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Efforts to model accretion disks in the laboratory using Taylor–Couette flow apparatus
are plagued with problems due to the substantial impact the end plates have
on the flow. We explore the possibility of mitigating the influence of these end
plates by imposing stable stratification in their vicinity. Numerical computations
and experiments confirm the effectiveness of this strategy for restoring the axially
homogeneous quasi-Keplerian solution in the unstratified equatorial part of the flow
for sufficiently strong stratification and moderate layer thickness. If the rotation ratio is
too large, however (e.g. Ωo/Ωi= (ri/ro)

3/2, where Ωo/Ωi is the angular velocity at the
outer/inner boundary and ri/ro is the inner/outer radius), the presence of stratification
can make the quasi-Keplerian flow susceptible to the stratorotational instability.
Otherwise (e.g. for Ωo/Ωi= (ri/ro)

1/2), our control strategy is successful in reinstating
a linearly stable quasi-Keplerian flow away from the end plates. Experiments probing
the nonlinear stability of this flow show only decay of initial finite-amplitude
disturbances at a Reynolds number Re = O(104). This observation is consistent
with most recent computational (Ostilla-Mónico, et al. J. Fluid Mech., vol. 748, 2014,
R3) and experimental results (Edlund & Ji, Phys. Rev. E, vol. 89, 2014, 021004) at
high Re, and reinforces the growing consensus that turbulence in cold accretion disks
must rely on additional physics beyond that of incompressible hydrodynamics.
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1. Introduction
In the past decade or so there has been much controversy about the transition

to turbulence in laboratory experiments on centrifugally stable Taylor–Couette flow
(Balbus 2011). The motivation behind these experiments has been to uncover physical
mechanisms to explain the origin of turbulence in accretion disks where, in the
simplest model of a non-self-gravitating disk, the angular velocity Ω ∼ r−3/2 decreases
with the radius r while the angular momentum L = r2Ω ∼ r1/2 increases: so-called
Keplerian flow. This flow is centrifugally stable according to Rayleigh’s criterion
(Rayleigh 1917). The connection with Taylor–Couette flow (Zeldovich 1981) lies in
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FIGURE 1. (Colour online) Partially stratified Taylor–Couette set-up: the flow is linearly
stratified in the axial direction z near the end plates (the colour scheme is indicative of
temperature). In this paper, the end plates are attached to the outer cylinder. Rather than
the total density, ρ denotes the deviation with respect to a reference value ρ0.

the fact that a similar ‘Rayleigh-stable’ flow can be set up by appropriate motion
of the inner and outer cylinders. Specifically, if we define the ratios η := ri/ro and
µ :=Ωo/Ωi, where the inner (respectively outer) cylinder at r= ri (respectively r= ro)
rotates at Ωi (respectively Ωo), see figure 1, then the angular velocity in the interior
is

ΩTC = Ωi

1− η2

[
µ− η2 + (1−µ)r

2
i

r2

]
, (1.1)

with ‘quasi-Keplerian’ flows, d|Ω|/dr < 0 and d|L|/dr > 0, corresponding to the
parameter range

η2 <µ< 1. (1.2)

In the presence of an axial magnetic field, quasi-Keplerian Taylor–Couette flow
(Velikhov 1959; Chandrasekhar 1960) and accretion disks (Balbus & Hawley 1991,
1998) are known to be prone to the magnetorotational instability. However, this linear
instability mechanism cannot operate in weakly ionized accretion disks, which led
to the hypothesis (Richard & Zahn 1999) that disk turbulence is the result of a
finite-amplitude instability of Keplerian flow. Subsequently, a number of experiments
were aimed at assessing this subcritical transition scenario in the laboratory.

Unfortunately, this deceptively simple idea has proven hard to implement in practice
(leaving aside unreachable values of the Reynolds number, Re>109, in accretion disks
(Turner et al. 2014)) because of significant effects caused by the top and bottom
boundaries necessary to contain the fluid. As explained by Czarny et al. (2003), the
no-slip boundary condition disturbs the balance between the centrifugal force and the
radial pressure gradient that prevails in the interior. This force imbalance leads to
Ekman layers on the end plates and, consequently, to a radial flow there, which in
turn drives a global meridional circulation. In the centrifugally stable regime, Avila
et al. (2008) showed that the two symmetric recirculation cells are able to penetrate
deep into the flow and merge at the equator (defined as the plane z= 0 in figure 1) to
form an unstable radial jet (this will be discussed further in § 4.1.1). This experimental
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artefact clearly compromises the analogy between Taylor–Couette flow and accretion
disks, and, as a result, various strategies have been implemented to minimize these end
effects. The Princeton group (Ji et al. 2006) split their endcaps into two independent
rings, creating a piecewise constant angular velocity profile at the top and bottom
boundaries, and reported that the flow was ‘essentially steady’ up to Re = O(106).
On the other hand, the Maryland group (Paoletti & Lathrop 2011) split the inner
cylinder of their large-aspect-ratio apparatus into three parts, sensing the torque only
on the central section. Their measurements were in contradiction with the findings
of Ji et al. (2006) and suggested turbulence at similarly high Reynolds number.
Later, Avila (2012) reproduced the experiments numerically and found both set-ups
to be linearly unstable and already turbulent at Re= O(103), because of instabilities
stemming from the end plates. The Princeton group (Edlund & Ji 2014) recently
reported new experiments on a modified device (one independent ring surrounded by
end plates attached to the inner and outer cylinders), showing that these instabilities
could be avoided in a narrow range of operating parameters. Using laser-Doppler
velocimetry, the Princeton authors demonstrated agreement of their velocity profiles
with (1.1) and also confirmed stability of the flow with respect to finite-amplitude
perturbations at Re=O(106). Recent numerical results by Ostilla-Mónico et al. (2014),
based on axially periodic direct numerical simulations for Re up to O(105), also seem
to indicate nonlinear stability of quasi-Keplerian flows.

In this work, we propose a new approach directed at reducing end effects in
experiments. Our strategy consists of adding stably stratified layers near the top and
bottom plates while leaving the equatorial part of the flow unstratified, as shown in
figure 1. The idea is that the stratified layers should suppress vertical motion and
therefore act as ‘buffer zones’ isolating our hydrodynamic model of an accretion
disk at the centre of the cylinder from the undesired flow induced by the end
plates. Of course, this approach is only useful if stratification does not introduce
any linear instabilities into the problem. In the absence of axial boundaries, stratified
Taylor–Couette flow is known to be prone to the stratorotational instability (SRI) (so
named by Dubrulle et al. (2005)) caused by the resonance between boundary-trapped
inertia–gravity waves. Originally discovered by Molemaker, McWilliams & Yavneh
(2001) and Yavneh, McWilliams & Molemaker (2001), the instability was theoretically
predicted to develop for any value of µ<1 (cyclonic regime) in the inviscid small-gap
limit. Shalybkov & Rüdiger (2005) and Rüdiger & Shalybkov (2009) later extended
these results to the wide-gap and viscous case with the help of numerical methods.
These authors showed that the instability range was narrower than initially thought,
as the SRI could only be found for a very limited range of rotation ratios µ beyond
η, if at all, depending on the radius ratio and stratification. In parallel, Le Bars &
Le Gal (2007) verified their predictions experimentally, providing the first evidence
of the existence of the SRI. Given the development of the SRI in ‘fully’ stratified
flows, the effect of the stratified layers on the global stability of the axisymmetric
base flow is systematically assessed in this work.

