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Critical transitions (or tipping points) are drastic sudden changes observed in many dynamical
systems. Large classes of critical transitions are associated with systems, which drift slowly towards
a bifurcation point. In the context of stochastic ordinary differential equations, there are results on
growth of variance and autocorrelation before a transition, which can be used as possible warn-
ing signs in applications. A similar theory has recently been developed in the simplest setting for
stochastic partial differential equations (SPDEs) for self-adjoint operators in the drift term. This
setting leads to real discrete spectrum and growth of the covariance operator via a certain scaling
law. In this paper, we develop this theory substantially further. We cover the cases of complex eigen-
values, degenerate eigenvalues as well as continuous spectrum. This provides a fairly comprehensive
theory for most practical applications of warning signs for SPDE bifurcations.
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1 Introduction

In many areas of science,we frequently observe events that appear rather abruptly. Some
examples are epileptic seizures [32, 33] and asthma attacks [41] in medicine, market collapses in
economics [19, 31], epidemic outbreaks [34, 28], engineering system failures [8] and population/
habitat changes in ecology [6, 5]. Although these critical transitions seem – a priori – unrelated,
there are many unifying features. The events happen rather fast after a long period of slow
change, there are special thresholds or tipping points to be crossed, and stochastic fluctuations
are always present. Using stochastic fluctuations to estimate the presence of, and the distance to,
a tipping point has been a successful strategy already proposed by Wiesenfeld in 1985 [42] and
tested in the context of chemical experiments [22]. One exploits that the main deterministic driv-
ing forces near bifurcation are weakened (also known as critical slowing down or intermittency
[16]) and measures the relatively amplified noisy fluctuations. If we would not have fluctua-
tions/perturbations, then it would be impossible to detect critical slowing down (e.g. consider the
case of a subcritical pitchfork bifurcation). The strategy to exploit slowing down in combination
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with noise has been (re-)discovered also in many application areas, recently, mainly in ecology
[5, 38] and climate science [30, 38]. Yet, to actually obtain predictive power of warning signs is
often highly non-trivial from a practical [12] as well as statistical [43, 4] viewpoint.

Therefore, a detailed mathematical theory must be developed to better understand the assump-
tions, limitations and opportunities of warning signs for critical transitions. For systems modelled
by stochastic ordinary differential equations (SODEs), a detailed theory can be found in [23]; see
also [2] for relevant background. However, if we discard all spatial components, we may miss
important aspects of the theory, which could also be very important in practical applications
[11, 13]. This leads one to consider stochastic partial differential equations (SPDEs), where
warning signs have only been investigated so far for propagation failure of travelling waves
numerically [24] and with a combination of analytical/numerical methods for stationary patterns
in [15]. The work [15] is our main starting point. It focuses on system of the form

du = Lu + f (u, p) dt + σB dW ,
dp = εg(u, p) dt,

0<σ , ε� 1, (1.1)

where (x, t) ∈ I × [0, ∞), I is an interval, L is a spatial differential operator, u = u(x, t),
p = p(x, t), the nonlinearities f and g are sufficiently smooth maps, W = W (x, t) is a space-time
generalized Wiener process, B is a given linear operator, 0<σ � 1 controls the noise level and
0< ε� 1 is the time-scale separation between the fast u variable and the slow p variable; see
also Section 2 for the technical setting. Suppose f (0, p) = 0, so that u∗ ≡ 0 is a homogeneous
steady state for any p for the deterministic (σ = 0) partial differential equation (PDE). The local
stability of u∗ ≡ 0 is determined by studying the operator

A = A( p) := L + Du f (0, p),

where Du is the Fréchet derivative and we have to pick a function space to obtain a well-defined
spectral problem. The basic idea to induce a critical transition in the fast–slow SPDE (1.1) is that
the slow dynamics

∂tp = εg(0, p)

changes, so that for some p, say p< 0, we obtain that spec(A( p)) is contained in {z : Re(z)< 0}
while for some other p, say p> 0, the spectrum contains parts in {z : Re(z)> 0}. In particular,
this means the fast PDE dynamics

∂tu = Lu + f (u, p)

undergoes a bifurcation at p = 0 as p is varying [20]. Since it is very difficult to control the
interplay between σ , ε and the location of spec(A( p)) [25], the first natural approximation is to
consider the fast subsystem singular limit ε= 0 and just view p as a parameter [26]. In [15], this
situation is considered for the linearised problem

dU = A( p)U dt + σB dW , U = U(x, t), (1.2)

see also Section 2. Several further key assumptions are made in [15]:

(GK1): spec(A( p)) contains eigenvalues with multiplicity one;
(GK2): A(p) is self-adjoint;
(GK3): the noise term is independent of p;
(GK4): the spatial domain is I = [0, L∗] for some L∗ > 0.
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Under these assumptions, one can show [15] that the covariance operator Cov(u) diverges, when
projected onto certain Fourier modes as p → 0−. One can also determine an explicit asymptotic
scaling power law in p. Furthermore, the scaling can be numerically computed in examples, such
as the cubic–quintic Allen–Cahn equation as shown in [27, Figures 3, 4 and 8]. The results just
summarised above are a natural generalisation to SPDEs for the well-known fast–slow SODE
setting [1, 23].

