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SUMMARY

The results of recent trials for winter wheat (Triticum aestivum L.) have influenced farming practice in
the UK by encouraging the use of lower seed rates. Spink et al. (2000) have demonstrated that,
particularly if sown early, wheat can compensate for reduced plant populations by increased tiller
production.
Results from seed-rate trials are usually analysed separately for each environment or each combi-

nation of environment and variety, and not combined into a single model. They therefore address the
question of what the best seed rate would have been for each combination, rather than answer themore
relevant question of what rate to choose for a future site. The current paper presents a Bayesian
method for combining data from seed-rate trials and choosing optimum seed rates: this method can
incorporate information on seed and treatment costs, crop value and covariates. More importantly,
for use as an advisory tool, it allows incorporation of expert knowledge of the crop and of the target
site.
The method is illustrated using two series of trials : the first, carried out at two sites in 1997–99,

investigated the effects of sowing date and variety in addition to seed rate. The second was conducted
at seven sites in 2001–03 and included latitude and certain management factors. Recommended seed
rates based on these series vary substantially with sowing date and latitude.
Two non-linear dose-response functions are fitted to the data, the widely used exponential-plus-

linear function and the inverse-quadratic function (Nelder 1966). The inverse-quadratic function is
found to provide a better fit to the data than the exponential-plus-linear and the latter function gives
estimated optimum rates which are as much as 40% lower. The economic consequences of using one
function rather than the other are not great in these circumstances.
The method is found to be robust to changes in the prior distribution and to other changes in the

model used for dependence of yield on sowing date, latitude, variety and management factors.

INTRODUCTION

The use of lower seed rates for winter wheat in the
UK has been encouraged by the results of trials re-
ported by Spink et al. (2000), which were carried out
at two sites in the English Midlands in harvest years
1997–99. These trials used four varieties, a wide range
of seed rates and sowing dates from September to
December: the results suggested that plant popu-
lations could be reduced, thus lowering costs and

reducing the risk of lodging. The present paper
examines this series and a subsequent series of trials,
conducted using a single variety at the same sites and
five others between the south coast of England and
northern Scotland in harvest years 2001–03. The in-
tention was to reach more general conclusions about
how the dependence of yield on seed rate is related
to latitude, and to agronomic factors such as slug
control and position in the crop rotation.
In order to consider the evidence on optimum seed

rates, and their dependence on treatments, varieties
and covariates such as sowing date and latitude, a
Bayesian method has been developed for combining
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data from seed-rate trials and choosing optimum
rates. The data available are first described and several
issues relating to the analysis of seed-rate data and the
resulting recommendations on rates are identified
and investigated. Analyses of the two sets of trials
are presented, assuming exponential-plus-linear
and inverse-quadratic dose-response functions. In
addition to relating crop yields to seed rates, these
analyses examine the effects of sowing date and var-
iety (in the 1997–99 data) and latitude and treatments
(in the 2001–03 series). They allow optimum seed
rates to be determined for combinations of date and
variety or of latitude and treatment under assump-
tions about the costs of the seed and of treatments
and the value of the grain. The results can also be
compared using the two dose-response functions, and
it can be shown that the fit of the exponential-plus-
linear function is poor for both trial series. In ad-
dition, the effects of changing the prior distribution
for the unknown model parameters and of various
extensions of the model are examined.

THE DATA AVAILABLE

The data relate to two phases of work, as follows.

Phase I: Based at Rosemaund (Herefordshire, UK)
and Sutton Bonington (Leicestershire, UK) in harvest
years 1997–99. Varieties Cadenza, Haven, Soissons
and Spark were used, with seed rates of 20, 40, 80,
160, 320 and 640 seeds/m2. Sowing dates ranged from
September to December: see Spink et al. (2000) for
further details.
Phase II : Based at seven sites between the south

coast of England and North East Scotland in
2001–03. A single variety, Claire, was used with seed
rates of 40, 80, 160, 320 and 640 seeds/m2. In addition
to a wide range of latitudes, it included treatments
related to rotational position, slug control, nitrogen
timing and PGR use. Each treatment had a standard
level (the level used in Phase I) and two others. Except
at High Mowthorpe in 2003, one of these treatments

was investigated each year at each site. The sowing
dates chosen were intended to be typical of winter
wheat sowings for each site.

Table 1 gives information on the sites (ordered from
north to south). They include one that was replaced
by another with similar latitude after the first year of
Phase II. Table 2 lists the treatments used in this
phase, and shows the costs assumed for them relative
to the standard level.
The investigation of rotational position in Phase II

contrasted first and third wheat at High Mowthorpe
and Rosemaund, but first and second at Mamhead:
the present analysis ignores the distinction between
second and third wheats. A split-plot design was used
with agronomic treatment applied to main plots and
seed rate to subplots, replicated four times.
Rather than including year and site effects and

their interactions in the models, the environments
are related by including dependence on sowing date

Table 1. Trial sites

Site
Latitude
(degrees)

Harvest
years

Sowing dates
(from 1 Jan)

Treatments varied in Phase II

2001 2002 2003

Aberdeen 57.34 2001–03 266–280 PGR N timing N timing
Edinburgh 55.87 2001–03 280–290 Slug treatments N timing Slug treatments
High Mowthorpe 54.11 2001–03 270–319 PGR Rotation –
Sutton Bonington 52.83 1997–99 276–285 – – –

2001–03 263–293 N timing N timing N timing
Rosemaund 52.13 1997–99 266–350 – – –

2001–03 266–278 Slug treatments PGR Rotation
Bridgets 51.10 2001 279 N timing – –
Mamhead 50.62 2002–03 276–282 – PGR Rotation