The plan of the paper is as follows. In § 2, we introduce the governing equations
of the problem, and then present the numerical and experimental methods in § 3.
In § 4, the effects of stratification ‘strength’ and layer thickness are assessed for
different rotation ratios. In § 5, we discuss the physical mechanisms responsible for
the generation and suppression of meridional flow, the limits of our numerical model,
and ultimately the nonlinear stability of the optimally controlled flow. Finally, § 6
summarizes our main results.
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FIGURE 2. (Colour online) (a) Convergence of the spectral coefficients Ûij of the radial
velocity component, for µ= η1/2, α= 0.5 and Ril= 2. (b) Maximum radial velocity at the
equator for η = 0.5, Γ = 6, µ = 1, fixed end plates and no stratification. The solid line
shows the data digitized from Avila et al. (2008) and the dots show the present code.

2. Governing equations

The dimensional parameters of the problem are defined in figure 1. There are seven
independent non-dimensional parameters specifying the problem. The geometry of the
container requires two:

η := ri

ro
and Γ := h

d
, (2.1a,b)

where h and d := ro− ri are respectively the height of the cylinders and the radial gap
between them. In all computations and experiments, the radius ratio and aspect ratio
are set to η= 0.417 and Γ = 3 (except for validation, cf. figure 2b). The rotation and
shear imposed on the fluid are quantified by the Reynolds number and rotation ratio

Re := riΩid
ν

and µ := Ωo

Ωi
, (2.2a,b)

where ν is the kinematic viscosity. The quasi-Keplerian range η2 <µ< 1 is bordered
by solid-body rotation (no shear) µ= 1 and the so-called ‘Rayleigh line’ µ=η2 where
the angular momentum is constant over radius. Three more non-dimensional numbers
are required to describe the stratification. Let ρtot denote the density field and ρ :=
ρtot − ρ0 be the deviation with respect to the reference value ρ0 := ρtot (z= 0, t = 0),
such that ρ is initially antisymmetric with respect to z. The initial buoyancy frequency
within the layers is N := √−(g/ρ0)∂ρ/∂z, where g denotes gravity. The strength of
the initial stratification is quantified by the local Richardson number

Ril :=N2/Ω2
i . (2.3)

The ratio of the momentum diffusion coefficient ν to the density diffusion coefficient
κ is either the Prandtl number Pr for thermal stratification or the Schmidt number Sc
for salt stratification,

Pr, Sc := ν
κ
. (2.4)
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The momentum and density diffusion time scales across the gap d are given by τν :=
d2/ν and τκ := d2/κ . Finally, the stratified fraction

0 6 α := l
h
6 1 (2.5)

is defined as the ratio between the thickness l/2 of each stratified layer and the half-
height h/2 of the apparatus. With these definitions, the buoyancy frequency can be
expressed as N =√g1ρ/(ρ0αΓ d).

The flow is governed by the incompressible Navier–Stokes equations in the
Boussinesq approximation, relying on the assumption that 1ρ/ρ0 � 1 and that
curvature of the isopycnals due to centrifugal effects can be neglected. In the
following, we choose d, riΩi and 1ρ as typical length, velocity and density scales
in order to obtain non-dimensional quantities. In cylindrical coordinates (r, θ, z), the
dynamical equations for the velocity u= uer + veθ +wez and density ρ read

∂tu+ u∂ru+ vr ∂θu+w∂zu− v
2

r
=−∂rp+ 1

Re

(
∇2u− u

r2
− 2

r2
∂θv

)
, (2.6a)

∂tv + u∂rv + vr ∂θv +w∂zv + uv
r
=−1

r
∂θp+ 1

Re

(
∇2v − v

r2
+ 2

r2
∂θu
)
, (2.6b)

∂tw+ u∂rw+ vr ∂θw+w∂zw=−∂zp+ 1
Re
∇2w− Rigρ, (2.6c)

∂tρ + u∂rρ + vr ∂θρ +w∂zρ = 1
Re Sc

∇2ρ, (2.6d)

where
∇2 := ∂2

rr +
1
r
∂r + 1

r2
∂2
θθ + ∂2

zz (2.7)

is the scalar Laplacian operator, p :=Π/ρ0 + gz is a potential based on the pressure
Π , and finally

Rig := αΓ (1− η)
2

η2
Ril (2.8)

is a global Richardson number (created in the equations by the choice of reference
scales).

In strongly rotating flows, ‘centrifugal buoyancy’ can be taken into account by
including the nonlinear term (1ρ/ρ0)ρ(u · ∇)u in the convective derivative (Lopez,
Marques & Avila 2013). This term is O(1ρ/ρ0) with our choice of reference scales,
whereas the usual buoyancy term related to gravity is O(Rig). In the present study,
Rig � 1ρ/ρ0 (see the parameter values in table 1), which justifies the use of the
traditional Boussinesq approximation. The incompressibility constraint can be written
as

∂ru+ u
r
+ 1

r
∂θv + ∂zw= 0. (2.9)

The meridional velocity u⊥ := (u, w) vanishes at the boundaries whereas the zonal
component satisfies

v =


1 if r= r?i , |z|6 Γ/2,
µ/η if r= r?o, |z|6 Γ/2,
µ(r/r?i ) if r?i < r 6 r?o, |z| = Γ/2,

(2.10)
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Parameters Simulations Experiments

Geometry η 0.417 0.417
Γ 3 3± 0.14

Rotation and shear Re 5000 14 000± 700
µ η1/2 (LS), η3/2 (HS) η1/2 (LS), η3/2 (HS)

Stratification

Ril 0–5 0, 2
α 0–1 0, 0.5, 1

Sc or Pr Pr= 7 Sc≈ 700
Boundary conditions on ρ Dirichlet Neumann

TABLE 1. Comparison between numerical and experimental control parameters. For the
stratified experiment with α = 0.5, Ril = 2, and the larger value of Re = 14 000, Rig ≈ 6
and 1ρ/ρ0 ≈ 0.04, so the condition Rig�1ρ/ρ0 is well satisfied. ‘Centrifugal buoyancy’
is therefore expected to be negligible compared with ‘gravitational buoyancy’, justifying
the use of the Boussinesq approximation.