In this paper, we manage to drop and/or generalise all the assumptions (GK1)–(GK4). We
are going to allow for degenerate Jordan blocks lifting (GK1). We also consider complex eigen-
values and parameter-dependent noise thereby removing (GK2) and (GK3). Furthermore, we are
going to consider essential spectrum frequently arising for differential operators on unbounded
domains. In this context, we consider rather general classes of linear operators A. These results
are a major generalisation in contrast to classical differential operators on bounded domains as in
(GK4). The last generalisation may look slightly unnatural at first sight, but it is crucial as mod-
ulation/amplitude equations [21] for SPDEs [3] are posed on unbounded domains. Modulation
equations can be viewed as normal forms for local pattern formation [18].

Our results in this paper show that we can essentially always expect diverging covariance for
generic noise terms, either in the form

〈Cov(uk∗ ), uk∗〉 =O(h( p)) as p → 0−, lim
p→0− h( p) = +∞ (1.3)

in the Hilbert space H with inner product 〈·, ·〉 for some function uk∗ and explicitly computable
h( p), or more generally for essential spectrum in the form

lim
p→0− ‖Cov(u)‖ = +∞, (1.4)

where ‖ · ‖ is a norm on linear operators. If the parametric dependence is chosen, so that the
noise degenerates, we show that other behaviours are possible. For precise technical statements,
we refer to Sections 3 and 4. In summary, this completes the theory of warning signs for SPDEs
bifurcating from a homogeneous steady state in the vast majority of cases of practical relevance.

The paper is structured as follows: in Section 2, we briefly present the mathematical back-
ground required for our study. In Section 3, we consider the case of discrete spectrum for
A = A( p). Here, we manage to lift the assumptions (GK1)–(GK3) and prove a result of the form
(1.3). Then, we obtain a result of the form (1.4) for essential spectrum in Section 4. The proof
shows when we can characterise the precise scaling laws also for essential spectrum as stated
in (1.3). We conclude with a summary and an outlook in Section 5.

2 Background and framework

Consider an evolution equation on a Hilbert space H of the form

∂tU = A( p)U , U = U(t) ∈ H , p ∈R, (2.1)

for a linear operator A = A( p) : D(A) ⊂ H → H . Assume that A is the infinitesimal generator of
a strongly continuous semigroup etA [35]. Suppose the steady state U∗ = 0 is stable for (2.1),
for p< 0, i.e. the spectrum of A( p) is contained in the left half of the complex plane for p< 0.
Suppose at p = 0, the spectrum crosses the imaginary axis iR, so that we have an instability that
we interpret as the linearised problem for the drift part of (1.2).
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Next, we briefly introduce the framework for SPDEs we need from [10]. Consider a filtered
probability space (�, F , Ft, P) and a non-negative self-adjoint trace class operator Q on a Hilbert
space H . By the spectral theorem, Q has a countable orthonormal basis {qk}∞k=1 of eigenfunctions,
with corresponding eigenvalues ρk ≥ 0 such that Qqk = ρkqk . A stochastic process W is a
Q-Wiener process on H if

Wt =
∞∑

j=1

√
ρj qj β

j
t , almost surely (a.s.),

where β j = β
j
t are independent and identically distributed Ft-adapted Brownian motions and the

series converges in L2(�, H). The identity matrix I is not a trace class operator. Nevertheless,
one can (uniquely) construct a Wiener process with covariance matrix that is not trace class by
showing that the series

Wt =
∞∑

j=1

Q1/2 qj β
j
t (2.2)

converges in a larger Hilbert space H1 (in particular, H1 has to be such that the embedding
J : Q1/2H → H1 is a Hilbert–Schmidt operator, see [10, Proposition 4.7]). The processes defined
by convergence of the series (2.2) are called generalised Wiener processes. A cylindrical Wiener
process (or space-time white noise) is the generalised Wiener process with covariance matrix I .
One can then define integration with respect to Q-Wiener processes and generalised Wiener
processes. A general linear additive-noise SPDE can be written in the following form:

dU = AU dt + σB dWt U(0) = U0, (2.3)

where we assume B ∈ L2
0 with L2

0 denoting the space of Hilbert–Schmidt operators [10] and that
U0 is an F0-measurable random variable. An H-valued predictable process {U(t)}t∈[0,T] is called
a mild solution of (2.3) if a.s. we have

U(t) = etAU0 + σ

∫ t

0
e(t−s)AB dWs. (2.4)

Under the assumptions above, a unique mild solution is guaranteed to exist [10, Theorem 5.4].
Since we assume that etAU0 decays exponentially for p< 0 and we always take the limit p → 0−,
we directly start on the deterministic steady state from now on and assume

U(0) = U0 ≡ 0.

