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Traces for coalgebraic components
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This paper contributes a feedback operator, in the form of a monoidal trace, to the theory

of coalgebraic, state-based modelling of components. The feedback operator on components

is shown to satisfy the trace axioms of Joyal, Street and Verity. We employ McCurdy’s tube

diagrams, which are an extension of standard string diagrams for monoidal categories, to

represent and manipulate component diagrams. The microcosm principle then yields a

canonical ‘inner’ traced monoidal structure on the category of resumptions (elements of final

coalgebras/components). This generalises an observation by Abramsky, Haghverdi and

Scott.

1. Introduction

The subject of study in the field of coalgebra is state-based computation. A computer is

a device that has an internal state, roughly given by the content of all its memory cells

and registers, that is not directly observable. However, a user can observe and modify

part of this state through I/O devices, such as a screen or keyboard. Very abstractly, such

a computer is captured as a coalgebra X → F(X), where X represents the state and F

captures the type of operations (for observation and modification) that one can perform

on these states. A simple example is a deterministic automaton of the form X → (X×B)A,

where A is a type for input and B is a type for output.

The coalgebraic view on state-based systems yields a generic view, for instance, on

bisimilarity (indistinguishability of states) and compositionality (see, for example, Turi and

Plotkin (1997)), and on modal logic (see, for example, Kurz and Pattinson (2005)), giving

a way to reason about properties of states with dynamic operators like ‘nexttime’. Here we

use coalgebras to (further) develop a calculus of components, which describes various ways

of combining components (smaller subsystems) into larger systems. Numerous component

calculi have been proposed, such as Reo (Arbab 2004), with the aim of aiding the modular

design of complex systems. The existing component calculi come with different sets of

(typically several) component connectors. In earlier work (Hasuo et al. 2009; Asada and

Hasuo 2010), we have focused on a small core subset of such calculi, with sequential

composition and parallel composition only. In this paper we add a feedback operator to

this calculus, in the form of a trace.
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This calculus may be understood as a many-sorted process algebra that acts directly on

systems; by employing the microcosm principle, we also obtain process algebraic operators

on behaviours (Hasuo et al. 2008; Hasuo et al. 2009).

A categorical approach to system composition based on bicategories was developed

in Katis et al. (1997). The bicategorical aspect comes up if one uses components as

morphisms, because composition of components is associative only up to isomorphism –

see Lemma 4.2 (3). This approach was extended in Barbosa (2001; 2003) with monads to

allow for different kinds of computation (Moggi 1991). Here, as in Hasuo et al. (2008)

and Hasuo et al. (2009), we take a slightly different approach and use components as

objects in a category, with fixed input and output. In order to deal with the relabelling of

input and output, we need to organise the whole as an indexed category. However, this

indexing is straightforward and poses no technical obstacles.

A crucial ingredient that has been missing so far in these calculi of components is

feedback, which allows us to include ‘loops’ in diagrams of components so that we can

capture recursive flows. In this paper we extend coalgebraic component calculi with such

a feedback mechanism in the form of a trace operator. Traces as feedback operators were

introduced abstractly in Joyal et al. (1996), and we, essentially, follow their framework,

except that the required identities for these traces only hold up to isomorphism (just

like for composition). The traces that we introduce for coalgebraic components are based

on the trace construction in Kleisli categories from Jacobs (2010). In his thesis, Barbosa

discusses a ‘partial feedback’ operator (see Barbosa (2001, Chapter 5, Section 51)) but it

is not a proper trace operator (in the sense of Joyal et al. (1996)) because it does not have

the correct type or behaviour.

It is very useful to have a diagrammatic language for components that allows us to

build a composite system using a picture with lines representing connections between

them. There is already a standard language of string diagrams for monoidal categories

(see Penrose (1971) and Joyal and Street (1991)), and here we employ McCurdy’s

extension (McCurdy 2010), which we call tube diagrams, for capturing coalgebraic

components and their connections. This language can be used to reason about coalgebraic

components using specific diagrammatic manipulations – see Section 5. The additional

(third) dimension obtained by using tubes rather than strings is needed because in our

calculus input can be structured both multiplicatively (with tensor ⊗) and additively (with

coproduct +). The feedback/trace operator works with respect to this additive structure.

The additional trace operator for components embodies iteration in data processing,

which is a fundamental concept in computer science. Our theory is generic because it is

parametrised by a monad T : the monad represents the computational effect that makes

an iterated function ‘total’. The prototypical example of such an effect is partiality (that

is, T = 1 + (−), the lift monad) but non-determinism and probability also fits in this

setting. To demonstrate the versatility of our results, we derive the traced monoidal

structure of the category of T -resumptions, in a canonical manner. This generalises the

observation in Abramsky et al. (2002), where the authors focus on the partiality effect

(that is, T = 1 + (−)) and the trace operator on resumptions is introduced in concrete

terms. Here, instead, we derive trace operators on various resumptions uniformly from

the trace operators on components in the style of Krstić et al. (2001). The derived traced
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monoidal category lives in the ‘traced monoidal bicategory’ of components, providing an

instance of the microcosm principle (Baez and Dolan 1998; Hasuo et al. 2008; Hasuo

et al. 2009). Another way to look at our construction is that it uniformly transforms the

traced monoidal category of T -computations (namely the Kleisli category K�(T )) into

the traced monoidal category of T -strategies (identified with T -resumptions). By further

applying the Int-construction (Joyal et al. 1996), one obtains the compact closed category

of (stateful) T -games, as pointed out in Abramsky and Jagadeesan (1994).

The paper is organised as follows. After some preliminary material in Section 2, we

introduce in Section 3 the fundamental operator of ‘state extension’, which adds a state

object, either on the left or on the right, to a coalgebraic component. This will play

an important role in the rest of the paper, for instance, in Section 4 on the various

composition operators: sequential >>>; multiplicative parallel ‖; and additive parallel �.

In Section 5, we describe the tube calculus, with several distributivity results, and in

Section 6, we define traces for components and prove that the trace axioms hold – this

is the main contribution of the paper. Finally, in Section 7 we identify the category of

resumptions as an ‘inner’ traced monoidal category in the category of components.

2. Preliminaries

The basic setting is described by a category � with some structure and a monad T on

�. We assume in the first place that � is a symmetric monoidal category with tensor

⊗ : � × � → � and tensor unit I ∈ �, together with canonical isomorphisms:

X ⊗ (Y ⊗ Z)
α

∼=
�� (X ⊗ Y ) ⊗ Z I ⊗ X

λ

∼=
�� X X ⊗ Y

γ

∼=
�� Y ⊗ X (1)

We will often write ρ = λ ◦ γ : X ⊗ I
∼=−→X.

We assume that the monad T = (T , η, µ) on � is symmetric monoidal (also known as

commutative) through a natural transformation with components

dst : T (X) ⊗ T (Y ) → T (X ⊗ Y )

interacting appropriately with the monoidal isomorphisms (1) and with the unit η and

multiplication µ of the monad. For this natural transformation dst, we write

st = dst ◦ (η ⊗ id) : X ⊗ T (Y ) → T (X ⊗ Y )

for the ‘strength’ map of the monad. The abbreviation ‘dst’ stands for ‘double strength’.

The Kleisli category of the monad T is written as K�(T ). We will usually write a fat

dot • for composition in K�(T ) if we wish to distinguish it from ordinary composition ◦
in �. The inclusion functor J : � → K�(T ), given by X �→ X and f �→ η ◦ f, is sometimes

not written explicitly when the context allows us to omit it.

We also assume that the category � has (distributive) coproducts +, 0, also written as
∐

when indexed over a set. The associated coprojections will be written as κi : Xi → X1 +X2,

and cotupling of fi : Xi → Y is written as [f1, f2] : X1+X2 → Y . Distributivity here means

that the tensor ⊗ distributes over coproducts (0,+). In the binary case, this means that
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the canonical maps

dis
def
=

(
X ⊗ A + X ⊗ B

[idX⊗κ1 ,idX⊗κ2] �� X ⊗ (A + B)
)

(2)

are isomorphisms. Additionally, the canonical map 0 → X ⊗ 0 is an isomorphism; this

is the nullary case of distributivity. Notice that if the category � is monoidal closed,

these isomorphisms exist automatically, since X ⊗ − is then left adjoint to exponentiation

X � (−).

The following lemma lists some elementary equations for the distribution map dis that

will be used later – the proofs are easy and left as an exercise.

Lemma 2.1. The distribution map dis defined in (2) satisfies

(1) naturality: dis ◦ (f ⊗ g + f ⊗ h) = (f ⊗ (g + h)) ◦ dis.

(2) α ◦ (id ⊗ dis) ◦ dis = dis ◦ (α + α).

(3) λ ◦ dis = λ + λ.

There are also rules regulating the interaction of the distribution map (2) with the

monoidal isomorphisms associated with coproducts. We shall label them with a +, as in

α+, in order to distinguish them from the isomorphisms for ⊗.

Lemma 2.2. The distributivity map dis interacts with the monoidal isomorphisms for +

as follows:

(1) Interaction with ρ+:

X ⊗ A + 0
ρ+

��

id+ !
��

X ⊗ A

X ⊗ A + X ⊗ 0

dis
��

X ⊗ (A + 0)
id⊗ρ+

�� X ⊗ A

(2) Interaction with γ+:

X ⊗ A + X ⊗ B

dis ��

γ+
�� X ⊗ B + X ⊗ A

dis��

X ⊗ (A + B)
id⊗γ+

�� X ⊗ (B + A)

(3) Interaction with α+:

(X ⊗ A) + ((X ⊗ C) + (X ⊗ D))

id+dis
��

α+
�� ((X ⊗ A) + (X ⊗ C)) + (X ⊗ D)

dis+id
��

(X ⊗ A) + (X ⊗ (C + D))

dis
��

(X ⊗ (A + C)) + (X ⊗ D)

dis
��

X ⊗ (A + (C + D))
id⊗α+

�� X ⊗ ((A + C) + D)
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3. Coalgebraic components and state extension

This section describes the basic construction of what we call ‘state extension’ for coalgeb-

raic components. It serves as an auxiliary operator for constructions like composition and

trace in later sections. Formally, state extension is described as an action of a (monoidal)

category on a category of components (Janelidze and Kelly 2001). This insight is not

important for what follows, so it is elaborated separately in Section 3.1.

As in Barbosa (2001; 2003) and Hasuo et al. (2009), we consider coalgebraic components

of the form

X ⊗ A
c �� T (X ⊗ B) (3)

where X is the state space, A is the type/object of inputs and B is the type of outputs. In

general we shall use letters like X,Y , Z,U, V for states and A,B, C for in/outputs. The

monad T captures the type of computation involved, following the standard approach in

monadic computation. For instance, non-deterministic when T=powerset, partial when

T=lift, probabilistic when T=distribution, with side-effects when T = (S × −)S with S

for states, or even deterministic when T=identity. Throughout this article, T will be used

as a parameter, and we will make it explicit when any additional requirements are needed.

However, T will often be invisible when we are working in the Kleisli category K�(T )

of T .

Strictly speaking, the map c in (3) is not a coalgebra. When the category � is closed,

with � as exponent (internal hom), this map c may equivalently be written in coalgebra

form X −→ A � T (X ⊗ B). Using the form (3), we can work without the closedness

assumption on the category �.

For fixed objects A,B ∈ �, we thus have a category of such coalgebraic components,

which we shall write as Comp(T ,A, B). A morphism

(
X ⊗ A

c �� T (X ⊗ B)
)

f
��

(
Y ⊗ A

d �� T (Y ⊗ B)
)

(4)

in Comp(T ,A, B) is a map f : X → Y in � satisfying

T (f ⊗ idB) ◦ c = d ◦ (f ⊗ idA).

There is thus an obvious forgetful functor Comp(T ,A, B) → � that maps a coalgebraic

component to its underlying state.

Each ‘pure’ map f : A → B in � gives rise to a coalgebraic component, written as arrf

in Comp(T ,A, B), with the tensor unit I as the trivial state space, as in

arrf
def
=

(
I ⊗ A

idI⊗f
�� I ⊗ B

η
�� T (I ⊗ B)

)
. (5)

For maps g : C → A and h : B → D in � there is an obvious relabelling functor

(g, h)∗ : Comp(T ,A, B) → Comp(T ,C,D)

given by

(
X ⊗ A

c �� T (X ⊗ B)
)

� ��

(
X ⊗ C

id⊗g
�� X ⊗ A

c �� T (X ⊗ B)
T (id⊗h)

�� T (X ⊗ D)
)
.

https://doi.org/10.1017/S0960129510000551 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000551


I. Hasuo and B. Jacobs 272

On morphisms of coalgebraic components, relabelling is the identity. Components thus

form a functor

Comp(T ,−,−) : �op × � → Cat,

which can be described as Cat-valued distributors/profunctors/arrows, as shown in Hasuo

et al. (2008), Hasuo et al. (2009) and Asada and Hasuo (2010).

With these definitions in place, we can now introduce state extension.

Definition 3.1. For a coalgebraic component X ⊗ A
c→ T (X ⊗ B) with state space X, as

in (3), and for objects U,V ∈ �, we define two new coalgebraic components U | c and

c | V , with extended state spaces U ⊗ X and X ⊗ V , respectively, as follows:

(U ⊗ X) ⊗ A

α−1 ∼=
��

U|c
�� T ((U ⊗ X) ⊗ B)

U ⊗ (X ⊗ A)
id⊗c

�� U ⊗ T (X ⊗ B)
st �� T (U ⊗ (X ⊗ B))

T (α)∼=
��

(X ⊗ V ) ⊗ A

α−1◦(γ⊗id) ∼=
��

c|V
�� T ((X ⊗ V ) ⊗ B)

V ⊗ (X ⊗ A)
id⊗c

�� V ⊗ T (X ⊗ B)
st �� T (V ⊗ (X ⊗ B))

T ((γ⊗id)◦α)∼=
��

Clearly, c | V = T (γ ⊗ id) ◦ (V | c) ◦ (γ ⊗ id).

State extension can be defined more conveniently directly in the Kleisli category K�(T ),

namely as

U | c = α • (U ⊗ c) • α−1

d | V = (γ ⊗ id) • (V | d) • (γ ⊗ id).

Also, reasoning about these constructions is easier when done directly in the Kleisli

category. In the proof of the main lemma below, we shall use a mix of reasoning in both

� and K�(T ) to demonstrate the difference. Later on in this paper, we will reason mostly

in the Kleisli category.