Table 2. Treatment factors included in Phase II: the
standard level is underlined, and any differences in cost
for others are given in parentheses (per ha or per tonne

of seed )

Treatment Level 1 Level 2 Level 3

Rotation First Second/third Second/third
+Latitude1

(£150/t)
Slug
treatment

None
(x£13/ha)

Post drilling Post drilling
+Sibutol Secur
(£80/t)

Nitrogen
timing

Early Normal Late

PGR use None
(x£9.5/ha)

At tillering At stem extension

1 In this table ‘Latitude’ refers to the proprietary name of a
fungicide.
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(in Phase I) and on the latitude of the trial site
(in Phase II).
Mean yields have been analysed over blocks for

each variety rather than individual plot values. Plot
values were missing for 0.7% and 2.8% of plots in
Phases I and II respectively : for these, variety means
were calculated using the ANOVA Procedure in
GenStat (Genstat 2002). There were 288 means in
Phase I and 260 in Phase II, 90 of them relating to
the standard combination of treatments for this
trial series. These means are referred to in the present
paper as ‘yields’.
The assumed value of grain was £80/tonne, the cost

of seed £300/tonne and the average mass of a seed
45 mg.

ISSUES ARISING IN THE ANALYSIS
OF SEED-RATE DATA

Separate or combined analyses?

The usual method for combining information from
seed-rate (or fertilizer) experiments over several
environments is to fit a parametric dose-yield func-
tion, such as the exponential-plus-linear function, for
each environment, compare the estimates for the
various environments and combine them in an infor-
mal way. Fisher (1935) and Yates & Cochran (1938)
recognized the need to combine information on var-
iety yields over several environments : methods and
models for this purpose are reviewed by Patterson
(1997) and Smith et al. (2005). It is argued below that
there are also advantages in a combined analysis of
seed-rate data over environments. Combining a large
number of non-linear regression analyses with com-
mon parameters has been too complex to attempt
until recent years, but software now exists which
makes it feasible.
Modelling seed-rate data from several environ-

ments within a single model that includes effects for
the environments, rather than carrying out individual
analyses, has the following advantages.

(1) Individual analyses are usually based on rather
small data sets, and are thus likely to lead to un-
satisfactory estimates of optimum rates. With an
exponential-plus-linear model, for example, it is
easy to obtain parameter estimates that imply the
expected yield increases indefinitely with seed
rate, possibly leading to no ‘optimum’ rate.

(2) One might wish to relate estimated optima from
individual analyses to sowing date and to
characteristics of the site, such as latitude and soil
type, which can be expected to have substantial
effects on the optimum seed rate. This is ham-
pered by the sensitivity of the estimates to changes
in the model fitted and the seed price assumed.

(3) If environmental characteristics such as those
mentioned above can be included in a combined

analysis, this offers the possibility of seed-rate re-
commendations that are specific to each target
site.

(4) Individual analyses address the question ‘What
would the best seed rate have been in this en-
vironment?’, whereas the grower has to choose
the rate for a site elsewhere on a future occasion.
For this task, some assumption is needed about
how the target site is related to the trial sites. At
the simplest, this relationship would be that the
trial and target environments form a random
sample from some population, so that we are
led to model environment differences using a
random-effects model. This model may be gen-
eralized, for example by incorporating covariate
information on the environments.

(5) If the analysis for each environment includes fac-
tors such as the treatments listed in Table 2, and
non-significant factors are omitted from the fitted
models, there is the extra difficulty of combining
information over different models.

One-stage or two-stage analysis?

The present paper follows the traditional practice in
the analysis of European multi-environment field
trials of first calculating mean yields over blocks for
each variety and then analysing these means. Recent
developments in mixed models, and increased com-
puting power, permit the analysis of individual plot
values and the inclusion of spatial effects : see, for
example, Smith et al. (2001). A two-stage analysis
is considered in the present paper for simplicity of
exposition, but it should be noted that a one-stage
Bayesian analysis of multi-environment trials includ-
ing spatial effects is feasible (Besag & Higdon 1999).

Why use a Bayesian analysis?

The choice of seed rate is an example of decision-
making in a situation of uncertainty. Theoretical in-
vestigation of how decisions should be made under
uncertainty in order to be coherent has shown that
the uncertainty should be expressed using a prob-
ability distribution, and that the possible conse-
quences of the available decisions should be described
by using a utility function; the optimum decision is
that which maximizes the expected utility over the
unknown parameters : see, for example, Raiffa &
Schlaifer (1961) and Bernardo & Smith (1994). From
this point of view, it is necessary to treat the unknown
parameters in a statistical model as random variables,
i.e. to adopt a Bayesian approach. In contrast, the
usual approach to determining the optimum seed rate
is to consider the optimum given the values of the
unknown parameters and to replace these parameters
by estimates based on the trial data: because of
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sampling variation in the estimates, the resulting
‘optimum’ is not the best rate.
The requirement that the unknown model par-

ameters should be taken as random in a Bayesian
analysis means that they have to be assigned a prob-
ability distribution, the prior distribution, reflecting
the analyst’s knowledge before the data are con-
sidered. The choice of prior distribution may be dif-
ficult, particularly for models with many parameters,
but in the present context it provides the opportunity
to incorporate expert knowledge of the crop. Such
knowledge includes assessments of likely yields in
relation to seed rate and of the extent of variation
between environments. It may be based on experience
of many more seasons, locations and varieties than
are represented in the data. In particular, it can auto-
matically exclude parameter values corresponding to
unreasonable models, such as exponential-plus-linear
models without finite maxima. The prior distribution
is combined with the information in the data to form
a posterior distribution for the parameters.
The Bayesian approach also requires that the utility

of growing the crop be specified to take account of
the crop value and the costs of seed, treatments and
management. Then – given the data and the prior
distribution – the optimum choice of rate (and poss-
ibly of variety or treatment) is that which maximizes
the expected utility over the posterior distribution,
known as the posterior expected utility. The present
authors have implemented the necessary calculations
using the WinBUGS program (Spiegelhalter et al.
2003), which is freely available from http://www.
mrc-bsu.cam.ac.uk/bugs.
An accessible introduction to Bayesian statistics for

biologists (in the context of conservation biology) is
given by Marin et al. (2003), and a standard work on
the Bayesian approach is Gelman et al. (2003).
Lindley (1985) emphasizes the decision-making as-
pects of this approach.

