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The distribution of particle accelerations in turbulence is intermittent, with non-
Gaussian tails that are quite different for light and heavy particles. In this article we
analyse a closure scheme for the acceleration fluctuations of light and heavy inertial
particles in turbulence, formulated in terms of Lagrangian correlation functions of fluid
tracers. We compute the variance and the flatness of inertial-particle accelerations and
we discuss their dependency on the Stokes number. The closure incorporates effects
induced by the Lagrangian correlations along the trajectories of fluid tracers, and its
predictions agree well with results of direct numerical simulations of inertial particles
in turbulence, provided that the effects induced by inertial preferential sampling of
heavy/light particles outside/inside vortices are negligible. In particular, the scheme
predicts the correct functional behaviour of the acceleration variance, as a function of
St, as well as the presence of a minimum/maximum for the flatness of the acceleration
of heavy/light particles, in good qualitative agreement with numerical data. We also
show that the closure works well when applied to the Lagrangian evolution of
particles using a stochastic surrogate for the underlying Eulerian velocity field. Our
results support the conclusion that there exist important contributions to the statistics
of the acceleration of inertial particles independent of the preferential sampling. For
heavy particles we observe deviations between the predictions of the closure scheme
and direct numerical simulations, at Stokes numbers of order unity. For light particles
the deviation occurs for larger Stokes numbers.

Key words: bubble dynamics, multiphase and particle-laden flows, turbulent flows

1. Introduction

Inertial particles moving in a turbulent flow do not simply trace the paths of fluid
elements since particle inertia allows the particles to detach from the local fluid. This
causes small-scale spatial clustering even in incompressible turbulence (Maxey 1987;
Duncan et al. 2005; Bec et al. 2007; Goto & Vassilicos 2008; Bragg & Collins 2014).
Moreover, preferential sampling of regions with high vorticity/strain is observed for
particles that are lighter/heavier than the fluid. As a result, the statistical properties of
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inertial heavy or light particles (for example water droplets in turbulent clouds (Shaw
2003) or air bubbles in water (Mazzitelli, Lohse & Toschi 2003; Rensen, Luther
& Lohse 2005)) in turbulence are highly non-trivial both at sub-viscous and larger
scales. An important example is the case of inertial-particle accelerations (Bec et al.
2006a; Qureshi et al. 2008; Gibert, Xu & Bodenschatz 2010, 2012; Volk et al. 2011;
Prakash et al. 2012), see also the review by Toschi & Bodenschatz (2009). At large
inertia, singularities (caustics) occur in the dynamics of heavy particles (Falkovich,
Fouxon & Stepanov 2002; Wilkinson & Mehlig 2005), giving rise to large relative
velocities between close particles (Sundaram & Collins 1997; Falkovich & Pumir
2007; Bec et al. 2010a; Gustavsson & Mehlig 2011, 2014), and leading eventually
to an enhancement of collision rates (Wilkinson, Mehlig & Bezuglyy 2006; Bec,
Homann & Ray 2014).

The dynamics of light particles is important because of its relevance to fundamental
and applied questions. Light particles can be used as small probes that preferentially
track high vorticity structures, highlighting statistical and topological properties of the
underlying fluid, conditioned on those structures. In the limit of high volume fractions
they might also have a complex feedback on the flow, including the case of reducing
the turbulent drag (van den Berg et al. 2005, 2007; Jacob et al. 2010). Compared to
heavy particles the dynamics of light particles is more difficult to analyse because
pressure-gradient forces (Tchen 1947) and added-mass effects must be taken into
account. Apart from the fact that light particles tend to be drawn into vortices there
is little theoretical analysis of their dynamics in turbulent flows.

This motivated us to formulate a closure scheme that allows us to compute inertial
accelerations of both heavy and light particles in turbulence. We describe the scheme
and we test it by comparing its predictions to results of direct numerical simulations
(DNS). We consider a simple model for the particle dynamics, taking into account
added-mass and pressure-gradient forces, but neglecting the effect of buoyancy on the
acceleration as well as the Basset–Boussinesq history force, as in many previous DNS
studies (Babiano et al. 2000; Bec et al. 2005; Calzavarini et al. 2008a, 2009; Volk
et al. 2008). We comment on these questions in the conclusions.

Our scheme for the inertial-particle accelerations approximates the particle paths
by the Lagrangian fluid-element paths. It is a closure for the particle equation of
motion that neglects inertial preferential sampling such as heavy inertial particles
being centrifuged out of long-lived vortical regions of the flow (Maxey 1987), so that
they preferentially sample straining regions, or light particles which by contrast are
drawn into vortices (Calzavarini et al. 2008a,b). The latter is simply a consequence
of the fact that light particles are influenced by pressure gradients in the undisturbed
flow. Our approximation cannot be quantitatively correct when inertial preferential
sampling is significant, but overall it yields a good qualitative description of how
particle accelerations depend on the particle density relative to that of the fluid,
and upon the Stokes number, a dimensionless measure of particle inertia. Moreover,
and more interestingly, the closure also predicts highly non-trivial properties of the
intermittent, non-Gaussian acceleration fluctuations, as the magnitude of inertial effects
and the Reynolds number of the turbulence change. For example, the closure scheme
predicts that the flatness of the acceleration develops a maximum or a minimum as a
function of St for light or heavy particles. This is in good qualitative agreement with
the measurements on the DNS data. For heavy particles the closure fails when inertial
preferential sampling affects inertial particle accelerations, i.e. for Stokes numbers
of order unity, see figure 1(b) in Bec et al. (2006a). In fact, for heavy particles our
closure is equivalent to the ‘filtering’ mechanism discussed by Bec et al. (2006a).
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For light particles, by contrast, comparisons to DNS results show that inertial
preferential sampling effects are strong only at very large Stokes numbers, St ∼ 10,
leading to an enlarged range of small and intermediate values of St where the closure
works qualitatively well.