State extension satisfies the following basic properties.

Lemma 3.2. The above operators U | c and c | V satisfy the following properties.

(1) U | η = η and η | V = η.

(2) U | (arrf) = η ◦ (id(U⊗I) ⊗ f) and (arrf) | V = η ◦ (id(I⊗U) ⊗ f), with arr defined in the

definition (5) above.

(3) For two composable components

X ⊗ A
c→ T (X ⊗ B)

X ⊗ B
d→ T (X ⊗ C)
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with the same state space, state extension commutes with Kleisli composition •, in the

sense that:

U | (d • c) = (U | d) • (U | c)
(d ◦ c) | V = (d | V ) • (c | V ).

(4) State extension with the tensor unit I as the trivial state space is isomorphic to the

original component through maps of components:

T ((X ⊗ I) ⊗ B)
T (ρ⊗id)

�� T (X ⊗ B) T ((I ⊗ X) ⊗ B)
T (λ⊗id)

∼=
��

(X ⊗ I) ⊗ A
ρ⊗id

∼=
��

c|I
��

X ⊗ A

c
��

(I ⊗ X) ⊗ A
λ⊗id

∼=
��

I |c
��

(5) Repeated state extension is isomorphic to tensored state extension:

T ((U ⊗ (V ⊗ X)) ⊗ B)
T (α⊗id)

∼=
�� T (((U ⊗ V ) ⊗ X) ⊗ B)

(U ⊗ (V ⊗ X)) ⊗ A
α⊗id

∼=
��

U|(V |c)
��

((U ⊗ V ) ⊗ X) ⊗ A

(U⊗V )|c
��

T ((X ⊗ (U ⊗ V )) ⊗ B)
T (α⊗id)

∼=
�� T (((X ⊗ U) ⊗ V ) ⊗ B)

(X ⊗ (U ⊗ V )) ⊗ A
α⊗id

∼=
��

c|(U⊗V )
��

((X ⊗ U) ⊗ V ) ⊗ A

(c|U)|V
��

(6) Left and right extension can be exchanged through an isomorphism of components:

T ((U ⊗ (X ⊗ V )) ⊗ B)
T (α⊗id)

∼=
�� T (((U ⊗ X) ⊗ V ) ⊗ B)

(U ⊗ (X ⊗ V )) ⊗ A
α⊗id

∼=
��

U|(c|V )
��

((U ⊗ X) ⊗ V ) ⊗ A

(U|c)|V
��

(7) For f : U → U ′ and g : V → V ′ we have

(U ′ | c) ◦ ((f ⊗ id) ⊗ id) = T ((f ⊗ id) ⊗ id) ◦ (U | c)
(d | V ′) ◦ ((id ⊗ g) ⊗ id) = T ((id ⊗ g) ⊗ id) ◦ (d | V ).

For a map h in � between states we have

T ((id ⊗ h) ⊗ id) ◦ (U | c) = U | (T (h ⊗ id) ◦ c)

T ((h ⊗ id) ⊗ id) ◦ (d | V ) = (T (h ⊗ id) ◦ d) | V
(U | c) ◦ ((id ⊗ h) ⊗ id) = U | (c ◦ (h ⊗ id))

(d | V ) ◦ ((h ⊗ id) ⊗ id) = (d ◦ (h ⊗ id)) | V .
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Consequently, if h : X → Y is a homomorphism of coalgebraic components, the

following diagrams commute:

T ((U ⊗ X) ⊗ B)
T ((f⊗h)⊗id)

�� T ((U ′ ⊗ Y ) ⊗ B)

(U ⊗ X) ⊗ A
(f⊗h)⊗id

��

U|c
��

(U ′ ⊗ Y ) ⊗ A

U ′ |d
��

T ((X ⊗ V ) ⊗ B)
T ((h⊗g)⊗id)

�� T ((Y ⊗ V ′) ⊗ B)

(X ⊗ V ) ⊗ A
(h⊗g)⊗id

��

c|V
��

(Y ⊗ V ′) ⊗ A

d|V ′
��

(8) State extension also commutes with relabelling: for g : C → A and h : B → D we

have

(g, h)∗(U | c) = U | ((g, h)∗(c))

(g, h)∗(c | V ) = ((g, h)∗(c)) | V .

Proof. Because left and right state extension are related through

c | V = T (γ ⊗ id) ◦ (V | c) ◦ (γ ⊗ id),

we generally only consider one case. For instance, for the first point, we have

U | η = T (α) ◦ st ◦ (η ⊗ id) ◦ α−1

= T (α) ◦ dst ◦ (η ⊗ η) ◦ α−1

= T (α) ◦ η ◦ α−1

= η ◦ α ◦ α−1

= η.

The interaction of state extension and Kleisli composition in the third point of the lemma

is best shown in the Kleisli category itself:

(U | d) • (U | c) = α • (U ⊗ d) • α−1 • α • (U ⊗ c) • α

= α • (U ⊗ d) • (U ⊗ c) • α

= α • (U ⊗ (d • c)) • α

= U | (d • c).
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The validity of the fourth point follows from

(X ⊗ I) ⊗ A

γ⊗id
��

ρ⊗id
����

�� ��
c|I

��

X ⊗ A
c �� T (X ⊗ B)

(I ⊗ X) ⊗ A

α−1
��

λ⊗id
������������

I ⊗ (X ⊗ A)

id⊗c
��

λ

�����������������

I ⊗ T (X ⊗ B)
st

��

λ

������������������������������������������������
T (I ⊗ (X ⊗ B))

T (α)
��

T (λ)

����������������������������������
T ((I ⊗ X) ⊗ B)

T (γ⊗id)
��

T (λ⊗id)

����������������������
T ((X ⊗ I) ⊗ B)

T (ρ⊗id)

��

Also, for the fifth point, we will only elaborate one case, and in the Kleisli category:

(α ⊗ id) • (U | (V | c)) = (α ⊗ id) • α • (U ⊗ (α • (V ⊗ c) • α−1)) • α−1

= α • α • (U ⊗ (V ⊗ c)) • (U ⊗ α−1) • α−1

= α • ((U ⊗ V ) | c) • α • (U ⊗ α−1) • α−1

= α • ((U ⊗ V ) | c) • α−1 • (α ⊗ id)

= ((U ⊗ V ) | c) • (α ⊗ id).

The verification of the remaining properties proceeds along the same lines, and is left as

an exercise.

3.1. State extension as action

The state extension operators | can be described as functors in the following diagram:

� × Comp(T ,A, B)
|

��

��

Comp(T ,A, B)

��

Comp(T ,A, B) × �
|

��

��

� × �
⊗

�� � � × �
⊗

��

The functors

� × Comp(T ,A, B) → Comp(T ,A, B)

Comp(T ,A, B) × � → Comp(T ,A, B)

at the top this diagram can be equivalently described as (two) functors of the form

� � [Comp(T ,A, B),Comp(T ,A, B)],

from � to the category of endofunctors on the category Comp(T ,A, B). These two functors

are strong monoidal, where the category of endofunctors carries composition and identity

(of functors) as a monoidal structure. This means precisely that the monoidal category �
acts on Comp(T ,A, B) (see Janelidze and Kelly (2001)) in two ways, namely through left

and right state extension.
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Moreover, because (left and right) state extensions commute with relabelling, they form

natural transformations in

�op × � Comp(T ,−,−) ��

�×Comp(T ,−,−)

⇓ 		

Comp(T ,−,−)×�

⇑
�� Cat

By combining these two observations, we conclude that the monoidal category � acts on

the indexed category

Comp(T ,−,−) : �op × � → Cat,

in the sense that there are strong monoidal (left and right) state extension functors

�
lse ��

rse
��
[
Comp(T ,−,−),Comp(T ,−,−)

]
(6)

from � to the category of endomaps on Comp(T ,−,−). Objects of the latter category are

natural transformations

σ : Comp(T ,−,−) ⇒ Comp(T ,−,−)

and a morphism M : σ → τ between such natural transformations is a so-called modific-

ation (Kelly and Street 1974; Jacobs 1999), which is a family of natural transformations

M(A,B) : σ(A,B) → τ(A,B) commuting with relabelling.

We shall now elaborate the left state extension case in (6). Each U ∈ � yields a natural

transformation

lse(U) : Comp(T ,−,−) → Comp(T ,−,−)

between indexed categories, with component on (A,B) ∈ �op × � given by the functor

lse(U)(A,B) : Comp(T ,A, B) → Comp(T ,A, B),

which was written earlier as c �→ U | c. Hence lse(U)A,B = (U | −). This is functorial by

Lemma 3.2 (7), and natural in A,B by Lemma 3.2 (8). Each map f : U → U ′ in � yields a

modification lse(f) : lse(U) → lse(U ′) between these natural transformations, consisting

of a family

lse(f)(A,B) : lse(U)(A,B) → lse(U ′)(A,B)

of natural transformations, with component for a coalgebra X ⊗ A
c→ T (X ⊗ B) consisting

of the map

lse(U)(A,B)(c) = (U | c)
lse(f)(A,B),c

= f⊗idX

�� (U ′ | c) = lse(U ′)(A,B)(c).

We thus have the natural transformations

�op × �

Comp(T ,−,−)





Comp(T ,−,−)

��

Comp(T ,A, B)

lse(U)(A,B)

��

lse(U ′)(A,B)



lse(U)
=⇒

lse(f)(A,B)

=⇒

Cat Comp(T ,A, B)
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It is not hard to check that lse(U) is natural (in A,B) and that these lse(f) are natural

(in c) and commute with relabelling.

Finally, this functor

lse : � → [Comp(T ,−,−),Comp(T ,−,−)]

is strong monoidal because it preserves the monoidal structure:

lse(I)(A,B)(c) = I | c
∼= c

lse(U ⊗ V )(A,B)(c) = (U ⊗ V ) | c
∼= U | (V | c)
= lse(U)(A,B)

(
lse(V )(A,B)(c))

=
(
lse(U)(A,B) ◦ lse(V )(A,B)

)
(c),

where the category of endomaps [Comp(T ,−,−),Comp(T ,−,−)] carries the standard

monoidal structure given by composition as tensor, with identity as the tensor unit.

4. Composition of components

This section describes three basic forms of composition for coalgebraic components,

namely:

— sequential composition >>>

— multiplicative parallel composition ‖
— additive parallel composition �.

We will begin with >>>, which we can conveniently describe in terms of state extension.

Definition 4.1. The sequential composition operator >>> is defined for coalgebraic com-

ponents with matching input and output. For

X ⊗ A
c �� T (X ⊗ B) and Y ⊗ B

d �� T (Y ⊗ C)

we get c >>> d through the composition of Kleisli maps:

c >>> d =
(
(X ⊗ Y ) ⊗ A

c|Y
�� (X ⊗ Y ) ⊗ B

X|d
�� (X ⊗ Y ) ⊗ C

)
.

Thus c >>> d involves first doing c and then d, on a combined state space X ⊗ Y .

The notation >>> for composition is as used for arrows – see, for example, Jacobs

et al. (2009). Composition of components satisfies the properties of composition for

arrows, but only up to (canonical) isomorphisms. This will be shown next.

Lemma 4.2. The following equations and isomorphisms (of coalgebraic components) hold

for sequential composition.
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(1) We have

arr(f) >>> arr(g) = (arr(g ◦ f) | I) = (I | arr(g ◦ f))
λ=ρ
−→∼= arr(g ◦ f)

in the following isomorphism of coalgebraic components.

T ((I ⊗ I) ⊗ C)
T (λ⊗id)=T (ρ⊗id)

∼=
�� T (I ⊗ C)

(I ⊗ I) ⊗ A

arr(f)>>>arr(g)=(arr(g◦f)|I)=(I |arr(g◦f))
��

(λ⊗id)=(ρ⊗id)

∼= �� I ⊗ A

arr(g◦f)
��

(2) We have

c >>> arr(g)
ρ

−→∼= T (id ⊗ g) ◦ c

arr(f) >>> d
λ−→∼= d ◦ (id ⊗ f)

in

T ((X ⊗ I) ⊗ C)
T (ρ⊗id)

∼=
�� T (X ⊗ C) T ((I ⊗ Y ) ⊗ C)

T (λ⊗id)

∼=
�� T (Y ⊗ C)

(X ⊗ I) ⊗ A
ρ⊗id

∼= ��

c>>>arr(g)
��

X ⊗ A

T (id⊗g)◦c
��

(I ⊗ Y ) ⊗ A
λ⊗id

∼= ��

arr(f)>>>d
��

Y ⊗ A

d◦(id⊗f)
��

In particular, arr(id) is unit for >>>, up-to-isomorphism.

(3) We have

(c >>> (d >>> e))
α−→∼= ((c >>> d) >>> e)

in

T ((X ⊗ (Y ⊗ Z)) ⊗ D)
T (α⊗id)

∼=
�� T (((X ⊗ Y ) ⊗ Z) ⊗ D)

(X ⊗ (Y ⊗ Z)) ⊗ A
α⊗id

∼= ��

(c>>>(d>>>e))
��

((X ⊗ Y ) ⊗ Z) ⊗ A

((c>>>d)>>>e)
��

(4) For appropriately typed maps in � between states,

((f ⊗ g) ⊗ id) • (c >>> d) = ((f ⊗ id) • c) >>> ((g ⊗ id) • d)

(c >>> d) • ((f ⊗ g) ⊗ id) = (c • (f ⊗ id)) >>> (d • (g ⊗ id))

As a result, sequential composition >>> of components is a functor of the form

Comp(T ,A, B) × Comp(T ,B, C) → Comp(T ,A, C).

The last point suggests the notation used in Hasuo et al. (2009) for the type of >>>,

namely, (A,B) × (B,C) → (A,C). We shall also use it later on, especially in Section 6.

Proof. All these properties follow from Lemma 3.2. The numbers labelling the equations

below refer to the items in this lemma. Recall that we use • for composition in the Kleisli

category of the monad T and ◦ for composition in �.
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(1) We have,

arr(f) >>> arr(g) = (arr(g) | I) • (I | arr(f))
(2)
= µ ◦ T (η ◦ (id ⊗ g)) ◦ η ◦ (id ⊗ f)

= T (id ⊗ g) ◦ η ◦ (id ⊗ f)

= η ◦ (id ⊗ g) ◦ (id ⊗ f)

= η ◦ (id ⊗ (g ◦ f))
(2)
= arr(g ◦ f) | I
= I | arr(g ◦ f)
λ−→∼= arr(g ◦ f).