Inclusion of non-standard treatments

Some managerial factors, such as rotational position
and treatments for seed against Take-all and slugs,
are decided before or at the same time as the choice of
seed rate. Other treatments, including nitrogen timing
and PGR use, are chosen later in the growing season
after examining the crop. To assess the value of the
latter treatments fully one should consider not only
their cost and the resulting change in yield but also
whether criteria for applying them were satisfied in
each environment. Such knowledge is not available
here, so the benefit of varying these treatments from
the standard level cannot be assessed. Instead, the
way in which they affect the expected profit margin if
they are used regardless of the criteria is examined,
assuming that seed rate is near the optimum for a
standard set of treatments.

Dose-response functions

Several dose-response functions might be considered
for relating crop yield to seed rate. It is assumed that
in any environment the expected yield would increase
to a maximum with seed rate and then decline, and
the method proposed for incorporating prior infor-
mation is limited to functions with this behaviour. An
alternative would be to use cubic smoothing splines
within a mixed-model framework: this approach is
applied to seed rates for wheat by Walker et al. (2002)
and Lemerle et al. (2004). It permits the inclusion of
experimental and spatial effects, but does not ensure
that the fitted functions have single maxima. The fol-
lowing two dose-response functions are considered,
assuming their intercepts at zero seed rate to be zero.

(1) The exponential-plus-linear function, which may
be expressed as b(rxx1)xkx (x>0), where x
denotes the seed rate and b, r and k are unknown
parameters. This appears to be the function em-
ployed most often in studies of seed rate and of
nitrogen fertilizer, and is used in Spink et al.
(2000). However, at extremely high rates it either
goes negative or carries on increasing, neither of
which is realistic.

(2) The inverse-quadratic function (Nelder 1966).
This is the ratio of a linear function and a quad-
ratic, and may be written as x/(b0+b1x+b2x

2)
(x>0). It can be easily constrained to remain
positive at all rates, have a maximum at a finite
rate and tend towards zero at very high rates.
Unlike a quadratic function of x, it changes more
gradually above than below the inflection point.

In order to facilitate the choice of prior distri-
butions for model parameters, the approach of
Theobald & Talbot (2002) on yield response to ap-
plied nitrogen is followed by expressing these two
dose-response functions in terms of parameters in-
tended to have clear interpretations, and to measure
distinct properties of the functions. It should be noted
that, in contrast, the individual parameters in the
above expressions for the exponential-plus-linear and
inverse-quadratic functions do not have direct inter-
pretations. There are many ways in which ‘interpret-
able’ parameters might be chosen, but two obvious
choices are the maximum expected yield and the seed
rate at which the maximum occurs. Note that the
latter is distinct from the optimum rate, which de-
pends on the relative prices of the seed and the crop.
Because of the importance of susceptibility to lodging
and the consequent yield reduction, the third par-
ameter is chosen as a measure of how rapidly ex-
pected yield declines beyond the maximum. Thus, the
following parameters are considered:

c is the maximum expected yield.
d is the seed rate giving maximum expected yield.
l is the ratio of the expected yield at 2d to that at d.
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By definition, l is restricted to the interval (0, 1), so
it is convenient to define an equivalent parameter
g equal to the logit of l, that is ln {l/(1xl)} : then
the range of g is unrestricted and l is expressed as
exp (g)/{1+exp (g)}. Also, a prior distribution for d
might be expected to be positively skewed, and this
is modelled by taking lnd (which is unrestricted) to
be Normally distributed. The two dose-response
functions chosen may then be redefined in terms of
the interpretable parameters c, d and g. For example,
the inverse-quadratic function may be re-expressed as

E(y j x, c, d, g)= cdx

dx+2exg(xxd)2
(x>0) (1)

where E denotes expected value and y denotes the
yield. The exponential-plus-linear function cannot be
expressed directly in terms of c, d and g, but it can be
given as

E(y j x, c, d, g)= c{ev(1xexvx=d)xvx=d}

evx1xv
(x>0)

(2)

where v satisfies

eg=
evxexvx2v

exvx1+v
: (3)

Although Eqn (3) has no obvious solution in v, a
good approximation is given by 1.5 ln (1+eg).
Negative values of Eqn (2) are also replaced by zero in
modelling and the calculation of posterior expected
utilities, so these expectations are always positive.

THE MODELLING PROCEDURE

The Bayesian method used in the current paper is
adapted and extended from Theobald & Talbot
(2002); it encompasses the trial data (including any
covariates, varieties and treatments), prior infor-
mation, future yields and costs. It may be summarized
as follows.

(1) Choose a dose-response function.
(2) Express this function in terms of parameters that

can be easily interpreted and can be treated as
statistically independent a priori.

(3) Using these parameters, model the variation in
yield between environments, possibly also in-
corporating covariates, varieties and treatment
effects.

(4) Choose a prior distribution for all the model
parameters to reflect knowledge of the crop vari-
eties, the extent of variation between environ-
ments and the likely effects of treatments and
covariates.

