
TLP 18 (2): 252–295, 2018. C© Cambridge University Press 2018

doi:10.1017/S1471068418000017 First published online 10 April 2018

252

A concurrent constraint programming
interpretation of access permissions�

CARLOS OLARTE

ECT, Universidade Federal do Rio Grande do Norte, Natal-RN, Brazil

(e-mail: carlos.olarte@gmail.com)

ELAINE PIMENTEL

DMAT, Universidade Federal do Rio Grande do Norte, Natal-RN, Brazil

(e-mail: elaine.pimentel@gmail.com)

CAMILO RUEDA

DECC, Pontificia Universidad Javeriana Cali, Valle del Cauca, Colombia

(e-mail: camilo.rueda@gmail.com)

submitted 1 December 2016; revised 14 February 2018; accepted 21 February 2018

Abstract

A recent trend in object-oriented programming languages is the use of access permissions

(APs) as an abstraction for controlling concurrent executions of programs. The use of AP

source code annotations defines a protocol specifying how object references can access the

mutable state of objects. Although the use of APs simplifies the task of writing concurrent

code, an unsystematic use of them can lead to subtle problems. This paper presents a

declarative interpretation of APs as linear concurrent constraint programs (lcc). We represent

APs as constraints (i.e., formulas in logic) in an underlying constraint system whose entailment

relation models the transformation rules of APs. Moreover, we use processes in lcc to model

the dependencies imposed by APs, thus allowing the faithful representation of their flow

in the program. We verify relevant properties about AP programs by taking advantage of

the interpretation of lcc processes as formulas in Girard’s intuitionistic linear logic (ILL).

Properties include deadlock detection, program correctness (whether programs adhere to

their AP specifications or not), and the ability of methods to run concurrently. By relying

on a focusing discipline for ILL, we provide a complexity measure for proofs of the above-

mentioned properties. The effectiveness of our verification techniques is demonstrated by

implementing the Alcove tool that includes an animator and a verifier. The former executes

the lcc model, observing the flow of APs, and quickly finding inconsistencies of the APs

vis-à-vis the implementation. The latter is an automatic theorem prover based on ILL.

KEYWORDS: access permissions, concurrent constraint programming, linear logic, focusing

� This work has been partially supported by CNPq, CAPES/Colciencias/INRIA’s project STIC AmSud
and the project FWF START Y544-N23.

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

A concurrent constraint programming interpretation of access permissions 253

1 Introduction

Reasoning about concurrent programs is much harder than reasoning about se-

quential ones. Programmers often find themselves overwhelmed by the many subtle

cases of thread interactions they must be aware of to decide whether a concurrent

program is correct or not. In order to ensure program reliability, the programmer

needs also to figure out the right level of thread atomicity to avoid race conditions,

cope with mutual exclusion requirements, and guarantee deadlock freeness.

All these problems are aggravated when software designers write programs using

an object-oriented (OO) language and use OO strategies to design their programs.

In an OO program, objects can have multiple references (called aliases) that can

modify local content concurrently. This significantly increases the complexity of

the design of sound concurrent programs. For instance, data race conditions arise

when two object references read and write concurrently from/to an object memory

location. To cope with data races, one could simply place each object access within

an atomic block, but this would affect negatively program performance. A better

strategy could be to lock just the objects that are shared among threads. However, it

then becomes hard to estimate which objects should be shared and which locations

should be protected by locks just by looking at the program text.

Languages like Æminium (Stork et al. 2009), Plaid (Sunshine et al. 2011), and

Mezzo (Pottier and Protzenko 2013) propose a strategy to design sound and reliable

concurrent programs based on the concept of access permissions (APs) (Boyland et

al. 2001). APs are abstractions about the aliased access to an object content and

they are annotated in the source code. They permit a direct control of the access to

the mutable state of an object. Making explicit the access to a shared mutable state

facilitates verification and enables parallelization of code. For instance, a unique AP,

describing the case when only one reference to a given object exists, enforces absence

of interference and simplifies verification; a shared AP, describing the case when an

object may be accessed and modified by multiple references, allows for concurrent

executions but makes verification trickier.

Although APs greatly help to devise static strategies for correct concurrent

sharing of objects, the interactions resulting from dynamic bindings (e.g., aliasing of

variables) might still lead to subtle difficulties. Indeed, it may happen that apparently

correct permission assignments in simple programs lead to deadlocks.

We propose a linear concurrent constraint programming (lcc) (Fages et al. 2001)

approach for the verification of AP annotated programs. Concurrent constraint

programming (ccp) (Saraswat et al. 1991; Saraswat 1993) is a simple model for

concurrency that extends and subsumes both concurrent logic programming and

constraint logic programming. Agents in ccp interact by telling constraints (i.e.,

formulas in logic) into a shared store of partial information and synchronize by

asking if a given information can be deduced from the store. In lcc, constraints are

formulas in Girard’s intuitionistic linear logic (ILL) (Girard 1987) and ask agents

are allowed to consume tokens of information from the store.

We interpret AP programs as lcc agents that produce and consume APs when

evolving. We use constraints to keep information about APs, object references, object

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

254 C. Olarte et al.

fields, and method calls. Moreover, the constraint entailment relation allows us to

verify compliance of methods and arguments to their AP signatures. The constraint

system specifies also how the APs can be transformed during the execution of the

program.

We are able to verify AP programs by exploiting the declarative view of lcc

agents as formulas in ILL. The proposed program verification includes (1) deadlock

detection; (2) whether it is possible for methods to be executed concurrently or not;

and (3) whether annotations adhere to the intended semantics associated with the

flow of APs or not.

The key for this successful specification and analysis of AP annotations as ILL

formulas is the use of a linear logic’s focusing discipline (Andreoli 1992). In fact, by

using focusing, we can identify which actions need to interact with the environment

or not, either for choosing a path to follow, or for waiting for a guard to be available

(e.g., the possession of an AP on a given object). This gives a method for measuring

the complexity of focused ILL (ILLF) proofs in terms of actions, hence establishing

an upper bound of the complexity for verifying the above-mentioned properties.

Moreover, as shown in (Olarte and Pimentel 2017), focusing guarantees that the

interpretation of lcc processes as ILL formulas is adequate at the highest level (full

completeness of derivations): one step of computation (in lcc) corresponds to one

step of logical reasoning. Hence, our encodings of AP annotations as ILL formulas

is faithful w.r.t. the proposed lcc model.

The contributions of this work are three-fold: (1) the definition of a logical seman-

tics for APs, (2) provision of a procedure for the verification of the above-mentioned

properties as well as a complexity analysis for it, and (3) the implementation of the

verification approach as the Alcove tool (http://subsell.logic.at/alcove2/).

The logical structure we impose on APs thus allows us to formally reason about

the behavior of AP-based programs and give a declarative account of the meaning

of these annotations. It is worth noticing that we are not considering a specific AP-

based language. Instead, we give a logical meaning to the machinery of APs and type

states (see Section 7) present in different languages. This allows us to provide static

analyses independent of the runtime system at hand. For concreteness, we borrow

the AP model of Æminium (Stork et al. 2009), a concurrent OO programming

language based on the idea of APs.

The paper is organized as follows. Section 2 presents the syntax of the AP-based

language used here and Section 3 recalls lcc. Section 4 presents the interpretation

of AP programs as lcc agents. We also show how the proposed model is a

runnable specification that allows observing the flow of a program’s permissions.

We implemented this model as the Alcove LCC Animator explained in Section 4.3.

Section 5 describes our approach to program verification and its implementation

as the Alcove LL prover. It also presents a complexity analysis of the proposed

verification. Two compelling examples of our framework are described in Section 6:

the verification of a critical zone management system and a concurrent producer–

consumer system. Section 7 concludes the paper.

A preliminary short version of this paper was published in (Olarte et al. 2012).

The present paper gives many more examples and explanations and provides precise

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

A concurrent constraint programming interpretation of access permissions 255

Fig. 1. Example of an AP annotated program and its permission flow graph.

technical details. In particular, in this paper, we identify the fragment of lcc (and

ILL) required for the specification of AP programs and we show that this fragment

allows for efficient verification techniques. Moreover, the language (and analyses)

considered here take into account Data Group (DG) Permissions (Leino 1998; Stork

et al. 2009), a powerful abstraction that adds application-level dependencies without

sacrificing concurrency (see Section 2.1).

2 Access permissions in object-oriented programs

We start with an intuitive description of APs and data group access permissions

(DGAPs). In Section 2.2, we give a formal account of them.

APs are abstractions describing how objects are accessed. Assume a variable x

that points to the object o. A unique permission to the reference x guarantees that

x is the sole reference to object o. A shared permission provides x with reading and

modifying access to o, which allows other references to o (called aliases) to exist and

to read from it or to modify it. The immutable permission provides x with read-only

access to o, and allows any other reference to o to exist and to read from it. Let us

use a simple example to explain APs and the concurrency-by-default behavior (Stork

et al. 2009) they offer. Figure 1 shows a program, taken and slightly modified from

(Stork et al. 2009), that operates over a collection of elements. Starting at line 8, the

program creates an object of type collection at line 10 and an object of type stats

at line 11. The program sorts the collection c at line 12, and prints it at line 13. It

computes some statistics at line 14, and removes duplicates from the collection at

line 15. Lines 3–7 declare the signatures for the methods. The constructor builds a

unique reference to a new collection at line 3. Methods sort and removeDuplicates

modify the content of the collection and they require a unique reference to it. Method

compStats requires and returns an immutable (read-only) AP to the collection c and

a unique AP to the parameter s.

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

256 C. Olarte et al.

Given the AP signature of these methods, the AP dataflow is computed where (1)

conflicting accesses are ordered according to the lexical order of the program; and

(2) non-conflicting instructions can be executed concurrently. For instance, methods

in lines 12 and 13 cannot be executed concurrently (since sort requires a unique

permission) and methods in lines 13 and 14 can be executed concurrently (since

both methods require an immutable permission on c). Finally, the method in line

15 cannot be executed concurrently with compStats since removeDuplicates requires

a unique AP. Hence, what we observe is that the unique permission returned by the

constructor is consumed by the call of method sort. Once this method terminates, the

unique permission can be split into two immutable permissions, and methods print

and compStats can be executed concurrently. Once both methods have finished, the

immutable APs are joined back into a unique AP, and the method removeDuplicates

can be executed.

2.1 Share permissions and data groups

As we just showed, unique permissions can be split into several immutable APs to

allow multiple references to read, simultaneously, the state of an object. Therefore,

from the AP annotations, the programming language can determine, automatically,

the instructions that can be executed concurrently and those that need to be executed

sequentially (Figure 1).

In the case of share APs, several references can modify concurrently the state

of the same object. Hence, the programmer needs additional control structures to

make explicit the parts of the code that can be executed concurrently. Consider for

instance the following excerpt of code:

1 let Subject s, Observer o1, Observer o2 in
2 s := new Subject ()
3 o1 := new Observer(s) // Requires a share permission on s
4 o2 := new Observer(s)
5 s.update() // Requires a share permission on s
6 s.update()

where the constructor Observer as well as the method update require a share

permission on s. Assume also that the intended behavior of the program is that

the method update should be executed only after the instantiation of the Observer

objects.

If we were to handle share permissions as we did with immutable permissions in

the previous section, once the new instance of Subject is created in line 2, the unique

permission s has on it can be split into several share permissions. Hence, statements

in lines 3 to 6 could be executed concurrently. This means that a possible run of

the program may execute the method update in lines 5 and 6 before instantiating

the Observers in lines 3 and 4, which does not comply with the intended behavior

of the program.

Higher level dependencies in AP programs can be defined by means of DGs

(Leino 1998) as in (Stork et al. 2009; Stork et al. 2014). Intuitively, a DG rep-

resents a collection of objects and it controls the flow of share permissions

on them. For that, two kinds of DGAPs are defined: an atomic permission

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

A concurrent constraint programming interpretation of access permissions 257

Fig. 2. Subjects and observers with data groups.

provides exclusive access to the DG, much like a unique AP for objects. Then,

working on an atomic DGAP leads to the sequentialization of the code; on

the contrary, a concurrent DGAP allows other DGAPs to coexist on the same

DG. Therefore, a concurrent DGAP allows for the parallel execution of the

code.

Consider the code in Figure 2, taken and slightly modified (syntactically) from

(Stork et al. 2009). In line 1, the class Subject is declared with a DG parameter dg.

This parameter is similar to a type parameter (template) in modern OO programming

languages. The method update (line 3) requires a share permission on the DG dg to

be invoked. The class Observer (line 4) is also defined with a DG parameter dg and

its constructor requires an object of type Subject〈dg〉.
The statement group〈g〉 (line 7) creates a DG and assigns to it an atomic DGAP.

The split(g) instruction consumes such atomic permission on g and splits it into

three concurrent DGAP, one per each statement in the block (lines 10, 11, and 12).

According to the data dependencies, statements in lines 11 and 12 can be executed

concurrently once s is instantiated in line 10. When the instructions in lines 11 and

12 have terminated, the concurrent DGAPs on g are joined back to an atomic

permission on g. When this happens, the split block in line 13 consumes such

permission and splits it into two concurrent DGAPs so that statements in lines

14 and 15 can be executed concurrently. Hence, DGAPs enforce a DG dependency

between the two blocks (in gray in the figure) of code.

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

258 C. Olarte et al.

Fig. 3. Syntax of AP annotated programs. c, m, a, x, g ranges, respectively, over name of

classes, methods, fields, variables, and data groups. x̃ denotes a possibly empty sequence of

variables x1, . . . , xn. This notation is similarly used for other syntactic categories.