We have the following expression for the covariance operator of the second term in (2.4) as given
in [10, Theorem 5.2]

V (t) := Cov

(
σ

∫ t

0
e(t−s)AB dWs

)
= σ 2

∫ t

0
eτABQB∗eτA∗

dτ , (2.5)

where B∗ denotes the adjoint of B. The asymptotic limit V∞ := limt→∞ V (t) = limt→∞ Cov(U(t))
satisfies the Lyapunov equation

〈AV∞g, h〉 + 〈V∞A∗g, h〉 = −σ 2〈BQB∗g, h〉 (2.6)
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for all h, g such that the expression is well defined (see [9, Lemma 2.45]). Hence, we must study
the different behaviours of V (t), respectively V∞, as p → 0− to understand the scaling of the
covariance to leading-order as we approach the transition at p = 0 [15].

3 Discrete spectrum

We start by considering the problem of discrete spectrum, motivated by many classical differ-
ential operators A on bounded domains. Our goal is to generalise the following result already
obtained in [15]:

Theorem 3.1 Consider (2.3) with

A = p Id +A
where A has a discrete real spectrum with eigenvalues λk ≤ 0, eigenfunctions uk and that there
exists a unique k∗ such that λk∗ = 0. Also assume the genericity condition 〈BQB∗uk∗ , uk∗〉 �= 0 to
be satisfied. Then, the covariance operator V(t) satisfies〈

lim
t→∞ V (t)uk , uj

〉
= −σ 2 〈BQB∗uk , uj〉

2p + λk + λj
∀j, k ∈N (3.1)

and in particular

〈
lim

t→∞ V (t)uk∗ , uk∗
〉
=O

(
1

p

)
as p → 0−. (3.2)

Proof See [15], Proposition 3.1. �

The assumptions on the operator A guarantee that the spectrum of A = ( p Id +A) is strictly
contained in (−∞, 0) for p< 0. For p = 0, the spectrum spec(A) contains the point 0, which
corresponds to the eigenfunction uk∗ . In the language of dynamical systems, in this case, the
steady state u∗ ≡ 0 is non-hyperbolic and a centre manifold W c

loc(0) appears. Being linear, the
centre manifold is explicitly given by the linear subspace W c

loc(0) = span{uk∗}. The asymptotic
result in Theorem 3.1 can then be restated as saying that the component of the covariance operator
along the centre manifold diverges as the critical transition is approached. Hence, this is a very
natural first analog to the results for SODEs in [23].

3.1 Imaginary eigenvalues

As a first step, we relax the real discrete spectrum assumption on the operator A to obtain

Theorem 3.2 Consider the SPDE (2.3), i.e.

dU = AU dt + σB dW .

Suppose A = A( p) has a discrete spectrum with eigenvalues λk( p) with Re(λk( p))< 0 for all
k and p< 0, and eigenfunctions uk. If k∗ is such that λk∗ is a purely imaginary eigenvalue for
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p∗ = 0 and the genericity condition 〈BQB∗uk∗ , uk∗〉 �= 0 is satisfied, the covariance operator V(t)
satisfies

〈
lim

t→∞ V (t)uk , uj

〉
= −σ 2 〈BQB∗uk , uj〉

λk + λ̄j
∀j, k ∈N (3.3)

where λ̄j is the complex conjugate of λj. In particular, we find

〈
lim

t→∞ V (t)uk∗ , uk∗
〉
=O

(
1

Re(λk∗)

)
as p → 0−. (3.4)

Proof The proof is a calculation using the Lyapunov equation

〈AV∞g, h〉 + 〈V∞A∗g, h〉 = −σ 2〈BQB∗g, h〉
which holds, in particular, for the eigenfunctions uk . Therefore, we obtain

〈AV∞uk , uj〉 + 〈V∞A∗uk , uj〉 = −σ 2〈BQB∗uk , uj〉,
⇒ λj〈V∞uk , uj〉 + λ̄k〈V∞uk , uj〉 = −σ 2〈BQB∗uk , uj〉,