(2) Similarly,

T (ρ ⊗ id) ◦ (c >>> arr(g)) = T (ρ ⊗ id) ◦ ((X | arr(g)) • (c | I))
(2)
= T (ρ ⊗ id) ◦ µ ◦ T (η ◦ (id ⊗ g)) ◦ (c | I)
= T (ρ ⊗ id) ◦ T (id ⊗ g) ◦ (c | I)
= T (id ⊗ g) ◦ T (ρ ⊗ id) ◦ (c | I)
(4)
= T (id ⊗ g) ◦ (c | I) ◦ (ρ ⊗ id).

(3) Associativity of >>> follows from a straightforward calculation, which is best done in

the Kleisli category:

(α ⊗ id) •
(
c >>> (d >>> e)

)
= (α ⊗ id) • (X | d >>> e) • (c | Y ⊗ Z)

= (α ⊗ id) •
(
X | ((Y | e) • (d | Z))

)
• (c | Y ⊗ Z)

(3)
= (α ⊗ id) • (X | (Y | e)) • (X | (d | Z)) • (c | Y ⊗ Z)
(5)
= (X ⊗ Y | e) • (α ⊗ id) • (X | (d | Z)) • (c | Y ⊗ Z)
(6)
= (X ⊗ Y | e) • (X | d) | Z) • (α ⊗ id) • (c | Y ⊗ Z)
(5)
= (X ⊗ Y | e) • ((X | d) | Z) • ((c | Y ) | Z) • (α ⊗ id)
(3)
= (X ⊗ Y | e) •

(
((X | d) • (c | Y )) | Z

)
• (α ⊗ id)

= (X ⊗ Y | e) • (c >>> d | Z) • (α ⊗ id)

=
(
(c >>> d) >>> e

)
• (α ⊗ id).

(4) We will only prove functoriality, in a direct way: for two maps of coalgebraic

components f : c1 → c2 and g : d1 → d2, where ci : Xi⊗A → T (Xi⊗B) and di : Yi⊗B →
T (Yi ⊗X) the map f ⊗g : X1 ⊗Y1 → X2 ⊗Y2 is a morphism of composite coalgebraic
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components:

((f ⊗ g) ⊗ idC ) • (c1 >>> d1) = ((f ⊗ g) ⊗ idC ) • (X1 | d1) • (c1 | Y1)
(7)
= (X2 | d2) • ((f ⊗ g) ⊗ idB)) • (c1 | Y1)
(7)
= (X2 | d2) • (c2 | Y2) • ((f ⊗ g) ⊗ idA)

= (c2 >>> d2) • ((f ⊗ g) ⊗ idA).

The next result captures the interaction between sequential composition >>> and state

extension |.

Lemma 4.3. For components X ⊗ A
c→ T (X ⊗ B) to Y ⊗ B

d→ T (Y ⊗ C), there are asso-

ciativity isomorphisms:

(
U | (c >>> d)

)
α

∼=
��

(
(U | c) >>> d

)
(
c >>> (d | V )

)
α

∼=
��

(
(c >>> d) | V

)
.

Proof. We use the properties of Lemma 3.2. We will only consider the first associativity

isomorphism:

(α ⊗ id) •
(
U | (c >>> d)

)
= (α ⊗ id) •

(
U | ((X | d) • (c | Y ))

)
(7)
= (α ⊗ id) • (U | (X | d)) • (U | (c | Y ))
(5)
= ((U ⊗ X) | d) • (α ⊗ id) • (U | (c | Y ))
(6)
= ((U ⊗ X) | d) • ((U | c) | Y ) • (α ⊗ id)

=
(
(U | c) >>> d

)
• (α ⊗ id).

4.1. Multiplicative parallel composition

Two coalgebraic components c, d, with different state spaces, and different inputs &

outputs, can be put in parallel to form new components. This can be done in different

ways. We will begin by discussing the ‘multiplicative’ method, which involves taking the

tensor of the inputs & outputs. Later, we will describe the ‘additive’ parallel composition,

which involves the coproduct of inputs & outputs. The additive version turns out to be

more important in the current setting, so our discussion of the multiplicative version will

be rather brief.

Definition 4.4. For components

X ⊗ A
c→ T (X ⊗ B)

Y ⊗ C
d→ T (Y ⊗ D)
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the multiplicative parallel composition c ‖ d is defined as Kleisli composition:

(X ⊗ Y ) ⊗ (A ⊗ C)

γ̂ ∼=
��

c‖d
�� (X ⊗ Y ) ⊗ (B ⊗ D)

(X ⊗ A) ⊗ (Y ⊗ C)
c⊗d

�� (X ⊗ B) ⊗ (Y ⊗ D)

γ̂∼=
��

where γ̂ is the obvious isomorphism that swaps the inner two objects.

It is easy to see that ‖ yields a functor:

‖ : Comp(T ,A, B) × Comp(T ,C,D) −→ Comp(T ,A ⊗ C,B ⊗ D). (7)

Using the (multi-sorted) Lawvere theory notation of Hasuo et al. (2009), this operator

can be described as a map

‖ : (A,B) × (C,D) → (A ⊗ C,B ⊗ D).

Remark 4.5. The type (7) of the functor ‖ even suggests that the correspondence

Comp(T ,−,−) be a (lax) monoidal functor �op × � → Cat, where the former has

an obvious monoidal structure (inherited from �) and the latter has Cartesian products

as tensor products. This is also true of the additive parallel composition functor � studied

in Section 4.2. However, it is not yet clear how we should use such higher-dimensional

structures, so the relevant technical developments are left for future work.

Now that we have this ‖ operator, we can describe the equivalents of the ‘first’ and

‘second’ operators in the context of Hughes’ Arrows (Hughes 2000). They add an additional

input & output, on the left or on the right of the existing input & output, namely, through

first‖(c) = c ‖ arr(id)

second‖(c) = arr(id) ‖ c.
(8)

We will only state the following result for ‖ without proof.

Lemma 4.6. There are isomorphisms of components:

(
U | (c ‖ d)

)
α

∼=
��

(
(U | c) ‖ d

)

(
c ‖ (d | V )

)
α

∼=
��

(
(c ‖ d) | V

)
.

4.2. Additive parallel composition

Our next goal is to define an additive parallel composition operator � for coalgebraic

components, which is called ‘external choice’ in Barbosa (2001; 2003). We need to assume

that our category � has binary coproducts +, and that the tensor ⊗ distributes over them,

as described in Section 2, through a distribution map dis as in (2). These coproducts + in �
also form coproducts in the Kleisli category K�(T ) and are preserved by J : � → K�(T ).
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So in K�(T ) we have coprojections

J(κi) = η ◦ κi : Xi → T (X1 + X2)

with cotupling as in �. Since the monad T is assumed to be commutative (that is,

symmetric monoidal), ⊗ is also a tensor in K�(T ), and it distributes over + in K�(T ),

through J(dis) = η ◦ dis as distributivity isomorphism.

Definition 4.7. An additive parallel operator � is defined on coalgebraic components

X ⊗ A
c→ T (X ⊗ B)

Y ⊗ C
d→ T (Y ⊗ D)

as Kleisli composition:

(X ⊗ Y ) ⊗ (A + C)

dis−1 ∼=
��

c�d �� (X ⊗ Y ) ⊗ (B + D)

(X ⊗ Y ) ⊗ A + (X ⊗ Y ) ⊗ C
c|Y +X|d

�� (X ⊗ Y ) ⊗ B + (X ⊗ Y ) ⊗ D

dis∼=
��

where c | Y + X | d is the coproduct of maps in the Kleisli category.

This additive composition operator � forms a functor

Comp(T ,A, B) × Comp(T ,C,D) → Comp(T ,A + C,B + D),

which is defined on morphisms by f � g = f ⊗ g. It may thus be written as a map

� : (A,B) × (C,D) → (A + C,B + D).

This will be helpful in Section 6.

Just as we had ‘first’ and ‘second’ operators for multiplicative parallel composition (8),

we also have them in the additive case:

first�(c) = c � arr(id)

second�(c) = arr(id) � c.
(9)

These fundamental operators occur frequently in the rest of the paper, for instance in the

(di)naturality properties of the trace operator in Section 6.

We make the relation between � and state extension explicit. It is very similar to the

relations between >>> or ‖ and state extension, see Lemmas 4.3 and 4.6.

Lemma 4.8. For components

X ⊗ A
c→ T (X ⊗ B)

to

Y ⊗ C
d→ T (Y ⊗ D)

there are associativity isomorphisms(
U | (c � d)

)
α

∼=
��

(
(U | c) � d

)
(
c � (d | V )

)
α

∼=
��

(
(c � d) | V

)
.
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Proof. The proof requires a rather elaborate calculation, and we will only present it for

the first isomorphism:

(
(U | c) � d

)
• (α ⊗ id)

= dis •
(
((U | c) | Y ) + ((U ⊗ X) | d)

)
• dis−1 • (α ⊗ id)

2.1 (1)
= dis •

(
((U | c) | Y ) + ((U ⊗ X) | d)

)
• ((α ⊗ id) + (α ⊗ id)) • dis−1

2.1 (2)
= dis •

(
(((U | c) | Y ) • (α ⊗ id)) + (((U ⊗ X) | d) • (α ⊗ id))

)
•

(α + α) • dis−1 • (U ⊗ dis−1) • α−1

3.2 (6),(5)
= dis •

(
((α ⊗ id) • (U | (c | Y )) • α) + ((α ⊗ id) • (U | (X | d)) • α)

)
•

dis−1 • (U ⊗ dis−1) • α−1

= dis •
(
(α ⊗ id) + (α ⊗ id)

)
•(

(α • (U ⊗ (c | Y )) • α−1 • α) + (α • (U ⊗ (X | d)) • α−1 • α)
)

•
dis−1 • (U ⊗ dis−1) • α−1

2.1 (1)
= (α ⊗ id) • dis • (α + α) •

(
(U ⊗ (c | Y )) + (U ⊗ (X | d))

)
•

dis−1 • (U ⊗ dis−1) • α−1

2.1 (2)
= (α ⊗ id) • α • (U ⊗ dis) • dis •

(
(U ⊗ (c | Y )) + (U ⊗ (X | d))

)
•

dis−1 • (U ⊗ dis−1) • α−1

2.1 (1)
= (α ⊗ id) • α • (U ⊗ dis) • (U ⊗ (c | Y + X | d)) • (U ⊗ dis−1) • α−1

= (α ⊗ id) • α • (U ⊗ (c � d)) • α−1

= (α ⊗ id) •
(
U | (c � d)

)
.

Many other properties, like associativity, can be proved for �. We will state some of

them explicitly, but leave the details of the (straightforward) proofs as an exercise.

Lemma 4.9.

(1) Given arrows f : A → B and g : C → D in �, we have a canonical isomorphism of

coalgebraic components arr(f) � arr(g)
∼=−→ arr(f + g). That is,

T ((I ⊗ I) ⊗ (B + D))
T (λ⊗id)=T (ρ⊗id)

∼=
�� T (I ⊗ (B + D))

(I ⊗ I) ⊗ (A + C)
λ⊗id=ρ⊗id

∼=
��

arr(f)�arr(g)
��

I ⊗ (A + C)

arr(f+g)
��

(2) We have

(c >>> c′) � (d >>> d′)
∼=−→ (c � d) >>> (c′ � d′),
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in

T ((X ⊗ X ′) ⊗ (Y ⊗ Y ′) ⊗ (A′′ + B′′))
T (β⊗id)

∼= ������������������

T ((X ⊗ Y ) ⊗ (X ′ ⊗ Y ′) ⊗ (A′′ + B′′))

(X ⊗ X ′) ⊗ (Y ⊗ Y ′) ⊗ (A + B)
β⊗id

∼= ������������������

(c>>>c′)�(d>>>d′)

��

(X ⊗ Y ) ⊗ (X ′ ⊗ Y ′) ⊗ (A + B)

(c�d)>>>(c′�d′)

��

Here

β : (X ⊗ X ′) ⊗ (Y ⊗ Y ′)
∼=−→ (X ⊗ Y ) ⊗ (X ′ ⊗ Y ′)

is the canonical isomorphism in a symmetric monoidal category (�,⊗, I).

(3) We have

(c � (d � e)) >>> arr(α+)
∼=−→ arr(α+) >>> ((c � d) � e),

in

T (((X ⊗ (Y ⊗ Z)) ⊗ I) ⊗ ((D + E) + F))
T (β′⊗id)

∼= ������������������

T ((I ⊗ ((X ⊗ Y ) ⊗ Z)) ⊗ ((D + E) + F))

((X ⊗ (Y ⊗ Z)) ⊗ I) ⊗ (A + (B + C))
β′⊗id

∼= ������������������

(c�(d�e))>>>arr(α+)

��

(I ⊗ ((X ⊗ Y ) ⊗ Z)) ⊗ (A + (B + C))

arr(α+)>>>((c�d)�e)

��

Here

β′ : (X ⊗ (Y ⊗ Z)) ⊗ I
∼=→ I ⊗ ((X ⊗ Y ) ⊗ Z)

is the canonical isomorphism in �, and α+ is the associativity isomorphism for +.

(4) We have

(c � d) >>> arr(γ+)
∼=−→ arr(γ+) >>> (d � c),

in

T (((X ⊗ Y ) ⊗ I) ⊗ (D + C))
T (β′′⊗id)

∼=
�� T ((I ⊗ (Y ⊗ X)) ⊗ (D + C))

((X ⊗ Y ) ⊗ I) ⊗ (A + B)
β′′⊗id

∼=
��

(c�d)>>>arr(γ+)
��

(I ⊗ (Y ⊗ X)) ⊗ (A + B)

arr(γ+)>>>(d�c)
��

Here

β′′ = λ−1 ◦ γ ◦ ρ : (X ⊗ Y ) ⊗ I
∼=−→ I ⊗ (Y ⊗ X)

and γ+ is the symmetry isomorphism for +.

Proof. Items (1)–(2) are easy by direct calculation. Items (3)–(4) follow, essentially, from

the naturality of α+ and γ+, and Lemma 2.2 (2)–(3).
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4.3. Method combination

The additive parallel composition c � d from the previous subsection applies to arbitrary

components c, d, which typically have different state spaces. In the special case when c, d

share the same state space, there is also a composition operator, which we shall write as

{c, d}. This can be viewed as a combination of the (Java-like) methods of c and d on their

shared state space.