(5) Define the utility of sowing seed at any given rate
in the target environment. The choice of utility
made here is the value of the crop (per ha) minus

the costs of the seed and of any non-standard
treatments, although a non-linear function of yield
might be used to reflect the grower’s aversion to
risk. Other costs, such as those of sowing seed and
recording covariates, could also be included.

(6) Combine the prior distribution with the infor-
mation in the data to find the posterior distri-
bution of the model parameters and the posterior
expected utility for any of the varieties at a se-
quence of possible seed rates. The corresponding
sequence of posterior expected utilities must be
found for different values of the covariates (where
relevant) and for any non-standard treatments.
If the values of the covariates are uncertain (by
depending on the weather in the coming season,
for example) make allowance for this by sampling
from their estimated distribution.

(7) Identify an optimum rate for those combinations
of covariate values and treatment or variety
that are of interest : this may exclude treatments
that might be applied after examining the crop.
Possibly assess the economic benefits to be ex-
pected from using non-standard treatments.

(8) Repeat the calculations to assess the robustness of
the optimum rates to changes in the prior distri-
bution, in costs and in the dose-response function.

It should be noted that the averaging of the utility
over the posterior distribution of the unknown par-
ameters means that the procedure does not require
point estimation of these parameters, nor would con-
fidence intervals for optimum rates serve any pur-
pose, since a single rate must be chosen for sowing.

Including environment, covariate and variety
or treatment effects

In the context of fertilizer trials, Theobald & Talbot
(2002) model variation between environments and
varieties by allowing their interpretable parameters
to vary according to the combinations of these fac-
tors: the environment effects for the trial and target
environments are treated as arising from a common
distribution, leading to a random-effects model. Their
model may be modified to include dependence on
varieties or treatments and on environment-specific
covariates such as latitude. Thus, for the maximum-
yield parameter cjk corresponding to the combination
of environment j and variety k or level k of a treat-
ment, it might be assumed that the effects of
environments and of varieties or treatments are ad-
ditive, or allow some pattern of interactions between
them. Where a covariate is available, and one wishes
to model dependence on it in order to predict yield at
a target site, linear dependence in an additive model
might be assumed:

cjk=cej+bcz(zjx�zz)+tck (4)
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where zj denotes the covariate value for environment
j, cej is that part of the environment effect not
accounted for by the covariate, �zz is the mean of the
zj, bcz is the corresponding regression coefficient, and
tck may be interpreted as the effect on cjk of the var-
iety or of the treatment level relative to the standard
level. It may be necessary to extend this model, for
example allowing quadratic dependence or separate
coefficients for different varieties.
It should be noted that the model in Eqn (4) is

hierarchical in the sense that the distribution for the
cjk is defined in terms of higher-level parameters such
as the cej, whose distributions are themselves defined
by other parameters. The prior distribution of the cjk
is defined here in terms of the variance component
sce
2 for the cej and distributions for the regression

coefficients and treatment effects. The cej are also
taken to have a common expectation mc.
Changes in seed rate and differences between vari-

eties or treatment levels can be expected to affect
other aspects of the dose-response relation in addition
to the maximum-yield parameter c : these changes are
allowed for by assuming models similar to Eqn (4) for
the other two interpretable parameters. Applying
such a decomposition to the parameters djk and ljk
would be problematic, because they are restricted to
positive values and to values between 0 and 1 re-
spectively: instead additive models like Eqn (4) are
assumed for ln djk and gjk. Finally, the parameter sy

2

represents the residual variance of the yield, assumed
to be the same for all environments, varieties and
treatments.
Because of the non-linearity of the dose-response

functions, the additive assumptions in Eqn (4) and
the corresponding equations for ln djk and gjk do
not imply that environment, covariate and treatment
effects are additive on the scale of yield, but they
restrict the type of interaction which can be re-
presented: for example, a treatment having sub-
stantial and opposite effects at different latitudes
would not be modelled well. Possible generalizations
of Eqn (4) are considered in the subsection ‘Are the
models for dependence on sowing date and latitude
adequate? ’

The prior distribution for each variance component
may be specified using a prior estimate and corre-
sponding degrees of freedom: higher degrees of free-
dom imply greater confidence in the estimate. The
remaining parameters are given Normal distributions
specified using their prior means and standard devi-
ations. The model parameters c, d and l (or g) are
intended to measure distinct aspects of the dose-
response functions, so that it should be reasonable to
assume that they are statistically independent a priori :
this assumption could be relaxed if sufficient prior
knowledge is available. Even if assumed independent
a priori, they are not independent in the posterior
distribution.
To examine how the covariates and the different

varieties or non-standard treatments influence the
dependence of yield on seed rate, Bayesian confidence
intervals for the corresponding coefficients or treat-
ment effects in the fitted models may be considered.

The prior distributions

The prior probability distributions assumed for the
variety effects, treatment effects and regression co-
efficients are set out in Table 3. For example, in the
‘Variety effects ’ row of the table, the value of 10.0 is
the prior expected value of the maximum yield for all
varieties ; the value of 5.3 is approximately ln (200),
implying that maximum yield is expected to occur at a
rate of about 200 seeds/m2 ; also 1.4 is approximately
ln (0.8/0.2), suggesting that if the seed rate which gives
maximum expected yield is doubled a yield of around
80% of the maximum can be expected. The corre-
sponding standard deviations quantify uncertainty
about these prior expected values.
Effects for all the non-standard treatment levels are

expressed as differences from the standard levels, and
the sceptical view has been taken that the expected
results of varying the treatments are around zero. For
each non-standard level it has been assumed that the
effect on the maximum expected yield c has prior
standard deviation 0.5 t/ha, and the effect on ln d has
prior standard deviation 0.05 (so that the change in
maximizing seed rate is of the order of 5%).