⇒ (λj + λ̄k)〈V∞uk , uj〉 = −σ 2〈BQB∗uk , uj〉.
This proves the first claim (3.3). Setting k = j one has

〈V∞uj, uj〉 = −σ 2 〈BQB∗uj, uj〉
2Re(λj)

,

therefore, for j = k∗, the second claim (3.4) also follows. �

3.2 Jordan blocks

In the previous sections, we have shown divergence of the variance along the component cor-
responding to eigenfunctions of the operator A corresponding to the eigenvalue crossing the
imaginary axis. In case A has Jordan blocks, one might ask whether such behaviour is also
observed, when projecting along the generalised eigenfunctions {ul

k∗}l=1,...,mk∗. Here, mk∗ denotes
the dimension of the Jordan block corresponding to λk∗. For arbitrary k, setting u0

k := 0, we have
the formula

Aul
k = ul−1

k + λkul
k .

We find that the variance diverges also along generalised eigenfunctions, with the rate of diver-
gence depending on the order l of the corresponding generalised eigenfunction.

Theorem 3.3 Consider (2.3) and suppose A = A( p) has a discrete spectrum with eigenvalues λk

with Re(λk)< 0 for all k and p< 0. Further assume that k∗ is such that λk∗ is a purely imaginary
eigenvalue for p∗ = 0 with generalised eigenfunctions

{ul
k∗}l=1,...,mk∗.
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If the genericity condition 〈BQB∗u1
k∗ , u1

k∗〉 �= 0 is satisfied, the covariance operator V (t) satisfies

〈
lim

t→∞ V (t)ul
k∗ , um

k∗
〉
=O

(
1

Re(λk∗)l+m−1

)
as p → 0− (3.5)

for each l, m ≥ 1.

Proof We aim to prove it by induction on l + m. First of all, suppose l + m = 2, then the only
non-trivial case is l = m = 1 and the claim has already been proven. Therefore, we have the first
step for induction. We then assume the claim holds for all l, m s.t. l + m ≤ n, and we want to
prove it for all l, m s.t. l + m = n + 1. Fix such l and m. The Lyapunov equation implies

2Re(λk)〈V∞ul
k , um

k 〉 + 〈V∞ul−1
k , um

k 〉 + 〈V∞ul
k , um−1

k 〉 = −σ 2〈BQB∗ul
k , um

k 〉.
Using the induction assumption l + m ≤ n for the last two terms on the right-hand side, we get

2Re(λk)〈V∞ul
k , um

k 〉 =O
(

1

Re(λk)l+m−2

)
− σ 2〈BQB∗ul

k , um
k 〉.

Therefore, we may conclude that

〈V∞ul
k , um

k 〉 =O
(

1

Re(λk)l+m−1

)
− σ 2 〈BQB∗ul

k , um
k 〉

2Re(λk)
=O

(
1

Re(λk)l+m−1

)
,

which proves the claim. �

3.3 Noise and operator dependent on a parameter

Another interesting case to study is when both A and σ depend on the parameter p. We expect
that, if the noise near the bifurcation is too small, the variance does not diverge anymore. Indeed,
for constant noise, we observe that the system exhibits slow recovery when the critical transition
is approached. If the noise decreases too fast, this could balance the critical slowing down and
prevent the divergence of the variance. We show in the next result that it is enough to guarantee
σ 2 � λk∗ to avoid such a problem.

Theorem 3.4 Consider the SPDE

dU = AU dt + σ ( p)B dW . (3.6)

Assume that A = A( p) has a discrete spectrum with eigenvalues λk with Re(λk)< 0 for all k and
p< 0, and eigenfunctions uk. Assume k∗ is such that λk∗ is a purely imaginary eigenvalue for
p∗ = 0 and set


 := lim
p→0−

σ 2( p)

2λk∗( p)
.

The following holds:

lim
p→0−〈V∞uk∗ , uk∗〉 = 〈BQB∗uk∗ , uk∗〉
. (3.7)
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In particular, if we also assume the genericity condition 〈BQB∗uk∗ , uk∗〉 �= 0 we have

〈V∞uk∗ , uk∗〉 =O
(
σ 2

λk∗

)
as p → 0−. (3.8)

Proof We can replicate the same computations as in the preceding sections to obtain

〈AV∞uk , uj〉 + 〈V∞A∗uk , uj〉 = −σ 2( p)〈BQB∗uk , uj〉
⇒ 〈V∞uk , uk〉 = −σ 2( p)

〈BQB∗uk , uk〉
2Re(λk)

.

Again as before, taking the limit for p → 0− gives the required result. �

The last result significantly generalises an SODE result for a particular model equation
obtained in [23, Section 7.5]. It shows that one must ensure that the noise source does not interact
and/or depend in a degenerate way on the distance to the critical transition to be able to obtain a
warning sign.

