-2, BDI-2 and SCL90-R anxiety scores were
higher (Table 1/SM Table 1). For the longitudinal data, we also
found expected increases in BMI, BMI-SDS and decreases in
EDI-2, BDI-II and SCL90-R anxiety scores when comparing
acAN-Tp2 with acAN-Tp1 (Table 2/SM Table 2).

Cross-sectional comparison of FA

FA was significantly reduced in acAN-Tp1 relative to HC in a
broad region of the corpus callosum (489 voxels, mostly corre-
sponding to the body of the corpus callosum; Figure 1a). No
WM regions showed higher FA in acAN-Tp1 compared with
HC. In the contrast in acAN-Tp2 relative to HC, no significant
differences were evident. The results of these basic cross-sectional

group comparisons were all confirmed with re-analysis covarying
for age (SM 2.3).

Longitudinal comparison of FA

Significant FA increases in acAN-Tp2 compared with acAN-Tp1
were localized in the fornix extending into the bilateral optic
radiation (2111 voxels, Fig. 1c) as well as in a second cluster (685
voxels, Fig. 1b) which largely overlapped with regions of corpus cal-
losum identified in the cross-sectional analysis. At the same time,
we found two clusters (1801 voxels and 169 voxels, Fig. 1d) with
reduced FA in acAN-Tp-2 which covered large parts of the right
corticospinal tract (both clusters were combined in subsequent cor-
relational analyses). Results of the basic longitudinal analyses were
all confirmed in additional analyses covarying for age. However, an
additional cluster with increased FA in acAN-Tp1 in the right
superior longitudinal fascicle emerged (SM 2.3). Furthermore, an
analysis accounting for the effects of time between the two scans
on FA changes confirmed our initial results (SM 2.9).

It has been recently demonstrated that previous findings of
altered fornix FA may be due to increased ventricular volume
(Kaufmann et al., 2017). To test the potential influence of ventricu-
lar size on FA changes in the fornix on our findings, we added the
relative volume change of the third and the right and left lateral
ventricles as covariates to the group comparison (SM 2.6). The
same analysis was conducted for the corpus callosum (sum of the
left and right lateral ventricles as covariates, SM 2.7). Results
revealed that the variable reflecting ventricular volumes reduced
the variance explained by timepoint, indicating a possible influence
of cerebrospinal fluid (CSF) on FA values. Nonetheless, the main
effect of timepoint remained a significant predictor of FA in the for-
nix and the corpus callosum (and ventricular volume was not sig-
nificant in the model regarding corpus callosum).

Analyses of MD, AD and RD

Clusters that showed significant FA differences in the acAN-
Tp1-HC or acAN-Tp1-acAN-Tp2 contrast were subjected to

Table 1. Spearman correlations between changes in FA in significant clusters
and changes in clinical variables from acAN-Tp1 to acAN-Tp2

Increase FA Increase FA Decrease FA

Fornix
Corpus
Callosum

Corticospinal
tract right

Increase BMI-SDS

R 0.466** 0.192 0.318*

p 0.001 0.211 0.036

EDI-2 change score

r −0.111 −0.291 −0.186

p 0.496 0.069 0.251

BDI-II
change
score

r 0.030 −0.042 −0.008

p 0.848 0.791 0.959

SCL90-R anxiety change score

r 0.112 0.058 0.094

p 0.492 0.721 0.564

r = Spearman correlation coefficient, ** p < 0.01 (two-sided), * p < 0.05 (two-sided);
acAN-Tp1, acute anorexia nervosa patients at timepoint 1 (baseline); acAN-Tp2, acute
anorexia nervosa patients at timepoint 2; FA, fractional anisotropy; BMI, body mass index;
BMI-SDS; BMI standard deviation scores; EDI-2, Eating Disorder Inventory-2; BDI-II, Beck
Depression Inventory II; SCL90-R, Symptom-Checklist 90 revised subscale score for anxiety.
No correction for multiple testing was applied.