2.2 An access permission-based language

This section formalizes the syntax we have used in the previous examples. Our

language is based on the core calculus μÆminium (Stork et al. 2014) for Æminium

(Stork et al. 2009), an OO programming language where concurrent behavior arises

when methods require non-conflicting APs, as exemplified in the last section. As a

core calculus, it focuses on the mechanisms to control the flow of permissions and

it abstracts away from other implementation details of the language (e.g., control

structures). Unlike μÆminium, our core calculus abstracts away also from (1) specific

implementation details to guarantee atomicity (e.g., the inatomic statement used

in the intermediate code of Æminium to keep track of entered atomic blocks), (2)

mechanisms to define internal DGs, i.e., DGs in our language can only be declared

in the main function, and (3) we do not consider class inheritance.

Programs are built from the syntax in Figure 3. DGs are declared with

group〈g1, · · · , gn〉. APs on objects can be unique, immutable, or none (for null refer-

ences), and share on the DG g (shr : g). A program consists of a series of class defini-

tions (eCL) and a main body. A class can be parameterized in zero or more DG names

(〈eg〉) and it contains zero or several fields (F), constructors (ACTR), and methods (M̃).

A class field (attribute) is declared by using a valid type and a field name. Note

that a type is simply an identifier of a class with its respective DG parameters.

Constructors and methods specify the required permissions for the caller (p(this))

and the arguments (ep(x)) as well as the permissions restored to the environment.

A reference r can be a variable, the self-reference this or a field selection as in

x.a. As for the statements, we have the following:

– The let constructor allows us to create local variables.

– After the assignment r〈g〉 := rhs, both r and rhs point to the same object (or

null) as follows: (1) if rhs has a unique permission on an object o, then after the

assignment, r and rhs have a share permission shr :g on o. This explains the need

of “〈g〉” in the syntax. As syntactic sugar one could decree that rl := rr means

rl〈default〉 := rr where default is a predefined DG; (2) if rhs has a shr :g (resp

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

A concurrent constraint programming interpretation of access permissions 259

imm) permission on o, then r and rhs end with a shr :g (resp imm) permission on

o. Finally, (4) if rhs = null or it is a null reference, then r and rhs end with a

none permission. We note that in assignments, the right- and left-hand sides are

references. We do not lose generality since it is possible to unfold more general

expressions by using local variables.

– An object’s method can be invoked by using a reference to it with the right number

of parameters as in r.m(r̃). We assume that in a call to a method (or constructor),

the actual parameters are references (i.e., variables, including this, and attributes)

and not arbitrary expressions. Since we have parameters by reference, we assume

that the returned type is void and we omit it in the signature.

– A new instance of a given class is created by r := new c〈g̃〉(r̃) where we specify

the required DG parameters g̃ and actual parameters (r̃) of the constructor.

– For each gi, split〈g1, . . . , gn〉{s1 · · · sm} consumes an atomic or a concurrent DGAP

on gi. Then, it splits each of such DGAPs into m concurrent DGAPs (one per

each statement in the block). Once the statements in the block have finished their

execution, the concurrent DGAPs created are consumed and the original DGAPs

are restored.

– Finally, we can compose several statements in a block {s1, . . . , sn} where the

concurrent execution of statements is allowed according to the data dependencies

imposed by the APs and the DGAPs: once si has successfully consumed its needed

permissions, the execution of si+1 may start concurrently. Moreover, if si cannot

acquire the needed permissions, it must wait until such permissions are released

by the preceding statements.

Remark 2.1 (Circular recursive definitions)

The AP language in Figure 3 allows us to write recursive methods. However, the

language lacks control structures (e.g., if-then-else statements) to specify base cases

in recursive definitions. This language must be understood as a core language to

specify the AP mechanisms and not as a complete OO programming language

implementing the usual data and control structures. Hence, we shall assume that

there are no circular recursive definitions in the source program. Due to the lack of

control structures, this is an unavoidable restriction to guarantee termination of the

analyzes in Sections 4 and 5.

Dependencies and execution. Recall that blocks of sentences are enclosed by curly

brackets. Hence, we say that a sentence s occurs in a block if s is inside the braces

of that block.

Definition 1 (Conflicts and dependencies)

Let si and sj be statements that occur in the same block. We say that si and sj are

in conflict if both statements use an object o in conflicting modes, i.e., either (1) si or

sj require a unique permission on o, (2) si requires a share permission on o and sj
requires an immutable permission on o, or (3) si and sj require a share permission on

different DGs. Two blocks split〈g̃〉{s1, . . . , sn} and split〈g̃′〉{s′
1, . . . , s

′
m} occurring

in the same block are in conflict if g̃ ∩ g̃′ �= ∅.

The semantics of AP programs share with other semantics for OO languages

(see, e.g., Igarashi et al. 2001) the rules and contexts to keep track of references,

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

260 C. Olarte et al.

objects, as well as lookup tables to identify class names, fields, and methods with

their respective definitions. Additionally, in the case of AP programs, the semantics

relies on an evaluation context to keep track of the DGs created as well as the

available APs in the system. This context plays an important role in the semantic

rules: a statement s is executed only if the evaluation context possesses all the

permissions required by s. Moreover, in order to allow parallel executions, once s

consumes the needed permissions, the next statement (in the lexical order of the

program) is enabled for execution. For instance, in a block of statements s1, . . . , sn,

the execution starts by enabling s1. Each enabled statement si checks whether the

required permissions are available. If this is the case, such permissions are consumed,

si starts its execution and the next statement si+1 is enabled. When si terminates

its execution, the consumed permissions are restored to the environment. On the

other side, if the permissions required by si are not available, si must wait until

the needed permissions are released/produced by the preceding statements. Hence,

non-conflicting blocks lead to concurrent executions and conflicting blocks are

sequentialized according to the lexical order of the program (as in Figures 1 and 2).

The reader may refer to Stork et al. 2014, Sections 3.2 and 3.3 for the semantic

rules of μÆminium that can be easily adapted to the sublanguage in Figure 3.

In Section 4, we give a precise definition of the needed evaluation contexts by

using constraints (i.e., formulas in logic) and the state transformation by means of

concurrent processes consuming and producing those constraints.

3 Linear concurrent constraint programming

ccp (Saraswat and Rinard 1990; Saraswat et al. 1991; Saraswat 1993) (see a survey

in (Olarte et al. 2013)) is a model for concurrency that combines the traditional

operational view of process calculi with a declarative view based on logic. This

allows ccp to benefit from the large set of reasoning techniques of both process

calculi and logic.

Agents in ccp interact with each other by telling and asking information rep-

resented as constraints to a global store. The type of constraints is parametric in

a constraint system (Saraswat et al. 1991) that specifies the basic constraints that

agents can tell and ask during execution. Such systems can be specified as Scott

information systems as in (Saraswat and Rinard 1990), (Saraswat et al. 1991), or

they can be specified in a suitable fragment of logic (see, e.g., (Fages et al. 2001;

Nielsen et al. 2002)).

The basic constructs (processes) in ccp are (1) the tell agent c, which adds the

constraint c to the store, thus making it available to the other processes. Once

a constraint is added, it cannot be removed from the store (i.e., the store grows

monotonically). And (2), the ask process c → P , that queries if c can be deduced

from the information in the current store; if so, the agent behaves like P , otherwise,

it remains blocked until more information is added to the store. In this way,

ask processes define a simple and powerful synchronization mechanism based on

entailment of constraints.

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

A concurrent constraint programming interpretation of access permissions 261

c −→ c init Γ −→ R
Γ −→ c

Γ, 1 −→ c
1L −→ 1

1R

Γ, c1, c2 −→ c

Γ, c1 ⊗ c2 −→ c
⊗L

Γ1 −→ c1 Γ2 −→ c2

Γ1, Γ2 −→ c1 ⊗ c2
⊗R

Γ, ci −→ c

Γ, c1 c2 −→ c
Li

Γ −→ c1 Γ −→ c2

Γ −→ c1 c2
R

Γ1 −→ c1 Γ2, c2 −→ c

Γ1, Γ2, c1 c2 −→ c
L

Γ, c1 −→ c2

Γ −→ c1 c2
R

Γ, c1 −→ c Γ, c2 −→ c

Γ, c1 ⊕ c2 −→ c
⊕L

Γ −→ ci

Γ −→ c1 ⊕ c2
⊕Ri

Γ, c −→ d x /∈ fv(Γ, d)

Γ, ∃x.c −→ d
∃L

Γ −→ c[t/x]

Γ −→ ∃x.c
∃R

Γ, c[t/x] −→ d

Γ, ∀x.c −→ d
∀L

Γ −→ c x /∈ fv(Γ)

Γ −→ ∀x.c
∀R

Γ −→ d
Γ, ! c −→ d

W
Γ, ! c, ! c −→ d

Γ, ! c −→ d
C

Γ, c −→ d

Γ, ! c −→ d
D

! Γ −→ d
! Γ −→! d

prom

Fig. 4. Rules for intuitionistic linear logic (ILL). fv(c) (resp. fv(Γ)) denotes the set of free

variables of formula c (resp. multiset Γ). Γ,Δ denote multisets of formulas.

lcc (Fages et al. 2001) is a ccp-based calculus that considers constraint systems

built from a fragment of Girard’s ILL (Girard 1987). The move to a linear discipline

permits ask agents to consume information (i.e., constraints) from the store.

Definition 2 (Linear constraint systems (Fages et al. 2001))

A linear constraint system is a pair (C,
) where C is a set of formulas (linear

constraints) built from a signature Σ (a set of function and relation symbols), a

denumerable set of variables V and the following ILL operators: multiplicative

conjunction (⊗) and its neutral element (1), the existential quantifier (∃), and the

exponential bang (!). We shall use c, c′, d, d′, etc., to denote elements of C. Moreover,

let Δ be a set of non-logical axioms of the form ∀x̃.[c � c′] where all free variables

in c and c′ are in x̃. We say that d entails c, written as d
 c, iff the sequent

! Δ, d −→ c is provable in ILL (Figure 4).

The connective ⊗ allows us to conjoin information in the store and 1 denotes

the empty store. As usual, existential quantification is used to hide information. The

exponential ! c represents the arbitrary duplication of the resource c. The entailment

d
 c means that the information c can be deduced from the information represented

by constraint d, possibly using the axioms in the theory Δ. This theory gives meaning

to (uninterpreted) predicates. For instance, if R is a transitive relation, Δ may contain

the axiom ∀x, y, z.[R(x, y) ⊗ R(y, z) � R(x, z)].

We assume that “! ” has a tighter binding than ⊗ and so, we understand ! c1 ⊗ c2

as (! c1) ⊗ c2. For the rest of the operators, we shall explicitly use parenthesis to

avoid ambiguities. Given a finite set of indexes I = {1, . . . , n}, we shall use
⊗
i∈I

Fi to

denote the formula F1 ⊗ · · · ⊗ Fn.

We note that, according to Definition 2, constraints are built from the ILL

fragment ⊗, 1, ∃ ,!. We decided to include all ILL connectives in Figure 4 (linear

implication �, additive conjunction � and disjunction ⊕, the universal quantifier

∀, and the unit �), since those connectives will be used to encode lcc processes in

Section 5.

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

262 C. Olarte et al.

3.1 The language of processes

Similar to other ccp-based calculi, lcc, in addition to tell and ask agents, provides

constructs for parallel composition, hiding of variables, non-deterministic choices,

and process definitions and calls. More precisely:

Definition 3 (lcc agents (Fages et al. 2001))

Agents in lcc are built from constraints as follows:

P ,Q, . . . ::= c |
∑
i∈I

∀x̃i(ci → Pi) | P ‖ Q | ∃x̃(P) | p(x̃)

An lcc program takes the form D.P , where D is a set of process definitions of

the form p(ỹ)
Δ
= P where all free variables of P are in the set of pairwise distinct

variables ỹ. We assume D to have a unique process definition for every process

name.

Let us give some intuitions about the above constructs. The tell agent c adds

constraint c to the current store d producing the new store d ⊗ c.

Consider the guarded choice Q =
∑

i∈I ∀x̃i(ci → Pi), where I is a finite set of

indexes. Let j ∈ I , d be the current store and θ be the substitution [̃t/x̃j] where

t̃ is a sequence of terms. If d
 d′ ⊗ cjθ for some d′, then Q evolves into Pj [̃t/x̃j]

and consumes cjθ. If none of the guards ci can be deduced from d, the process Q

blocks until more information is added to the store. Moreover, if many guards can

be deduced, one of the alternatives is non-deterministically chosen for execution. To

simplify the notation, we shall omit “
∑

i∈I” in
∑

i∈I ∀x̃i(ci → Pi) when I is a singleton;

if the sequence of variables x̃ is empty, we shall write c → P instead of ∀x̃(c → P);

moreover, if |I | = 2, we shall use “+” instead of “
∑

” as in c1 → P1 + c2 → P2.

The interleaved parallel composition of P and Q is denoted by P ‖ Q. We shall

use Πi∈IPi to denote the parallel composition P1 ‖ · · · ‖ Pn, where I = {1, 2, . . . , n}.
If I = ∅, then Πi∈IPi = 1 .

The agent ∃x̃(P) behaves like P and binds the variables x̃ to be local to it. The

processes ∃x̃(P) and ∀x̃(c → P), as well as the constraint ∃x̃(c), bind the variables

x̃ in P and c. We shall use fv (P) and fv (c) to denote, respectively, the set of free

variables of P and c.