4 Continuous spectrum

We have shown that extended versions of Theorem 3.1 still hold for general discrete spectra,
including both complex eigenvalues and Jordan blocks. We also found an asymptotic lower
bound on the noise σ , which guarantees the result to hold in presence of non-constant external
perturbations. To further generalise the results in [15], we want to also consider differential
operators on unbounded domains. This naturally leads to the possibility that A has a continuous
spectrum. For example, this is the case for the one-dimensional Laplacian that is a fundamental
operator in modelling diffusion and will be the starting point of our discussion.

We remark here the main difference with the previous case: in the discrete setting we identi-
fied the eigenfunction corresponding to the eigenvalue crossing the imaginary axis and showed
that the component of the covariance along that direction tends to infinity as the critical transi-
tion is approached. However, if essential spectrum crosses the imaginary axis, there exists no
eigenfunction. For this reason, we start considering the norm of the variance and we show that it
diverges to infinity (which is of course a weaker result). Later, we prove a stronger result using
Weyl’s theorem on approximating eigenfunctions.

4.1 The one-dimensional Laplace operator

Consider the operator ∂xx on the Sobolev space H2(R). We want to study as a simple starting
point the following modified stochastic heat equation:

dU = ( p Id + ∂xx)U dt + dW , U(0) = U0, (4.1)

where we set σ = 1, B = Id for simplicity of the exposition. The Laplacian is a self-adjoint oper-
ator on H2(R). We recall that, by the spectral theorem [36], self-adjoint operators are unitarily
equivalent to multiplication operators. In particular, the Fourier transform

F(h)(k) := ĥ(k) := 1√
2π

∫
R

e−ikxh(x) dx
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unitarily maps ∂xx into the multiplication operator of multiplication by |k|2. This can be used to
prove the divergence of the norm of V∞ as follows.

Theorem 4.1 Consider the SPDE (4.1). Then

lim
p→0− ‖V∞‖B(L2(R)) = +∞, (4.2)

where ‖ · ‖B(L2(R)) is the norm on linear operators induced by the L2(R) norm.

Proof First of all, we compute the covariance using (2.5):

V (t) =
∫ t

0
S(r)BQB∗S∗(r) dr =

∫ t

0
S(r)S∗(r) dr =

∫ t

0
e2r( p+∂xx) dr.

This implies that in the limit t → ∞ it holds

V∞ =
∫ ∞

0
e2r( p+∂xx) dr.

Then, we take the norm and obtain

‖V∞‖B(L2(R)) =
∥∥∥∥
∫ ∞

0
e2r( p+∂xx) dr

∥∥∥∥
B(L2(R))

= sup
h∈L2(R),‖h‖=1

∥∥∥∥
∫ ∞

0
e2r( p+∂xx)h dr

∥∥∥∥
L2(R)

= sup
h∈H2(R),‖h‖=1

∥∥∥∥
∫ ∞

0
F−1e2r( p−|·|2)F(h) dr

∥∥∥∥
L2(R)

= sup
h∈H2(R),‖h‖=1

∥∥∥∥ 1√
2π

∫ ∞

0

∫
R

eikxe2r( p−|k|2)ĥ(k) dk dr

∥∥∥∥
L2

x (R)

Fubini= sup
h∈H2(R),‖h‖=1

∥∥∥∥ 1√
2π

∫
R

eikxĥ(k)
∫ ∞

0
e2r( p−|k|2) dr dk

∥∥∥∥
L2

x (R)

p<0= sup
h∈H2(R),‖h‖=1

∥∥∥∥ 1

2
√

2π

∫
R

eikx ĥ(k)

p − |k|2 dk

∥∥∥∥
L2

x (R)

= sup
h∈H2(R),‖h‖=1

∥∥∥∥1

2
F−1

[
ĥ(·)

p − | · |2
]∥∥∥∥

L2(R)

= sup
h∈H2(R),‖h‖=1

∥∥∥∥1

2

ĥ(·)
p − | · |2

∥∥∥∥
L2(R)

∗≥
∥∥∥∥∥1

2

e−|·|2/2

p − | · |2
∥∥∥∥∥

L2(R)

.

In ∗ we set h = e−x2/2, while Fubini’s Theorem can be applied since

|eikxe2r( p−|k|2)ĥ(k)| ≤ e2rp(1 + |k|2)ĥ(k) ∈ L2(R+
r ×Rk).