Definition 4.10. For two components

X ⊗ A
c→ T (X ⊗ B)

to

X ⊗ C
d→ T (X ⊗ D)

with the same state space X, we define {c, d} as Kleisli composition:

X ⊗ (A + C)

dis−1 ∼=
��

{c,d}
�� X ⊗ (B + D)

X ⊗ A + X ⊗ C
c+d

�� X ⊗ B + X ⊗ D

dis∼=
��

If we understand a coalgebraic component as a mathematical model of a class in an

object-oriented programming language, we can see this method combination operator as

a form of class building: first the state space X is fixed, and then methods

ci : X ⊗ Ai → T (X ⊗ Bi)

are combined in a class

c = {c1, . . . , cn} : X ⊗ (A1 + · · · + An) → T (X ⊗ (B1 + · · · + Bn)).

Moreover, the extension of classes can be described to give a form of subclass and

inheritance, albeit without the overriding of methods. Given a class/component

c : X ⊗ A → T (X ⊗ B),

we can form a subclass by first extending the state to

c | Y : (X ⊗ Y ) ⊗ A → T ((X ⊗ Y ) ⊗ B).

Indeed, subclassing involves an extended state to accommodate additional fields/attributes.

Additional methods

d : (X ⊗ Y ) ⊗ C → T ((X ⊗ Y ) ⊗ D)

may now be added to obtain a subclass

c′ = {c | Y , d} : (X ⊗ Y ) ⊗ (A + C) → T ((X ⊗ Y ) ⊗ (B + D)).

The proof of the following result is left as an exercise.
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Lemma 4.11. Method combination commutes with state extension:

U | {c, d} = {U | c,U | d}
{c, d} | V = {c | V , d | V }.

5. Tube diagrams for components

Our goal in Section 6 (which is central in this paper) will be first to introduce a

trace operator that realises feedback loops for components and then prove that this

operator does indeed satisfy the expected equational properties from Joyal et al. (1996),

such as dinaturality, yanking and superposing. It turns out, however, that the composed

components occurring in the equations are rather complicated, and their overall structures

are best described using a variant of string diagrams.

String diagrams were introduced in Penrose (1971) to provide a succinct representation

of the morphisms in a monoidal category – see also Joyal and Street (1991). Our problem

is that we need to deal with two different kinds of monoidal structure ⊗ and +, and this

calls for a carefully devised pictorial convention. Following McCurdy (2010), we employ

a version of string diagrams augmented by tubes, which we call tube diagrams. Tubes

enhance the slightly more common pictorial convention of functorial boxes (Cockett and

Seely 1999; Melliès 2006). In the current paper, tubes capture applications of functors of

the form X ⊗ −.

We will now present the tube diagrams (based on McCurdy (2010)) for some of the

composition operators introduced in Section 4. We will begin by drawing some diagrams,

and then give an explanation. First consider the sequential composition operator in

Definition 4.1. Given two components

X ⊗ A
c−→ X ⊗ B

Y ⊗ B
d−→ Y ⊗ C

in K�(T ) with matching input and output, we represent them using tube diagrams as

follows:

A B

X X

c

B C

Y Y

d

Their composition

(X ⊗ Y ) ⊗ A
c>>>d−→ (X ⊗ Y ) ⊗ C
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is then depicted as follows:

c >>> d =

c dd

X
X

Y

Y

(10)

We use the following conventions for tube diagrams:

— Diagrams are read from left to right.

— Each tube designates an object in K�(T ). More precisely, it designates the identity

morphism on the object. In diagram (10), the tube that is shrunk and plugged into the

c-box and the tube that comes out of c and is expanded to enclose the d-box are both

of type X. The other two tubes, viz. the one that encloses c and the one that comes

out of d, are both of type Y . The three thick lines through the centre are of type A, B

and C . In fact, these ‘lines’ are also tubes and are just shown as lines here to simplify

the picture.

— Nested tubes designate the tensor ⊗ in K�(T ), and are calculated from the outermost

to the innermost. For example, the collection of three nested tubes at the left-hand

end of diagram (10) represents the object X ⊗ Y ⊗ A.

— Symmetry γ of the tensor ⊗ is depicted as a ‘waist’, that is, the exchange of outer

and inner tubes. This occurs twice in diagram (10), where the ‘waists’ are marked with

circles.

— Associativity isomorphisms are left implicit. That is, when dealing with tube diagrams,

we will assume strict monoidal structures in which we do not distinguish (X ⊗Y ) ⊗A

from X ⊗ (Y ⊗A), or (X +Y ) +A from X + (Y +A). For this reason, our later use of

tube diagrams should be viewed only as a ‘guideline’ for rigorous calculational proofs,

rather than as proofs in themselves. We will return to this point later in Remark 5.2.

To summarise, diagram (10) can be ‘parsed’ into the following composition of morphisms

in K�(T ):

X ⊗ Y ⊗ A
γ⊗A

waist
��Y ⊗ X ⊗ A

Y ⊗c

box in a tube
��Y ⊗ X ⊗ B

γ⊗B

waist
��X ⊗ Y ⊗ B

X⊗d

box in a tube
��X ⊗ Y ⊗ C

This composition is therefore the same thing as in Definition 4.1, modulo the use of the

associativity isomorphisms α. It is implicit in this correspondence that left- and right-state

extensions (Definition 3.1) can be depicted as follows:

U |c =

dc

A B

U

X

c|V =

c

V

A

X

B

X

(11)
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The ‘waist’ diagram representing the symmetry γ : X ⊗ Y
∼=→ Y ⊗ X might seem

strange at first sight, but, in fact, the usual ‘crossing’ representation of symmetry (see, for

example, Joyal and Street (1991)) can be recovered by looking at a certain section of the

three-dimensional picture†, as in:

X Y X Y

In contrast to the multiplicative tensor ⊗, the additive tensor + is depicted by putting

two tubes in parallel (rather than nested). For example,

A

B

for

A + B

and
Y

X

A

B

for

Y ⊗ ((X ⊗ A) + B).

The distributivity isomorphism dis from (2) relating the two tensors ⊗ and + has a nice

graphical representation as a pair of ‘pants’, so

X

A

B

(12)

represents

dis : X ⊗ A + X ⊗ B −→ X ⊗ (A + B).

† This observation is due to Shin-ya Katsumata.
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Furthermore, as dis is an isomorphism, the following equalities hold (the right-hand sides

are identity maps on suitable objects):

= = (13)

We shall now establish another couple of results for manipulating these distributivity

‘pants’.

Lemma 5.1 (Mr. Bean’s Pants Exchange†). The following diagram commutes:

X ⊗ (Y ⊗ A) + X ⊗ (Y ⊗ B)
dis ��

α+α
��

X ⊗ (Y ⊗ A + Y ⊗ B)
X⊗dis

�� X ⊗ (Y ⊗ (A + B))

α
��

(X ⊗ Y ) ⊗ A + (X ⊗ Y ) ⊗ B

γ⊗A+γ⊗B
��

(X ⊗ Y ) ⊗ (A + B)

γ⊗(A+B)
��

(Y ⊗ X) ⊗ A + (Y ⊗ X) ⊗ B

α−1+α−1
��

(Y ⊗ X) ⊗ (A + B)

α−1
��

Y ⊗ (X ⊗ A) + Y ⊗ (X ⊗ B)
dis �� Y ⊗ (X ⊗ A + X ⊗ B)

Y ⊗dis
�� Y ⊗ (X ⊗ (A + B))

and, in a strict monoidal category, is reduced to

X ⊗ Y ⊗ A + X ⊗ Y ⊗ B
dis ��

γ⊗A+γ⊗B
��

X ⊗ (Y ⊗ A + Y ⊗ B)
X⊗dis

�� X ⊗ Y ⊗ (A + B)
γ⊗(A+B)��

Y ⊗ X ⊗ A + Y ⊗ X ⊗ B
dis �� Y ⊗ (X ⊗ A + X ⊗ B)

Y ⊗dis
�� Y ⊗ X ⊗ (A + B)

Recall that γ denotes symmetry isomorphisms for ⊗, so in terms of tube diagrams, we

have

= (14)

Proof. We draw two horizontal maps labelled with dis in the above diagram in the

lemma, then use Lemma 2.2 (3) twice and naturality for dis from Lemma 2.1 (1).

Next we observe that the interaction between distribution dis and the coproduct

associativity α+ from Lemma 2.2 (3) is equivalent to the following one in a strict monoidal

setting:

X ⊗ A + X ⊗ (B + C)
dis ��

X⊗A+dis−1
��

X ⊗ (A + B + C)

dis−1
��

X ⊗ A + X ⊗ B + X ⊗ C
dis+X⊗C

�� X ⊗ (A + B) + X ⊗ C

(15)

† Mr. Bean, Episode 1, Act 2, 1990.
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In terms of tube diagrams, this is

= (16)

This equality of tubes can be found in McCurdy (2010).

Another operator we will make much use of in Section 6 is the additive parallel

composition �. Following Definition 4.7, we compose the diagrams in (11) and (12) to

obtain the following tube diagram for c � d:

c d =

A

X

B

C D

Y

c

d

(17)

Remark 5.2. In order to turn our tube-diagram reasoning into mathematically rigorous

proofs, we would need a coherence result of one form or another. It could be a statement

that any non-strict such category is equivalent to a strict one; or a statement that the

category of string/tube diagrams is the free such category. Currently, we have no such

result, but this is not a total anomaly since among the dozens of well-known graphical

languages for various kinds of (monoidal) categories collected in Selinger (2011), there

are a number lacking coherence results, but they still offer useful guidelines for rigorous

calculational proofs, much like the tube diagrams do in this paper.

Remark 5.3. We should emphasise that all tube diagrams represent morphisms in the

Kleisli category K�(T ). We shall also employ a different kind of string diagram later,

mostly for describing the trace axioms. This other kind of diagram is two-dimensional

and, essentially, provides a ‘pictorial shorthand’ for the composition of components. For

example, sequential composition c >>> d of components is represented by

c d
A CB

additive parallel composition c � d is represented by

c

d

A

DC

B
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and the ‘identity component’ arr(id) is represented simply by a wire/line. Hence the

diagram

c d

e

represents the composition (c � e) >>> (d � arr(id)), which is equal to (c >>> d) � e up to

a canonical isomorphism (this follows from the results in Asada and Hasuo (2010) and

Hasuo et al. (2009)).

In this second type of string diagram, wires represent input/output interfaces and the

state spaces of components are not explicit. There should be no problem distinguishing the

two kinds of string diagrams. In particular, a component is represented in tube diagrams

by a 3D shadowed cube, while in the second type of diagram it is a 2D box.

6. A monoidal trace for coalgebraic components

Jacobs (2010) showed how for certain monads T the Kleisli category K�(T ) is traced

monoidal with respect to coproducts + as monoidal structure. Concretely, this means that

for maps of the form f : X + U → T (Y + U), there is a trace map TrK�(f) : X → T (Y )

satisfying standard properties (Joyal et al. 1996). This trace operator TrK� on the Kleisli

category will be used to construct a similar trace operator for coalgebraic components.

The main task in this section is to show that the trace properties from Joyal et al. (1996)

also hold for these components, but only up to (canonical) isomorphism.

The precise properties that T must satisfy to obtain this (Kleisli) trace operator TrK� are

listed in Jacobs (2010, Requirements 4.7). The main ones are that the category � should

have (countable) coproducts, the Kleisli category should be enriched over the category

of dcpo’s with bottom and the monad should be ‘semi-additive’. In this section we shall

simply assume that these properties hold for T . Examples of such a monad T include

the lift monad T = 1 + (−) for partiality, the powerset monad P for non-determinism, as

well as its bounded variant P<κ with κ > ℵ0, and the (discrete, countable) subdistribution

monad D for probabilistic non-determinism where

DX = {d : X → [0, 1] |
∑

x∈X d(x) � 1}.

Such a d is a ‘sub’distribution since its sum is � 1, rather than = 1 (see, for example,

Hasuo et al. (2007)).

Definition 6.1. The trace operator

Tr : (A + C,B + C) → (A,B)

is defined on a coalgebraic component

c : X ⊗ (A + C) → T (X ⊗ (B + C))

through the Kleisli trace operator TrK�

Tr(c)
def
= TrK�

(
X ⊗ A + X ⊗ C

T (dis−1) ◦ c ◦ dis
�� T (X ⊗ B + X ⊗ C)

)
.
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Note that this composition inside TrK�(−) is really a Kleisli composition.

Using the tube diagram scheme described in Section 5, the trace operator can be

depicted as follows. First, the composite inside the trace operator TrK� is

dis−1 • c • dis : X ⊗ A + X ⊗ B −→ X ⊗ B + X ⊗ C in K�(T ),

and is thus depicted by

A

X

C C

B

c

Applying the trace operator TrK� yields

Tr(c) = (18)

The functoriality of the operator Tr is essential here.

Lemma 6.2. The trace operator Tr extends to a functor

Tr : Comp(T ,A + C,B + C) −→ Comp(T ,A, B).

That is, given two components

c : X ⊗ (A + C) → T (X ⊗ (B + C))

d : Y ⊗ (A + C) → T (Y ⊗ (B + C))

and a morphism f from c to d (see (4)), f is again a component morphism from

Tr(c) : X ⊗ A → T (X ⊗ B)

to

Tr(d) : Y ⊗ A → T (Y ⊗ B).

Proof. The proof makes essential use of the uniformity of the trace operator TrK�:

(id + h) • f = g • (id + h) implies TrK�(f) = TrK�(g), (19)

Pictorially, this is

XX YX

V

f

U

h

U
=

XX YX

V

gh

VU
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implies

XX YX

U
f

=

XX YX

V
g

Hasegawa first formulated this notion of uniformity for traced monoidal categories in

Hasegawa (1999), and its name is derived by analogy with Plotkin’s uniformity principle

in domain theory (see, for example, Simpson and Plotkin (2000)) – for more recent

developments as well as more on the historical background, see Hasegawa (2004).

It is typical that in a traced monoidal category �, uniformity like (19) does not hold

for every h but just for ‘strict’ h. However, when the trace structure of � arises from �’s

structure as a partially additive category, uniformity is true for every h (Haghverdi 2000).

This is our current setting – see Jacobs (2010).