Finally, given a process declaration of the form p(ỹ)
Δ
= P , p(x̃) evolves into P [x̃/ỹ].

3.2 Operational semantics

Before giving a formal definition of the operational semantics of lcc agents, let us

give an example of how processes evolve. For that, we shall use 〈P ; c〉 −→ 〈P ′; c′〉
to denote that the agent P under store c evolves into the agent P ′ producing the

store c′. This notation will be precisely defined shortly.

Example 3.1 (Consuming permissions)

Let us assume a constraint system with predicates ref/3, ct/2; constant symbols

unq, imm, none, 0, nil ; function symbol s (successor); and equipped with the axiom:

Δ = ∀x, o.[ref(x, o, imm) ⊗ ct(o, s(0)) � ref(x, o, unq) ⊗ ct(o, s(0))]

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

A concurrent constraint programming interpretation of access permissions 263

X; Γ, c; d X; Γ; d ⊗ c
RTELL

d y(d ⊗ ci[t/xi]), y ∩ fv(X, Γ, d) = ∅, mgc(d , t)

X; Γ, i∈I ∀xi(ci → Pi); d X ∪ y; Γ, Pi[t/x]; d
RCHOICE

y ∩ X = y ∩ fv(Γ, d) = ∅
X; Γ, ∃y(P); d X ∪ y; Γ, P ; d

RLOC

p(y)
Δ
= P is a process definition

X; Γ, p(x); d X; Γ, P [x/y]; d
RCALL

Fig. 5. Operational semantics of lcc. fv (Γ, d) means fv (Γ) ∪ fv (d). fv (X,Γ, d) means

fv (Γ, d) ∪ X. The notion of most general choice (mgc(d′, t̃)) is in Definition 4.

Informally, Δ says that an imm permission can be upgraded to unq if there is only

one reference pointing to o.

Consider now the processes

P1 = ref(x, ox, imm) ⊗ ct(ox, s(0))
P2 = ref(y, oy , imm) ⊗ ref(z, oy , imm) ⊗ ct(oy , s(s(0)))
Q = ∀o(ref(x, o, unq) ⊗ ct(o, s(0)) → Q′)
Q′ = ref(x, nil , none) ⊗ ct(o, 0)
R = ∀o(ref(y, o, unq) → R′)

Roughly, P1 adds to the store the information required to state that x points to ox
with permission imm and that there is exactly one reference to ox. P2 states that there

are two references (y and z) pointing to the same object oy . Process Q, in order to

evolve, requires x to have a unique permission on ox. Finally, R is asking whether y

has a unique permission on a given object o to execute R′ (not specified here).

Starting from the configuration 〈P1 ‖ P2 ‖ Q ‖ R; 1〉, we observe the derivation

below:

(1) 〈P1 ‖ P2 ‖ Q ‖ R; 1〉
(2) −→ 〈P1 ‖ Q ‖ R; 1 ⊗ ref(y, oy, imm) ⊗ ref(z, oy, imm) ⊗ ct(oy, s(s(0)))〉
(3) −→ 〈Q ‖ R; 1 ⊗ ref(y, oy, imm) ⊗ ref(z, oy, imm) ⊗ ct(oy, s(s(0))) ⊗ ref(x, ox, imm) ⊗ ct(ox, s(0))

(4) −→ 〈Q′[ox/o] ‖ R; ref(y, oy, imm) ⊗ ref(z, oy, imm) ⊗ ct(oy, s(s(0)))〉
(5) −→ 〈R; ref(y, oy, imm) ⊗ ref(z, oy, imm) ⊗ ct(oy, s(s(0))) ⊗ ref(x, nil , none) ⊗ ct(ox , 0)〉

From the initial store 1, neither Q nor R can deduce their guards and they remain

blocked (line 1). Tell processes P1 (line 3) and P2 (line 2) evolve by adding information

to the store. Let d (resp. d′) be the store in the configuration of line 3 (resp. line 4) and

c be the guard of the ask agent Q. We note that d
 d′ ⊗c[ox/o]. Recall that checking

this entailment amounts to prove in ILL the sequent !Δ, d −→ d′⊗c[ox/o] (Definition

2). In this case, the axiom Δ allows us to transform ref(x, ox, imm) ⊗ ct(ox, s(0))

into ref(x, ox, unq) ⊗ ct(ox, s(0)). Hence, Q reduces to the tell agent Q′[ox/o] and

consumes part of the store leading to the store d′ in line 4. In line 5, Q′[ox/o] adds

more information to the store, namely, x points to null and there are no references

pointing to ox. Note that R remains blocked since the guard ref(y, o, unq) cannot

be entailed.

Operational semantics. Let us extend the processes-store configurations used in

Example 3.1 to consider configurations of the form 〈X; Γ; c〉. Here, X is the set

of local (hidden) variables in Γ and c, Γ is a multiset of processes of the form

P1, . . . , Pn representing the parallel composition P1 ‖ · · · ‖ Pn, and c represents the

current store. In what follows, we shall indistinguishably use the notation of multiset

as parallel composition of processes.

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

264 C. Olarte et al.

Fig. 6. Definition of the sequential composition P ;Q.

The transition relation −→ defined on configurations is the least relation satisfying

the rules in Figure 5. We shall use −→∗ to denote the reflexive and transitive closure

of −→. It is easy to see that rules RTELL, RLOC, and RCALL realize the behavioral

intuition given in the previous section. Let us explain the Rule RCHOICE. Recall that

the process
∑

i∈I ∀x̃i(ci → Pi) executes Pj [̃t/x̃j] if cj [̃t/x̃i] can be deduced from the

current store d, i.e., d
 d′ ⊗ cj [̃t/x̃]. Moreover, the constraint cj [̃t/x̃] is consumed

from d leading to the new store d′. Hence, d′ must be the most general choice in the

following sense:

Definition 4 (Most general choice (mgc) (Martinez 2010; Haemmerlé 2011))

Consider the entailment d
 ∃ỹ(e ⊗ c[̃t/x̃]) and assume that ỹ ∩ fv(d) = ∅. Assume

also that d
 ∃ỹ(e′ ⊗ c[̃t′/x̃]) for an arbitrary e′ and t̃′. We say that e and t̃ are

the most general choices, notation mgc(e, t̃), whenever e′
 e implies e
 e′ and

c[̃t/x̃]
 c[̃t′/x̃].

The mgc requirement in rule RCHOICE prevents from an unwanted weakening

of the store. For instance, consider the ask agent Q = c → P . We know that ! c

entails c ⊗ 1 (i.e., ! c
 c ⊗ 1). Hence, without the mgc condition, Q may consume ! c

leading to the store 1. This is not satisfactory since Q did not consume the minimal

information required to entail its guard. In this particular case, we have to consider

the entailment ! c
 ! c ⊗ c where Q can entail its guard and the store remains the

same. For further details, please refer to (Haemmerlé 2011).

Sequential composition. In the subsequent sections, we shall use the derived operator

P ;Q that delays the execution of Q until P signals its termination. This operator

can be encoded in lcc as follows. Let z be a variable that does not occur in P

nor in Q and let sync(·) be an uninterpreted predicate symbol that does not occur

in the program. The process P ;Q is defined as ∃z(C[[P]]z ‖ sync(z) → Q) where

[[·]]z is in Figure 6. Intuitively, C[[P]]z adds the constraint sync(z) to signal the

termination of P . Then, the ask agent sync(z) → Q reduces to Q. Note that in a

parallel composition P ‖ R, one has to wait for the termination of both P and R

before adding the constraint sync(z). For that, C[[P ‖ R]]z creates fresh variables

w1 and w2 to signal the termination of, respectively, P and R. Then, it adds sync(z)

only when both sync(w1) and sync(w2) can be deduced. Assume now a process

definition of the form p(ỹ)
def
= P . We require the process P to emit the constraint

sync(z) to synchronize with the call p(x̃). We then add an extra parameter to the

process definition (p(ỹ, z)
Δ
= C[[P]]z). Hence, the variable z is passed as a parameter

and used by C[[P]]z to synchronize with the call p(x̃, z).

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

A concurrent constraint programming interpretation of access permissions 265

Fig. 7. Constraint system for access permissions. 0 denotes the constant “zero” and s(·)
successor.

4 AP programs as lcc processes

This section presents an interpretation of APs and DGAPs as processes in lcc. We

thus endow AP programs with a declarative semantics which is adequate to verify

relevant properties as we show later. We start defining the constraint system we shall

use. Constants, predicate symbols, and non-logical axioms are depicted in Figure 7

and explained below.

We shall use c, m, a, g, o to range, respectively, over name of classes, methods,

fields, DGs, and objects in the source AP language. For variables, we shall use x, y,

and u. We may also use primed and subindexed version of these letters. We shall

use the same letters in our encodings. Hence, if x occurs in a constraint (see e.g.,

predicate ref(·) below), it should be understood as the representation of a variable

x in the source language. Finally, we shall use z, w (possible primed or subindexed)

to represent identifiers of statements in the source program. Those variables will

appear in the scope of constraints used for synchronization in the model as, e.g., in

the constraint sync(·).

Permissions and constants: Constant symbols in sets PER and GPER represent the kind

of APs and DGAPs available in the language. Since none, unique, and immutable AP

are not associated to any DG, we shall use the constant ndg to denote “no-group.”

Recall that the split command splits a DGAP into several DGAPs, one per each

statement in the block. Then, we require to specify in our model the statement to

which the concurrent permission is attached to (see predicate dg(·) below). Since

atomic DGAPs are not attached to any particular statement in the program, we

use the constant nst to denote “no-statement.” The constant nil is used to denote

a null reference. Assume a class c with an attribute a and a DG parameter g.

We use the constant symbol c a to make reference to a (see predicate field(·)
below) and a constant symbol c g to make reference to g (see gparam(·) below).

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

266 C. Olarte et al.

We also consider the constant symbols g1, . . . , gn to give meaning to the statement

group〈g1, · · · , gn〉.

References and fields: We use the predicate symbol ref(x, o, p, g) to represent that

the variable x is pointing to object o and it has a permission p on it. The last

parameter of this predicate is used to give meaning to share permissions of the

form shr : g. As we already explained, g = ndg when p �= shr. The predicate

field(xu, o, a) associates the variable xu to the field a of object o. Once an object of

a given class c with DG parameters is instantiated, the predicate gparam(c g, o, gp)

dictates that the group parameter g of the object o was instantiated with the DG gp.

The predicate sync(z) is used in the definition of P ;Q as explained in the previous

section. Constraints act(z), run(z), and end(z) represent, respectively, that statement

z has been called, it is currently being executed or it has finished. We shall use those

constraints as witnesses for verification purposes. The number of references (alias)

pointing to a given object are modeled with the predicate ct(o, n). Given a DG g,

the predicate dg(g, p, z) dictates that the statement z has a DG permission p ∈ GPER

on g. If p = atm, then z = nst.

Non-logical axioms: The entailment of the constraint system allows us to formalize

when a given AP can be transformed into another. Assume that x has a unique

permission on o. Unique permissions can be downgraded to share or immutable

permissions as dictated by axioms downgrade1 and downgrade2, respectively. Axiom

upgrade1 (resp. upgrade2) builds a unique permission from a share (resp. immutable)

permission. For that, x needs to be the unique reference with share or immutable

permission to the pointed object. Conversions from share permissions into immutable

and vice versa require to first upgrade the permission to unique and then applying

the appropriate downgrade axiom.

4.1 Modeling statements

Given an AP annotated program, we shall build an lcc program D.P where D
includes process definitions for each method and constructor of the AP program

(Section 4.2 below) and a process definition to encode assignments (assg in Figure

8). The process P represents the encoding of the main body of the AP program

where each statement s is encoded as a lcc process S[[s]]Gz that models its behavior.

The process S[[s]]Gz adheres to the following schema. The lcc variable z is used

to represent the statement s in the model. We assume (by renaming variables

if necessary) that z does not occur in s. The encoding uses constrains to signal

three possible states in the execution of s. When the program control reaches the

statement s, the encoding adds the constraint act(z) to signal that s is ready to

be executed. When the needed permissions for s are successfully acquired, act(z)

is consumed and constraints sync(z) and run(z) are added. The first one is used

to synchronize with the rest of the model. More precisely, the encoding of the next

instruction in the program waits for constraint sync(z) to be posted before starting

its execution. In this way, we model the data dependencies resulting from the flow of

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

A concurrent constraint programming interpretation of access permissions 267

Fig. 8. Auxiliary definitions for Rule RALIAS.

APs. Constraint run(z) signals that s is currently being executed. Once s has finished

and the consumed permissions are restored, the encoding consumes run(z) and adds

the constraint end(z).

The G in S[[s]]Gz stands for the set of DGs on which s must have a concurrent

DGAP to be executed. Recall that such permissions are assigned by a split

command. Then, we use G to control which DGAPs must be consumed and restored

by s.

In the following, we define S[[s]]Gz for each kind of statement in the syntax in

Figure 3. For that, the following shorthand will be useful (
def
= must be understood

as a shorthand and not as process definition):

wrap(P , {g1 , · · · , gn}, z) def
= act(z);(

⊗
i∈1..n

dg(gi, conc, z) → 1);P ‖ (end(z) →
⊗
i∈1..n

dg(gi, conc, z))) (wrap)

Assume that s is an statement and P = S[[s]]Gz . The process wrap(P ,G, z) first

consumes all the concurrent DGAPs available for s, i.e., those in the set G. If G = ∅,

then
⊗

i∈1..n dg(gi, conc, z) is defined as 1. Observe that once s has terminated (i.e.,

the constraint end(z) is added to the store) such permissions are restored.