Applying the limes inferior on both sides of the inequality and using Fatou’s Lemma yields

lim inf
p→0− ‖V∞‖2

B(L2(R)) ≥ lim inf
p→0−

∥∥∥1

2

e−|·|2/2

p − | · |2
∥∥∥2

L2(R)
= lim inf

p→0−

∫
R

1

4

e−x2

( p − x2)2
dx

≥
∫
R

lim inf
p→0−

1

4

e−x2

( p − x2)2
dx =

∫
R

e−x2

x4
dx = +∞,

which concludes the proof. �
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We stress that Theorem 4.1 uses only some particular properties of the Laplacian. It relies
on three main ingredients: the existence of the diagonalising map F , its interchangeability with
the integration via Fubini’s Theorem and the divergence of the last integral. For all self-adjoint
operators, the existence of a diagonalising map is guaranteed by the spectral theorem. Once
such map is known, it might be relatively easy to check that also the other requirements for the
proof are satisfied. Nevertheless, since there exists no explicit formula for the diagonalising map,
whether this holds or not has to be studied case by case.

4.2 Multiplication operators

As we have remarked, a possible generalisation of the preceding result can be obtained consider-
ing general self-adjoint operators. This involves applying the spectral theorem and diagonalising
the operator. Being the diagonalising map not known, it is hard to give a formal statement that
includes all the self-adjoint operators. Instead, we will assume the operator to be already diag-
onalised: namely, we consider multiplication operators. Such operators can be characterised as
follows.

Theorem 4.2 (Structure of multiplication operators, [14, 35]) Let X be a metric space and μ a
positive measure on the Borel sigma-algebra of X such that μ(�)<∞ for any bounded Borel
set �⊂X . For a (possibly unbounded) measurable function f : X →R, the linear operator Tf

in L2(X ,μ) defined by

(Tf u)(x) := f (x)u(x), D(Tf ) = {u ∈ L2(X ,μ)| fu ∈ L2(X ,μ)}
is self-adjoint. Its spectrum coincides with the essential range of f and its point/discrete spectrum
is given by

specp(Tf ) = {μ( f −1(λ))> 0}.

Consider now the following stochastic evolution equation on H = L2(X ,μ)

dU = ( p Id + Tf )U dt + dW , U = U(t). (4.3)

Set M := sup{x : x ∈ essran(f )} = esssup(f ). For the operator p Id + Tf , the spectrum is given by
the set p + essran(f ). It is contained in the left half of the complex plane as long as p + M < 0.
Therefore, the associated dynamical system undergoes a bifurcation at p∗ = −M . We compute
the norm of the variance as in the previous section assuming p< p∗ = −M :

‖V∞‖2
B(H) =

∥∥∥ ∫ ∞

0
e2r( p+Tf ) dr

∥∥∥2

B(H)

= sup
h∈D(Tf ),‖h‖=1

∥∥∥ ∫ ∞

0
e2r( p+f )h dr

∥∥∥2

H

p<−M= sup
h∈D(Tf ),‖h‖=1

∥∥∥ h

2( p + f )

∥∥∥2

H

= sup
h∈D(Tf ),‖h‖=1

∫
X

∣∣∣ h(x)

2( p + f (x))

∣∣∣2 dμ(x).
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Now, we look at the spectrum of f crossing the imaginary axis (i.e. p → −M−). The diver-
gence of the last expression depends, of course, on the function f and on the L2 space we consider.
Suppose we set μ equal to the Lebesgue measure and X ⊂R, which is the most straightforward
generalisation of the Laplacian case. To simplify the treatment, we also assume that f attains
its essential supremum at only one point x∗ ∈X and that it is continuous in a neighbourhood of
that point. We assume continuity around x∗ in order for the limit limx→0− f (x) to be well-defined
and independent of the sequence converging to 0−. Moreover, without loss of generality we set
x∗ = 0 and p∗ = 0. By definition of M and continuity of f , we have limx→0 f (x) = 0. Assume
now μ(X )<∞. Let θ (x) be a smooth function such that limx→0

f (x)
θ(x) = 1 and that θ is bounded

from above and below outside any neighbourhood of x∗ (intuitively θ represents the order of f at
x∗ = 0). Then, the function h defined by h(x) = x−1/2θ (x) is in L2 = L2(X ,μ) and θ can be chosen
so that h has unit norm. We obtain

‖V∞‖2
B(L2) = sup

h∈D(Tf ),‖h‖=1

∫
X

∣∣∣∣ h(x)

2( p + f (x))

∣∣∣∣
2

dx

≥
∫

X

∣∣∣∣ θ (x)

2( p + f (x))x1/2

∣∣∣∣
2

dx

and take the limit inferior as before

lim inf
p→0− ‖V∞‖2

B(H) ≥ lim inf
p→0−

∫
X

∣∣∣ θ (x)

2( p + f (x))x1/2

∣∣∣2 dx

Fatou≥
∫

X

θ2(x)

f 2(x)

1

4x
dx = +∞.