Table 3. Values defining the prior distributions of Normal parameters

Parameters

Maximum expected
yield (c)

Log of rate for
maximum (ln d)

Logit of ratio of
expected yields (g)

Expectation S.D. Expectation S.D. Expectation S.D.

Variety effects 10.0 0.50 5.3 0.35 1.4 0.50
Non-standard treatments 0.0 0.50 0.0 0.05 0.0 0.05
Coefficients for sowing date 0.0 0.02 0.0 0.01 0.0 0.02
Coefficients for latitude 0.0 0.20 0.0 0.14 0.0 0.20
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The values given in Table 3 for the regression
coefficients of c, ln d and g on sowing date and lati-
tude assume that the dependence is linear but that
the effects are again around zero. It is supposed
that differences of 50 days in sowing date and 5 de-
grees in latitude might produce effects of about 1 t/ha
on maximum expected yield, a doubling or halving
of the seed rate giving maximum expected yield and a
1 unit change in the logit of the ratio of the expected
yields.
The prior distributions of the variance parameters

in the model are given in Table 4. The reciprocal of
each variance is assumed to follow a Gamma distri-
bution that is specified by an estimate of that variance
and a degrees-of-freedom parameter: a larger value of
this parameter indicates greater prior precision.

One way to examine whether the prior distribution
is reasonable is to look at the expected utility under
this distribution: this is shown in Fig. 1 for the two
dose-response functions, omitting any dependence
on covariates or non-standard treatments. The cor-
responding ‘optimum’ seed rates are those at
which the expected utilities (shown by the full lines)
achieve their maxima, here 165 and 188 seeds/m2 for
the exponential-plus-linear and inverse-quadratic
functions.

RESULTS

The modelling procedure defined above is used to
examine the dependence of yield on varieties and
sowing date for the Phase I trials and on treatments
and latitude for those in Phase II. Equation (4) and
analogous equations for the ln dj k and gj k are used
initially, and then the question of whether these
linear, additive models need to be extended is
considered.

Phase I: effects of varieties and sowing date

Under both the exponential-plus-linear and inverse-
quadratic dose-response models, only one of the three
coefficients for sowing date has a Bayesian 95%
confidence interval excluding zero: this is for the de-
pendence of the seed rate giving maximum expected
yield on sowing date, which is significantly positive.
The estimated sizes of this effect under the two models
correspond respectively to increases in the maximiz-
ing seed rate of about 2.2 and 2.1% from delaying
sowing by one day. There are also estimated re-
ductions in maximum expected yield/day of 0.015
and 0.012 t/ha respectively.
Table 5 shows the optimum seed rates and pos-

terior expected utilities for the four varieties sown in
Phase I at sowing dates of 30 September and 30
October. The posterior expected utilities are similar
for the two dose-response functions, but about £50/ha
lower for the later date. The differences in the opti-
mum seed rates shown for the varieties are a conse-
quence of including separate variety effects in the
models. They prompt the question of whether such
differences matter in practice. The answer is sought
in the expected utilities for different varieties rather
than in statistical significance. If the application to
each variety of seed rates close to the median value
in each column of optima are considered, e.g. 120,
210, 200 and 340 seeds/m2, then the reduction in
expected utility is no more than £4/ha for Haven,
Soisson and Spark on either date. For Cadenza,
which is more subject to lodging, the reduction is be-
tween £3/ha and £14/ha.
Figure 2 shows the posterior expected utilities

against seed rate for the same dose-response func-
tions, varieties and sowing dates. Comparison with

Table 4. Values defining the prior distributions of
variance parameters

Parameter sce
2 scv

2 sln d, e
2 sln d, v

2 sge
2 sgv

2 sy
2

Estimate 0.30 0.10 0.10 0.08 0.25 0.15 0.10
D.F. 10 10 5 5 5 5 50
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Fig. 1. Prior expected crop values with and without seed
cost assuming exponential-plus-linear (above) and inverse-
quadratic (below) dose-response functions.
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Fig. 1 (noting the false origin in Fig. 2) indicates that
the initial increases in yield are more rapid and the
reductions beyond the maximum are more gradual
than those predicted under the prior distribution. The
optimum seed rates are consistently lower (by about
40% on average) for the exponential-plus-linear func-
tion than for the inverse-quadratic. This can be
attributed to the difference in shape of the corre-
sponding posterior expected utility functions: it is
clear from Fig. 2 that the exponential-plus-linear
function has a sharper elbow than the inverse-
quadratic when they are fitted to the same data. The
fit of the exponential-plus-linear function is later
shown to be poor.

Phase II: effects of treatments and latitude

Under the exponential-plus-linear dose-response
model, one coefficient has a Bayesian 95% confidence
interval excluding zero, that for the dependence of the
seed rate giving maximum expected yield on latitude:
the coefficient is not significant in this sense under
the inverse-quadratic model. The estimated sizes
of this effect under the exponential-plus-linear and
inverse-quadratic models correspond to increases
in the maximizing seed rate of about 10.1 and 6.8%,
respectively, per degree of latitude. The estimated re-
ductions in maximum expected yield per degree are
0.036 and 0.029 t/ha, respectively.
Among the non-standard treatments defined in