Assignments. We have different cases for the assignment r〈g〉 := rhs depending

whether r and rhs are variables or field selections. Let us start with the case when

both are variables as in x〈g〉 := y and x is syntactically different from y. We have

S[[x〈gt〉 := y]]Gz = wrap(assg(x, y, z, gt), G, z) (RALIAS)

where assg is defined in Figure 8. The variable x loses its permission to the pointed

object o, and the object o has one less reference pointing to it (Definition drop).

Thereafter, x and y point to the same object and the permission of y is split between

x and y as explained in Section 2.2 (Definition gain). Finally, once the permission to

y is split, the constraints sync(z) and !end(z) are added to the store to, respectively,

synchronize with the rest of the program and mark the termination of the statement.

Note in assg the use of the constraints act(·), run(·), and end(·). Initially, constraint

act(z) is added (by wrap). When the permissions on x and y are split (after drop

and gain), act(z) is consumed to produce run(z). Finally, run(z) is consumed to

produce end(z).

Now consider the case S[[x.a〈g〉 := y]]Gz . If the variable x points to the object o of

class c, then the field a of o can be accessed via the variable u whenever the constraint

field(u, o, c a) holds. Intuitively, u points to x.a and then, a constraint ref(u, o′, p, g)

dictates that x.a points to o′ with permission p. As we shall show later, the model

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

268 C. Olarte et al.

of constructors adds the constraint ! field(u, o, c a) to establish the connection

between objects and their fields. The model of the assignment S[[x.a〈g〉 := y]]Gz is

thus obtained from that of S[[u〈g〉 := y]]Gz :

S[[x.a〈g〉 := y]]Gz = ∀u, o, p, g(ref(x, o, p, g) ⊗ field(u, o, c a) → (ref(x, o, p, g); S[[u〈g〉 := y]]Gz)) (RALIASF
)

The cases x.a〈g〉 := y.a′ and x〈g〉 := y.a are similar.

Let. Local variables in the AP program are defined as local variables in lcc:

S[[let fT x in s end]]Gz = ∃x̃(
⊗

i∈1..|x̃|
ref(xi, nil , none, ndg); S[[s]]Gz ‖ GC) (RLOC)

where GC
def
= end(z) →

∏
i∈1..|x̃| drop(xi). Observe that the freshly created variables point

to nil with no permissions. Once s ends its execution, the local variables are destroyed

(definition GC). We note also that, in this case, we do not add the constraint sync(z)

nor end(z). The reason is that the creation of the local variable can be considered

as “instantaneous” and then, the process S[[s]]Gz will be in charge of marking the

termination of the statement. Note that we ignore the type T since our model and

analyses are concerned only with the flow of APs and we assume that the source

program is well typed.

Block of statements. In the block {s1 · · · si sj · · · sn}, the process modeling sj runs

in parallel with the other processes once S[[si]]
G
zi

adds the constraint sync(zi) to

the store. Hence, what we observe is that the execution of sj is delayed until the

encoding of si has successfully consumed the required permissions. After that, even

if si has not terminated, the encoding of sj can proceed. Once sync(zn) can be

deduced, constraint sync(z) is added to the store to synchronize with the rest of

the program. Moreover, the constraint end(z) is added only when all the statements

s1, . . . , sn have finished their execution:

S[[{s1 . . . si . . . sn}]]Gz = wrap(P ,G, z) (RCOMP)

where P is defined as

P
def
= act(z) → run(z); ∃z1 , . . . zn(S[[s1]]

G
z1

‖ sync(z1) → S[[s2]]
G
z2

‖ . . . ‖ sync(zn−1) → S[[sn]]
G
zn

‖
sync(zn) → sync(z) ‖ (run(z)⊗

⊗
i∈1..n end(zi)) →!end(z))

Groups of permissions. In order to define DGs, we add a constraint specifying

that each of those groups has an atomic DGAP. Recall that the constant nst

indicates that the atomic permission is not attached to any particular statement in

the program:

S[[group〈g1 , . . . , gn〉]]Gz =
⊗
i∈1..n

dg(gi, atm, nst) (RNEWG)

Similar to the creation of local variables, we do not mark termination of this

statement since it can be considered as “instantaneous.”

Split. Let G′ = {g1, . . . , gm}. We define the rule for split as follows:

S[[split〈G′〉{s1 · · · sn}]]Gz = wrap(P ,G \ G′ , z) (RSPLIT)

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

A concurrent constraint programming interpretation of access permissions 269

Fig. 9. Auxiliary definitions for Rule RSPLIT.

where P and definitions gainP, addP, exec, and restoreP are in Figure 9. Before

explaining those definitions, consider the following code:

1 split <g1,g2 >{
2 s1
3 split <g2,g3 >{
4 s2} }

and assume we are encoding the split statement in line 3. Then, we consider the

process S[[split〈G′〉{s2}]]Gz where G′ = {g2, g3}. The set G = {g1, g2} corresponds

to the concurrent DGAPs assigned by the external split statement in line 1. The

process gainP consumes either atomic or concurrent permissions for each DG

gi ∈ G′. Since such permissions must be restored once the split command has

been executed, we distinguish the case when the consumed permission is concurrent

(conc) or atomic (atm). For that, we use the auxiliary predicate symbol (constraint)

env(·) that keeps information of the DGAP consumed. We note that the DGAP

g2 ∈ G ∩ G′ is consumed and then split again to be assigned to the statement s2.

Now consider the DG g1 ∈ G \ G′. Since g1 �∈ G′, the DGAP on this group must

be consumed and it must not be split to be assigned to s2. Hence, the consumption

of any g ∈ G \ G′ is handled by the wrap(·) process as in the encoding of other

statements.

Once we have consumed the appropriate DGAPs, we add, for each statement in

the block, a concurrent DGAP for each of the DGs in G′ (definition addP).

The process exec is similar to Rule RCOMP but it uses as parameter G′. In our

example, this means that concurrent DGAPs on g2 and g3 (and not on g1) are

assigned to s2. As we already saw in the definition of RCOMP, the constraint sync(z′)

is added to the store once all the statements in the block were able to consume

the required APs. At this point, we wait for all the instructions to reestablish their

assigned DGAPs (definition restoreP). Recall that this happens only when the

statements terminate (see definition wrap).

Finally, with the help of the constraints env(·), we restore the DGAPs to the

environment and we add the constraint !end(z) to mark the ending of the block.

Method calls and Object instantiation. In our encoding, we shall write methods and

constructors using functional notation rather than OO notation. For instance, x.m(ỹ)

is written as c m(x, ỹ) when x is an object of type c. Similarly, the expression c c(x, ỹ)

corresponds to x := new c(ỹ). As we shall see, for each method m(ỹ) of the class c,

we shall generate a process definition c m(x, ỹ, z)
Δ
= P . The extra argument z is used

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

270 C. Olarte et al.

to later add the constraint sync(z) to synchronize with the rest of the program. If x

is of type c, the rule is defined as follows:

S[[x.m(ỹ)]]Gz = wrap(c m(x, y1 , .., yn, z), G, z) (RCALL)

The case of the call x.a.m(ỹ) can be obtained by using the constraint field(·) as

we did in Rule RALIASF
for assignments between fields.

The model of an object initialization is defined similarly but we add also as a

parameter the instances of the DGs:

S[[x := new c〈g1 , . . . , gn〉(ỹ)]]Gz = wrap(c c(x, ỹ, z, g1 , . . . , gn), G, z) (RNEW)

4.2 Modeling class definitions

In this section, we describe function D[[·]] interpreting method and constructors

definitions as lcc process definitions.

Method definitions. Let m(Ccy〈egy〉 y) p(this),ep(y) ⇒ p′(this), ep′(y) {s} be a method

in class c〈g̃x〉. We define

D[[c.m]] = c m(x, ỹ, z)
Δ
= ∃ỹ′ , x′(Consume; sync(z); act(z) → run(z);Body) (RMDEF)

where n = |ỹ| = |ỹ′|,
Consume

def
=

∏
i∈1..n consume(yi, y

′
i , pi, c) ‖ consume(x, x′, p, c)

Body
def
= ∃z′(S[[ŝ]]z′ ‖ (sync(z′) ⊗ end(z′)) →

(r env(x, p, x′, p′, c) ‖
∏

i∈1..nr env(yi, pi, y
′
i , p

′
i, c))); run(z)→end(z)

and the auxiliary process definitions consume(·) and r env(·) are in Figure 10.

In the process definition c m(x, ỹ, z), the first parameter x represents the object

caller this and the last parameter z is used for synchronization. This definition first

declares the local variables ỹ′ and x′ to replace the formal parameters (ỹ) and the

caller (x) by the actual parameters. Next, it consumes the required permissions from

ỹ and x, and assigns them to the previously mentioned local variables. Finally, the

constraint sync(z) is added and the encoding of the method’s body is executed. In

the following, we explain the definitions Consume and Body.

The definition of consume(x, x′, p, c) in Figure 10 can be read as “consume the

permission p on the variable x and assign it to the variable x′.” If the required

permission is share or immutable, the permission is split and restored to allow

concurrent executions in the environment that called the method. We recall that

in p = shr : g, g must be a DG parameter in the class c. This explains the last

parameter in consume(·). We then use the predicate ! gparam(c g, o, g), added by

the encoding of constructors, as we shall see, to establish the link between the DG

parameter and the current DG. Finally, unique and none permissions are consumed

and transferred to the local variables.

Now we focus on the definition Body where ŝ denotes s after replacing yi by y′
i

and x by x′. Once ŝ finishes (i.e., it adds end(z′) to the store), the references and

permissions of the local variables created to handle the parameters are consumed and

restored to the environment according to r env(x, p, x′, p′, c) in Figure 10 (consume

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

A concurrent constraint programming interpretation of access permissions 271

Fig. 10. Auxiliary definitions for constructor and method declarations.

the permission p on x and transforms it into a permission p′ to the variable x′).

Let us give some intuition about the cases considered in this definition. Recall that

consume replicates the shr and imm permissions for the variables internal to the

method. Therefore, we only need to consume those permissions and decrease the

number of references pointing to object o′. When the input permissions are unq or

none, consume transfers those permissions to the local variables and consumes the

external references. Then, r env needs to restore the external reference and consume

the local one (the number of references pointing to o′ remains the same). When the

method changes the input permission from share or immutable into a unique or

none, we need to consume first the external reference. Afterwards, we transfer the

internal permission and reference to the external variable.

Constructor definitions. Let c(Ccy〈egx〉 y) none(this),ep(y) ⇒ p′(this), ep′(y) {s} be a

constructor of a parameterized class c〈pg1, . . . , pgk〉. We define

D[[CD]] = c(x, ỹ, z, g1 , . . . , gk)
Δ
= ∃ỹ′ , x′ , onew(gparam-init; consume′;

∃ũ(fields-init ; sync(z); act(z) → run(z);
∃z′(S[[ŝ]]z′ ‖ (sync(z′) ⊗ end(z′)) →

(r env(x, p, x′ , p′ , c) ‖
∏

i∈1..m r env(yi, pi, y
′
i , p

′
i , c))));

run(z) →!end(z))

(RCDEF)

where n = |ỹ| = |ỹ′| and

consume′ def
=

∏
i∈1..m consume(yi, y

′
i , pi, c) ‖

ref(x, nil , none, ndg)→ref(x ′, onew , unq, ndg)⊗ct(onew , s(0))

gparam-init
def
=

⊗
i∈1..k ! gparam(c pgi, onew, gi)

fields-init
def
= ! field(u1, onew, c a1) ⊗ ref(u1, nil , none, ndg) ⊗ . . .⊗

! field(uk, onew, c ak) ⊗ ref(uk, nil , none, ndg)
The mechanisms for parameter passing, executing the body ŝ and restoring

permissions are the same as in method definitions. The definition consume’ is

similar to consume in method definitions but, instead of using consume(x, x′, p, c), we

consume the constraint ref(x, nil , none, nst), i.e., x in the statement x := new c〈g̃〉(ỹ)

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

272 C. Olarte et al.

Fig. 11. Main program for Example 4.1. Class definitions are in Figure 1.

is restricted to be a null reference. Moreover, the internal variable x′ points to the

newly created object onew with permission unique.

The definition gparam-init allows us to establish the link between the new object

onew and the group parameters. In the constraint gparam(c pgi, onew, gi), the constant

symbol c pgi corresponds to the name defined for the DG parameter pgi of the class

c〈pg1, . . . , pgk〉 and gi is the current DG passed as parameter.

The initialization of fields is controlled by the definition fields-init. The added

constraint field(ui, onew, c ai) establishes the link between the field onew.ai and the

null reference ui.

Let us present a couple of examples to show the proposed model in action.