Table 2. Demographic variables and clinical measures of the participants in the
cross-sectional study arm (acAN-Tp1 and HC)

Sample
Analyses

acAN-Tp1 HC p

Age (years) 15.86 ± 2.93 16.19 ± 2.89 0.556

IQ 112.63 ± 11.95 111.84 ± 9.44 0.703

BMI (kg/m2) 14.66 ± 1.34 20.62 ± 2.44 <0.001

BMI-SDS −3.14 ± 1.37 −0.03 ± 0.76 <0.001

EDI-2 (Total score) 203.95 ± 46.28 144.44 ± 30.81 0.009

BDI-II (Total score) 21.23 ± 10.92 6.09 ± 5.52 <0.001

SCL90-R (Anxiety) 1.74 ± 0.74 1.26 ± 0.33 <0.001

Duration of illness
(months)

14.52 ± 21.81 n/a n/a

HC, healthy control; acAN-Tp1, acute anorexia nervosa patients at timepoint 1 (baseline); IQ,
intelligence quotient, BMI, body mass index; BMI-SDS, BMI standard deviation scores; EDI-2,
Eating Disorder Inventory-2; BDI-II, Beck Depression Inventory II; SCL90-R,
Symptom-Checklist 90 revised subscale score for anxiety; SM, supplementary material.
Mean value and standard deviation (±) for each variable are shown. Additional information
on the sample is given in SM Table 1. Group differences were tested using independent
sample t tests.
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further ROI analyses. For the cluster with reduced FA in the cor-
pus callosum found in the cross-sectional study arm, MD, AD
and RD values were significantly higher in acAN-Tp1 compared
with HC (Fig. 2a). In the longitudinal study arm, diffusivity mea-
sures showed a similar pattern in the fornix (Fig. 2c) and the
corpus callosum (Fig. 2b). In both regions, FA was increased in
acAN-Tp2 v. acAN-Tp1, whereas MD, AD and RD were
decreased. In the corticospinal tract, where FA was increased in
acAN-Tp2 compared with acAN-Tp1, MD and RD (but not
AD) were significantly decreased (Fig. 2d).

Correlations with clinical measurements

We conducted a set of exploratory analyses to test for possible
correlations between FA in the aforementioned significant clusters
and crucial clinical variables. At baseline, FA values in the patient
group showed no correlation with BMI-SDS, EDI-2 total scores,
BDI-II total scores and SCL90-R anxiety scores (SM 2.5) or the
extent of excessive physical activity measured with SIAB-EX
(SM 2.5.1). In the longitudinal analysis, a positive association
between BMI-SDS increase and FA changes in the fornix and
the corticospinal tract was revealed ( p < 0.01, two-sided, see
Table 3).

Discussion

Despite a growing number of studies investigating gray and WM
alterations in AN (see King et al., 2017), there is still a relative lack
of longitudinal studies which hold the potential to differentiate
between state-related effects, e.g. due to acute undernutrition,
and more enduring abnormalities which could be either predis-
posing factors (traits) or ‘scar-effects’ resulting from long-term ill-
ness. The findings presented here obtained from the largest

known cross-sectional and longitudinal sample of young non-
chronic AN patients studied with DTI suggest that WM micro-
structure alterations in AN are highly dynamic and critically
dependent on weight status. While FA was regionally (corpus cal-
losum, fornix) reduced in the state of acute undernutrition, we
also observed higher FA in acutely ill patients in the corticospinal
tract, a region integral to motor functioning (Krakauer and Ghez,
2000). All aforementioned alterations rapidly normalized with
weight gain. This pattern of between- and within-group differ-
ences were also reflected by the results of an additional whole-
brain analysis of MD (SM 2.4). As discussed below, these findings,
despite some noteworthy limitations, add some much-needed
clarity to the otherwise heterogeneous literature on WM micro-
structure in AN.

Indicating that weight restoration therapy reversed the altered
microstructure observed in acAN at baseline, no differences in
diffusion properties were evident when comparing short-term
weight recovered patients with HC. Considered in light of
our longitudinal observations, it thus seems likely that WM
microstructure normalizes during weight restoration, providing
further support for the notion that morphological brain changes
in AN are largely state-dependent and may merely reflect a con-
sequence of undernutrition. Based on the observed association
between BMI-SDS increase during weight recovery and FA
changes in the fornix and the corticospinal tract, it appears that
changes not only in GM (Castro-Fornieles et al., 2009; Mainz
et al., 2012; Bomba et al., 2015; Bernardoni et al., 2016), but
also in WM are highly dynamic.