where r?i = η/(1− η) and r?o= 1/(1− η) denote respectively the non-dimensional inner
and outer radii. Finally, we impose the piecewise-linear density profile

ρ =



− 1
2α

[
2z
Γ
− (1− α)

]
if 1− α 6 2z/Γ 6 1,

− 1
2α

[
2z
Γ
+ (1− α)

]
if 1− α 6−2z/Γ 6 1,

0 otherwise,

(2.11)

either initially in the volume in the case of salt stratification, or at the boundaries
at all times in the case of temperature stratification. Indeed, in the former case, the
density satisfies no-flux (Neumann) boundary conditions at the walls, ∂nρ = 0 (where
∂n denotes the wall-normal derivative), whereas in the latter case, the temperature
on the walls can be controlled such that (2.11) holds for all time there (Dirichlet
boundary conditions).

3. Methods
3.1. Numerical methods

In the following, the flow variables are jointly written as q := (u, p, ρ). Base flow
quantities are denoted with capital letters or subscript ‘B’ for Greek characters, hence
Q= (U, P, ρB). Perturbations with respect to the base flow are denoted q′ := q − Q.

3.1.1. Temperature stratification: steady base flows
In the case of temperature stratification, the base flow is steady, axisymmetric and

has the z-symmetry

Z : (U, V,W, P, ρB)(r, z) → (U, V,−W, P,−ρB)(r,−z) (3.1)

as a consequence of the Boussinesq approximation and the imposed boundary
conditions. Each field was discretized using a double expansion of Chebyshev
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polynomials,

Q(r, z)=
I,J∑

i=0,j=0

Q̂ijTi
(
2(r− r?i )− 1

)
Φj (2z/Γ ) , (3.2)

where Ti(x) := cos(i cos−1 x) and Φj(x) := T2j(x) or T2j+1(x), depending on whether
the field Q is symmetric or antisymmetric in z. Because of the absence of boundary
conditions on P, the corresponding expansion (3.2) was truncated at order (I − 2,
J − 1) instead of (I, J) in this case (see Peyret 2002). The governing equations were
solved directly in the physical space using a collocation method. Discontinuities in
(2.10) (at r = r?i for |2z/Γ | = 1) and (2.11) (at |2z/Γ | = 1 − α) were smoothed in
order to preserve spectral accuracy. This was achieved by introducing a small length
scale δ, following Lopez & Shen (1998), and defining new boundary conditions for
the azimuthal velocity

V = r
r?i

[
µ+ (1−µ) exp

(
−r− r?i

δ

)]
(3.3)

and density ρB, by integration of

∂zρB =− 1
2αΓ

[
2+ tanh

(
z− Γ/2(1− α)

δ

)
− tanh

(
z+ Γ/2(1− α)

δ

)]
(3.4)

with respect to z. A value of δ = 0.006 was taken for the computations, following
Avila et al. (2008). Solutions were computed by Newton–Raphson iteration until the
residuals ‖Qn+1 −Qn‖∞/‖Qn‖∞ converged below 10−8 for each component Q of Q.
All base flow computations were performed with (I, J) = (101, 150), ensuring that
the trailing coefficients were always between four and five orders of magnitude lower
than the maximum coefficient. Figure 2(a) shows a typical ‘spectral’ convergence of
the coefficients of (3.2). The solver was also validated against results from Avila et al.
(2008) (see figure 2b) and Abshagen et al. (2010).

3.1.2. Linear stability
We investigated the linear stability of the base flows computed using temperature

boundary conditions. As Q is steady and axisymmetric, infinitesimal perturbations can
be expressed as a superposition of normal modes of the form q′= q̃′(r, z) exp[i(mθ −
ωt)], with azimuthal mode number m and complex frequency ω. These modes either
share the z-symmetry (3.1) of the base flow, so that Z q′ = q′, or are antisymmetric
under the action of Z : Z q′ = −q′. Substituting the normal mode form into the
Navier–Stokes equations (2.6)–(2.11) linearized about Q leads to a generalized
eigenvalue problem in ω and q′. Following Leclercq, Pier & Scott (2013), this
problem was reduced to a much smaller standard eigenvalue problem by eliminating
the pressure, boundary points and one velocity component (w̃′ if m = 0 and ṽ′

otherwise), and then solved using standard LAPACK and ARPACK++ routines. The
solver was validated against figure 6 of Avila et al. (2008), with perfect agreement
between our computed values of critical Re and values digitized from the plot for
Γ = 3, 4, 6 and the various values of m shown.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

44
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.44


Stratification in quasi-Keplerian Taylor–Couette flow 615

3.1.3. Salt stratification: quasisteady base flows
In the case of salt stratification, the no-flux boundary conditions lead to a very

slow relaxation of the density field to an eventually unstratified state. The time scale
of density diffusion τκ is larger than 5 months in our apparatus, however, so that
the laboratory experiments are quasisteady after a few momentum diffusion times
(τν ∼ 5 h 30 min). The resulting time-dependent base flow is also axisymmetric and
invariant under the action of Z . In order to compute these solutions, a time stepper
was developed with no-flux boundary conditions on the density ∂nρB = 0, as in the
experiments. The flow was taken initially at rest with a stratification profile given
by (3.4) at any radial position. The cylinders and end plates were then accelerated
to their final rotation speed over a few periods τ = 0.05τν , by multiplying the
boundary condition (3.3) by the factor (1− exp[−t/τ ]). A streamfunction–vorticity
formulation was used and spectral expansions of the form given in (3.2) were again
used to discretize the problem (see Peyret 2002, pp. 188–195). Nonlinear terms were
treated explicitly with a second-order extrapolation (Adams–Bashforth), whereas the
diffusion terms were treated implicitly (backward differentiation). Incompressibility
was enforced with an influence matrix. Helmholtz and Poisson problems were solved
using a full diagonalization method. The code was validated by applying Dirichlet
boundary conditions (3.4) on the density and checking consistency with solutions
given by the Newton–Raphson solver.

3.2. Experimental methods
Experiments were conducted in a Taylor–Couette tank of height 50 cm with (ri, ro)=
(10, 24) cm, resulting in a radius ratio η= 0.417. The tank was filled to a depth
h= 42± 2 cm, giving an aspect ratio Γ = 3± 0.14. The top and bottom boundaries
both rotated with the outer cylinder. A transparent perspex lid, placed in contact with
the fluid in the annulus, was fixed to the outer cylinder after filling and formed the
top end plate, while the bottom end plate was securely attached to the rotating table
forming the base of the tank. The inner cylinder was driven independently from above
by a mounted motor unit, at its maximum rotation rate Ωi = 1 ± 0.03 rad s−1 for
all experiments. The rotation rate Ωo of the rotating table was varied to achieve the
desired value of µ.