Example 4.1 (Access permission flow)

Assume the class definitions stats and collection in Figure 1 and the main body in Fig-

ure 11. The lcc agent modeling the statement in line 10 calls collection collection(c, z10),

which triggers the execution of the body of the constructor (see Rules RCDEF and

RCALL). Variable z10 is the local variable used to synchronize with the rest of the

program (see Rule RCOMP). Once the agents modeling the statements in lines 10 and

11 are executed, the following store is observed:

∃c, s, oc, os(ref(c, oc, unq, ndg)⊗ref(s, os, unq, ndg)⊗ct(oc, s(0)) ⊗ ct(os, s(0)))

Hence, c (resp. s) points to oc (resp. os) with a unique permission. In c.compStats(), c

requires an immutable permission to oc. The axiom downgrade2 is used to entail the

guard of consume in the definition of the method. Let c′ be the representation of c

inside the method (see Rule RMDEF). We notice that when the body of the method

is being executed, both c and c′ have an immutable permission to oc, i.e., the store

contains the tokens

ref(c, oc, imm, ndg) ⊗ ref(c′, oc, imm, ndg) ⊗ ct(oc, s(s(0)))

Before executing the body of method compStats constraint sync(z12) is added, so as

to allow possible concurrent executions in the main body (see Rule RCOMP). Hence,

the agent modeling the statement in line 13 can be executed and we have a store with

three references with immutable permission to object oc, namely, c, c′ as before, and

c′′, the representation of c inside the method print. Now, once constraint sync(z13)

is added by the definition of print, the process representing the statement in line 14

can be executed. However, this call requires c to have a unique permission to oc
which is not possible since the axiom upgrade2 requires that c is the sole reference

to oc. Hence, the guard consume for this call is delayed (synchronized) until the

permissions on c′ and c′′ are consumed and restored to the environment (see r env

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

A concurrent constraint programming interpretation of access permissions 273

Fig. 12. Constraints added by the processes in Example 4.2 (AP code in Figure 2).

in Rule RMDEF). We then observe that statements in lines 12 and 13 can be executed

concurrently but the statement in line 14 is delayed until the termination of the

previous ones.

Example 4.2 (Data group permissions flow)

Now consider the program in Figure 2. Figure 12 shows the stores generated by the

model of this program. We omit some tokens for the sake of readability.

Example 4.3 (Deadlocks)

Let us consider the following implementation for the method compStats in the class

collection (see Figure 1)

1 compStats(s) imm(this), unq(s) => imm(this), unq(s) {
2 ...
3 c.sort()
4 ... }

Consider the call c.compStats(s) and suppose that, in the lcc model, variable c

points to the object oc. When the compStats method is invoked, the immutable

permission is divided between the external reference c and the internal reference c′.

For this reason, inside the method, reference c′ cannot acquire a unique permission

for the invocation of method sort which then blocks. Our analysis will thus inform

that there is a deadlock, unless, e.g., the program includes the statement c〈g〉 := nil

to discard the permission of c to oc.

Consider now the following definition of the same method:

1 compStats(s) unq(this), unq(s) => unq(this), unq(s) {
2 ...

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

274 C. Olarte et al.

3 c.sort()
4 ...}

When compStats is invoked, the unique permission is transferred from reference

c to (the internal) reference c′. The invocation of method sort has thus the right

permissions to be executed and it does not block.

4.3 The model as a runnable specification

Models based on the ccp paradigm can be regarded as runnable specifications, and

so we can observe how permissions evolve during program execution by running

the underlying lcc model. We implemented an interpreter of lcc in Java and used

Antlr (http://www.antlr.org) to generate a parser from AP programs into lcc

processes following our encoding. The resulting lcc process is then executed and

a program trace is output. The interpreter and the parser have been integrated

into Alcove (AP Linear COnstraints VErifier) Animator, a web application freely

available at http://subsell.logic.at/alcove2/. The URL further includes all

the examples presented in this section. In the following, we explain some outputs of

the tool.

Example 4.4 (Trace of access permissions)

The program in Figure 1 generates the trace depicted in Figure 13. For verification

purposes, the implementation extends the predicates act(·), run(·), and end(·) to

include also the variable that called the method, the name of the method, and

the number of line of the call. Note for instance that the call to print (line 9 in

Figure 13) was marked while the method sort was running (line 7). Nevertheless, the

execution of print (line 11) must wait until sort terminates (line 10). In this trace, the

constructor stats (line 5) runs in parallel with sort (line 7). Finally, the execution of

removeDuplicates (line 17) is delayed until the methods print (line 13) and compStats

(line 16) terminate. Lines 20 and 21 show that both c and s end with a unique

permission to objects o_4774 and o_79106, respectively (the numbers that follow

the variable names are generated each time a local variable is created to avoid clash

of names).

Example 4.5 (Deadlock detection)

Let us assume now the class definitions in Figure 1 and the following main:

8 main(){
9 group <g>

10 let collection c, stats s, stats svar in
11 c := new collection ()
12 s := new stats()
13 svar <g> := s
14 c.compStats(s)
15 c.compStats(svar)
16 end}

The assignment in line 13 aliases svar and s so they share the same permission

afterwards. Therefore, s cannot recover the unique permission to execute the

statement in line 14, thus leading to a permission deadlock. This bug is detected

by Alcove as depicted in Figure 14 (line 13). Observe in the trace that compstats

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

A concurrent constraint programming interpretation of access permissions 275

Fig. 13. Trace generated by the program in Figure 1 (Example 4.4).

Fig. 14. Trace generated by the program in Example 4.5.

is called (line 7 in the trace) but not executed. Furthermore, both s and svar have

a share permission on the same pointed object (lines 17 and 18). Moreover, both

c (c_644) and its internal representation inside compStats (inner_136172) have an

immutable permission on object o_6491 (lines 16 and 19). Lines 8–11 show the

suspended lcc processes in the end of the computation that were killed by the

scheduler. Particularly, line 10 shows that there is an ask agent trying to consume a

unique permission on object O_142 pointed by S_745.

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

276 C. Olarte et al.

4.4 Adequacy of the encoding

In this section, we present some invariant properties of the encoding and prove it

correct. There are three key arguments in our proofs:

Observation 4.1 (Ask agents)

(1) The ask agents controlling both the APs (Proposition 4.1) and the state of

statements (Proposition 4.2) are of the form c → P where P is a tell agent (and

not, e.g., a parallel composition). Hence, in one single transition, the encoding

consumes and produces the needed tokens to maintain the invariants (ruling out

intermediate states where the property might not hold). Moreover, (2) such ask

agents are preceded by the sequential composition operator “;.” This means that,

before consuming the needed constraints, some action must have been finished. In

particular, (3) the ask agent act(z) → run(z) is executed only when the needed

permissions are consumed and the ask agent run(z) → end(z) is executed only after

restoring the consumed permissions (Rules RALIAS, RCDEF and RMDEF).

The following invariants show that the lcc model correctly keeps track of the

variables and their corresponding pointed objects.

Proposition 4.1 (Invariants on references)

Let S be an AP program and D.P its corresponding translation into lcc. Assume

that (∅;P ; 1) −→∗ (X; Γ; c). The following holds:

(1) If c
 ref(x, o, unq, ndg), then c
 ct(o, s(0)).

(2) If c
 ref(x, o, p, g) and p ∈ {shr, imm}, then there exists n > 0 s.t. c
 ct(o, n).
(3) If c
 ref(x, o, p, g) and c
 ref(x, o′, p′, g′), then o′ = o, p′ = p and g′ = g.

(4) If c
 ref(x, nil , p, g), then p = none and g = ndg.
(5) (counting) if c
 ct(o, n), then

(a) for all m � n, c
 ∃x1, p1, g1 . . . , xm, pm, gm
⊗

i∈1..m ref(xi, o, pi, gi), and

(b) for all m > n, c �
 ∃x1, p1, g1 . . . , xm, pm, gm
⊗

i∈1..m ref(xi, o, pi, gi).

Proof

An inspection of the encoding reveals that the rules RALIAS and RLOC and the defi-

nitions consume, r env, and fields-init are the only ones that consume/produce

ref(·) and ct(·) constraints. For any newly created variable, RLOC and fields-init

add the needed ref(·) token adhering to item 4. Moreover, the ask agents in the

above rules/definitions adhere to the conditions in Observation 4.1. Therefore,

if the agent c → P consumes a constraint of the form ref(x, o, p, g), the tell

process P adds the needed constraints to maintain correct the counting of references

to o. �

The next proposition shows that the encoding correctly captures the state of

statements.

Proposition 4.2 (States)

Let State = {act, run, end}, S be an AP program and D.P its corresponding lcc

translation. Consider an arbitrary execution starting at P :

(∅;P ; 1) −→ (X1; Γ1; c1) −→ (X2; Γ2; c2) −→ · · · −→ (Xn; Γn; cn)

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

A concurrent constraint programming interpretation of access permissions 277

Let z ∈ Xn, st ∈ State, x ∈ 1 . . . n, and assume that cx
 st(z). Then,

(1) (no confusion) for all st′ ∈ State \ {st}, cx �
 st′(z);

(2) (state ordering) there exists i ∈ 1..x such that

(a) (init) for all k ∈ [1, i) and st′ ∈ State, ck �
 st′(z);

(b) (continuity) for all k ∈ [i, n], ck
 st′(z) for some st′ ∈ State;

(c) (act) if cn
 act(z), then for all k ∈ [i, n], ck
 act(z);

(d) (act until run) if cn
 run(z), then there exist two non-empty intervals

A = [i . . . jr) and R = [jr, n] s.t. for all k ∈ A, ck
 act(k) and for all k ∈ R,

ck
 run(k);

(e) (run until end) if cn
 end(z), then there are three non-empty intervals

A = [i..jr), R = [jr, . . . , je), E = [je, . . . , jn] s.t. A and R are as above and for all

k ∈ E, ck
 end(z).

Proof

Note that the token act(z) is added when the encoding of a statement is activated

(wrap). An inspection of the encoding shows that the ask agents controlling the

state of statements adhere to conditions in Observation 4.1. Since each executed

statement uses a freshly created variable z (see RCOMP), we can show that, for any

z and multiset Γx, Γx can contain at most one of each of such ask agents (using z).

Hence, for all st ∈ State, if s(z) is consumed from the store cx, the store cx+1 must

contain the next state st′(z). This guarantees the correct ordering of states. �

We conclude by showing that the encoding enforces the execution of statements

according to the AP specification. More precisely, the activation of a statement

s is delayed until its (lexical) predecessor has successfully consumed the needed

permissions, the execution of s is delayed until its required permissions are available

(and consumed), signaling the termination of s is delayed until all the consumed

permissions are restored.

Theorem 4.1 (Adequacy)

Let S be an AP program and D.P its corresponding lcc translation. Let si and sj
be two sentences that occur in the same block and sj is lexically after si. Then,

(1) (safety) si and sj are in conflict iff for any reachable configuration (X; Γ; c) from

(X;P ; 1), c
 run(zsj) implies c
 end(zsi);

(2) (concurrency) si is not in conflict with sj iff there exists a reachable configuration

(X; Γ; c) from (X;P ; 1) s.t. c
 run(zsi) and c
 run(zsj).

Proof

The execution of assignments, the call to methods/constructors and the beginning

of blocks are the statements we have to synchronize in the encoding. Note that rules

RALIAS, RCDEF, RMDEF, RSPLIT, and RCOMP adhere to conditions in Observation

4.1. In particular, condition (3) shows that the changes of states are controlled by

acquiring/releasing permissions.

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

278 C. Olarte et al.

(⇒) (1) Assume that si and sj both require a unique permission on the same

object (the other kind of conflicts are similar). From rule RCOMP, we know that si
first consumes its permissions (before enabling sj). From Propositions 4.1 and 4.2,

we can show that sj cannot move to the state run until si moves to state end.

(2) If there are no conflicting resources, then both processes may success-

fully consume the needed permissions from the store. Consider the following

trace: the encoding of si consumes the needed permissions, adds run(zsi), and the

sync(zsi) token. Then, the encoding of s2 can start its execution (consuming

sync(zsi)), consumes the needed permissions, and adds run(zsj) to the

store.

(⇐) For (1), assume that in any reachable configuration (X; Γ; c), c
 run(zsj)

implies c
 end(zsi). By Proposition 4.2, we know that c �
 run(zsi). Since the encoding

maintains correct the number of references (in the sense of Proposition 4.1), there

is no reachable store able to entail the permissions needed for both si and sj .

Hence, there is a conflicting access in si and sj . The case (2) follows from a similar

argument. �

5 Logical meaning of access permissions

Besides playing the role of executable specifications, ccp-based models can be

declaratively interpreted as formulas in logic (Saraswat 1993; de Boer et al. 1997;

Fages et al. 2001; Nielsen et al. 2002; Olarte and Pimentel 2017). This section

provides additional mechanisms and tools for verifying properties of AP-based

programs. More concretely, we take the lcc agents generated from the AP program

and translate them as an ILL formula. Then, a property specified in ILL is

verified with the Alcove LL Prover, a theorem prover implemented on top of

Teyjus (http://teyjus.cs.umn.edu), an implementation of λ-Prolog (Nadathur

and Miller 1988; Miller and Nadathur 2012).

Our analyses are based on reachability properties, i.e., we verify the existence

of reachable lcc configurations satisfying some conditions. It turns out that this

is enough for verifying interesting properties of AP programs. For instance, we

can check whether a program is dead-lock free or whether two statements can be

executed concurrently.

5.1 Agents as formulas

The logical interpretation of lcc agents as formulas in ILL is defined with the

aid of a function L[[·]] defined in Figure 15 (Fages et al. 2001). As expected,

parallel composition is identified with multiplicative conjunction and ask processes

correspond to linear implications. Moreover, process definitions are (universally

quantified) implications to allow the unfolding of its body.

In what follows, we will show how to use logic in order to have a better control

of the operational flow and, therefore, be able to verify properties of AP programs.

The first step consists of interpreting the lcc model in Section 4 as ILL formulas

via L[[·]]. We shall call definition clauses to the encoding of process definitions

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

A concurrent constraint programming interpretation of access permissions 279

Fig. 15. Interpretation of lcc processes as ILL formulas.