Our finding of decreased FA (and increased MD, RD and AD)
in acAN in the state of undernutrition and normalized FA after
partial weight restoration at follow-up in a largely overlapping
region of corpus callosum is particularly noteworthy also because
it solidifies and extends previous reports of altered WM micro-
structure in this region in acute AN (Frank et al., 2013;
Nagahara et al., 2014; Travis et al., 2015; Cha et al., 2016; Shott
et al., 2016; Olivo et al., 2017). The corpus callosum is the
main interhemispheric commissure involved in multimodal sen-
sory and motoric signal processing (Fabri et al., 2014) and altered
WM microstructure may contribute to the phenomenon of dis-
torted body perception in AN (Gaudio et al., 2014; 2016;
Gadsby, 2017). Of note, differences were mainly found in the
body of the corpus callosum – a WM region with a high density
of large-diameter fibers with thick myelin sheaths (Aboitiz et al.,
1992; Mohammadi et al., 2015). In line with this, we found
reduced volumes of the corpus callosum in acAN-Tp1 compared
with acAN-Tp2 and also a trend towards lower volumes in
acAN-Tp1 compared with HC (SM 2.8).

Similarly, WM alterations in acute AN are frequently reported
in the fornix (Kazlouski et al., 2011; Frank et al., 2013; Nagahara
et al., 2014; Via et al., 2014; Travis et al., 2015). However, the cur-
rent study is the first to observe a normalization in FA in this
region with weight gain. The fornix, as part of the limbic system,
may play a key role in AN-specific alterations in reward-regulating
behavior patterns associated by a disturbed fronto-striatal cir-
cuitry (Cha et al., 2016). However, it has recently been demon-
strated (Kaufmann et al., 2017) that DTI metrics in this region
may be biased by CSF-induced partial volume effects (PVE)
due to ventricular enlargement typically found in acute AN.
Consistent with this possibility, ventricular volumes and fornix
FA values were negatively correlated in acAN (but not HC, see
SM 2.6 Table 7a) at baseline and after partial weight restoration.
Similar to Kaufmann et al. (2017), the effect of weight restoration

Table 3. Demographic variables and clinical measures in the longitudinal study
arm (acAN-Tp1 and acAN-Tp2)

Sample
Analyses

acAN-Tp1 acAN-Tp2 p

Age (years) 15.40 ± 2.28 15.64 ± 2.27 <0.001

IQ 113.38 ± 11.31 n/a n/a

BMI (kg/m2) 14.85 ± 1.19 18.72 ± 1.10 <0.001

BMI-SDS −2.85 ± 1.03 −0.67 ± 0.61 <0.001

Leptin 1.40 ± 1.56 11.18 ± 7.60 <0.001

EDI-2 (Total Score) 207.20 ± 43.35 181.23 ± 46.30 0.120

BDI-II (Total Score) 20.58 ± 10.96 10.63 ± 7.58 <0.001

SCL90-R (Anxiety) 1.74 ± 0.77 1.42 ± 0.42 0.002

Months between
scans

2.99 ± 1.04 n/a

Duration of illness
(months)

9.80 ± 13.10 n/a

acAN-Tp1, acute anorexia nervosa patients at timepoint 1 (baseline); acAN-Tp2, acute
anorexia nervosa patients at timepoint 2; IQ, intelligence quotient; BMI, body mass index;
BMI-SDS, BMI standard deviation scores; EDI-2, Eating Disorder Inventory-2; BDI-II, Beck
Depression Inventory II; SCL90-R, Symptom-Checklist 90 revised subscale score for anxiety;
SM, supplementary material.
Mean values and standard deviation (±) for each variable are shown. Additional information
on the sample is given in SM Table 2. Group differences were tested using paired t tests.
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Fig. 2. Boxplots show diffusivity measures’ eigenvalues with
significant differences in FA (a) for HC v. acAN-Tp1 in the corpus
callosum, (b) for acAN-Tp1 v. acAN-Tp2 in the corpus callosum,
(c) for acAN-Tp1 v. acAN-Tp2 in the fornix and (d) for acAN-Tp1 v.
acAN-Tp2 in the right corticospinal tract. * Significant within-group
differences of the extracted measures: ** = P < 0.001 (two-sided),
* = P < 0.05. Abbreviations: acAN-Tp1, acute anorexia nervosa
patients at timepoint 1 (baseline); acAN-Tp2, acute anorexia ner-
vosa patients at timepoint 2; HC, healthy controls; FA, fractional
anisotropy; MD, mean diffusivity; AD, axial diffusivity; RD, radial
diffusivity. Black horizontal lines represent the median of the
values represented in each plot. Whiskers represent the minimum
value and maximum value respectively.
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on fornix FA was notably reduced (albeit still significant) when
adding the relative change in ventricular volume as a covariate
in the longitudinal analysis (SM 2.6 Table 7b). For the corpus cal-
losum, which might be also affected by PVE, we obtained similar
albeit not significant results for the effects of ventricular volumes
(SM 2.7 Table 8b). Hence, AN-related WM microstructural
abnormalities in the fornix (and possibly also the corpus callo-
sum) must be interpreted with caution and future studies should
apply additional methods (such as covarying for free water) to
verify whether altered WM microstructure in the vicinity of
CSF spaces is an artifact or not.