The experiments began by filling the tank to the desired stratification using two
computer-controlled peristaltic pumps. The two pumps were connected to different
reservoirs of fluid, one of relatively dense NaCl solution and the other of fresh water,
both of which had been deaerated using vacuum cylinders to reduce unwanted air
coming out of the solution during the course of an experiment and hindering the
visualization. The reservoirs also sat out for approximately one day to equilibrate
with the ambient temperature conditions of the laboratory. The densities of the two
reservoirs were measured just prior to filling using an Anton Paar DMA5000 density
meter with a resolution of 10−6 g cm−3. After filling, a conductivity probe was then
traversed through the depth of the tank to measure the resulting stratification. Due to
the long filling time (∼1–2 h), the flow rates in the pumps could deviate during the
filling procedure, resulting in a small error in the desired fill height (±5 %). We do
not expect this small change in aspect ratio to alter the overall flow patterns observed.

To reduce the impact of any initial transient, the cylinders were slowly ramped up
over 8 h (∼1.5τν), with the rotation ratio µ held constant during the course of the
ramp. After the initial ramp period, the cylinder rotation rates were held constant for
another momentum diffusion time before acquiring any raw images for particle image
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velocimetry (PIV). After the raw images had been acquired, the cylinders were both
ramped down to rest over a momentum diffusion time to minimize unwanted shear
before taking a final density profile using the conductivity probe.

To monitor the behaviour of the stratified layers, shadowgraph images were
automatically recorded at 30 min intervals during the experiment. To enable
simultaneous capture of PIV and shadowgraph images, the inner cylinder was
painted white except for a black band that spanned z = −9 cm to z = 10 cm. A
slide projector positioned approximately 3 m from the tank illuminated the flow and
projected refractive index variations onto the white regions of the inner cylinder,
which were then recorded using a Uniq Vision UP1830-12B 1 megapixel resolution
camera.

Raw images for PIV were captured using a 4 megapixel Dalsa Falcon 2 camera at
160 fps for 30 s (∼5 rotation periods of the inner cylinder). The camera was mounted
directly above the apparatus, viewing down through the top transparent end plate. The
flow was seeded using 20 µm diameter polyamide particles and illuminated using a
700 W arc lamp. The resulting light sheet was approximately 3 mm thick and was
horizontally orientated, so all velocity data are in the (r, θ) plane. For all of the data
reported here, the light sheet was positioned at z= 0± 1 cm, so data were acquired
in the centre of the unstratified region. The region illuminated and captured by the
camera was 14 cm× 3 cm, which corresponded to 1800 pixels × 400 pixels. The PIV
was analysed using DigiFlow (Dalziel et al. 2007), with an interrogation window size
of 32 pixels × 32 pixels and an overlap of 50 %, which resulted in a spatial resolution
of ∼1.24 mm. The error in particle displacement was ∼0.02 of a pixel, which gives
an error in velocity of ∼0.25 mm s−1 (∼0.025 % of riΩi).

4. Mitigating end effects with stratification

Table 1 summarizes the values of the different control parameters taken in our
experiments and computations. Two rotation ratios were considered in both: a
‘high-shear’ (HS) value where µ = η3/2 and a ‘low-shear’ (LS) one where µ = η1/2.
We recall that the quasi-Keplerian range is η2 < µ < 1, with the upper limit µ = 1
corresponding to uniform rotation and therefore no shear. Here, we use the terms
‘low’ and ‘high’ only to distinguish the two cases by comparison with one another,
but note that arbitrarily large shear rates can be achieved even in the LS case, by
setting Re to a large enough value.

Because of our underlying objective of investigating the existence of turbulence
in quasi-Keplerian flow, we indeed chose to maximize the value of the Reynolds
number in the experiments, leading to Re= 14 000 with our set-up. However, accurate
computations could not be achieved at this large value of Re in a reasonable time
frame with our serial codes, so an upper limit of Re= 5000 was taken for these.

Salt was used to generate stratification in the experiments, so the density field
satisfied no-flux boundary conditions at the walls and the Schmidt number was
Sc ≈ 700. However, for reasons that will be discussed further in § 5.3, we chose to
model the experiment with Dirichlet boundary conditions at the walls, instead of
Neumann conditions. In practice, this would correspond to imposing a temperature
profile at the walls, which would lead to much quicker density diffusion, as heat
diffuses more rapidly than salt in fresh water (Pr ≈ 7 instead of Sc ≈ 700). This
other discrepancy will be discussed in § 5.2. Put simply, these modelling choices for
stratification made our equations much more amenable to numerical computation than
if actual experimental settings were taken.
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FIGURE 3. (Colour online) Base flow for the HS case µ = η3/2. (a–c) Meridional flow
U⊥= (U,W): streamlines (1ψ=10−3) and colourmap of the norm ‖U⊥‖. (d–f ) Azimuthal
velocity V: colourmap and contours of V (1V = 0.05). The dotted lines in (b,e) indicate
the limit of the stratified layers. In this figure and hereafter, the left (respectively right)
boundary corresponds to the inner (respectively outer) cylinder; (a,d) α= 0, (b,e) α= 0.5,
(c, f ) α = 1.

The computed meridional and zonal base flows are presented in figures 3 and 4 for
the two shear cases and three choices of stratification: no stratification (α = 0), full
stratification (α = 1) and partial stratification (0 < α < 1). Each case is discussed in
more detail in the following subsections.

4.1. Unstratified case: α = 0

4.1.1. ‘High-shear case’ µ= η3/2

In the absence of stratification, the meridional circulation for the HS case penetrates
deep into the flow and causes a strong distortion of the azimuthal flow field, as
can be seen in figure 3(a). The driving mechanism is a broken balance between
centrifugal force and pressure gradient at the end plates caused by the no-slip
boundary condition (Czarny et al. 2003). The inward radial flow at the endcaps is
then redirected to the equatorial region through Stewartson layers once it reaches the
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FIGURE 4. (Colour online) Base flow in the LS case µ= η1/2. The same as figure 3,
except that here 1ψ = 2.5× 10−4.

inner cylinder. This leads to the formation of two meridional recirculation cells that
merge at the equator into a strong outward radial jet (Avila et al. 2008). The jet
redistributes angular momentum along r, leading to a locally centrifugally unstable
angular momentum profile, i.e. d|L|/dr < 0 for 0 . r − r?i . 0.63 and z = 0. The
structure of the resulting global mode linear instability is represented in figure 5(a).
In the experiment, this instability develops into turbulent motion, characterized by
high levels of velocity fluctuations in the equatorial plane:

√
δu2 + δv2/v up to 5–6 %

near the inner cylinder ((·) denotes temporal average and δu is the fluctuation with
respect to the mean, δu :=u−u), as shown by the dashed line in figure 6. Turbulence
tends to homogenize angular momentum in centrifugally unstable regions, explaining
the deviation between the computed base flow (dashed line) and the time-averaged
azimuthal velocity (solid line with markers) for 0 . r− r?i . 0.7 in figure 7(a).