Fig. 16. Encoding of assg definition and the main body in Example 4.5.

of the form p(x̃)
Δ
= P (i.e., assignment and constructor and method definitions

in our encoding) and we shall include them in a theory Δ, together with the

axioms of upgrade and downgrade in Figure 7. The next example illustrates this

translation. For the sake of readability, we shall omit empty synchronizations such

as sync(z) ⊗ (sync(z) → 1).

Example 5.1 (Agents as formulas)

Consider the following lcc process definition resulting from the encoding of the

constructor of class collection in Figure 1:
collection collection(x, z)

Δ
= ∃x′ , onew(1; ref(x, nil, none, ndg) → ref(x′ , onew , unq, ndg) ⊗ ct(onew , s(0)); 1; sync(z);

act(z) → run(z); ∃z′(sync(z′) ⊗ ! end(z′) ‖ (sync(z′) ⊗ end(z′)) →
∀o′(ref(x′ , o′ , unq, ndg) ⊗ ct(o′ , s(0)) → ref(x, o′ , unq, ndg) ⊗ ct(o′ , s(0)));

run(z) → ! end(z)))

where the first 1 corresponds to the empty parallel composition in gparam-init.

From now on, for the sake of readability, we will identify A ≡ A ⊗ 1. This process

definition gives rise to the following (universally quantified) definition clause:

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

280 C. Olarte et al.

collection collection(x, z) �︸ ︷︷ ︸
1

∃x′ , onew , w1 .(ref(x, nil, none, ndg) �︸ ︷︷ ︸
2

(ref(x′,onew , unq, ndg) ⊗ ct(onew , s(0)) ⊗ sync(w1)⊗

sync(w1) �︸ ︷︷ ︸
3

∃w2 .sync(z) ⊗ sync(w2)⊗

sync(w2) �︸ ︷︷ ︸
4

∃w3 . act(z) �︸ ︷︷ ︸
5

(run(z) ⊗ sync(w3))⊗

sync(w3) �︸ ︷︷ ︸
6

∃z′ , w4 .sync(z
′) ⊗ ! end(z′) ⊗ (sync(z′) ⊗ end(z′) �︸ ︷︷ ︸

7

∀o′ .(ref(x′ ,o′ ,unq, ndg) ⊗ ct(o′ , s(0)) � ref(x, o′ , unq, ndg) ⊗ ct(o′ , s(0)) ⊗ sync(w4)))⊗
sync(w4) �︸ ︷︷ ︸

8

run(z) � ! end(z))).

The underlying brackets will be used in Section 5.4 for determining the complexity

of decomposing this formula. The theory Δ contains the definition clause above

and the definition clauses for the other methods and constructors in Figure 1

(i.e., collection sort, collection print, etc). Δ also contains the axioms for upgrading

and downgrading permissions and the definition clause resulting from the process

definition assg in Figure 8. In Figure 16, we show the encoding for assg as well as

the encoding L[[P]] of the main program in Example 4.5.

5.2 Focusing and adequacy

In this section, we show that the translations presented in the last section are neat,

in the sense that one computational step corresponds to one focused phase in proofs

(Andreoli 1992). This will not only guarantee that our encodings are adequate (in

the sense that logical proofs mimics exactly computations), but also it will provide

an elegant way of measuring the complexity of computations via complexity of

derivations (see Section 5.4).

The approach for this section will be intuitive. The reader interested in the

formalization of focusing and various levels of adequacy between ILL and lcc can

check the details in (Olarte and Pimentel 2017).

Let us start by analyzing the following two right rules in ILL (for the additive

and multiplicative conjunctions):

Γ −→ F Γ → G
Γ −→ F�G

�R
Γ1 −→ F Γ2 → G

Γ1,Γ2 −→ F ⊗ G
⊗R

Reading these rules bottom-up, while the first copies the contexts, the second involves

a choice of which formulas should go to left or right premises. Computationally,

these behaviors are completely different: while the price to pay on applying �R is

just the duplication of memory needed to store formulas in the context, in ⊗R one

has to decide on how to split the context, and this has exponential cost. These rules

are very different from the proof theoretical point of view as well: the first rule turns

out to be invertible in ILL, while the second is not. This implies that the rule �R

can be applied anywhere in the proof, and this will not affect provability. On the

other hand, ⊗R is not invertible and its application may involve backtracking.

The same analysis can be done to all other rules in ILL, giving rise to two disjoint

classes of rules: the invertible ones, that can be applied eagerly, {�R, 1L,⊗L,�R,�R

,⊕L, ∃L, ∀R, C} and the non-invertible ones {1R,⊗R,�L,�L,⊕R, ∃R, ∀L,W ,D, prom}.

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

A concurrent constraint programming interpretation of access permissions 281

This separation induces a two-phase proof construction: a negative, where no

backtracking on the selection of inference rules is necessary, and a positive, where

choices within inference rules can lead to failures for which one may need to

backtrack.

An intuitive notion of focusing can be then stated as a proof is focused if, seen

bottom-up, it is a sequence of alternations between maximal negative and positive

phases.

Focusing is enough for assuring that the encoding presented in Section 5.1 is,

indeed, adequate.

Theorem 5.1 (Adequacy, (Olarte and Pimentel 2017))

Let P be a process, Ψ be a set of process definitions, and Δ be a set of non-logical

axioms. Then, for any constraint c, (∅;P ; 1) −→∗ (X; Γ; d) with ∃X.d
 c iff there is

a proof of the sequent ! L[[Ψ,Δ]],L[[P]] −→ c⊗ � in ILLF. Moreover, one focused

logical phase corresponds exactly to one operational step.

This result, together with Theorem 4.1, shows that AP can be adequately encoded

in ILL in a natural way. In the present work, we are more interested in using logic

in order to verify properties of the computation, as clarified in the next example.

Example 5.2 (Traces, proofs, and focusing)

Let A1 = a → b → (a ⊗ b), A2 = b → a → ok, and P = a ⊗ b ‖ A1 ‖ A2. The

operational semantics of lcc dictates that there are two possible transitions leading

to the store ok. Both of such transitions start with the tell action a ⊗ b:

Derivation 1: 〈∅;P ; 1〉 −→∗ 〈∅;A1 ‖ A2; a ⊗ b〉 −→∗ 〈∅; b → (a ⊗ b) ‖ A2; b〉
−→∗ 〈∅; (a ⊗ b) ‖ A2; 1〉 −→∗ 〈∅;A2; a ⊗ b〉 −→∗ 〈∅; ·; ok〉 �−→

Derivation 2: 〈∅;P ; 1〉 −→∗ 〈∅;A1 ‖ A2; a ⊗ b〉 −→∗ 〈∅;A1 ‖ a → ok; b〉
−→∗ 〈∅;A1 ‖ ok; 1〉 −→∗ 〈∅;A1; ok〉 �−→

Each of these transitions corresponds exactly to a focused proof of the sequent

L[[P]] −→ ok ⊗ �: one focusing first on L[[A1]] and the other focusing first on

L[[A2]].

On the other hand, there is also an interleaved execution of A1 and A2 that does

not lead to the final store ok:

Detivation 3: 〈∅;P ; 1〉 −→∗ 〈∅;A1 ‖ A2; a ⊗ b〉 −→∗ 〈∅; b → (a ⊗ b) ‖ A2; b〉
−→∗ 〈∅; b → (a ⊗ b) ‖ a → ok; 1〉 �−→

This trace does not have any correspondent derivation in ILLF (see (Olarte and

Pimentel 2017) for details).

This example is a good witness of a need for Alcove’s verifier, other than just

having an animator: an animator exhibits traces of possible executions without any

pre-defined scheduling policy. One of such traces may not lead to the expected

final store (as the ok above). On the other hand, the verifier would either fail (if a

property is not provable) or succeed. In this last case, the proof produced by the

prover corresponds exactly to a valid trace from the operational point of view.

Let us show an example of how focusing can control executions on a sequential

composition.

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

282 C. Olarte et al.

Example 5.3 (Focusing on a sequential composition)

Consider the ILL interpretation of the sequential composition P ;Q:

L[[P ;Q]] = ∃z((L[[(C[[P]]z)]]) ⊗ (sync(z) � L[[Q]]))

This is a positive formula which will be on the left side of the sequent and ∃
and ⊗ will be decomposed in a negative phase. Once P is executed, we observe

the invertible action of adding the atom sync(z) to the context. Then, one could

change to a positive phase and focus on the negative formula sync(z) � L[[Q]].

This positive action needs to be synchronized with the context, consuming sync(z)

in order to produce L[[Q]].

In the following sections, we shall show that an ILLF prover is a complete decision

procedure for reachability properties of the lcc agents resulting from our encodings.

This will be useful to verify properties of the encoded AP program.

5.3 Linear logic as a framework for verifying AP properties

Let P be an agent and L[[P]] its translation into ILL, producing a formula F

together with a theory Δ. In order to verify a certain property G, specified by an

ILL formula G, we test if the sequent ! Δ, F −→ G is provable.

First of all, observe that the fragment of ILL needed for encoding APs is given

by the following grammar for guards/goals G and processes P :

G := a | G ⊗ G | ∃x.G
P := a |!a | 1 | P ⊗ P | P�P | ∀x.G � P | ∃x.P |!∀x̃.(p(x̃) � P)

where a is an atomic formula. Observe that guards G do not consider banged

formulas, i.e., agents are not allowed to ask banged constraints. A simple inspection

on the encoding of Section 4 shows that processes in our case indeed belong to

such fragment. We note also that formulas generated from this grammar exhibit the

following properties:

(1) The left context in the sequent ! Δ, F −→ G will be formed by P formulas.

(2) The right context will have only G formulas.

(3) Implications on the left can only introduce guards on the right side of a sequent.

In fact, on examining a proof bottom-up, decomposing the implication on the

sequent Γ1,Γ2, B � C −→ D will produce the premises Γ1, C −→ D and

Γ2 −→ B. Hence, it is important to guarantee that B (a guard) is a G (goal)

formula.

Finally, notice that the fragment described above is undecidable in general, due to

the presence of processes declarations (Lincoln et al. 1992). However, since we are

considering AP programs adhering to the condition in Remark 2.1, our base language

does not lead to cyclic recursive definitions. In the next section, we determine an

upper bound for the complexity of proofs in Alcove’s verifier. Therefore, we can

show that provability in the resulting ILL translation is decidable (see Theorem 5.2).

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

A concurrent constraint programming interpretation of access permissions 283

5.4 Complexity analysis

Note that, when searching for proofs in the focused system, the only non-deterministic

step is the one choosing the focus formula in a positive phase. This determines

completely the complexity of a proof in ILLF and it justifies the next definition.

Definition 5 (Proof depth)

Let π be a proof in ILLF. The depth of π is the maximum number of positive phases

along any path in π from the root.

Example 5.4 (Complexity of formulas)

Consider the formulas in Example 5.1. The depth of decomposing the definition

clause collection collection(x, z) into its literal or purely positive subformulas is 8.

To see that, note that focusing in such a negative formula on the left will produce

seven more nested positive phases in one of the branches of the proof: each one

of these phases is signaled in the formula with an underlying bracket containing

the respective number of the focused phase. The same holds when decomposing

the clauses for stats stats(s, z) and collection compStats(c, s, z). As we will see later,

decomposing assig(svar, s, z) has a fixed depth equal to 7. Hence, the depth of a

derivation for decomposing the formula F (the model of the main program) is

8 + 8 + 7 + 8 = 31.

We will now proceed with a careful complexity analysis of decomposing the

formulas produced by the specification of AP programs. These will be placed on the

left of the sequent. This is done by counting the changes of nested polarities, as in

the example above. The complexity of decomposing a process P will be denoted by

comp(L[[P]]).

– Base cases. We will start by presenting the complexity for decomposing the

different kinds of lcc processes:

comp(L[[c]]) = 0

comp(L[[p(x)]]) = 1 + comp(L[[P]]) if ∀x̃.p(x̃)
Δ
= P

comp(L[[P ‖ Q]]) = comp(L[[P]]) + comp(L[[Q]])
comp(L[[

∑
i∈I ∀x̃i(ci → Pi)]]) = 1 + maxi∈I{comp(L[[Pi]])}

comp(L[[∃x(P)]]) = comp(L[[P]]).

– Sequential composition. Recall that the process P ;Q was defined in Figure 6 with

the aid of the function C[[·]]. The complexity of decomposing L[[P ;Q]] will be

given with the help of the auxiliary function compsc, that differs from comp only

in the case of the parallel composition:

comp(L[[P ;Q]]) = 1 + compsc(L[[C[[P]]z]]) + comp(L[[Q]])
compsc(L[[C[[P1 ‖ . . . ‖ Pn]]z]]) = 1 +

∑
i∈1..n compsc(L[[C[[Pi]]wi]])

compsc(C[[P]]z) = comp(L[[C[[P]]z]]) in any other case

In the definition of P ;Q, the constraint sync(z) will always be produced before

executing Q. As already said, these are negative actions and hence do not

interfere with the proof’s complexity. However, if P is a parallel composition

P = P1 ‖ . . . ‖, Pn, then each process Pi will produce its own synchronization

token, and all of them will be consumed at once in order to produce the constraint

sync(z). Hence, the complexity of decomposing P ;Q takes into account nested

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

284 C. Olarte et al.

parallel compositions inside P .