When interpreting the aforementioned findings obtained in a
sample of young AN patients, it should also be kept in mind that
WM development may follow non-linear patterns from childhood
to early adulthood (Lebel and Beaulieu, 2011). It is possible that a
decrease of FA in the acAN reflects stunted neurodevelopment
subsequent to undernutrition rather than undernutrition in the
first place. However, the rapid normalization of WM abnormal-
ities with weight gain speaks against a neurodevelopmental origin.

Although the majority of previous DTI studies in AN have
reported decreased FA in the acute state (King et al., 2017), a
few studies have found regional increases in acAN (Frank et al.,
2013; Travis et al., 2015; Cha et al., 2016; Vogel et al., 2016).
We extend such findings by showing a normalization of initially
increased FA in the right corticospinal tract in short-term weight
recovered patients both longitudinally and relative to HC. As in
Vogel et al. (2016), increased FA values were accompanied by
decreases in MD and RD but not AD. This pattern may suggest
a closer packing of myelinated axons in the WM which then
impedes diffusion orthogonal to the fibers (Basser and
Pierpaoli, 2011). This may also be related to excessive physical
exercise that is observed in up to 70% of the patients in this
stage of the illness (Gümmer et al., 2015). Such continuous phys-
ical training may lead to increased FA in the corticospinal tract. In
line with this, Bernardoni et al. (2016) found increased cortical
thickness (CT) in a highly localized region of the right primary
motor cortex in acAN-Tp1 relative to HC (in an overlapping sam-
ple, see SM 1.1) using customized FreeSurfer tools (Bernal-Rusiel
et al., 2013a, 2013b). CT in the same region decreased following
partial weight restoration (Bernardoni et al., 2016). However, a
correlation between the extent of physical exercise (as measured
by SIAB-EX, item #21) with FA values in the corticospinal tract
in our study was not significant (see SM 2.5.1). Yet, future studies
need to employ better measures to quantify physical activity in
AN that take different forms of activity into account or rely on
an objective quantification.

The interpretation of DTI parameters is based on the assump-
tion of homogeneous unidirectional fibers within voxels (Wiegell
et al., 2000). Some WM regions, such as the identified cluster in
the corticospinal tract, however, contain fiber tracts that are
oriented in different directions (crossings; Lee et al., 2015).
Therefore, an alternative, but equally speculative interpretation
of decreased FA values in the corticospinal tract in acAN-Tp2 is
a reduction in myelination of one of the crossing fiber tracts.

As noted in the introduction, DTI studies examining WM
alterations in AN have produced considerably heterogeneous
results. Differences between studies may be explained by a variety
of factors including sample size, age of onset, illness duration/
severity, AN subtype, psychiatric medication, MR sequence and
different data processing pipelines (King et al., 2017). The latter
might explain the differences between the current results in the
cross-sectional analysis and findings by Pfuhl et al. (2016).