4.1.2. ‘Low-shear case’ µ= η1/2

Although the end plates generate large-scale meridional circulation in the LS case,
the symmetric cells in figure 4(a) do not appear to reach the equator. As a result,
the axial homogeneity of the zonal flow V is preserved across z = 0 and the flow
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FIGURE 5. (Colour online) Structure of the most unstable linear mode for µ = η3/2,
Re= 1500 and (a) α= 0 (m= 2, symmetric under Z ), (b) α= 0.5 (m= 1, antisymmetric
under Z ), (c) α = 1 (m = 1, symmetric under Z ). The production of perturbation
energy (kinetic + potential) over the volume V of the container can be expressed as
PV = −

∫
V u′ · ∇U · u′ dV . We introduce the density P̃(r, z) by writing PV as

4πei2ωit
∫

P̃(r, z)r dr dz. The quantity rP̃(r, z) indicates the distribution of positive
production of perturbation energy in the meridional plane, averaged over θ . Contour lines:
1 log10[rP̃(r, z)] = 0.25. The dotted lines in (b) mark the limits of the stratified layers.
The resolution here is (I, J)= (67 100).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1
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5
6

FIGURE 6. (Colour online) Particle image velocimetry measurements of the horizontal
turbulence intensity at the equator, in the absence of stratification. Comparison between
the HS case (dashed red line) and the LS case (solid black line).

is numerically found to be linearly stable. Correlatively, the velocity fluctuations in
the experiments remain small, with

√
δu2 + δv2/v ∼ 1 % at the equator (solid line

in figure 6). In fact, apart from rapid variations in boundary layers near the end
plates, the azimuthal velocity seems to be virtually independent of z across the entire
container. However, a closer look at the radial profile of v in figure 7(b) shows
significant differences between the experiments (solid line with markers) and the
ideal Taylor–Couette solution (thick solid line). This mismatch can be interpreted
as a manifestation of the Taylor–Proudman theorem in rapidly rotating flows, as
explained in Hollerbach & Fournier (2004). Indeed, in the LS case, the Rossby
number (defined as in Hollerbach & Fournier (2004) and Paoletti & Lathrop (2011))
Ro := (Ωi −Ωo)/Ωo = (1−µ)/µ is small (Ro ≈ 0.55 for η = 0.417) and the flow
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FIGURE 7. (Colour online) Azimuthal velocity profiles at the equator for (a) the HS
and (b) the LS case. The solid red lines show the axially invariant Taylor–Couette
solution (1.1), the dashed blue lines show the computed values in the unstratified case,
the dashed–dotted blue lines show the computed base flows in the fully stratified case
(α, Ril) = (1, 2) and the solid black line with markers show the time-averaged profiles
in the unstratified case, from PIV measurements. There is a small discrepancy in the
measured velocity profile due to experimental error (<5 %) in setting the rotation rate
of the cylinders.

is not very far from geostrophic balance. It is therefore nearly invariant along the
axial direction and is controlled by Ekman pumping at the end plates. Thus, despite
weak meridional circulation and stability, experiments in the LS case do not yield
the desired Taylor–Couette solution (1.1).

4.2. Fully stratified case: α = 1
In this section, we investigate the effect of stratification across the entire container.
The choice of Ril = 2 for the stratified cases in figures 3–5 will be justified later
in § 4.3.

4.2.1. ‘High-shear case’ µ= η3/2

The addition of stratification in our axisymmetric computations results in a dramatic
reduction in meridional circulation and subsequent zonal flow distortion for the HS
case, as can be seen in figure 3(c). Apart from boundary layers at the end plates
and a small ‘eddy’ trapped in the inner corners, the magnitude of U⊥ has dropped
to less than 0.1 % of the inner cylinder velocity everywhere in the flow. As a result,
the azimuthal flow now weakly depends on z in the equatorial region and solution
(1.1) (thick solid red line) is almost perfectly recovered at z = 0, as can be seen in
figure 7(a) (dashed–dotted blue line).

However, despite the fully stratified solutions being significantly closer to the
base flow, the computed axisymmetric solution cannot actually be observed in an
experiment as the flow is, again, subject to a linear instability. The structure of the
most unstable mode, shown for Re= 1500 in figure 5(c), is clearly reminiscent of the
SRI as described in Shalybkov & Rüdiger (2005) and Rüdiger & Shalybkov (2009):
the mode is non-axisymmetric and almost axially periodic, with an axial wavelength
smaller than the gap (for infinite cylinders, Shalybkov & Rüdiger (2005) found the
scaling λ ∼ Ri−1/2

l for the critical axial wavelength λ). However, the production of
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total disturbance energy is localized near the inner cylinder, which suggests that
the instability mechanism for our wide-gap configuration η = 0.417 is closer to the
radiative mechanism of Le Dizès & Riedinger (2010) for η→ 0 than to a resonance
between boundary-trapped inertia–gravity waves, as discussed by Molemaker et al.
(2001) in the limit η→ 1.

4.2.2. ‘Low-shear case’ µ= η1/2

In the LS case, the effect of stratification on the base flow is similarly beneficial:
the meridional flow is negligible except in boundary layers, and the azimuthal velocity
is not only almost axially invariant, but also very close to the theoretical solution (1.1)
(see figure 7(b); dashed–dotted blue line for the base flow and thick solid red line for
the Taylor–Couette solution).

However, a crucial difference with the HS case is that the base flow now remains
stable. This is consistent with the predictions of Shalybkov & Rüdiger (2005) and
Rüdiger & Shalybkov (2009), who showed that stratified Taylor–Couette flow between
infinite cylinders is generally stable for µ< η. For the HS case, the presence of end
plates does not seem to impact the structure of the mode far from the end plates (see
5c). Therefore, it may not be surprising to obtain good agreement with theoretical
results obtained for an axially invariant base flow in the LS case too.

4.3. Partially stratified case: 0<α < 1
The promising numerical results of section § 4.2 indicate that stratification is quite
powerful at suppressing large meridional circulation cells, which in turn leads to
azimuthal velocity profiles close to (1.1). However, the end goal of our investigation
is to probe the possibility of purely hydrodynamic turbulence, so the central portion
of the apparatus needs to be left unstratified and avoid contamination by the SRI.