We now turn to the proof of the lemma. The following diagram in K�(T ) commutes

by the assumption that f is a component morphism, combined with the naturality of dis:

X ⊗ B + X ⊗ C
f⊗B+f⊗C

�� Y ⊗ B + Y ⊗ C

X ⊗ (B + C)

dis−1

��

f⊗(B+C)
�� Y ⊗ (B + C)

dis−1

��

X ⊗ (A + C)
f⊗(A+C)

��

c

��

Y ⊗ (A + C)

d

��

X ⊗ A + X ⊗ C

dis

��

f⊗A+f⊗C
�� Y ⊗ A + Y ⊗ C

dis

��

Thus we have

(id+f⊗C) •
(
(f⊗B+id) • dis−1 • c • dis

)
=

(
dis−1 • d • dis • (f⊗A+id)

)
• (id+f⊗C),

from which we derive, by uniformity (19),

TrK�
(
(f ⊗ B + id) • dis−1 • c • dis

)
= TrK�

(
dis−1 • d • dis • (f ⊗ A + id)

)
. (20)

This is used in the following calculation, which concludes the proof:

(f ⊗ B) • Tr(c) = (f ⊗ B) • TrK�(dis−1 • c • dis)

= TrK�
(
(f ⊗ B + id) • dis−1 • c • dis

)
by the tightening axiom for

the trace operator TrK�

(see, for example, Joyal et al. (1996))

= TrK�
(
dis−1 • d • dis • (f ⊗ A + id)

)
by (20)

= TrK�(dis−1 • d • dis) • (f ⊗ A) by tightening

= Tr(d) • (f ⊗ A).

We will now make a special case explicit in the following lemma.
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Lemma 6.3. For an isomorphism ϕ in � of the appropriate type,

(ϕ ⊗ id) • Tr(c) • (ϕ−1 ⊗ id) = Tr
(
(ϕ ⊗ id) • c • (ϕ−1 ⊗ id)

)
.

Equivalently, if ϕ is an isomorphism of coalgebraic components as in the left-hand

diagram below, then it is also an isomorphism in the right-hand diagram between the

corresponding traces:

T (X ⊗ (A + C))
T (ϕ⊗id)

∼=
�� T (Y ⊗ (A + C)) T (X ⊗ A)

T (ϕ⊗id)

∼=
�� T (Y ⊗ A)

X ⊗ (A + C)

c
��

ϕ⊗id

∼=
�� Y ⊗ (A + C)

d

��

X ⊗ A

Tr(c)
��

ϕ⊗id

∼=
�� Y ⊗ A

Tr(d)
��

In the remainder of this section, we first establish how the component trace Tr interacts

with state extension | and with additive parallel composition �. We will then prove the

standard trace properties of Joyal et al. (1996). The trace properties, like the preceding

lemmas, will often be accompanied by the corresponding equalities of tube diagrams, which

we hope will convey some of the intuition behind the rather complicated calculations.

6.1. Trace and state extension

In Section 4.2 we have assumed that functors X ⊗ − preserve binary coproducts, for

instance, because X ⊗ − has a right adjoint (given by exponents �).

Proposition 6.4. Let T be a (commutative) monad on a symmetric monoidal category �
with (countable) coproducts for which the Kleisli category K�(T ) has a monoidal trace

operator TrK� with respect to coproducts. If functors U⊗ − : � → � preserve coproducts,

then U ⊗ − : K�(T ) → K�(T ) preserves the trace operator in the sense that

U ⊗ TrK�
(
X + C

f
�� T (Y + C)

)
: U ⊗ X �� T (U ⊗ Y )

is the same as

TrK�
(
U ⊗ X + U ⊗ C

dis

∼=
�� U ⊗ (X + C)

U⊗f
�� T (U ⊗ (Y + C))

T (dis−1)
�� T (U ⊗ Y + U ⊗ C)

)
.

In terms of tube diagrams,

f
= f

Proof. The result follows from the way the monoidal trace is constructed through the

coalgebraic trace in Jacobs (2010). First, the functor Y + (−) : � → � has an initial

algebra in � given by the copower � · Y with algebra map

αY = [κ0, [κn+1]n∈�] : Y + � · Y
∼=−→ � · Y .
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The functor U ⊗ − : � → � preserves coproducts by assumption, so the canonical map

d = [id ⊗ κn]n∈� : � · (U ⊗ Y ) → U ⊗ (� · Y )

is an isomorphism. It is then also an isomorphism of initial algebras.

The general trace theory in Hasuo et al. (2007) now says that � ·Y is the final coalgebra

in the Kleisli category K�(T ) of the functor T (Y + (−)). For a map

f : X + C → T (Y + C)

we first take

f̂ = T (id + κ2) ◦ f : X + C → Y + (X + C),

which yields a unique map

beh(f̂) : X + C → T (� · Y )

to the final coalgebra, and finally the trace map itself as

TrK�(f) = T (∇) ◦ beh(f̂) ◦ κ1 : X → T (Y ).

We can similarly obtain a trace map

TrK�(fU) : U ⊗ X → U ⊗ Y

for the morphism

fU = T (dis−1) ◦ (U ⊗ f) ◦ dis : U ⊗ X + U ⊗ C → T (U ⊗ Y + U ⊗ X)

used in the proposition. We are then done if the following diagram commutes:

U ⊗ X + U ⊗ C
beh(f̂U )

��

dis ∼=

��

T (� · (U ⊗ Y ))
T (∇)

�����������

T (d)∼=

��

U ⊗ X

κ1
�����������

U⊗κ1
��									

�� ��
TrK�(fU )

��

�� ��
U⊗TrK�(f)

��
T (U ⊗ Y )

U ⊗ (X + C)
U⊗beh(f̂)

�� T (U ⊗ � · Y )
T (id⊗∇)

�����������

It is obvious that the two triangles commute, and commutation of the inner rectangle

follows by a finality argument, in the Kleisli category:

U ⊗ Y + (U ⊗ X + U ⊗ Y ) ��
�� U ⊗ Y + U ⊗ � · Y

U ⊗ Y + U ⊗ C

id+κ2

��

U ⊗ (Y + � · Y )

dis−1∼=
��

U ⊗ X + U ⊗ C

fU

��

(U⊗beh(f̂))◦dis
��

T (d)◦beh(f̂U )

�� U ⊗ � · Y
U⊗α−1

Y
∼=

��

The remaining details are left as an exercise.
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We now return to our framework of coalgebraic components, and show how trace and

state extension interact.

Lemma 6.5. Trace commutes with state extension:

U | Tr(c) = Tr(U | c)
Tr(c) | V = Tr(c | V ).

Proof. We use several standard properties of the trace TrK� in the Kleisli category

K�(T ), such as (di)naturality, but we mainly depend on Proposition 6.4. We calculate in

this Kleisli category:

U | Tr(c) = α • (U ⊗ Tr(c)) • α−1

= α • (U ⊗ TrK�(dis−1 • c • dis)) • dis)) • α−1

= α • TrK�(dis−1 • U ⊗ (dis−1 • c • dis) • dis) • α−1 by Proposition 6.4

= TrK�((α + id) • dis−1 • (U ⊗ dis−1) • (U ⊗ c) •
(U ⊗ dis) • dis • (α−1 + id)) by the naturality of dis

(see Lemma 2.1 (1))

= TrK�((id + α−1) • (id + α) • (α + id) •
dis−1 • (U ⊗ dis−1) • (U ⊗ c) • (U ⊗ dis) • dis • (α−1 + id))

= TrK�((α + α) • dis−1 • (U ⊗ dis−1) • (U ⊗ c) •
(U ⊗ dis) • dis • (α−1 + α−1)) by the dinaturality of TrK�

= TrK�(dis−1 • α • (U ⊗ c) • α−1 • dis) by Lemma 2.1 (2)

= TrK�(dis−1 • (U | c) • dis)

= Tr(U | c).

We immediately use this property in

Tr(c) | V = (γ ⊗ id) • (V | Tr(c)) • (γ ⊗ id)

= (γ ⊗ id) • Tr(V | c) • (γ ⊗ id) as just proved

= Tr((γ ⊗ id) • (V | c) • (γ ⊗ id)) by Lemma 6.3

= Tr(c | V ).

6.2. Trace and additive parallel composition

The following lemma describes the interaction of trace and additive parallel composition.

It will be crucial for proving the (di)naturality properties for Tr in Section 6.3, which

involve composition >>> of components instead of Kleisli composition •.

Lemma 6.6. For appropriately typed components c, d, we have:

(1) Tr((d � arr(id)) • c) = (d | I) • Tr(c).
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(2) Tr(c • (d � arr(id))) = Tr(c) • (d | I).
(3) Tr((arr(id) � d) • c) = Tr(c • (arr(id) � d)).

Proof. We shall prove (1) and (3); the proof of (2) is similar to the proof of (1).

— For (1):

Tr((d � arr(id)) • c) = TrK�(dis−1 • dis • (d | I + Y | arr(id)) • dis−1 • c • dis)

= TrK�((d | I + id) • dis−1 • c • dis)

= (d | I) • TrK�(dis−1 • c • dis) by naturality of TrK�

= (d | I) • Tr(c).

— For (3):

Tr((arr(id) � d) • c) = TrK�(dis−1 • dis • (arr(id) | Y + I | d) • dis−1 • c • dis−1)

= TrK�((id + I | d) • dis−1 • c • dis−1)

= TrK�(dis−1 • c • dis−1 • (id + I | d)) by dinaturality of TrK�

= TrK�(dis−1 • c • dis−1 • (arr(id) | Y + I | d) • dis−1 • dis)

= Tr(c • (arr(id) � d)).

6.3. Trace axioms

In this final part of Section 6 we verify the trace axioms from Joyal et al. (1996),

formulated in a component setting (with explicit isomorphisms). For each axiom, drawing

a pictorial (pseudo-)proof with tube diagrams was helpful in developing a rigorous,

calculational proof. We will just present such a pictorial proof for one property, namely

the Post-Composition Naturality property, as an example.

Yanking

In the language of components, the Yanking property can be formulated as a diagram of

the form

1
arr(γ+)

��

arr(id) ��















 (A + A,A + A)

Tr
��

(A,A)

where γ+ : A+ A
∼=−→A+ A is the monoidal swap map associated with coproducts + (see

Lemma 2.2 (2)). Pictorially, we have

=
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We need to show that the Kleisli trace of the map

I ⊗ A + I ⊗ A
dis

∼=
�� I ⊗ (A + A)

arr(γ+)
�� T (I ⊗ (A + A))

T (dis−1)

∼=
�� T (I ⊗ A + I ⊗ A)

is the (Kleisli) identity η = arr(id). This, together with the yanking property for the Kleisli

trace operator TrK�, will be used in

Tr(arr(γ)) = TrK�
(
T (dis−1) ◦ arr(γ+) ◦ dis

)
= TrK�

(
T (dis−1) ◦ η ◦ (id ⊗ γ+) ◦ dis]

)
2.2 (2)
= TrK�

(
η ◦ dis−1 ◦ dis ◦ γ+

)
= TrK�

(
η ◦ γ+

)
= TrK�

(
γK�
+

)
= idK�

I⊗A = ηI⊗A = arr(idA).

Post-composition naturality/tightening

(A + C,B + C) × (B,D)
Tr×id ��

��

(A,B) × (B,D)
>>> �� (A,D)

(A + C,B + C) × ((B,D) × (C,C))

id×�
��

(A + C,B + C) × (B + C,D + C)
>>> �� (A + C,D + C)

Tr

��

The usual string representation of this axiom is

c
d

=
c

d

(21)

The aim is to prove for

X ⊗ (A + C)
c �� T (X ⊗ (B + C))

Y ⊗ B
d �� T (Y ⊗ D)

that the following diagram commutes:

T ((X ⊗ (Y ⊗ I)) ⊗ D)
T ((id⊗ρ)⊗id)

∼=
�� T ((X ⊗ Y ) ⊗ D)

(X ⊗ (Y ⊗ I)) ⊗ A
(id⊗ρ)⊗id

∼= ��

Tr(c>>>(d�arr(id)))
��

(X ⊗ Y ) ⊗ A

Tr(c)>>>d
��
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We shall make crucial use of Lemma 6.6, but the rest is mainly bookkeeping.

T ((id ⊗ ρ) ⊗ id) • Tr(c >>> (d � arr(id)))

= (ρ ⊗ id) • (α ⊗ id) • Tr((X | (d � arr(id))) • (c | (Y ⊗ I)))
6.3
= (ρ ⊗ id) • Tr

(
(α ⊗ id) • (X | (d � arr(id))) • (c | (Y ⊗ I)) • (α−1 ⊗ id)

)
• (α ⊗ id)

4.8
= (ρ ⊗ id) • Tr

(
((X | d) � arr(id)) • (α ⊗ id) • (c | (Y ⊗ I)) • (α−1 ⊗ id)

)
• (α ⊗ id)

3.2 (5)
= (ρ ⊗ id) • Tr

(
((X | d) � arr(id)) • ((c | Y ) | I)

)
• (α ⊗ id)

6.6
= (ρ ⊗ id) • ((X | d) | I) • Tr

(
(c | Y ) | I

)
• (α ⊗ id)

6.5
= (ρ ⊗ id) • ((X | d) | I) • ((Tr(c) | Y ) | I) • (α ⊗ id)

3.2 (3)
= (ρ ⊗ id) •

(
((X | d) • (Tr(c) | Y )) | I

)
• (α ⊗ id)

3.2 (4)
= ((X | d) • (Tr(c) | Y )) • (ρ ⊗ id) • (α ⊗ id)

= (Tr(c) >>> d) ◦ ((id ⊗ ρ) ⊗ id).

A pictorial (pseudo-)proof of the property is presented in Figure 1. Although Lem-

mas 6.3, 6.5 and 6.6 are useful in the above calculational proof, more basic properties such

as Lemma 5.1, on which Lemmas 6.3, 6.5 and 6.6 rely, have clearer pictorial meanings.

Therefore the latter are used in the pictorial proof.