Table 2, the only set of treatments to give Bayesian
95% confidence intervals excluding zero relates to
rotational position. The intervals for the reduction
in maximum expected yield (t/ha) from second/third
wheat (without the fungicide Latitude) rather than
first wheat are (0.81, 1.49) and (0.91, 1.52) for the
exponential-plus-linear and inverse-quadratic func-
tions. With second/third wheat plus Latitude the
corresponding intervals are similar, (0.90, 1.57) and
(0.98, 1.60).
Table 6 shows the optimum seed rates and corre-

sponding posterior expected utilities for Claire at two
latitudes, those of Rosemaund (52.13) and Edinburgh
(55.87), under the treatments that are fixed at the
time of sowing. As in the trial data, sowing dates were

assumed typical of winter-wheat sowings for those
latitudes. The posterior expected utilities are £20/ha
to £25/ha lower for the higher latitude, but similar for
the two dose-response functions. The optimum seed
rates are again consistently lower (now by about 19%
on average) for the exponential-plus-linear function
than for the inverse-quadratic.
Figure 3 shows, for the inverse-quadratic function,

the posterior expected utilities for Claire at latitude
52.13 calculated under the standard combination of
treatments and under each of the non-standard
ones, assuming that only one treatment is varied at a
time. The corresponding plot for the exponential-
plus-linear function shows the same general difference
in shape as in Fig. 2. The reductions in expected
utility with seed rate beyond the optima are steeper
for ‘Sibutol slug treatment’ and ‘Second/third
wheat+Latitude’ than for other treatments because
their cost increases in proportion to seed rate. The use
of Latitude appears not to correct the large loss in
expected utility from second/third rather than first
wheat, and both variations from the standard slug
treatment appear to reduce expected utility slightly.
Of the remaining treatments, late nitrogen appli-
cation appears to raise expected utility by about £9/ha
at both latitudes, and PGR at tillering rather than at
stem extension seems to increase it by about £5/ha.

Comparing the fit of the two dose-response functions

Figure 2 and Tables 5 and 6 suggest that there can
be a substantial difference in the shape of exponential-
plus-linear and inverse-quadratic functions fitted to
the same data. The fit of the two functions are in-
vestigated using the method of posterior predictive
checking described in Gelman et al. (2003). For each
of the observed yields y in either data set, there is a
theoretical expected value E (y | x, h) given by the
right-hand side of Eqn (1) or (2): here h denotes
the vector of unknown parameters in either model.
For any value of h, we can generate a value y*, say,
from the assumed distribution of y given h under
the model. As h varies with respect to its posterior
distribution, y and y* will have similar distributions if
the model is correct, but will show differences if it is

Table 5. Optimum seed rates (seeds/m2) and corresponding posterior expected utilities (£/ha) for two sowing dates
and four varieties with two dose-response functions and data from Phase I

Variety

30 Sep (day 273) 30 Oct (day 303)

Exponential-plus-linear Inverse-quadratic Exponential-plus-linear Inverse-quadratic

Cadenza 96, 836 140, 836 168, 789 237, 788
Haven 115, 861 236, 856 187, 814 371, 799
Soissons 118, 757 180, 760 205, 708 305, 708
Spark 141, 784 248, 779 241, 732 397, 720
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not. Test quantities are therefore defined to measure
those discrepancies between the distributions that
are of particular interest. Here the main interest is
in the dependence of yield on seed rate, so for each
experimental phase the means �yyx, say, of all the

yields observed at each seed rate x are used as test
quantities. To examine how much each model con-
flicts with the data, the posterior probability that
the corresponding mean �yy*x for the generated data
exceeds �yyx is found. Very small and very large
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Fig. 2. Posterior expected utilities for Phase I data with four varieties and two sowing dates assuming exponential-plus-linear
(above) and inverse-quadratic (below) dose-response functions.
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probabilities indicate that the model over-estimates
or under-estimates, respectively, the yields at rate x. It
is straightforward to incorporate the calculation of
these probabilities with those of the posterior dis-
tribution and the posterior expected utility in the
WinBUGS program.
The resulting probabilities are shown in Table 7.

For both phases, the exponential-plus-linear function

appears to over-estimate the yields at 80 seeds/m2 and
to under-estimate them at the highest and lowest rates
applied. This provides an explanation for the sub-
stantially lower optimum seed rates derived under
this model in Tables 5 and 6. By contrast, there are
no extreme probabilities for the inverse-quadratic
function in either phase, and hence no evidence that
this function fits the data badly.

Table 6. Optimum seed rates (seeds/m2) and corresponding posterior expected utilities (£/ha) for Claire at two
latitudes with standard and non-standard treatments, two dose-response functions and data from Phase II

Treatment

Latitude 52.13
(Rosemaund)

Latitude 55.87
(Edinburgh)

Exponential-
plus-linear

Inverse-
quadratic

Exponential-
plus-linear

Inverse-
quadratic

Standard 166, 728 213, 729 225, 708 276, 708
Rotational position: second/third 160, 637 203, 634 215, 617 261, 614
Rotational position: second/third+Latitude1 152, 619 183, 614 202, 595 233, 589
Slug treatment: none 176, 721 228, 723 237, 700 292, 701
Slug treatment:+Sibutol Secur 152, 708 188, 707 205, 686 243, 684

1 In this column ‘Latitude’ refers to the proprietary name of a fungicide.
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expected utilities at 640 seeds/m2.
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Sensitivity of the results to changes in the prior
distribution