Our control strategy hence relies on two parameters: the stratified fraction α
and the local Richardson number Ril. The effect of these two parameters on the
departure of computed solutions with respect to (1.1) is shown in figure 8 in the LS
case (the results are qualitatively similar for the HS case). The relative difference
between computed and ideal solutions is averaged over a volume spanning half of
the unstratified region and centred about the equator. More specifically, we introduce
zonal and meridional deviations,

∆V := 〈(V − VTC)/VTC〉V and ∆⊥ := 〈‖U⊥‖/VTC〉V , (4.1)

where VTC := rΩTC,

〈(·)〉V :=
(

1
V

∫
V

(·)2 dV

)1/2

(4.2)

and

V :=
{
(r, θ, z) ∈ [r?i , r?o] × [0, 2π [ ×

[
−Γ (1− α)

4
,
Γ (1− α)

4

]}
. (4.3)

It appears that both quantities decrease rapidly as Ril increases in the range 0<Ril 65.
The meridional deviation ∆⊥ even drops by nearly one order of magnitude within
the range 0< Ril < 1. Increasing Ril further has virtually no effect on U⊥ but keeps
improving V . Similarly, the thickness of the layers does not seem to be critical to
the suppression of the meridional flow, as long as Ril & 1. However, thick layers are
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FIGURE 8. (Colour online) (a) Relative azimuthal deviation ∆V and (b) relative meridional
deviation ∆⊥ as functions of Ril, for various values of α, in the LS case.

more efficient at correcting the azimuthal velocity profile, as long as the unstratified
zone does not become shallow. Indeed, when α > 5/6, the depth of the unstratified
zone becomes lower than half of the gap width and the flow is no longer axially
homogeneous in this region. This has a negative impact on the deviations, which start
to increase again with α and Ril.

In this section, we choose to study the case (α, Ril) = (0.5, 2), which appears
to be a good compromise for various reasons: the deviations ∆V and ∆⊥ are both
small, the aspect ratio of the unstratified zone Γ (1 − α) = 1.5 is larger than 1 and
finally this combination is easily achieved experimentally since 1ρ/ρ0 ≈ 4 % for
Re = 14 000. This justifies a posteriori the choice of Ril = 2 to illustrate the fully
stratified case in § 4.2. The density field corresponding to this parameter combination
is shown in figure 9 for the HS and LS cases. In both, the isopycnals are almost
horizontal, indicating that the stratification is ‘strong enough’ to avoid overturning by
the meridional circulation, except at the inner corners (more details will be provided
in § 5.1).

4.3.1. ‘High-shear case’ µ= η3/2

There is barely any noticeable difference between the computed meridional flow
fields in the fully and partially stratified cases in figure 3(b,c). Apart from boundary
layers in the unstratified region for α= 0.5, the two fields are almost indistinguishable,
confirming that partial stratification efficiently suppresses U⊥ even when α 6= 1. The
azimuthal velocity is also remarkably homogeneous along the axial direction in the
unstratified zone, but unfortunately the computed base flow is linearly unstable. The
production of energy of the most unstable mode, displayed in figure 5(b) for Re =
1500, is precisely localized within the stratified layers. Moreover, the distribution of
this quantity is very similar to that of the fully stratified flow in the same region.
Therefore, we conclude that the mode is subject to an SRI mode localized inside the
layers.

Experimentally, this instability leads to the braid pattern visible in the spatiotemporal
shadowgraph of figure 10(a). This pattern corresponds to the nonlinear interaction of
two helical modes of opposite ‘handedness’, which are destabilized simultaneously
because of symmetry. In the long term, this secondary flow generates mixing and
destroys the initial density profile, as can be seen in figure 10(b).
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FIGURE 9. (Colour online) The base flow density field ρB in (a) the HS case (unstable),
µ= ν3/2, and (b) the LS case (stable), µ= ν1/2; (α,Ril)= (0.5, 2). The dotted lines mark
the limits of the stratified layers. The density step between solid lines is 0.05 and between
dashed lines is 5× 10−3.
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FIGURE 10. (Colour online) Instability of the stratified layers in the HS case with
(α, Ril) = (0.5, 2). (a) Spatiotemporal diagram of shadowgraph. (b) Density profiles
(deviation with respect to the mean ρ0, non-dimensionalized by ρ0) at mid-gap r =
1/2(r?i + r?o) from conductivity measurements, at t = 0 (solid line) and t = 40 h (dashed
line). The SRI destroys the initial density profile in a few diffusion time units.

4.3.2. ‘Low-shear case’ µ= η1/2

The effect of partial stratification on the base flow in the LS case is similar to
that observed for the HS case. The meridional flow is suppressed in the unstratified
zone, including within the boundary layer running along the inner cylinder, as |z|→ 0.
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FIGURE 11. (Colour online) Comparison between the azimuthal velocity profile at the
equator with and without control in the LS case. The thick solid red line shows the ideal
Taylor–Couette solution (1.1), the solid black line with markers shows the time averages
from experiments (circles, unstratified; squares, partially stratified (α, Ril)= (0.5, 2)) and
the blue dashed/dashed–dotted lines show the computed base flows for the unstratified
case/partially stratified case (α,Ril)= (0.5, 2). Additional measurements at z≈Γ/6(1−α)
in the partially stratified case yielded a mean velocity profile nearly indistinguishable from
that at z≈0, hence very close to ideality too. This confirms the effectiveness of the control
strategy across a large portion of the volume bounded by the stratified layers.

The azimuthal velocity is virtually axially homogeneous in the unstratified region,
but contrary to the unstratified case, the radial profile now closely matches the ideal
solution (1.1), as illustrated in figure 11.

For LS, no instability is found (numerically tested up to Re= 5000 and experimen-
tally up to 14 000) in either the fully or the partially stratified case. This result
is consistent with the analysis of Rüdiger & Shalybkov (2009), who always found
linear stability at µ = η1/2 (these authors investigated the range 0.3 6 η 6 0.78 and
0.2 6 Ril 6 4).

In conclusion, it appears that the partially stratified LS case (α, Ril) = (0.5, 2)
corresponds to a ‘sweet spot’ where stratification efficiently mitigates end effects
without introducing any additional instability mechanism. It is also a realistic set of
parameters for an experiment since it only requires 1ρ/ρ0 ≈ 4 % for Re= 14 000.