Pre-composition naturality/tightening

(D,A) × (A + C,B + C)
id×Tr ��

��

(D,A) × (A,B)
>>> �� (D,B)

((D,A) × (C,C)) × (A + C,B + C)

�×id
��

(D + C,A + C) × (A + C,B + C)
>>> �� (D + C,B + C)

Tr

��

The aim is to prove for

X ⊗ (A + C)
c �� T (X ⊗ (B + C))

Y ⊗ D
d �� T (Y ⊗ A)

that the following diagram commutes:

T (((Y ⊗ I) ⊗ X) ⊗ B)
T ((ρ⊗id)⊗id)

∼=
�� T ((Y ⊗ X) ⊗ B)

((Y ⊗ I) ⊗ X)) ⊗ A
(ρ⊗id)⊗id

∼= ��

Tr((d�arr(id))>>>c)
��

(Y ⊗ X) ⊗ A

d>>>Tr(c)
��

This is left as an exercise.
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Tr c >>> (d arr(id))

=

= by Lemma 5.1

= by (13)

= by the naturality of dis

= by Lemma 5.1

= ‘waist’ symmetries γ
are isomorphisms

= by the post-composition naturality
of TrK , and Proposition 6.4

= Tr(c) >>> d

Fig. 1. A pictorial proof of post-composition naturality. The pointers show where the

transformation is going to occur.
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Dinaturality

(A + C,B + D) × (B + D,B + C)

>>> �����������

(A + C,B + D) × ((B,B) × (D,C))
id×�

���������������
(A + C,B + C)

Tr
��

(A + C,B + D) × (D,C)

��

�

(A,B)

(D,C) × (A + C,B + D)

��

(A,B)

((A,A) × (D,C)) × (A + C,B + D))
�×id

��������������� (A + D,B + D)

Tr
��

(A + D,A + C) × (A + C,B + D)

>>> �����������

In terms of string diagrams, we have

c
d =

c
d

For coalgebras

X ⊗ (A + C)
c �� T (X ⊗ (B + D))

Y ⊗ D
d �� T (Y ⊗ C)

we need to show that the following diagram commutes:

T ((X ⊗ (I ⊗ Y )) ⊗ B)
T (γ⊗id)

∼=
�� T (((I ⊗ Y ) ⊗ X) ⊗ B)

(X ⊗ (I ⊗ Y )) ⊗ A
T (γ⊗id)

∼= ��

Tr(c>>>(arr(idB )�d))
��

((I ⊗ Y ) ⊗ X) ⊗ A

Tr((arr(idA)�d)>>>c)
��
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The essence again lies in Lemma 6.6, but with quite a lot of bookkeeping this time:

(γ ⊗ id) • Tr
(
c >>> (arr(idB) � d)

)
6.3
= Tr

(
(γ ⊗ id) • (X | (arr(idB) � d)) • ((I ⊗ Y ) | c) • (γ ⊗ id)

)
• (γ ⊗ id)

= (α ⊗ id) • (α−1 ⊗ id) • Tr
(
((arr(idB) � d) | X) • (c | (I ⊗ Y ))

)
• (γ ⊗ id)

6.3
= (α ⊗ id) • Tr

(
(α−1 ⊗ id) • ((arr(idB) � d) | X) • (c | (I ⊗ Y )) • (α ⊗ id)

)
•

(α−1 ⊗ id) • (γ ⊗ id)
4.8
= (α ⊗ id) • Tr

(
(arr(idB) � (d | X)) • (α−1 ⊗ id) • (c | (I ⊗ Y )) • (α ⊗ id)

)
•

(α−1 ⊗ id) • (γ ⊗ id)
6.6
= (α ⊗ id) • Tr

(
(α−1 ⊗ id) • (c | (I ⊗ Y )) • (α ⊗ id) • (arr(idB) � (d | X))

)
•

(α−1 ⊗ id) • (γ ⊗ id)
4.8
= (α ⊗ id) • Tr

(
(α−1 ⊗ id) • (c | (I ⊗ Y )) • ((arr(idB) � d) | X)) • (α ⊗ id)

)
•

(α−1 ⊗ id) • (γ ⊗ id)
6.3
= (α ⊗ id) • (α−1 ⊗ id) • Tr

(
(c | (I ⊗ Y )) • ((arr(idB) � d) | X))

)
•

(γ ⊗ id)

= Tr
(
(arr(idB) � d) >>> c

)
• (γ ⊗ id).

Unit vanishing

The relevant component diagram is

(A + 0, B + 0)
Tr ��

〈arr(ρ−1
+ ),id,arr(ρ+)〉

��

(A,B)

(A,A + 0) × (A + 0, B + 0) × (B + 0, B)
>>>×id

�� (A,B + 0) × (B + 0, B)

>>>
��

where we have to bear in mind that the ρ+ : C + 0
∼=−→C refers to the monoidal

isomorphism with respect to the coproducts + on �.

Pictorially, the axiom asserts

c 00

A B

= c 00

A B

We will prove that there is an isomorphism of components:

T (((I ⊗ X) ⊗ I) ⊗ B)
T ((λ◦ρ)⊗id)

∼=
�� T (X ⊗ B)

((I ⊗ X) ⊗ I) ⊗ A

(arr(ρ−1
+ )>>>c)>>>arr(ρ+)

��

(λ◦ρ)⊗id

∼= �� X ⊗ A

Tr(c)
��
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The heart of the matter is:

Tr(c) = TrK�(dis−1 • c • dis) with dis : (X ⊗ A) + (X ⊗ 0)
∼=→X ⊗ (A + 0)

= ρ+ • dis−1 • c • dis • ρ−1
+ by vanishing for TrK�, since X ⊗ 0 is initial

= (id ⊗ ρ−1
+ ) • c • (id ⊗ ρ+) by Lemma 2.2 (1).

Hence we obtain the required isomorphism of components:

((λ ◦ ρ) ⊗ id) •
(
(arr(ρ−1

+ ) >>> c) >>> arr(ρ+)
)

4.2 (2)
= (λ ⊗ id) • (id ⊗ ρ+) • (arr(ρ−1

+ ) >>> c) • (ρ ⊗ id)

= (id ⊗ ρ+) • (λ ⊗ id) • (arr(ρ−1
+ ) >>> c) • (ρ ⊗ id)

4.2 (2)
= (id ⊗ ρ+) • c • (id ⊗ ρ−1

+ ) • (λ ⊗ id) • (ρ ⊗ id)

= Tr(c) • ((λ ◦ ρ) ⊗ id), as shown above.

Tensor vanishing

Again we have to distinguish carefully between the monoidal associativity isomorphisms

α+ and α for coproduct + and tensor ⊗, respectively. The component diagram is

((A + C) + D, (B + C) + D)
〈arr(α+),id,arr(α−1

+ )〉
��

Tr
��

(A + (C + D), (A + C) + D)×
((A + C) + D, (B + C) + D)×
((B + C) + D,B + (C + D))

(>>>×id)◦>>>

��

(A + C,B + C)

Tr
��

(A,B) (A + (C + D), B + (C + D))
Tr��

Pictorially, we have

c
C D

A

+

B

=

c

C

D A

B

Our aim is to prove, for a component

X ⊗ ((A + C) + D)
c−→ X ⊗ ((B + C) + D),

that we have an isomorphism of components:

T (((I ⊗ X) ⊗ I) ⊗ A)
T ((λ◦ρ)⊗id)

∼=
�� T (X ⊗ A)

((I ⊗ X) ⊗ I) ⊗ A
(λ◦ρ)⊗id

∼= ��

Tr((arr(α+)>>>c)>>>arr(α−1
+ ))

��

X ⊗ A

Tr(Tr(c))
��
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This is done as follows.

((λ ◦ ρ) ⊗ id) • Tr((arr(α+) >>> c) >>> arr(α−1
+ ))

6.3
=Tr

(
((λ ◦ ρ) ⊗ id) • (arr(α+) >>> c) >>> arr(α−1

+ ) • ((ρ−1 ◦ λ−1) ⊗ id)
)

• ((λ ◦ ρ) ⊗ id)
4.2 (2)
= Tr

(
(λ ⊗ id) • (id ⊗ α−1

+ ) • (arr(α+) >>> c) • (λ−1 ⊗ id)
)

• ((λ ◦ ρ) ⊗ id)

= Tr
(
(id ⊗ α−1

+ ) • (λ ⊗ id) • (arr(α+) >>> c) • (λ−1 ⊗ id)
)

• ((λ ◦ ρ) ⊗ id)
4.2 (2)
= Tr

(
(id ⊗ α−1

+ ) • c • (id ⊗ α+)
)

• ((λ ◦ ρ) ⊗ id)

= TrK�
(
dis−1 • (id ⊗ α−1

+ ) • c • (id ⊗ α+) • dis
)

• ((λ ◦ ρ) ⊗ id)
2.2 (3)
= TrK�

(
dis−1 • (id ⊗ α−1

+ ) • c • dis • (dis+id) • α+ • (id + dis−1)
)

• ((λ ◦ ρ) ⊗ id)

= TrK�
(
(id + dis−1) • dis−1 • (id ⊗ α−1

+ ) • c • dis • (dis+id) • α+

)
• ((λ ◦ ρ) ⊗ id) by dinaturality for TrK�

2.2 (3)
= TrK�

(
α−1

+ • (dis−1 +id) • dis • c • dis • (dis +id) • α+

)
• ((λ ◦ ρ) ⊗ id)

= TrK�
(
TrK�

(
(dis−1 +id) • dis • c • dis • (dis +id)

))
• ((λ ◦ ρ) ⊗ id)

by vanishing for TrK�

= TrK�
(
dis−1 • TrK�

(
dis • c • dis

)
• dis

)
• ((λ ◦ ρ) ⊗ id)

by naturality for TrK�

= Tr(Tr(c)) • ((λ ◦ ρ) ⊗ id).

Superposing

The relevant diagram for components is

(D,E) × (A + C,B + C)
� ��

id×Tr

��

(D + (A + C), E + (B + C))
〈arr(α−1

+ ),id,arr(α+)〉
��

(D,E) × (A,B)

�
��

((D + A) + C,D + (A + C))×
(D + (A + C), E + (B + C))×
(E + (B + C), (E + B) + C)

(>>>×id)◦>>>
��

(D + A,E + B) ((D + A) + C, (E + B) + C)
Tr

��

Pictorially, we have

c

d

= c

d
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For coalgebraic components

Y ⊗ E
d �� Y ⊗ D

X ⊗ (A + C)
c �� X ⊗ (B + C),

this involves an isomorphism of components:

T (((I ⊗ (Y ⊗ X)) ⊗ I) ⊗ (E + B))
T ((λ◦ρ)⊗id)

∼=
�� T ((Y ⊗ X) ⊗ (E + B))

((I ⊗ (Y ⊗ X)) ⊗ I) ⊗ (E + B)

Tr((arr(α−1
+ )>>>(d�c))>>>arr(α+))

��

(λ◦ρ)⊗id

∼= �� (Y ⊗ X) ⊗ (E + B)

d�Tr(c)
��

We then proceed along what should by now be familiar lines.

7. Traced monoidal category of resumptions

In this section we use the previous results for operators and equations on components

to prove that the category of T -resumptions is traced symmetric monoidal. This general

result holds for a large class of monads T with suitable assumptions, and thus generalises

the result in Abramsky et al. (2002) that focuses on the lift monad T = 1+(−). Although

we do not show it fully, the technical development is an instance of the theory, which

was developed in Hasuo et al. (2008) and Hasuo et al. (2009), on the microcosm principle

(Baez and Dolan 1998). The application of this general theory exploits a characterisation

of resumptions as elements of a final component.

Throughout Section 7, the base category � is fixed to be Set, the category of sets

and functions. It is a symmetric monoidal closed category with Cartesian product × as

tensor ⊗ and the singleton 1 as monoidal unit I , and is also equipped with distributive

coproducts +, 0. All the results in the previous sections are valid in this base category.

7.1. Resumptions

The notion of a resumption was introduced in Milner (1975) to help provide a denotational

semantics for interactive computing agents. A historical account is given in Abramsky

et al. (2002, Section 5.4.1), and our recap of it here is adapted for the current context.

First, we consider a component X × A
c→ X × B, a map in Set. It is a component (3)

where T = id is the trivial monad and ⊗ is chosen to be Cartesian product ×. It belongs

to the category Comp(id, A, B); with T = id this component does not exhibit any effect in

its execution. In the theory of automata, such a machine is called a Mealy machine; it can

also be thought of as a (simple version of a) transducer. The task that such a machine is

expected to perform is the transformation of (infinite) A-streams into B-streams, and the

transformation should be performed letter by letter.

A resumption is an extensional view of the behaviour of such a machine. Specifically,

the above machine c induces a resumption formalised as a stream function r : Aω → Bω

https://doi.org/10.1017/S0960129510000551 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000551


I. Hasuo and B. Jacobs 306

that is causal, meaning that the nth letter of the output stream only depends on the first

n letters of the input†.

We will now take a coalgebraic view of components and resumptions. A component

X × A
c→ X × B is the same thing as a map X → (X × B)A, and hence is a coalgebra for

the functor (− ×B)A. As noted in Abramsky et al. (2002), the ‘behaviours by coinduction’

paradigm in the theory of coalgebra (Jacobs and Rutten 1997; Rutten 2000) is also valid

in this setting. Namely, the set ZA,B of resumptions (that is, causal stream functions)

carries a canonical (− × B)A-coalgebra structure:

ZA,B

ζA,B

∼=
�� (ZA,B × B)A

(
r : Aω → Bω, causal

) � �� λa.
( (

λ
−→
a′ . tail(r(a ·

−→
a′ ))

)
, head(r(a · −→a ))

)
.

Here a · −→a is a letter a ∈ A followed by an arbitrary stream −→a ; the value of head(r(a · −→a ))

does not depend on −→a since r is causal. Moreover, it is a standard result that this

coalgebra ζA,B is a final one. Given an arbitrary component c : X × A → X × B (that is,

a coalgebra c : X → (X × B)A), finality of ζA,B induces the behaviour map

(X × B)A �� (ZA,B × B)A

X

c
��

beh(c)
�� ZA,B

∼=final
��

which carries a state x ∈ X to the behaviour beh(c)(x) of c, in the case of execution with

x as the initial state, represented by a resumption. To summarise, the set of resumptions

from A to B carries a final (− × B)A coalgebra.

We have restricted ourselves to the trivial monad T = id for the purpose of illustration

of resumptions. However, this choice of a monad T does not satisfy the assumption

in Section 6 for K�(T ) to be traced: an iteration of a total function can fail to be

total because of an infinite loop. For monads T in general, especially those satisfying

the assumption in Section 6, we generalise the above characterisation of resumptions as

follows – this was also done in Abramsky et al. (2002).