The posterior expected utilities, and hence the opti-
mum rates, depend on the prior distributions assumed
as well as on the dose-response function. To examine
their sensitivity to changes in these distributions,
the calculations may be repeated with different prior
assumptions. Because of the evidence that the
exponential-plus-linear function fits the data poorly,
attention is concentrated on the inverse-quadratic.
Note, though, that the evidence of poor fit for the
exponential-plus-linear function remains under the
various prior assumptions considered below.
There are many assumptions which might be

changed: for illustration, the effects of altering (sep-
arately) the expectations in the prior distributions
for c, ln d and g are considered, replacing the values
10.0, 5.3 and 1.4 in Table 3 by 8.0, 6.0 and 2.94 re-
spectively. The new expectation of 6.0 for ln d corre-
sponds to the maximum yield occurring at a rate
of about exp (6.0) or 400 seeds/m2 ; the expectation of
2.94 for g equals ln (0.95/0.05), so that a doubling of
the seed rate giving maximum expected yield has the
effect of reducing the expected yield by about 5%
rather than 20%.
For the Phase I data, the above change in the prior

distribution of c causes reductions in optimum rates
of no more than 5%, but reduces posterior expected
utilities by about £37/ha. Altering the prior distri-
butions of d increases optimum rates by no more
than 6% and reduces posterior expected utilities by at
most £4/ha. The change in the prior distribution of
g reduces optimum rates by at most 8% and increases
posterior expected utilities by at most £3/ha.
For Phase II, changing the prior distribution of c

reduces optimum rates by at most 3%, but lowers
posterior expected utilities by about £50/ha. The
effects of altering the prior distributions of d and g are
negligible, with changes in posterior expected utilities
of at most £3/ha; optimum rates are increased by

about 4% with the change in d and reduced by about
2% with the change in g.
Thus the optimum rates based on both phases

appear to be reasonably robust to these three changes
in the prior distribution.

Are the models for dependence on sowing date and
latitude adequate?

The above results have been obtained under the
assumption that Eqn (4) and analogous equations for
the ln djk and gjk apply, so that the dependence of our
interpretable parameters on sowing date and variety
effects or on latitude and treatment effects is linear
and additive.
Many non-additive generalizations of this model

might be considered. For example, the maximum-
yield parameter cjk may be allowed to include inter-
action between sowing date and variety in Phase I by
replacing the common regression coefficient bcz by
separate coefficients for the varieties. These are given
a common Normal prior distribution with expec-
tation mbcz and variance sbcz

2 , where mbcz is Normal
with expectation 0 and variance 0.0002, and sbcz

2 has
estimate 0.0002 with 5 D.F. Under the inverse-
quadratic dose-response function, the largest effects
of this alteration in the model on the optimum rates in
Table 5 are to change the optima for variety Spark to
236 and 363 seeds/m2 on 30 September and 30
October respectively; the other changes are by 7 seeds/
m2 or less. Very similar effects on the optimum
rates are found in Phase I if the common regression
coefficient is retained in Eqn (4), but Normal
varietyrenvironment interaction effects are included
with expectation 0 and variance scev

2 , where scev
2 has

estimate 0.15 with 5 D.F.
In a more radical change from the additive model,

non-additive models are also fitted in c, ln d and g
with no covariate dependence. For Phases I and II
respectively, variety and treatment effects are assumed
to be nested within environments : the variance com-
ponents on the c, ln d and g scales are given similar
prior distributions to those listed in Table 4, with
prior estimates 1, 0.1, 0.1 and 5 degrees of freedom
each for both phases.
The posterior expected values of the combined

effects of environment and variety for Phase I under
this non-additive model are plotted against sowing
date in the upper row of Fig. 4. The lower row shows
the posterior expected values of the combined effects
of environment and treatment for Phase II plotted
against latitude: here the standard combination
of treatments is distinguished from non-standard
ones. The most obvious departure from linearity in
these six plots is in the lower left one: the posterior
expected values of the combined effects of environ-
ment and treatment show non-linear dependence on
latitude. This plot reflects the dependence of mean

Table 7. Posterior probabilities for Phases I and II and
two dose-response functions that predicted mean yields

exceed observed mean yields at each seed rate

Seed
rate

Phase I Phase II

Exponential-
plus-linear

Inverse-
quadratic

Exponential-
plus-linear

Inverse-
quadratic

20 0.982 0.279 – –
40 0.140 0.742 0.986 0.627
80 0.002 0.363 0.0001 0.337
160 0.463 0.575 0.036 0.492
320 0.937 0.488 0.858 0.266
640 0.926 0.567 0.979 0.724
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yield on latitude in Phase II, although this non-linear
effect seems atypical of longer-term patterns in yield.
The effects of extending our linear additive model

for the Phase II data are examined by including
a squared term (zjx�zz)2 in latitude in Eqn (4). The
corresponding regression coefficient is given a
Normal prior distribution with expectation zero and
S.D. 0.5, independently of the other parameters. The
Bayesian 95% confidence interval for this coefficient
includes only negative values, indicating significant
curvature in the relationship. Nevertheless the opti-
mum seed rates from this analysis differ from those in
Table 6 by at most 1 seed/m2, and the corresponding
posterior expected utilities are changed by at most
£2/ha.

Heterogeneity of residual variances

Another possible inadequacy of the model is that
it assumes a common residual variance for the
yield over the trials within each phase. The effect of
allowing these variances to differ between trials is

therefore examined, giving each variance the prior
distribution used above for the common variance.
For Phase I, the resulting changes to the optimum
seed rates given in Table 5 are between x8 and 6%,
while the largest change in posterior expected utility
is £9/ha. For Phase II, the changes in optimum rates
relative to Table 6 are between x1 and 3%; the
posterior expected utilities for the later rotational
positions are reduced by about £20/ha, but those for
the remaining treatments are hardly affected.