5. Discussion
5.1. Physical mechanism

To understand why end plates create meridional flow, consider the transport equation
for the azimuthal vorticity ζ := ∂zu− ∂rw. For the axisymmetric and steady base flow,
this equation can be written as[(

U∂r +W∂z − U
r

)
− 1

Re

(
∇2 − 1

r2

)]
ζB = ∂z

(
V2

r

)
+ Rig∂rρB. (5.1)

In the absence of end plates and stratification, the right-hand side of (5.1) is
exactly zero, and the basic flow solution satisfies ζB = 0, which implies that there is
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no meridional flow. In this case, the cyclostrophic balance V2/r = dP/dr is satisfied
everywhere in the flow. When end plates are added, the boundary condition on
the azimuthal velocity disrupts this equilibrium (Czarny et al. 2003) and a now
non-vanishing torque term ∂z(V2/r) 6= 0 (due to an inhomogeneous centrifugal
force along z) generates meridional vorticity. When stratification is added, the
baroclinic torque Rig∂rρB counteracts this effect, leaving the flow virtually free
of meridional vorticity when the right-hand side becomes negligible. If we estimate
that r ≈ 1/2(r?i + r?o)= 1/2(1+ η)/(1− η), V ≈ 1 and ∂z = O(d/(l/2))= O(2/(αΓ )),
this occurs for

Ril ≈ 4η2

(αΓ )2(1− η2)∂rρB
. (5.2)

This expression confirms that thick layers, i.e. large αΓ , are more efficient at
suppressing meridional motion, as they require a lower value of Ril. There are indeed
two reasons to try to minimize the required value for Ril in experiments. First,
Ril ∝Ω−2

i decreases rapidly with increasing Re∝Ωi at fixed buoyancy frequency N.
Second, the maximum buoyancy frequency N is set by saturation of salt into water
at 1ρ/ρ0 ≈ 20 %, limiting in turn the maximum Ril ∝ N2 ∝1ρ/ρ0. Therefore, thick
layers are helpful when trying to maximize Re in an experiment while satisfying
(5.2). As discussed in § 4.3, this only remains true as long as the aspect ratio of the
unstratified zone Γ (1− α) does not become small.

By estimating an upper bound for ∂rρB it is also possible to evaluate a lower bound
for Ril. Looking at the density field in figure 9, we observe that the isopycnals are
approximately straight lines in the meridional plane, except at the inner corners. In
dimensional units, the radial density gradient must therefore be lower than 1ρ/(2d),
since, by definition, the initial density jump across one layer is equal to 1ρ/2. This
leads to the non-dimensional estimate ∂rρ < 1/2. For α = 0.5, η = 0.417 and Γ = 3,
we obtain the upper bound Ril > 0.75, which is consistent with the observation that
∆⊥ is nearly constant beyond that value in figure 8.

Finally, we note that in the case of Dirichlet boundary conditions on the density,
the baroclinic term is infinitesimally small in the vicinity of the end plates, making
it impossible to fully cancel the centrifugal torque term. This centrifugal torque is
large in the vicinity of the inner corners because of the sharp vertical variation in V ,
explaining the locally higher levels of ‖U⊥‖.

5.2. Effect of Prandtl number
Figure 12 shows the impact of the Prandtl number on the deviations ∆V and ∆⊥
defined in (4.1). It appears that larger Pr leads to a significant reduction in both
quantities, following approximate power laws ∆V ∝ Pr−0.47 and ∆⊥ ∝ Pr−0.7 in
the range Pr ∈ [1, 46] for Re = 5000. This behaviour suggests that stratification
with salt (Sc ≈ 700) ought to be more efficient than stratification with temperature
(Pr ≈ 7), ignoring the differing boundary conditions. This observation suggests that
our numerical model overestimates the departure of the experiment from (1.1), as can
also be seen in figure 11. This result reinforces our confidence in the effectiveness
of our method.

5.3. Effect of no-flux boundary conditions on density
Aside from the difference in Reynolds numbers, the only remaining discrepancy
between the model and the experiment lies in the boundary conditions for the density.
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FIGURE 12. (Colour online) The effect of the Prandtl number on the deviations ∆V and
∆⊥ for the HS case µ= η3/2, α = 0.5 and Ril = 2.

In our model, we assumed that stratification was permanently forced by applying
a temperature profile at the walls, whereas in the experiments, the density is only
controlled at t = 0. In the experiment, a piecewise-linear density profile of the form
(2.11) is set initially, but it is subject to no-flux boundary conditions ∂nρB at all times.
Because of mass diffusion, the only possible steady-state solution is unfortunately
unstratified. Yet, given the large value of the Schmidt number Sc = ν/κ ≈ 700 in
the experiment, there is a separation of time scales between momentum diffusion
τν = d2/ν and mass diffusion τκ = d2/κ , which translates into a quasisteady evolution
of the flow after a few units of τν . However, simulation of such large Sc flows
proves computationally expensive as the corresponding separation of length scales is
also large. Indeed, if we estimate the smallest inhomogeneity scale in the flow to be
given by the Batchelor (1959) scale (formally defined for a stratified turbulent flow)
LB∼Sc−1/2 (or LB∼Pr−1/2 for temperature), we expect it to be one order of magnitude
smaller for Sc= 700 than for Pr= 7. The resulting increase in computational cost did
not allow us to perform the calculations in a reasonable time frame with the present
codes.

However, it is in principle possible to satisfy the separation of time scales τκ/τν =
Sc�1 without taking Sc as large as 700. One might hope that a lower value of Sc, for
instance Sc= 30, would suffice. Figure 13 shows that this is not the case. Indeed, the
discontinuity of V in the corners leads to local overturning of the density field, and
hence strongly curved isopycnals (see figure 9). As a result, the mass diffusion term
in (2.6d) is not negligible in these corners, despite the small prefactor (Re Sc)−1 ≈
7 × 10−6. Therefore, the rate of expansion of the meridional circulation cannot be
approximated by τ−1

κ , as the inhomogeneity length scale in the corners is much smaller
than d. We conclude that it is not possible to compute quasisteady solutions even for
Schmidt numbers in the range 1� Sc� 700. This prohibits the use of linear stability
analysis and motivates the use of Dirichlet (temperature) boundary conditions in our
model.

Despite an inadequate separation of time scales, it is worth noting that the aspect of
the solution at the inner corners in the initial stages of our simulation with Neumann
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FIGURE 13. (Colour online) Meridional flow in the case of no-flux boundary conditions
on density; HS case, Re= 1000, α = 0.5, Ril = 2 and Sc= 30, for (a) t = 0.5, (b) t = 2,
(c) t= 10. The unit of time here is the density diffusion time τν = d2/ν. Despite a large
Schmidt number, there is no separation of time scales between diffusion of momentum
and diffusion of density, leading to a rapid expansion of the meridional circulation. The
contours and colourmap are the same as in figure 3(a–c) (here 1ψ = 10−3). The dotted
lines indicate the limit of the stratified layers at t= 0.