– Wrap. The complexity of decomposing the subformula wrap(P , {g1, · · · , gn}, z) is
comp(L[[wrap(P , {g1 , · · · , gn}, z)]]) = 1 + comp(

⊗
i∈1..n dg(gi, conc, z) � 1)

+comp(L[[P]] ⊗ (end(z) �
⊗

i∈1..n dg(gi, conc, z))) + 1
= n + 3 + comp(L[[P]])

– Assignment. It is immediate to see that

comp(L[[gain(x, y, gt)]]) = comp(L[[drop(x)]]) = 1

comp(L[[assg(x, y, z, gt)]]) = 7

Hence, comp(assign) = comp(L[[wrap(assg(x, y, z, gt), G, z)]]) = 7+ n+3 = n+10,

where n is the number of elements in G. Observe that, when there are no group

permissions, the wrap is not necessary and the complexity is the same as for

decomposing L[[assg(x, y, z, gt)]], which is 7.

– Axioms. The upgrade and downgrade axioms are negative formulas. Decomposing

them has depth 1.

– Method definition. Let m be the number of parameters of a method and suppose

that, when consuming APs, one has to upgrade or downgrade r of them. Then,

comp(consume) = r + (m + 1) + 1, and

comp(L[[c m(x, ỹ, z)
Δ
= PM]]) = r + m + 4 + comp(L[[Body]])

where Body is the body of the method (see Rule RMDEF). On the other hand,

comp(L[[Body]]) = comp(L[[S[[ŝ]]z]]) + m + r + 4.

– Constructor. With r and m as before, we have

comp(L[[c(x, ỹ, z, g1, . . . , gk)
Δ
= PC]]) = 2r + 2m + comp(L[[S[[ŝ]]z]]) + 11.

Theorem 5.2 (Complexity)

Let Δ be a theory containing the definition clauses for method and constructor

definitions, the definition of assg and the upgrade and downgrade axioms. Let F

be the formula interpreting the main program and G be a formula interpreting a

property to be proven. It is decidable whether or not the sequent ! Δ, F −→ G is

provable. In fact, if such a sequent is provable, then its proof is bounded in ILLF

by the depth comp(F) + 1.

Proof

First of all, note that, since there are no circular recursive definitions (see Re-

mark 2.1), methods are simply unfolded. Moreover, as carefully described above,

the complexity of such method calls is taken into account in the complexity of

the outer method definition (see L[[S[[ŝ]]z]]). This means that, whenever a method,

constructor, or an axiom is called in Δ via F , its complexity is already computed

in the complexity procedure we have just described. Due to the focusing discipline,

proving a sequent in AP is equivalent to decomposing its formulas completely.

Therefore, the complexity of the proof of the sequent ! Δ, F −→ G is completely

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

A concurrent constraint programming interpretation of access permissions 285

determined by the complexity of decomposing F plus the final focusing in G, which

is a purely positive formula. �

5.5 Alcove prover and verification of properties

In the following, we explain our verification technique for three different kinds

of properties: deadlock detection; the ability of methods to run concurrently;

and correctness (whether programs adhere to their specifications or not). Recall,

from Example 4.4, that we have added to the predicates act(·), run(·), end(·) extra

parameters to signalize the variable that called the method, the name of the method,

and the number of line of the source program. Then, for instance, in Example 5.1,

the definition of the constructor looks like

collection collection(x, z, l)
Δ
= ∃x . . . act(x,′ collection collection′, l, z) → run(x,′ collection collection′, l, z);

. . . .run(x,′ collection collection′, l, z) → ! end(x,′ collection collection′, l, z)

and the encoding of, e.g, line 10 in Figure 1, is collection collection(x, z, 10).

Deadlock detection. Consider Example 4.5. We already showed that this code

leads to a deadlock since s cannot upgrade its unique permission to execute

c.compStats(s). We are then interested in providing a proof to the programmer

showing that the code leads to a deadlock. For doing this, let D[[Def]] be the

process definitions for the methods and constructors of the example plus the

definition of assignment. Let st be the main program and consider the lcc program

D[[Def]].S[[st]]z . According to the definition of S[[·]] and D[[·]], we know that,

for some z and c, end(c,′ collection compStats′, 15, z) will be added to the store

only when the statement c.compStats(svar) (in line 15) is successfully executed. The

translation of this program will give rise to the theory Δ and the formula F

described in Example 5.1. The verification technique consists in showing that the

sequent ! Δ, F −→ ∃z, c.end(c,′ collection compStats′, 15, z) ⊗ � is not provable. This

verification is done automatically by using Alcove prover, a theorem prover for ILLF

developed in Teyjus and integrated to the tool described in Section 4.3. Basically, we

look for proofs with depth less or equal to 38, given by the depth of F . In this case,

the prover fails, thus showing that the process S[[st]]z cannot reach a store entailing

the constraint ∃z, c.end(c,′ collection compStats′, 15, z).

The URL of the Alcove tool includes the output of the theorem prover and

the lcc interpreter for this example. It is worth noticing that the lcc interpreter

only computes a possible trace of the program, while the theorem prover is able to

check all the reachable configurations for the same program. The Alcove prover is

completely faithful to the ILLF fragment presented in Section 5.3.

The use of “animators” and provers is complementary. Existing formal models

for system construction, such as the Rodin (Abrial et al. 2010) tool for the event B

modeling language, usually include both. The idea is that by using the animator, the

user gain a global understanding of the behavior of the program before attempting

the proof of more precise desirable properties. This usually avoids frustrations in

trying to figure out corrections of the model to discharge unproved properties.

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

286 C. Olarte et al.

Concurrency analysis. Consider the following lcc agents:

P = act(z1) ‖ act(z1) → (run(z1) ⊗ sync(z1)) ‖ run(z1) → ! end(z1)
Q = sync(z1) → act(z2) ‖ act(z2) → run(z2) ‖ run(z2) → ! end(z2)

These processes represent an abstraction of the encoding of two statements s1 and

s2 such that s2 must wait until s1 releases the program control by adding sync(z1).

It is easy to see that from the initial configuration γ = 〈∅;P ‖ Q; 1〉, we always end

up in the final configuration γ′ = 〈∅; ∅; ! end(z1) ⊗ ! end(z2)〉〉 showing that both s1
and s2 were successfully executed. Nevertheless, depending on the scheduler, we may

observe different intermediate configurations. For instance, if all the processes in P

are first selected for execution, we shall observe the derivation:

γ −→∗ 〈∅; run(z1) ⊗ sync(z1) ‖ run(z1) → ! end(z1) ‖ Q; 1〉
−→∗ 〈∅; run(z1) → ! end(z1) ‖ Q; run(z1) ⊗ sync(z1)〉
−→∗ 〈∅;Q; ! end(z1)〉 −→∗ γ′

On the other side, an interleaved execution of P and Q may be

γ −→∗ 〈∅; run(z1) ⊗ sync(z1) ‖ run(z1) → ! end(z1) ‖ Q; 1〉
−→∗ 〈∅;P ′ ‖ Q′; run(z1) ⊗ act(z2)〉
−→∗ 〈∅;P ′ ‖ Q′′; run(z1) ⊗ run(z2)〉 −→∗ γ′

where P ′ = run(z1) → ! end(z1), Q
′ = act(z2) → (run(z2) ⊗ sync(z2) ‖ Q′′), and

Q′′ = run(z2) → ! end(z2). Unlike the first derivation, in the second one, we were

able to observe the store run(z1) ⊗ run(z2) representing the fact that both s1 and s2
were executed concurrently.

From the point of view of the lcc interpreter, the two derivations above are

admissible. This means that the fact of not observing in a trace the concurrent

execution of two statements does not imply that they have to be sequentialized due

to the AP dependencies.

We can rely on the logical view of processes to verify whether it is possible for

two statements to run concurrently. For instance, consider the Example 4.4 and let

F be the resulting ILL formula. The following sequent turns out to be provable:

! Δ, F −→ ∃z1, z2, c, s(run(c,′ collection print′, 13, z1)⊗
run(c,′ collection compStats′, 14, z2)) ⊗ �

while the following one is not:

! Δ, F −→ ∃z1, z2, c, s(run(c,′ collection compStats′, 14, z1)⊗
run(c,′ collection removeDuplicates′, 15, z2)) ⊗ �

i.e., regardless the scheduling policy, the program will not generate a trace where

compStats and removeDuplicates run concurrently.

Verifying a method specification. Finally, assume that class collection has a field a

and we define the following method:

mistake () unq(this)=>unq(this){
this.a<g>:= this}

This method requires that the unique permission to the caller must be restored to

the environment. Nevertheless, the implementation of the method splits the unique

permission into two share permissions, one for the field a and another for the caller

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

A concurrent constraint programming interpretation of access permissions 287

(Rule RALIAS). Then, the axiom upgrade1 cannot be used to recover the unique

permission and the ask agent in definition r env remains blocked. An analysis

similar to that of deadlocks will warn the programmer about this. In general, what

we need is to prove sequents of the shape ! Δ,Γ −→ ∃c, z, l.end(c,′ method′, l, z) ⊗ �
where Γ contains an atomic formula needed to start the execution of the method (i.e.,

a formula of the shape c method(x, · · ·)) and also the atomic formulas guaranteeing

that the method can be executed (ref(x, o, unq, ndg), ct(o, s(0)) for the method

mistake). This can be done, for instance, by letting Γ = L[[S[[st]]]] where st is

a dummy main program that creates an instance of collection and then calls

the method mistake. In this case, the prover answers negatively to the query

! Δ,L[[S[[st]]]] −→ ∃c, z, l.end(c,′ collection mistake′, l, z) ⊗ �, showing that, even

satisfying the preconditions of the method mistake, it cannot finish its execution.

6 Applications

In this section, we present two compelling examples of the use of our verification

techniques. One is the well-known mutual exclusion problem where two (or more)

processes compete for access to a critical section. In our example, there are two

critical sections with exclusive access. The other models a producer and a consumer

processes concurrently updating a data structure.

6.1 Two critical zones management system

Assume the class definitions for a two critical zones management system in Figure

17. There are three classes, lock (line 1), process (line 4), and cs (line 7). Each

critical section has a private lock managed by an object of the class cs. When a

process wants to enter the critical section i ∈ {1, 2}, it tries first to invoke the method

acqi (lines 11 and 15) of the cs manager. If successful, the process obtains a lock

(i.e., an object of class lock) that it uses then to enter that critical zone (lines 12

and 16). When the process wants to leave the critical zone, it invokes the method

releasei (lines 19 and 23). This releases ownership of the critical section lock.

Method acqi has three parameters: this (i.e., the cs manager), b the process

wanting to enter the critical zone and l, a field of b that will hold the lock of the cs

supplied by the manager. Since this has unique permission, only one reference to

the manager object can exist for acqi to be invoked. The body of method acqi stores

the lock in l and a reference to the manager in field cs1 or cs2 of b, depending on

whether the lock for cs1 or for cs2 is requested. Storing this reference to the manager

implies that it cannot longer have unique permission, so the output permission for

this becomes shared. Moreover, l holds now the only reference to the private lock

of the manager, so its output permission becomes unique. The effect is that field

lock1 or lock2 of object b uniquely acquires the section lock. The method enter

(line 3) requires a unique permission on the lock. This ensures that only one process

has a reference to the lock at any given time when entering the critical section. The

method releasei restores conditions as they were before invocation to acqi, i.e., the

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

288 C. Olarte et al.

Fig. 17. Class definitions for a two critical zones management system.

Fig. 18. Main codes for the critical zone management system.

manager regains the unique permission and stores a unique reference to its private

lock. Process object fields loose the lock and the reference to the manager.

Assume now the main code in Figure 18(a) where there are two section manager

objects cs1 and cs2. There are also two processes, p1 and p2. Consider the situation

where p1 acquires the lock from cs1 (line 9) and enters (line 10). Then, p2 acquires

the lock from cs2 and enters (lines 11–12). Now, p2 tries to acquire the lock from

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

A concurrent constraint programming interpretation of access permissions 289

cs2 (line 13), but this is not possible because cs1 has no longer a unique permission

and execution blocks. Alcove reports this situation:

1 ...
2 calling(X_6136 ,cs_acq1 ,line_71 (Z_PAR_18116))
3 ...
4 [FAIL] Token ok not found. End of the program not reached.

Consider now the program in Figure 18(b) where processes leave the critical

section before attempting to acquire another lock. In this case, all invocations run

without blockage and Alcove successfully finishes the analysis:

1 ...
2 ended(X_6152 ,cs_release1 ,line_113 (Z_PAR_24136))
3 ended(W_7153 ,cs_release2 ,line_114 (Z_PAR_25137))
4 ok()
5 3517 processes Created
6

7 [OK] Token ok found. End of the program reached.

6.2 Concurrent producer–consumer system

Figure 19 shows the class definitions for a producer–consumer system working

concurrently over a buffer. Class buffer (line 1) represents the data structure with

operations for reading (line 3), writing (line 4), and removing the content of the

buffer (line 5). Class producerConsummer (line 14) provides methods for adding

(produce) – line 19 – and remove (consume) – line 24 – elements from the data

structure. Since these could be invoked concurrently, the class implements a critical

section (line 8) representing access to the element of the data structure the consumer

or producer is working on. That is, producing or consuming could in principle be

simultaneous over different elements of the structure. To keep the example simple,

we assume a single critical section over the whole data structure.

Class producerConsumer defines a group g for processes operating over the data

structure (line 14). The group is used to manage permissions of all processes invoking

methods of the class. Since callers of produce and consume both have share group

permissions on g, they can be invoked concurrently. This can be seen in the main

program (line 30). Variable PC has unique permission over the producerConsumer

object. This unique permission is split (line 36) into share permissions for the

group to allow producer and consumer calls to run in parallel. Note, however, that

simultaneous access to the buffer is precluded by the need for each process to acquire

the lock before (lines 20 and 25).