Instead of TBSS, Pfuhl et al. (2016) used a probabilistic tractogra-
phy algorithm which averages anisotropy/diffusivity measures
over the total volume of relatively large fiber bundles (Yendiki
et al., 2011). Although tract-wise summary measures are more
easily to interpret regarding connectivity, localized WM altera-
tions may be missed. Additionally, the method used by Pfuhl
et al. (2016) may be more susceptible to registration errors and
partial voluming compared with TBSS, which determines tract-
central FA values with the center-of-gravity method (Smith
et al., 2006). Since our data suggest that many WM alterations
are state-related and closely associated with BMI, the length and
degree of realimentation before scanning is another highly
important factor to consider. Depending on the degree of reali-
mentation [e.g. less than 96 h as in the current study v. after 1–
2 weeks of medical stabilization (Frank et al., 2013)] differing
degrees of WM microstructure abnormalities can be expected.

The heterogeneity of the DTI literature in AN to date has also
hindered the development of an understanding of the underlying
mechanisms of WM changes in AN. Changes in hydration status
may (Streitbürger et al., 2012) or may not (Meyers et al., 2016)
affect brain structure, by causing a shift of fluid between intra-
and extracellular spaces. Some AN patients restrict their fluid
intake or engage in polydipsia to ‘cheat the scale’. To address this
possible bias, we assessed hydration by measuring urine specific
gravity immediately prior to scanning in the majority of patients
at baseline but found no evidence of de- or hyperhydration in
our sample (SM 1.4). However, urine specific gravity may not suf-
ficiently reflect the hydrational status (Evrard et al., 2004). Another
possible underlying mechanism of WM changes in AN may be
related to reduced lipid content in the brain in acAN (Shih,
2017). Lipids (including fatty acids) are a major component of
myelin, which itself affects brain structure (Piomelli et al., 2007).
Lipids are produced endogenously, but essential fatty acids have
to be supplied with the diet (Yehuda et al., 2001). Severe undernu-
trition may affect myelin integrity which could potentially promote
increased RD (and decreased FA). This may have far-reaching con-
sequences in adolescence and early adulthood, where the neurode-
velopmental process of myelination may be disrupted.

Our findings have to be considered in the light of the following
limitations. First, although the results of the critical acAN-Tp1 v.
acAN-Tp2 longitudinal analyses and acAN-Tp2 v. HC cross-
sectional analyses support the conclusion of rapid reversal and
normalization of WM alterations in AN following partial weight
restoration, replication of these findings could be underlined
with longitudinal measurements of age-matched HC. However,
voxelwise TBSS measurements have been reported to have a
good reliability (Jovicich et al., 2014; Madhyastha et al., 2014),
which was also the case for our own longitudinal data (SM
2.10; Fröhner et al., 2017). Second, although TBSS attempts to
overcome registration errors by mapping the tract in the vicinity
of the FA skeleton to the FA skeleton, fornix has been identified
as susceptible to errors in registration in studies of neurodegen-
erative diseases. Registration errors could also play a role in
AN studies due to changes in ventricle size (Keihaninejad
et al., 2012). Third, this study does not address alterations
in underlying neurocircuits. Future longitudinal studies should
therefore also examine brain connectivity, e.g. using fiber tracking.
Multimodal imaging data (Travis et al., 2015; Cha et al., 2016;
Frank et al., 2016; Zhang et al., 2016) may facilitate further
insights in the underlying pathophysiological mechanisms of
structural brain changes in AN. Advanced quantitative MRI
could help to clarify whether WM abnormalities persist at a
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more microscopic level (Tofts, 2004; King et al., 2017). Fourth,
our findings may be specific to relatively young and non-chronic
patients and the observed rapid changes may not be found in an
older cohort with a longer duration of illness. Fifth, since we
focused on short-term weight rehabilitation, future studies should
include additional follow-up timepoints after long-term recovery
to examine how the illness affects brain development in adolescents.

Taken together, we found that altered microstructural proper-
ties, namely region-specific decreases but also increases in FA, in
AN patients normalized rapidly during nutritional therapy. These
findings parallel the patterns in GM (e.g. CT) and underline that
structural brain alterations associated with the disorder are highly
dynamic and more likely to represent consequences of starvation
(state) than preexisting anomalies (traits; Bernardoni et al., 2016)
or WM degeneration as seen in old age (Salat et al., 2005). This
knowledge has potential to give hope to patients (Bang et al.,
2017; MacDuffie and Strauman, 2017) and care-givers and may
help clinicians to convey the healing power of psychotherapy
and (relatively fast) weight gain in AN.
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be found at https://doi.org/10.1017/S003329171800212X
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