Definition 7.1 (T -resumption). Let T be a monad on Set such that for any sets A and B,

a final (T (− × B))A-coalgebra

ζTA,B : ZT
A,B

∼=−→
(
T (ZT

A,B × B)
)A

in Set

exists. A T -resumption from A to B is an element of the carrier ZT
A,B .

Morphisms of T (− ×B)A-coalgebras are precisely morphisms of components: there is an

isomorphism of categories

Coalg(T (− × B)A) ∼= Comp(T ,A, B).

† This is how they are formalised in Rutten (2006). Equivalent formulations are as string functions A∗ → B∗

that are length preserving and prefix closed (Pattinson 2003), and as functions A+ → B where A+ is the set

of (finite-length) strings of length � 1.
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Hence T -resumptions form the state space of a final component.

Assumption 7.2. For the rest of this section we assume that a monad T on Set satisfies

both the assumption in Section 6 (namely, Jacobs (2010, Requirements 4.7)) as well as

the one in Definition 7.1. The former consists of K�(T ) being Dcpo⊥-enriched, T being

‘semi-additive’, and so on. This ensures that we have a trace operator TrK�, which enables

us to capture resumptions by a final coalgebra.

Such monads include the lift monad 1+(−), the κ-bounded powerset monad P<κ with an

uncountable weakly inaccessible cardinal κ and the (discrete) subdistribution monad D.

With regard to the monad P<κ, the cardinal κ must be larger than ℵ0 so that an increasing

ω-sequence in the set P<κ(X) has its supremum inside P<κ(X) – this is required for the

trace assumption in Section 6. At the same time, κ is assumed to be weakly inaccessible so

that Barr’s final coalgebra theorem (Barr 1993) ensures the existence of final coalgebras.

Such an explicit size restriction is not needed for the subdistribution monad D, since the

condition
∑

x d(x) � 1 implies that the support {x ∈ X | d(x) �= 0} is at most countable –

see, for example, Sokolova (2005, Proposition 2.1.2).

It is generally hard to describe what a T -resumption looks like concretely. It is a tree,

much like a synchronisation tree (Milner 1980), but its depth and branching degree are

very often larger than ℵ0. A tractable description is possible for the lift monad: much like

for the identity monad, it is represented by a function r : Aω → B∗ + Bω with a suitably

generalised causality requirement.

7.2. The microcosm principle

One can form the category of T -resumptions by arranging T -resumptions as morphisms

in the category.

Definition 7.3 (The category T -Res). For a monad T satisfying Assumption 7.2, we define

the category of T -resumptions, denoted by T -Res, by the following data:

— An object A of T -Res is a set A ∈ Set.

— An arrow r : A → B in T -Res is a T -resumption from A to B (cf. Definition 7.1). So

we have HomT -Res(A,B) = ZT
A,B .

Its actual structure as a category (the composition and identity) will be described shortly.

The main point of Abramsky et al. (2002, Section 5.4) is that the category of resumptions

(1 + (−))-Res for the lift monad is symmetric traced monoidal, and that it gives rise to

a compact closed category of (stateful) games (Abramsky and Jagadeesan 1994) after

applying the Int-construction (Joyal et al. 1996). Its generalisation to a wider class of

monads T (other than T = 1 + (−)) is one of our main technical contributions.

Theorem 7.4. For a monad T satisfying Assumption 7.2, the category T -Res of T -

resumptions is symmetric traced monoidal.

This result, in fact, is an immediate corollary of what we have already observed: the

traced monoidal structure of T -Res follows from the composition and trace operators for

components introduced in Sections 4 and 6.
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To illustrate the situation, consider arranging components, instead of resumptions, as

morphisms from A to B. Between such components c and d with the same input/output

types, we possibly have a morphism of components, see (4), and this ‘morphism’ f can be

drawn between components, as follows:

A

c

��

d

��
�� ��
�� f B

This motivates a 2-categorical approach to components. The 2-category we have in mind

has sets as 0-cells, components as 1-cells and morphisms of components as 2-cells. It

would be natural for us to introduce (horizontal) composition of 1-cells as the sequential

composition >>> of components (Section 4) and the identity 1-cell A → A as the one-state

component arr(idA) from (5).

However, Lemma 4.2 (2)–(3) indicates that such horizontal composition of 1-cells

satisfies the unit law and associativity only up-to canonical isomorphisms. This means the

resulting structure is a bicategory and not a 2-category – see, for example, Borceux (1994).

This bicategory is much like the one in the bicategorical approach to processes (Katis

et al. 1997), and we will denote it by Comp(T ). This extends our previous notation since

its hom-category from A to B is given by the category Comp(T ,A, B) of components.

What we showed in Section 6 is, essentially, that the bicategory Comp(T ) is equipped

with traced monoidal structure†. Its underlying monoidal structure is given by additive

parallel composition � (Section 4.2); in particular, it is a binary coproduct + on objects.

The way we look at the category T -Res of resumptions is as a ‘thin slice’ of the

bicategory Comp(T ) of components. The two have the same family of objects, the

former’s homset T -Res(A,B) resides in the latter’s Comp(T ,A, B) as (the carrier of) a

1-cell and T -Res(A,B) is still ‘behaviourally universal’ through its finality.

We can then derive the structure of T -Res as a traced monoidal category from

the corresponding ‘outer’ structure of Comp(T ) – this follows from the general theory

previously developed in Hasuo et al. (2008) and Hasuo et al. (2009). The general theory

identifies the situation as an instance of the microcosm principle (Baez and Dolan 1998).

The latter refers to a situation where ‘an algebra resides in another algebra, both for the

† An axiomatisation of the notion of ‘traced monoidal bicategory’ would involve delicate coherence conditions,

but we do not aim for such a general axiomatisation as we will focus on one specific instance.
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same algebraic specification’, a prototypical example of which is a monoid in a monoidal

category (Mac Lane 1998). As a result, the homsets of T -Res form a traced monoidal

category, residing in the hom-categories of Comp(T ) that form a ‘traced monoidal

bicategory’ – see Hasuo et al. (2009) for details of the generic situation. Rather than fully

laying out the general theory, however, we shall now describe a concrete instantiation

adapted to the current setting.

7.3. Resumptions form a category

Notation 7.5. The functor
(
T (− × B)

)A
, for which a coalgebra is a component with

A-input and B-output, is denoted by FA,B . The monad T is fixed throughout the rest of

this discussion, so it will be suppressed, and we will write ZA,B rather than ZT
A,B for the

homset of T -resumptions.

We will first derive the sequential composition operator ◦T -Res that acts on resumptions,

which is obtained from the way we compose arrows in T -Res. The following coinduction

diagram in Set defines the operator:

FA,C(ZA,B × ZB,C) �� FA,C(ZA,C)

ZA,B × ZB,C

ζA,B >>> ζB,C
��

◦T -Res
A,B,C

�� ZA,C

ζA,Cfinal
��

(22)

Recall that ζA,B is a final FA,B-coalgebra (Definition 7.1). The sequential composition of

ζB,C after ζA,B yields the component shown on the left, which is an FA,C-coalgebra with a

state space ZA,B × ZB,C . It then induces a unique map into the final FA,C-coalgebra, as in

the above diagram. Thus, we have obtained a function

◦T -Res
A,B,C : ZA,B × ZB,C −→ ZC,A,

that is,

HomT -Res(A,B) × HomT -Res(B,C) −→ HomT -Res(A,C).

Similarly, the identity morphism idT -Res
A in T -Res is derived by coinduction from the

one-state component arr(idA):

FA,A(1) �� FA,A(ZA,A)

1

arr(idA)
��

idT -Res
A

�� ZA,A

ζA,Afinal
��

(23)

We will now prove the associativity of ◦T -Res. The emphasis here is on the fact that,

through coinduction, the goal is essentially reduced to associativity (Lemma 4.2 (3)) of

>>>, which is the corresponding ‘outer’ operator.

Specifically, by diagram (22), the map

◦T -Res
A,B,C : ZA,B × ZB,C −→ ZC,A
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is a component morphism from ζA,B >>> ζB,C to ζA,C . Hence, by the functoriality of >>>

(Lemma 4.2 (4)), we obtain a component morphism

◦T -Res
A,B,C ×idZC,D

: (ζA,B >>> ζB,C) >>> ζC,D −→ ζA,C >>> ζC,D.

This means that the left-hand square in the following diagram commutes, and the right-

hand square also commutes since it is just diagram (22) defining ◦T -Res
A,C,D :

FA,D((ZA,B × ZB,C) × ZC,D) �� FA,D(ZA,C × ZC,D) �� FA,D(ZA,D)

(ZA,B × ZB,C) × ZC,D

(ζA,B >>> ζB,C) >>> ζC,D

��

◦T -Res
A,B,C ×ZC,D

�� ZA,C × ZC,D
◦T -Res
A,C,D

��
ζA,C >>> ζC,D

��

ZA,D

ζA,Dfinal
��

The next diagram in Set commutes for the same reasons – the top square commutes by

associativity of >>> (Lemma 4.2 (3)):

FA,D((ZA,B × ZB,C) × ZC,D)

��

FA,D(ZA,B × (ZB,C × ZC,D))

��

FA,D(ZA,B × ZB,D)

��
�
�
�

FA,D(ZA,D)

(ZA,B × ZB,C) × ZC,D

α−1 ∼=
��

(ζA,B >>> ζB,C) >>> ζC,D
��

ZA,B × (ZB,C × ZC,D)
ζA,B >>> (ζB,C >>> ζC,D)

��

ZA,B× ◦T -Res
B,C,D

��

ZA,B × ZB,D

◦T -Res
A,B,D

��
�
�
�

ζA,B >>> ζB,D
��

ZA,D
ζA,D

final ��

(in this diagram, unlike our convention elsewhere, and purely for typesetting convenience,

the coalgebras X → FX are written horizontally instead of vertically).

We can now conclude that the following diagram commutes, since the previous two

diagrams show that the two composites are both coalgebra morphisms from (ζA,B >>>

ζB,C) >>> ζC,D to a final coalgebra ζA,D:

(ZA,B × ZB,C) × ZC,D

◦T -Res
A,B,C ×ZC,D

��

α−1
��

ZA,C × ZC,D

◦T -Res
A,C,D��

ZA,B × (ZB,C × ZC,D)
ZA,B×◦T -Res

B,C,D

�� ZA,B × ZB,D
◦T -Res
A,B,D

�� ZA,D

This gives the associativity of ◦T -Res.

The left- and right-unit laws for T -Res amount to the following diagram:

ZA,B

∼= ��

∼=
�� ��������������������������������������

�������������������������������������� 1 × ZA,B

idT -Res
A ×ZA,B

�� ZA,A × ZA,B

◦T -Res
A,A,B��

ZA,B × 1
ZA,B×idT -Res

B

�� ZA,B × ZB,B
◦T -Res
A,B,B

�� ZA,B

This diagram commutes, essentially, because of the unit laws (Lemma 4.2 (2)) for the

outer operators >>> and arr(id), much like in the case for associativity.
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The following proposition summarises what we have achieved so far.

Proposition 7.6. The data T -Res in Definition 7.3 do indeed form a category, with

composition of arrows given by ◦T -Res in (22) and identity arrows by idT -Res in (23).

In fact, this proposition is just a special case of Krstić et al. (2001, Theorem 1), which is

more general because it works for an axiomatically introduced class of functors {FA,B}A,B ,

which corresponds roughly to the notion of a lax �-functor in Hasuo et al. (2008) and

Hasuo et al. (2009), instead of our concrete description

FA,B =
(
T (B × −)

)A
(see Notation 7.5). However, we will now go beyond Krstić et al. (2001) by introducing a

symmetric monoidal structure on T -Res and a trace operator on top of it.

7.4. Resumptions carry symmetric monoidal structure

Endowing the category T -Res with a traced monoidal structure follows along pretty much

the same lines – we will describe the structure in some detail in the following.

The monoidal structure is given by additive parallel composition �T -Res of resumptions,

which is derived from � on components (Section 4.2), the corresponding outer structure.

It acts on objects as a sum of sets:

A �T -Res B := A + B. (24)

On arrows, its action

�T -Res
A,C,B,D : ZA,B × ZC,D −→ ZA+C,B+D, that is

HomT -Res(A,B) × HomT -Res(C,D) −→ HomT -Res(A + C,B + D)

is induced through the following diagram, which is similar to (22):

FA+C,B+D(ZA,B × ZC,D) �� FA+C,B+D(ZA+C,B+D)

ZA,B × ZC,D

ζA,B � ζC,D

��

�T -Res
A,C,B,D

�� ZA+C,B+D

ζA+C,B+Dfinal
��

(25)

Lemma 7.7. The mapping �T -Res yields a functor �T -Res : T -Res × T -Res → T -Res.

Proof. We will first prove the preservation of identities. We have the following suc-

cessive morphisms of coalgebraic components, where coalgebras X → FX are written
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horizontally:

1
arr(idA+B )

��

∼=
��

FA+B,A+B(1)

∼=
��

1 × 1
arr(idA)�arr(idB )

��

idT -Res
A ×idT -Res

B
��

FA+B,A+B(1 × 1)

��

ZA,A × ZB,B

ζA,A�ζB,B
��

�T -Res
A,B,A,B

��

FA+B,A+B(ZA,A × ZB,B)

��

ZA+B,A+B
final

ζA+B,A+B

�� FA+B,A+B(ZA+B,A+B)

The first square commutes because of the compatibility of � and arr (Lemma 4.9 (1)).

The second square commutes because of the definition of idT -Res (23) and functoriality of

� (see the discussion following Definition 4.7). And the third square is the definition of

�T -Res (25). This proves that the following diagram commutes, since the two composites

are both morphisms from the component arr(idA+B) to the final ζA+B,A+B:

1
∼= ��

idT -Res
A+B ����������������������������������� 1 × 1

idT -Res
A ×idT -Res

B �� ZA,A × ZB,B

�T -Res
A,B,A,B��

ZA+B,A+B

Hence �T -Res : T -Res × T -Res → T -Res preserves identities.

We turn now to the preservation of composition, and proceed using similar arguments.