As shown, in the excerpt of the Alcove’s output in Figure 20, the call to consume

(line 4) is done while produce is still running (line 2). Note also that before executing

write (line 11), the method produce has to acquire the lock on the data structure

(lines 5 and 9). Similarly, the execution of read (line 23) (called by the consumer in

line 20) has to wait until the lock is released by the consumer (line 17) and acquired

by the producer (lines 18 and 21).

AP-based languages like Æminium (Stork et al. 2009) provides abstractions to

simplify the (concurrent) access to share objects. For instance, in the example above,

we locked the buffer before executing the methods write and read (lines 21 and 26 in

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

290 C. Olarte et al.

Fig. 19. AP program for a concurrent producer–consumer system.

Figure 19). In Æminium, it suffices to wrap the call to these methods into a atomic

block of the form:

atomic <g>{
B.write()

}

The Æminium runtime system guarantees that the execution of write on the object

pointed by B is isolated, i.e., other methods invoked on the same object must wait

until the termination of write. We note that the behavior of atomic blocks relies

completely on the runtime system. Since we are interested in the static analysis of

AP programs, we did not considered atomic blocks in the grammar of Figure 3.

Note also that what we can analyze statically is whether methods produce (line 19)

and consume (line 24) can acquire a share permission on the buffer B.

7 Concluding remarks

We presented an approach based on lcc for specifying and verifying programs

annotated with APs. Program statements are modeled as lcc agents that faithfully

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

A concurrent constraint programming interpretation of access permissions 291

Fig. 20. Excerpt of Alcove’s output for the producer–consumer program.

represent the statement permissions flow. The declarative reading of lcc agents as

formulas in ILL permits verifying properties such as deadlocks, the admissibility of

parallel executions, and whether methods are correct w.r.t. their AP specifications.

Central to our verification approach is the synchronization mechanism based on

constraints, combined with the logical interpretation of lcc into the focused system

ILLF.

A good strategy for understanding the behavior of a concurrent program is

running a simulator able to observe the evolution of its processes, hence having

a better glance of the global program behavior. Then, a prover able to verify

formally various properties can be executed. For this reason, we have automated

our specification and verification approach as the Alcove tool. Using this tool, we

were able, for instance, to verify the critical zone management system and the

producer–consumer system presented in Section 6. The reader can find these and

other examples at the Alcove tool website. The results and techniques presented here

are certainly a novel application for ccp, and they will open a new window for the

automatic verification of (OO) concurrent programs.

Related and future work. ccp-based calculi have been extensively used to reason

about concurrent systems in different scenarios such as system biology, security

protocols, multimedia interaction systems, just to name a few. The reader may find

in (Olarte et al. 2013) a survey of models and applications of ccp. A work related

to ours is (Jagadeesan et al. 2005), where the authors propose a timed-ccp model

for role-based access control in distributed systems. The authors combine constraint

reasoning and temporal logic model checking to verify when a resource (e.g., a

directory in a file system) can be accessed. We should also mention the work in

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

292 C. Olarte et al.

(Nigam 2012) where linear authorization logics are used to specify access control

policies that may mention the affirmations, possessions, and knowledge of principals.

In the above-mentioned works, access policies are used to control and restrict the use

of resources in a distributed environment but they do not deal with the verification

of a (concurrent) programming language.

Languages like Æminium (Stork et al. 2009) and Plaid (Sunshine et al. 2011)

offer a series of guarantees such as (1) absence of AP usage protocol violation at

run time; (2) when a program has deterministic results; and (3) whether programs

are free of race conditions on the abstract state of the objects (Boyland 2003;

Bierhoff and Aldrich 2007). Roughly, type-checking rules generate the needed

information to build the graph of dependencies among the statements in the

program. Such annotations are then used by the runtime environment to determine

the pieces of code that can be executed in parallel (Stork et al. 2014). Well-typed

programs are free of race condition by either enforcing synchronization when

accessing shared data or by correctly computing dependencies. However, well-

typed programs are not necessarily deadlock free. Hence, our developments are

complementary to those works and provide additional reasoning techniques for AP

programs.

Somewhat surprisingly, even though in (Stork et al. 2014), it is mentioned that

access permissions follow the rules of linear logic, the authors did not go further on

this idea. Our linear logic encodings can be seen as the first logic semantics for

AP. As showed in this paper, such declarative reading of AP allows to perform

interesting static analyses on AP-based programs.

The constraint system we propose to model the downgrade and upgrade of

axioms was inspired by the work of fractional permissions in (Boyland 2003) (see

also (Bierhoff and Aldrich 2007)). Fractional in this setting means that an AP can

be split into several more relaxed permissions and then joined back to form a more

restrictive permission. For instance, a unique permission can be split into two share

permissions of weight k/2. Therefore, to recover a unique permission, it is necessary

to have two k/2-share permissions. The constraint system described in this paper

keeps explicitly the information about the fractions by using the predicate ct(·).
Chalice (Leino 2010) is a program verifier for OO concurrent programs that uses

permissions to control memory accesses. Unlike Æminium and Plaid, concurrency

in Chalice is explicitly stated by the user by means of execution threads.

The language Rust (https://www.rust-lang.org/) provides mechanisms to

avoid data races. These do not use APs but rely on types. Type mut (mutable)

works similarly as a unq permission. A data structure defined with type mut is

claimed ownership by the first thread using it, so it cannot be taken concurrently

by another thread. The compiler checks this statically. Type Arc allows the data

structure to be shared among threads, but then it cannot be a mutable structure. This

is then similar to imm permissions. Type Arc can be combined with mutex to have

a mutable structure that can be shared. A lock mechanism is available for the user

to control simultaneous accesses. As opposed to permissions, however, there is no

upgrading/downgrading of types. Hence, AP and DGAP provide, in principle, more

flexible mechanisms to express concurrent behaviors. In (Ullrich 2016), a translation

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

A concurrent constraint programming interpretation of access permissions 293

of Rust programs into the Lean prover to verify program correctness is described. As

far as we know, however, no verification of the kind we presented here is available

for Rust.

AP annotations in concurrent-by-default OO languages can be enhanced with the

notion of typestates (Bierhoff and Aldrich 2007; Beckman et al. 2008). Typestates

describe abstract states in the form of state- machines, thus defining a usage

protocol (or contract) of objects. For instance, consider the class File with states

opened and closed. The signature of the method open can be specified as the

agent unq(this) ⊗ closed(this) → unq(this) ⊗ opened(this). The general idea

is to verify whether a program follows correctly the usage protocol defined by the

class. For example, calling the method read on a closed file leads to an error.

Typestates then impose certain order in which methods can be called. The approach

our paper defines can be extended to deal with typestates annotations, thus widening

its applicability.

The work in (Naden et al. 2012) defines more specific systems and rules for APs

to provide for borrowing permissions. This approach aims at dealing more effectively

with local variable aliasing, and with how permissions flow from the environment to

method formal parameters. Considering these systems in Alcove amounts to refine

our model of permissions in Section 4. Verification techniques should remain the

same.

Acknowledgements

We thank the anonymous reviewers for their valuable comments on an earlier draft

of this paper.

References

Abrial, J.-R., Butler, M. J., Hallerstede, S., Hoang, T. S., Mehta, F. and Voisin, L. 2010.

Rodin: An open toolset for modelling and reasoning in event-b. International Journal on

Software Tools for Technology Transfer 12, 6, 447–466.

Andreoli, J.-M. 1992. Logic programming with focusing proofs in linear logic. Journal of

Logic and Computation 2, 3, 297–347.

Beckman, N. E., Bierhoff, K. and Aldrich, J. 2008. Verifying correct usage of atomic blocks

and typestate. In OOPSLA, G. E. Harris, Ed. ACM, 227–244.

Bierhoff, K. and Aldrich, J. 2007. Modular typestate checking of aliased objects. In

OOPSLA, R. P. Gabriel, D. F. Bacon, C. V. Lopes and G. L. S. Jr., Eds. ACM, 301–320.

Boyland, J. 2003. Checking interference with fractional permissions. In SAS, R. Cousot, Ed.

Lecture Notes in Computer Science, vol. 2694. Springer, 55–72.

Boyland, J., Noble, J. and Retert, W. 2001. Capabilities for sharing: A generalisation of

uniqueness and read-only. In ECOOP, J. L. Knudsen, Ed. Lecture Notes in Computer

Science, vol. 2072. Springer, 2–27.

de Boer, F. S., Gabbrielli, M., Marchiori, E. and Palamidessi, C. 1997. Proving

concurrent constraint programs correct. ACM Transactions on Programming Languages

and Systems 19, 5, 685–725.

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

294 C. Olarte et al.

Fages, F., Ruet, P. and Soliman, S. 2001. Linear concurrent constraint programming:

Operational and phase semantics. Information and Computation 165, 1, 14–41.

Girard, J.-Y. 1987. Linear logic. Theoretical Computer Science 50, 1–102.

Haemmerlé, R. 2011. Observational equivalences for linear logic concurrent constraint

languages. Theory and Practice of Logic Programming 11, 4–5, 469–485.

Igarashi, A., Pierce, B. C. and Wadler, P. 2001. Featherweight java: A minimal core

calculus for java and GJ. ACM Transactions on Programming Languages and Systems 23, 3,

396–450.

Jagadeesan, R., Marrero, W., Pitcher, C. and Saraswat, V. A. 2005. Timed constraint

programming: A declarative approach to usage control. In PPDP, P. Barahona and A. P.

Felty, Eds. ACM, 164–175.

Leino, K. R. M. 1998. Data groups: Specifying the modification of extended state. In

OOPSLA, B. N. Freeman-Benson and C. Chambers, Eds. ACM, 144–153.

Leino, K. R. M. 2010. Verifying concurrent programs with Chalice. In VMCAI, G. Barthe

and M. V. Hermenegildo, Eds. Lecture Notes in Computer Science, Vol. 5944. Springer, 2.

Lincoln, P., Mitchell, J. C., Scedrov, A. and Shankar, N. 1992. Decision problems for

propositional linear logic. Annals of Pure and Applied Logic 56, 1–3, 239–311.

Martinez, T. 2010. Semantics-preserving translations between linear concurrent constraint

programming and constraint handling rules. In PPDP, T. Kutsia, W. Schreiner and

M. Fernández, Eds. ACM, 57–66.

Miller, D. and Nadathur, G. 2012. Programming with Higher-Order Logic. Cambridge

University Press.

Nadathur, G. and Miller, D. 1988. An overview of lambda-prolog. In Logic Programming,

Proc. of the 5th International Conference and Symposium, R. A. Kowalski and K. A. Bowen,

Eds. MIT Press, Seattle, Washington, August 15–19, 1988 (2 Volumes), 810–827.

Naden, K., Bocchino, R., Aldrich, J. and Bierhoff, K. 2012. A type system for borrowing

permissions. In POPL, J. Field and M. Hicks, Eds. ACM, 557–570.

Nielsen, M., Palamidessi, C. and Valencia, F. D. 2002. Temporal concurrent constraint

programming: Denotation, logic and applications. Nordic Journal of Computing 9, 1, 145–

188.

Nigam, V. 2012. On the complexity of linear authorization logics. In LICS. IEEE, 511–520.

Olarte, C. and Pimentel, E. 2017. On concurrent behaviors and focusing in linear logic.

Theoretical Computer Science 685, 46–64.

Olarte, C., Pimentel, E., Rueda, C. and Cataño, N. 2012. A linear concurrent constraint

approach for the automatic verification of access permissions. In PPDP, D. D. Schreye,

G. Janssens and A. King, Eds. ACM, 207–216.

Olarte, C., Rueda, C. and Valencia, F. D. 2013. Models and emerging trends of concurrent

constraint programming. Constraints 18, 535–578.

Pottier, F. and Protzenko, J. 2013. Programming with permissions in mezzo. Special Interest

Group on Programming Languages Notices 48, 9, 173–184.

Saraswat, V. A. 1993. Concurrent Constraint Programming. MIT Press.

Saraswat, V. A. and Rinard, M. C. 1990. Concurrent constraint programming. In POPL,

F. E. Allen, Ed. ACM Press, 232–245.

Saraswat, V. A., Rinard, M. C. and Panangaden, P. 1991. Semantic foundations

of concurrent constraint programming. In POPL, D. S. Wise, Ed. ACM Press,

333–352.

Stork, S., Marques, P. and Aldrich, J. 2009. Concurrency by default: Using permissions to

express dataflow in stateful programs. In OOPSLA Companion, S. Arora and G. T. Leavens,

Eds. ACM, 933–940.

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

A concurrent constraint programming interpretation of access permissions 295

Stork, S., Naden, K., Sunshine, J., Mohr, M., Fonseca, A., Marques, P. and Aldrich,

J. 2014. Æminium: A permission-based concurrent-by-default programming language

approach. ACM Transactions on Programming Languages and Systems 36, 1, 2.

Sunshine, J., Naden, K., Stork, S., Aldrich, J. and Tanter, É. 2011. First-class state change

in plaid. In OOPSLA, C. V. Lopes and K. Fisher, Eds. ACM, 713–732.

Ullrich, S. A. 2016. Simple Verification of Rust Programs via Functional Purification. Master’s

Thesis, Karlsruher Institut für Technologie (KIT).

https://doi.org/10.1017/S1471068418000017 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068418000017