DISCUSSION

A method has been developed for combining the
information from seed-rate experiments which can
include effects for environments, varieties and treat-
ments, and which allows dependence on covariates
such as sowing date and latitude to be modelled. For
the dependence of yield on seed rate, it assumes a hi-
erarchical nonlinear regression model. Approximate
non-Bayesian methods for fitting such models are
available (e.g. Davidian & Giltinan 1995) and that
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Makowski et al. (2001) use this approach for model-
ling the response of winter wheat to applied nitrogen
across trials. The adoption in the present paper of
a Bayesian approach permits expert knowledge of
the crop to be incorporated into the analysis of the
data. A common objection to such an approach is
that prior distributions may be difficult or impossible
to specify. While not an essential part of the Bayesian
approach, the specification of dose-response func-
tions in terms of ‘ interpretable’ parameters is in-
tended to facilitate the choice of these distributions.
By treating trial environments as drawn from a

population, the concept of an optimum seed rate can
be reformulated so that it applies to a future target
site rather than to the individual trial environments. If
a covariate is included in the model then the optimum
rate depends on its value, and the target environment
is considered as sampled from a population with the
same value.
The present formulation includes a utility function

meant to represent the value of the crop minus the
variable costs associated with different seed rates
and non-standard treatments. Decisions about opti-
mum rates and treatments are based on the posterior
expected utility for any seed rate, which is the mean
of the utility over the posterior distribution. This
distribution is intended to represent the variation to
be expected between environments in the response of
yield to changes in seed rate. Thus, the optimum rate
is the rate expected to give the highest return in the
coming season, given the treatments already chosen,
the variety to be sown, the covariate values for the
site and knowledge of variation over environments.
Recommendations for seed rates are con-

ventionally based on estimated optima for trial
environments, with some upward adjustment as in-
surance against adverse growing conditions. Since the
posterior expected utility represents an average over
the possible future environments, it automatically
includes some insurance against unfavourable con-
ditions. The success of the method in achieving an
appropriate balance over possible environments de-
pends on how representative conditions in the trials
are of those that might be experienced in future, and
also on the appropriateness of the dose-response
model and the prior distribution.
The results of the analyses appear reasonable in the

sense that they depend on covariates and treatments
in sensible ways. The optima are sensitive to the choice
of dose-response function, but the low optima ob-
tained with the exponential-plus-linear function can
be at least partly attributed to the poor fit of this
function.
It may seem disappointing that the choice of dose-

response function has a large effect on the calculation
of optimum seed rates. The posterior expected utility
can be used to examine the consequences of basing
optimum rates on one model when the other is in fact

appropriate. For example, under the standard set of
treatments in Phase II, the optimum rates at latitudes
52.13 and 55.87 from the exponential-plus-linear
model are (from Table 6) 166 and 225 seeds/m2 re-
spectively: the expected utilities of these rates at the
two latitudes under the inverse-quadratic model are
£726/ha and £706/ha, only slightly lower than the
maxima under this model of £729/ha and £708/ha.
Hence, the difference between the two optima in terms
of expected margin is less disappointing than it first
appears. Indeed the posterior expected utility under
the inverse-quadratic is within £5/ha of its maximum
for rates in the intervals (156, 290) and (210, 360)
for these two latitudes. The widths of these intervals
arise because the expected utility curves are fairly
flat near their maxima: the flatness is explained by
the ability of wheat to compensate for low seed rates
by increased production of tillers, and as a conse-
quence of each curve being based on an average over
many inverse-quadratic functions with different
parameters rather than on a single estimated inverse-
quadratic.
The optimum seed rates derived under the inverse-

quadratic dose-response function appear to be fairly
robust to changes in the prior distribution. Extending
the model in order to incorporate differing residual
variances between trials, interaction between sowing
date and variety in the maximum-yield parameter, or
quadratic dependence of maximum expected yield on
latitude also has little effect on optimum rates.
Guidance on seed rate should make reference to

sowing date and latitude. The results presented in
Tables 5 and 6 show that the optima from models
including these covariates depend substantially on
their values. Communicating the results of data
analyses would become difficult if several covariates
were included, such as applied nitrogen or soil type
in addition to date and latitude: the inclusion of ad-
ditional responses, such as quality characteristics,
would add to the burden. It would be better to make
advice available via an interactive system similar to
HGCA’s RL Plus (http://www.hgca.com/varieties/
rl-plus/index.html).
Whereas the values of latitude and sowing date are

known at the time of sowing, one may wish to model
the effects of covariates whose values are not avail-
able until later, such as accumulated temperature over
the growing season or the plant population on some
date. While such uncertain covariates are useful for
modelling crop growth, their application to choosing
seed rate requires appropriate allowance to be made
for the uncertainty in their values for the target site in
the coming season. This may be achieved by repeating
yield predictions at covariate values sampled from
an estimated joint distribution for the site : Theobald
et al. (2002) use this method to allow for uncertainty
in a measure of accumulated average daily tempera-
tures when predicting yields of maize. Alternatively,
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the covariates can be replaced in the model by long-
term mean or median values for the site. Either
method can be expected to lead to a reduction in ex-
planatory power relative to the values for the current
season.
By contrast with the influence of latitude and

sowing date, Table 6 suggests that little adjustment
to seed rates needs to be made for the non-standard
treatment levels used in Phase II, except perhaps
where the cost of the treatment increases with seed
rate. Table 5 provides evidence that rates may depend
on whether the variety sown is prone to lodging.
An alternative to providing guidance on seed rates

is to recommend optimum plant populations, and to
allow growers to infer appropriate seed rates accord-
ing to local knowledge of previous emergence and
current growing conditions. While measurement of

plant populations may be essential to the agronomist
in understanding the process of crop growth, we see
several difficulties with emphasizing them rather than
seed rates in providing guidance. First, the grower’s
direct concern is how much seed to sow (Gooding
et al. 2002), even if he is willing to interpret guidance
in the light of his knowledge of previous emergence.
Also, no particular seed cost can be associated with
a given plant population, and the population
varies over the season, particularly if winter kill is a
possibility.

We are grateful to HGCA and the Environment
and Rural Affairs Department of the Scottish Execu-
tive for funding this study, and to Roger Williams
(HGCA), Roger Sylvester-Bradley and Antony Wade
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