(salt) boundary conditions (see figure 13(a) for t = 0.5τν) is quite similar to the
equivalent steady flow in figure 3(b). This observation strengthens our confidence in
the ability of the model with Dirichlet boundary conditions to capture the dynamics
of the experiment.

5.4. Seeking subcritical transition to turbulence
After demonstrating that the parameter combination (ln µ/ ln η, α, Ril)= (0.5, 0.5, 2)
satisfies all of the constraints set forth in the introduction, we probed the possibility of
sustained turbulence in the unstratified zone by carrying out a series of experiments.

In our first experiment, the flow was perturbed impulsively by reducing the inner
cylinder rotation rate by 75 % in approximately 1 s. A first PIV measurement was
taken then (defining t = 0), before Ωi was ramped back up to its final value over
the course of 1 min (approximately 10 inner cylinder rotation periods). A second
measurement was made 30 min later, at t≈ τν/10. Figure 14 shows the deviation from
the unperturbed state q∞ (time-averaged azimuthal profile v∞ shown in figure 11),
measured by ∆∞ :=

√
u2 + (v − v∞)2/v∞, at both instants. At t= 0 (dashed line), the

perturbation extends radially over a distance d′ ≈ d/10, corresponding to an effective
diffusion time τ ′ν = d′2/ν ≈ τν/100. At t ≈ τν/10≈ 10τ ′ν (solid line), the perturbation
has completely diffused and the flow has relaxed to its unperturbed laminar state, as
indicated by the low value of ∆∞ ≈ 1 % over the entire radial range.

In addition to that, we also tried to trigger subcritical transition to turbulence using
two types of non-axisymmetric perturbations. After the spin-up procedure, a turbulent
radial jet was introduced at the equator using a syringe and a needle of diameter
1 mm. The needle was introduced into the flow through a hole in the top end plate
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FIGURE 14. (Colour online) The deviation ∆∞ from the unperturbed state at the equator
when searching for subcritical transition to turbulence. The dashed curve shows a measure
of ∆∞ right after applying the perturbation and the solid line corresponds to the deviation
30 min later. For this forcing at Re=O(104), turbulence is not triggered in the unstratified
zone, as is evident from the low values of ∆∞ ≈ 1 % rapidly reached.

before passing through the upper stratified region to reach the unstratified core. No
discernible mixing was introduced in the stratified region throughout this procedure.
The perturbation velocity in the jet was approximately 7 % of the inner cylinder
velocity, but sustained turbulence was not triggered, with the flow relaminarizing
within 30 min. The second non-axisymmetric perturbation involved the same needle
set-up, but this time fluid was removed from the unstratified core region to induce
vortex stretching. Once again, no sustainable turbulence was generated using this
method.

All of these observations show the robustness of the laminar flow with respect
to finite-amplitude perturbations, and indicate its nonlinear stability at Re = O(104)
and µ= η1/2. This conclusion is consistent with recent numerical and experimental
results by Ostilla-Mónico et al. (2014) and Edlund & Ji (2014), at even higher
Reynolds number and larger rotation ratios. The first authors used axially periodic
direct numerical simulation (with no stratification), and could not find any evidence
of a self-sustaining process up to Re = O(105) with µ = η3/2. Similarly, the latter
authors, from the Princeton group, found robust decay of various types of initial
perturbations in their enhanced split-ring apparatus (HTX device) at Re even greater
than 106, with µ= η1.8.

6. Conclusions
In this work we have confirmed both experimentally and numerically the

severe effect that end plates have on the interior of Taylor–Couette flow in the
quasi-Keplerian regime. In the ‘high-shear case’ µ= η3/2, two symmetric recirculation
cells are generated in the meridional plane; these merge at the equator to form a
strong radial jet. This jet redistributes angular momentum, causing the flow to become
turbulent through a linear instability. In the ‘low-shear case’ µ= η1/2, the meridional
flow is weaker, and there is no radial jet at the equator for the same value of Re.
Despite remaining approximately invariant along the axial direction, the azimuthal
flow is however significantly disturbed by the presence of end plates and deviates
from the ‘ideal’ Taylor–Couette solution corresponding to an axially unbounded
system.

We have then examined how stable stratification can be judiciously used to mitigate
these end effects in order to recover ‘ideal’ Taylor–Couette flow. When stratification is
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added across the full height, axisymmetric meridional flow is only able to develop in
boundary layers near the end plates, and recirculation becomes essentially confined to
the inner corners, where the azimuthal velocity is discontinuous. Everywhere else in
the flow, the deviation with respect to the ideal velocity profile drops significantly. The
physical mechanism behind this passive control method is the competition between the
‘centrifugal’ torque term ∂z(v

2/r) responsible for the generation of azimuthal vorticity
and the baroclinic torque Rig∂rρ acting against it. This mechanism is robust enough
that similar enhancement of the base flow in the equatorial region can be achieved
even when stratification is restricted to layers adjacent to the top and bottom end
plates. As long as the stable stratification is strong enough, typically 1< Ril < 5, and
neither the stratified nor the unstratified layers are too shallow (typically α ≈ 0.5 for
Γ = 3), the control of the base flow is effective.

One obvious advantage of the approach is that it is much easier to implement
than complex designs such as split endcaps (Ji et al. 2006; Edlund & Ji 2014) or
a split inner cylinder (Paoletti & Lathrop 2011). By simply adding salt in varying
concentration to the working fluid, we managed to significantly mitigate end effects
and recover the Couette flow solution around the equator z= 0.

However, like any other control method, this approach has its limits. First, the
method is only applicable to rotation ratios in the range η . µ < 1, corresponding
to the least-sheared configurations in the quasi-Keplerian range η2 < µ < 1. When
µ<η, the SRI develops in the stratified layers, despite the presence of the unstratified
region and end plates. This instability destroys the initial density profile, rendering the
method ineffective. Second, application of the method at very high Reynolds number,
of the order of 106 or more, is challenging due to the eventual saturation of water
by salt. For example, taking Ril = 2, 1ρ/ρ0 ≈ 20 % (saturation threshold for salt in
water) and a layer height of 0.75 gap (corresponding to αΓ = 1.5 as in § 4.3), means
that reaching Re= 106 would require a huge tank of outer radius ro ≈ 2 m or more.

This aside, we have successfully demonstrated the applicability of the method at
Re = O(104) for the rotation ratio µ = η1/2, and found turbulence decay following
several types of large-amplitude disturbances. This result is consistent with the
most recent numerical (Ostilla-Mónico et al. 2014) and experimental (Edlund & Ji
2014) investigations at respectively Re= O(105) and Re= O(106), and hence further
strengthens the view that extra physics beyond that of a simple rotating shear flow
is needed to explain the inferred turbulence in weakly ionized accretion disks (see
Turner et al. (2014) for a recent review of other possible instability mechanisms).
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