We have the following two (parallel) series of morphisms of coalgebraic components,

which are all arrows in the category Comp(T ,A + B,A′′ + B′′):

(ζA,A′ >>> ζA′ ,A′′) � (ζB,B′ >>> ζB′ ,B′′)
∼= �� (ζA,A′ � ζB,B′) >>> (ζA′ ,A′′ � ζB′ ,B′′)

(�T -Res
A,B,A′ ,B′ )×(�T -Res

A′ ,B′ ,A′′ ,B′′ )
�� ζA+B,A′+B′ >>> ζA′+B′ ,A′′+B′′

◦T -Res
A+B,A′+B′ ,A′′+B′′

�� ζA+B,A′′+B′′ ;

and

(ζA,A′ >>> ζA′ ,A′′) � (ζB,B′ >>> ζB′ ,B′′)
(◦T -Res

A,A′ ,A′′ )×(◦T -Res
B,B′ ,B′′ )

�� ζA,A′′ � ζB,B′′
�T -Res

A,B,A′′ ,B′′
�� ζA+B,A′′+B′′ .

The first (isomorphism) arrow follows from Lemma 4.9 (2). The second is a morphism of

components from the definition of �T -Res and the functoriality of >>> (Lemma 4.2 (4)).

And the third is just the definition of ◦T -Res. The remaining two are component morphisms

for similar reasons. Since the coalgebraic component ζA+B,A′′+B′′ is a final coalgebra, we

conclude that the two composites above are identical. In particular, by taking their
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underlying functions, we have the commuting diagram

(ZA,A′ × ZA′ ,A′′) × (ZB,B′ × ZB′ ,B′′)
∼= ��

◦T -Res
A,A′ ,A′′ ×◦T -Res

B,B′ ,B′′
��

(ZA,A′ × ZB,B′) × (ZA′ ,A′′ × ZB′ ,B′′)

�T -Res
A,B,A′ ,B′ ×�T -Res

A′ ,B′ ,A′′ ,B′′
��

ZA,A′′ × ZB,B′′

�T -Res
A,B,A′′ ,B′′ �����������

ZA+B,A′+B′ × ZA′+B′ ,A′′+B′′

◦T -Res
A+B,A′+B′ ,A′′+B′′�����������

ZA+B,A′′+B′′

in Set. Hence

�T -Res : T -Res × T -Res → T -Res

preserves composition of arrows.

The monoidal unit for (T -Res,�T -Res) is the empty set 0. We still need to describe

associativity, unit and symmetry isomorphisms – they appear in the proof of the following

result.

Proposition 7.8. (T -Res,�T -Res, 0) is a symmetric monoidal category.

Proof. We shall first describe the definition of the structural isomorphisms. Then we

prove that:

(1) they are indeed isomorphisms;

(2) they are natural; and

(3) they are coherent as in Mac Lane (1998).

An associativity isomorphism

αT -Res : A + (B + C)
∼=→ (A + B) + C

in T -Res (recall that �T -Res is + on objects, see (24)) is induced by the diagram

FA+(B+C),(A+B)+C(1) �� FA+(B+C),(A+B)+C(ZA+(B+C),(A+B)+C)

1

arr(α+)
��

αT -Res
A,B,C

�� ZA+(B+C),(A+B)+C

ζA+(B+C),(A+B)+Cfinal
��

Here, α+ on the left, in arr(α+), is the isomorphism

A + (B + C)
∼=→ (A + B) + C

in Set. In exactly the same way, we obtain unit isomorphisms λT -Res and ρT -Res and

symmetry isomorphisms γT -Res from the corresponding isomorphisms for + in Set.

It is easy to see that all these are indeed isomorphisms – we will just write down the

proof for αT -Res. Let αT -Res
A,B,C be the following resumption induced by the isomorphism

α−1
+ : (A + B) + C

∼=−→ A + (B + C)
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in Set:

F(A+B)+C,A+(B+C)(1) �� F(A+B)+C,A+(B+C)(Z(A+B)+C,A+(B+C))

1

arr(α−1
+ )

��

αT -Res
A,B,C

�� Z(A+B)+C,A+(B+C)

ζ(A+B)+C,A+(B+C)final
��

We claim that this αT -Res
A,B,C is the inverse of αT -Res

A,B,C , that is,

1 × 1

αT -Res
A,B,C ×αT -Res

A,B,C
��

1
∼= ��

∼=��

idT -Res
A+(B+C)

��
idT -Res

(A+B)+C
��

1 × 1

αT -Res
A,B,C ×αT -Res

A,B,C

��

Z(A+B)+C,A+(B+C) × ZA+(B+C),(A+B)+C

◦T -Res

��

ZA+(B+C),(A+B)+C × Z(A+B)+C,A+(B+C)

◦T -Res

��

Z(A+B)+C,(A+B)+C ZA+(B+C),A+(B+C)

We will prove commutativity of the triangle on the right; the proof for the other is similar.

As before, we prove that the following arrows are all component morphisms leading to a

final coalgebra ζA+(B+C),A+(B+C):

(arr(idA+(B+C)))
∼= �� arr((α+)A,B,C) >>> arr((α−1

+ )A,B,C)
αT -Res
A,B,C ×αT -Res

A,B,C
�� ζA+(B+C),(A+B)+C >>> ζ(A+B)+C,A+(B+C)

◦T -Res
A+(B+C),(A+B)+C,A+(B+C)

�� ζA+(B+C),A+(B+C);

and

(arr(idA+(B+C)))
idT -Res

A+(B+C)
�� ζA+(B+C),A+(B+C).

The first (isomorphism) arrow follows from Lemma 4.2 (1). The second is from the

definition of αT -Res, αT -Res and the functoriality of >>> (Lemma 4.2 (4)). The third is the

definition of ◦T -Res, and the last is the definition of idT -Res. Thus we have proved that

αT -Res
A,B,C is indeed an isomorphism.

We turn now to the naturality of αT -Res, λT -Res, ρT -Res and γT -Res, and again we will only

present the proof for αT -Res. This means we need to show the commutativity of

A + (B + C)
αT -Res
A,B,C

��

r�T -Res(s�T -Rest)
��

(A + B) + C

(r�T -Ress)�T -Rest
��

A′ + (B′ + C ′)
αT -Res
A′ ,B′ ,C′

�� (A′ + B′) + C ′
in T -Res,
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for any resumptions r, s and t of suitable types, which amounts to the following diagram

in Set:

1 × ((ZA,A′ × ZB,B′) × ZC,C ′)
∼= ��

αT -Res
A,B,C ×

(
�T -Res◦(�T -Res×ZC,C′ )

)
��

(ZA,A′ × (ZB,B′ × ZC,C ′)) × 1(
�T -Res◦(ZA,A′ ×�T -Res)

)
×αT -Res

A′ ,B′ ,C′
��

ZA+(B+C),(A+B)+C

×Z(A+B)+C,(A′+B′)+C ′

◦T -Res

������������

ZA+(B+C),A′+(B′+C ′)

×ZA′+(B′+C ′),(A′+B′)+C ′

◦T -Res

������������

ZA+(B+C),(A′+B′)+C ′

Once again, this is achieved by showing that the above two composites are parallel

coalgebra morphisms leading to a final coalgebra. Namely,

arr((α+)A,B,C) >>>
(
(ζA,A′ � ζB,B′) � ζC,C ′

)
∼= ��

(
ζA,A′ � (ζB,B′ � ζC,C ′ )

)
>>> arr((α+)A′ ,B′ ,C ′ )(

�T -Res◦(ZA,A′ ×�T -Res)
)

×αT -Res
A′ ,B′ ,C′

�� ζA+(B+C),A′+(B′+C ′) >>> ζA′+(B′+C ′),(A′+B′)+C ′
◦T -Res
A+(B+C),(A′+B′)+C′ ,A′+(B′+C′)

�� ζA+(B+C),(A′+B′)+C ′ ;

and

arr((α+)A,B,C) >>>
(
(ζA,A′ � ζB,B′) � ζC,C ′

)
αT -Res
A,B,C ×

(
�T -Res◦(�T -Res×ZC,C′ )

)
�� ζA+(B+C),(A+B)+C >>> ζ(A+B)+C,(A′+B′)+C ′

◦T -Res
A+(B+C),(A+B)+C,(A′+B′)+C′

�� ζA+(B+C),(A′+B′)+C ′ .

The first arrow is an isomorphism of components from Lemma 4.9 (3); the others are

similar to those encountered earlier in the section. This concludes the proof of the

naturality of αT -Res.

Finally, we need to check the standard coherence conditions for αT -Res, λT -Res, ρT -Res and

γT -Res in a symmetric monoidal category, as described in Mac Lane (1998), for example.

We will just prove

A + (0 + B)
αT -Res
A,0,B

∼=
��

idT -Res
A �T -ResλT -Res

B
��							 (A + 0) + B

ρT -Res
A �T -ResidT -Res

B
���������

A + B

(26)
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in T -Res; the other cases are similar. The above diagram amounts to the following

diagram in Set:

1
∼= ��

∼=
��

1 × 1

idT -Res
A ×λT -Res

B��

1 × (1 × 1)

αT -Res
A,0,B ×(ρT -Res

A ×idT -Res
B )

��

ZA,A × Z0+B,B

�T -Res
A,0+B,A,B

��

ZA+(0+B),(A+0)+B × (ZA+0,A × ZB,B)

ZA+(0+B),(A+0)+B×�T -Res
A+0,B,A,B

��

ZA+(0+B),(A+0)+B × Z(A+0)+B,A+B
◦T -Res

�� ZA+(0+B),A+B

Once again, this diagram commutes because the two composites are (parallel) coalgebra

morphisms from the coalgebra

arr
[
A + (0 + B)

A+λ+−→ A + B
] (∗)

= arr
[
A + (0 + B)

α+−→ (A + 0) + B
ρ++B
−→ A + B

]
: 1 −→ FA+(0+B),A+B(1)

to the final ζA+(0+B),A+B . The equality (∗) is due to the same coherence condition as (26) for

the monoidal category (Set,+, 0); the other details can be easily filled in. This concludes

the proof.

7.5. Trace structure for resumptions

A trace/feedback operator TrT -Res for resumptions is induced by the ‘outer’ operator Tr

for components; this is in exactly the same way as we derived, for example, the tensor

�T -Res from the outer �. Nevertheless, we will spell out how it is done explicitly.

For arbitrary sets A,B, C ∈ T -Res, the trace operator

TrT -Res
A,B,C : ZA+C,B+C −→ ZA,B,

that is,

HomT -Res(A + C,B + C) −→ HomT -Res(A,B),

is introduced by the following coinduction diagram:

FA,B(ZA+C,B+C) �� FA,B(ZA,B)

ZA+C,B+C

Tr(ζA+C,B+C )
��

TrT -Res
A,B,C

�� ZA,B

ζA,Bfinal
��

Here the operator Tr on the left, acting on ζA+C,B+C , is the trace operator for components

from Definition 6.1.

It is again straightforward to prove that TrT -Res satisfies the trace axioms: each axiom

is essentially reduced to the corresponding axiom on Tr for components. We will prove

the post-composition/tightening axiom (21) as an example. This amounts to showing that

https://doi.org/10.1017/S0960129510000551 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000551


Traces for coalgebraic components 317

the following diagram is commutative:

ZA+C,B+C × ZB,D

TrT -Res
A,B,C ×ZB,D

��

∼=
��

ZA,B × ZB,D

◦T -Res
A,B,D

�� ZA,D

ZA+C,B+C × (ZB,D × 1)

ZA+C,B+C×(ZB,D×idT -Res
C )

��

ZA+C,B+C × (ZB,D × ZC,C)

ZA+C,B+C×�T -Res
B,C,D,C

��

ZA+C,B+C × ZB+C,D+C
◦T -Res
A+C,B+C,D+C

�� ZA+C,D+C

TrT -Res
A,D,C

��

(27)

The composite on the top row is a coalgebra morphism

Tr(ζA+C,B+C) >>> ζB,D
TrT -Res

A,B,C ×ZB,D
�� ζA,B >>> ζB,D

◦T -Res
A,B,D

�� ζA,D;

where the first arrow is a coalgebra morphism from the definition of TrT -Res and the

functoriality of >>> (Lemma 4.2 (4)) and the second follows from the definition of ◦T -Res.

The other composite in (27) is a morphism between the same coalgebras:

Tr(ζA+C,B+C) >>> ζB,D

(∗)

∼=
�� Tr

[
ζA+C,B+C >>>

(
ζB,D � arr(idC)

) ]
ZA+C,B+C×(ZB,D×idT -Res

C )
�� Tr

[
ζA+C,B+C >>> (ζB,D � ζC,C )

]
ZA+C,B+C×�T -Res

B,C,D,C
�� Tr(ζA+C,B+C >>> ζB+C,D+C)

◦T -Res
A+C,B+C,D+C

�� Tr(ζA+C,D+C)

TrT -Res
A,D,C

�� ζA,D.

Here the isomorphism (∗) is due to the post-composition naturality for Tr – see Section 6.3.

The last morphism is the definition of TrT -Res. The other arrows are also component

morphisms; here the functoriality of Tr (Lemma 6.2) is crucial. Recall that the functor

Tr : Comp(T ,A + C,B + C) → Comp(T ,A, B)

acts on arrows as the identity. We conclude, by the finality of ζA,D , that diagram (27)

commutes.

The other axioms can be verified in the same manner to complete the proof of

Theorem 7.4.

8. Concluding remarks

This paper is part of an ongoing line of research into the mathematical (coalgebraic)

foundations of components as basic building blocks in computing (see Szyperski (1998)
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for a wider perspective). Obviously, connections to existing component languages like

Reo (Arbab 2004; Baier et al. 2006) need to be explored. There are also several directions

for further, more mathematically oriented, research on coalgebraic components. We will

briefly mention two such avenues, involving duality and dynamic logic.

For specific monads, such as powerset on the category of sets or the identity on the

category of Hilbert spaces, the associated Kleisli category carries a dagger operator †
that commutes with the tensor and biproduct. By means of this dagger, we can define a

duality operator

Comp(T ,A, B)op (−)�
�� Comp(T ,B, A)(

X ⊗ A
c→ X ⊗ B

)
� ��

(
X ⊗ B

c†

→ X ⊗ A
)

which satisfies, for instance, (c ‖ d)� = (c� ‖ d�). Such a duality introduces a form of

reversible computation that may be useful in capturing aspects of quantum computing

coalgebraically – see also Abramsky (2009).

Another interesting topic for further research is how to extend modal logic for

coalgebras to a dynamic logic (see, for example, Goldblatt (1992)) for coalgebraic

components. In such a logic, we expect basic compositionality properties (see also

Klin (2009)), so that, for instance, �c>>>d,�c�d, and so on, can be expressed in terms

of �c and �d.
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