Remark 4.3 The assumption μ(X )<+∞ can be relaxed by multiplying h by a function g such
that g/f is square integrable in a neighbourhood of infinity. Requiring that the essential supre-
mum is attained at a unique point x∗ can also be easily avoided by studying each of the points
separately. In any case, for each of them the analysis is similar.

We have shown the following:

Theorem 4.4 Consider a map f : R→C and the stochastic evolution equation (4.3) over the
domain D(Tf ) ⊂ L2(R,μ) for some sigma-finite measure μ. Assume f to be continuous in a
neighbourhood of the points at which it attains its essential supremum. Then,

lim
p→−esssup(f )−

‖V∞‖B(L2) = +∞. (4.4)

4.3 The general case

We have seen how the assumption of discrete spectrum allows for identifying the direction along
which the covariance operator diverges. We have argued that such an approach cannot be used
in the general setting because it involves considering eigenfunctions for the operator A. Indeed,
if the operator has continuous spectrum, eigenfunctions do not exist. Nevertheless, one can find
‘approximate’ eigenfunctions for elements at the boundary of the spectrum.
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Theorem 4.5 (Weyl’s criterion) Consider a closed linear operator A on a Hilbert space H.
If λ ∈ ∂spec(A), there exists a sequence {uk}k∈N in H such that ‖uk‖ = 1 and

lim
k→∞

‖Auk − λuk‖ = 0.

For completeness, and since it might not be well-known, we provide a proof of Weyl’s crite-
rion. We denote by res(A) :=C \ spec(A) the resolvent set of A. We need the following auxiliary
result.

Lemma 4.6 If A is a closed operator and z ∈ res(A), then ‖(A − z)−1‖ ≥ dist(z, spec(A))−1.

Proof Fix z ∈ res(A) and λ ∈ spec(A). Then |z − λ| ≥ ‖(A− z)−1‖−1 (indeed, by Proposition 2.9
in [39], if λ satisfies |z − λ|< ‖(A− z)−1‖−1 then λ ∈ res(A)). This also implies

dist(z, spec(A)) = inf
λ∈spec(A)

|z − λ| ≥ 1

‖(A− z)−1‖
so that rearranging gives the claimed result. �

Proof of Theorem 4.5 Since λ ∈ ∂spec(A), we can find a sequence {λk} ⊂ res(A) such that
λk → λ. For each λk , we can apply Lemma 4.6 and for each k

‖(A − λk)−1‖ ≥ dist(λk , spec(A))−1.

We can also find vk ∈ D((A − λk)−1) such that ‖vk‖ = 1 and

‖(A − λk)−1vk‖ ≥ 1

2
dist(λk , spec(A))−1.

Then, the sequence

uk := (A − λk)−1vk

‖(A − λk)−1vk‖
is normalised and satisfies the claim. Indeed, one computes

‖Auk − λuk‖ = ‖Auk − λkuk + λkuk − λuk‖ ≤ ‖Auk − λkuk‖ + |λk − λ|‖uk‖
= ‖vk‖

‖(A − λk)−1vk‖ + |λk − λ|‖uk‖ = 1

‖(A − λk)−1vk‖ + |λk − λ|
≤ 2dist(λk , spec(A)) + |λk − λ| → 0.

Therefore, Weyl’s criterion follows. �

Since our bifurcation point necessarily involves spectrum on the boundary, we can exploit this
theorem to prove a result similar to the one obtained in the discrete setting.

Theorem 4.7 Consider the stochastic evolution equation

dU = ( p Id +A)U dt + σB dW (4.5)
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and assume spec(A) = {λ∗} ∪ spec−(A), with Re(λ∗) = 0 and spec−(A) ⊂ {z ∈C : Re(z)< 0}.
Also assume that BQB∗ ≥ c> 0; in particular this holds for B = Q = Id. Then, there exists a
sequence {uk}k∈N ⊂ H such that for each k

lim
p→0−〈V∞uk , uk〉 = +∞. (4.6)

Proof Since λ∗ ∈ ∂spec(A), by Weyl’s criterion there exists a sequence {uk}k∈N s.t.

lim
k→∞

‖Auk − λ∗uk‖ = 0, ‖uk‖ = 1.

Our aim is to find a subsequence of {uk} that satisfies the claim. Define ek :=Auk − λ∗uk ,
ēk :=A∗uk − λ̄∗uk . Note that we have

lim
k→∞

‖ek‖ = 0, lim
k→∞

‖ēk‖ = 0.

As usual, the Lyapunov equation gives

〈( p +A)V∞uk , uk〉 + 〈V∞( p +A)∗uk , uk〉 = −σ 2〈BQB∗uk , uk〉.
Then, we can compute

〈( p +A)V∞uk , uk〉 + 〈V∞( p +A)∗uk , uk〉 = 2p〈V∞uk , uk〉 + λ∗〈V∞uk , uk〉
+〈V∞uk , ek〉 + λ̄∗〈V∞uk , uk〉 + 〈ēk , V∞uk〉

= 2p〈V∞uk , uk〉 + 〈V∞uk , ek〉 + 〈ēk , V∞uk〉.
Therefore, we conclude that

〈V∞uk , uk〉 = −〈V∞uk , ek〉 − 〈ēk , V∞uk〉 − σ 2〈BQB∗uk , uk〉
2p

.

We will now consider two cases: first, assume ‖V∞uk‖<C for some C> 0 (uniformly in k).
Then, by eventually discarding some of the pairs (ek , ēk), we can also assume the bounds

‖ek‖< 1

k
, ‖ēk‖< 1

k

Together, this gives

|〈V∞uk , ek〉| ≤ ‖V∞uk‖‖ek‖ ≤ C

k
.

And therefore:

〈V∞uk , uk〉 ≤ |〈V∞uk , ek〉| + |〈ēk , V∞uk〉| − σ 2〈BQB∗uk , uk〉
2p

≤ 2C/k − σ 2〈BQB∗uk , uk〉
2p

≤ 2C/k − σ 2c

2p
.

The sequence {uk}k>2C/σ 2c satisfies the claim of the theorem. In this case, the stronger result

〈V∞uk , uk〉 =O
(

1

p

)
, as p → 0−
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holds. Suppose now ‖V∞uk‖<C does not hold for any C> 0, then, there exists a subsequence
{ukj} ⊂ {uk} such that ‖V∞ukj‖ ≥ j. But this implies that also 〈V∞ukj , ukj〉 = ‖√V∞ukj‖2 →
∞ as j → ∞, which implies the claim. �

We conclude with some remarks. Note that, in the previous sections, we were not only able to
prove that some component of the variance diverges, but also to compute its rate of divergence.
In the last proof, we had to exclude the possibility that ‖V∞uk‖ has a divergent subsequence.
If such a subsequence exists, the variance still diverges, but its rate of divergence is in general
unknown. Therefore, we cannot conclude as before. Nevertheless, we observe that if we replace
the genericity condition 〈BQB∗uk∗ , uk∗〉 �= 0 with the assumption

〈V∞uk , ek〉 + 〈ēk , V∞uk〉 + σ 2〈BQB∗uk , uk〉 �= 0 for infinite values of k,

we can indeed conclude that there exists a sequence such that

〈V∞uk , uk〉 =O
(

1

p

)
, as p → 0−.

Furthermore, Theorem 4.7 is actually stronger than the results obtained previously. Indeed, it
shows that, under some assumptions, there exists a whole sequence of ‘approximate eigenfunc-
tions’ such that the components of the covariance operator along this sequence diverge. Of
course, such a sequence might be constant, as it is the classical case for discrete spectrum, which
occurs for many differential operators on bounded domains.

As another remark, suppose we only look for one vector u ∈ H such that

〈V∞u, u〉 =O
(

1

p

)
, as p → 0−.

Then, to obtain the claim on the asymptotic limit of the covariance operator, we only have to
require that there exists a k such that

〈V∞uk , ek〉 + 〈ēk , V∞uk〉 + σ 2〈BQB∗uk , uk〉 �= 0,

which is a much weaker condition.

5 Conclusion and outlook

In this work, we have given a relatively comprehensive view of stochastic evolution equation
statistics upon approaching bifurcation points of the underlying deterministic system. In par-
ticular, we extended the work [15] for SPDEs with self-adjoint linear operators A on bounded
domains in several directions. This included complex eigenvalues and non-trivial Jordan blocks
for A, degenerate parameter-dependent noise term as well as a major generalisation to continuous
spectrum frequently encountered for spatially extended systems.

The next natural steps are to apply the results we obtained here to various classes of model
problems and data sets to check the role played by statistics and data availability. Although the
field of critical slowing down for spatial systems has a long history in the context of physics
[17], it is definitely worthwhile to build a general mathematical theory in the context of SPDEs.
In fact, we mention that there is already a strongly surging interest in the area of warning signs
for spatial systems recently, just see [7, 29, 37, 40] for a few examples. Hence, our study here
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in combination with [15] provides the detailed theoretical underpinnings, why and how spatial
systems modelled by SPDEs display slowing down effects when measured through stochastic
effects.
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