The remainder of this article is organized as follows. In the next section we
formulate the problem, introduce the equations of motion and qualitatively discuss
inertial preferential sampling. In § 3 we describe our Lagrangian closure scheme for
inertial particle accelerations. Data from DNS of turbulent flows are analysed in § 4
together with a detailed comparison to the predictions from the closure scheme. In § 5,
we assess the potentialities of the closure on a data set obtained using a stochastic
surrogate for the fluid velocity field. § 6 contains the conclusions.

2. Formulation of the problem
Many studies have considered the dynamics of heavy inertial particles, much denser

than the carrying fluid. When the particles are very heavy and at the same time very
small (point particles) the motion is simply determined by Stokes’ drag. The dynamics
of light particles by contrast is also affected by pressure gradients of the unperturbed
fluid, and added-mass effects. Neglecting the effect of gravitational settling (and thus
buoyancy) the equation of motion reads:

ṙt = vt,
v̇t = βDtu(rt, t)+ (u(rt, t)− vt)/τs,

}
(2.1)

where rt is the particle position at time t, vt, is the particle velocity, u(rt, t) is the
velocity field of the undisturbed fluid and Dtu = ∂tu + (u · ∇)u is the Lagrangian
derivative. The dimensionless constant β = 3ρf /(ρf + 2ρp) accounts for the contrast
between particle density ρp and fluid density ρf , while the Stokes number is defined
as St = τs/τK where the particle response time is τs = R2/(3νβ), R is the particle
radius, ν the kinematic viscosity of the flow and τK = √ν/ε the Kolmogorov time
defined in terms of the fluid energy dissipation, ε. Many studies have employed this
model (Babiano et al. 2000; Bec et al. 2005; Calzavarini et al. 2008a, 2009; Volk
et al. 2008). The model takes into account added-mass effects but neglects buoyancy
forces. It is an open question under which circumstances this is a quantitative model
for the acceleration of small particles in turbulence.

The following analysis is based on (2.1). It is important to first understand this
case before addressing more realistic situations (inclusion of buoyancy, finite particle
size, collisions and feedback on the flow). The sources of the difficulties are twofold.
First, even in the much simpler case of a non-turbulent Eulerian velocity field
u(r, t) the particle dynamics is still complicated and often chaotic, simply because
equation (2.1) are nonlinear. Second, turbulence makes the problem even harder due to
the existence of substantial spatial and temporal fluctuations. This results in chaotic
Lagrangian dynamics of fluid elements. Note that even though Lagrangian fluid
elements sample space uniformly, their instantaneous motion is in general correlated
with structures in the underlying flow. This implies that multi-time Lagrangian flow
correlation functions evaluated along tracer trajectories do not coincide with the
underlying Eulerian correlation functions which are evaluated at fixed positions in
space. Particles that are heavier or lighter than the fluid may detach from the flow
if they have inertia. This leads to the inertial preferential sampling mentioned in the
introduction. As a result, the flow statistics experienced by an inertial particle differs
from that of a Lagrangian fluid element.
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FIGURE 1. (Colour online) Parameter space showing available DNS data sets with Reλ=
185 and Reλ = 400. For values of St smaller than 0.05 the x axis is linear, while it
is logarithmic for values of St larger than 0.05. For each data set with Reλ = 185 we
have analysed a total of 130 000 trajectories of duration 6TL and for each data set with
Reλ= 400 we have analysed a total of 200 000 trajectories of duration 2.5TL. Level curves
St(1−β)= ε for constants ε={−1,−0.1,−0.01, 0, 0.01, 0.1, 1} are plotted as black lines.
Parameter families: with Reλ= 185: β = 0 (red,E), β = 0.25 (magenta,A), β = 0.5 (cyan,
C), β = 0.75 (green,D), β = 1 (black,@), β = 1.25 (brown, ♦), β = 1.5 (purple,C), β = 2
(orange, D), β = 2.5 (dark green, B), β = 3 (blue, A). With Reλ = 400: β = 0 (red, ).
Additional data from Calzavarini et al. (2009), Prakash et al. (2012): β = 3 (blue, ).

3. Lagrangian closure

Let us notice that the dynamics determined by equation (2.1) tends to the evolution
of a tracer in both limits St→ 0 and β→ 1. Indeed, in the limit τs→ 0, imposing a
finite Stokes drag leads to vt= u+O(τs). For β = 1, by contrast we may approximate
the material derivative along fluid-trace trajectories with the derivative along the
trajectory of a particle, Dtu ∼ u̇, and consistently check that the evolution of (2.1)
leads to an exponential relaxation of the evolution of the particle to the trajectory
of the tracer. Hence, the idea is to approximate the effects of inertial forces on the
particle trajectory starting from the evolution of tracers. This approach cannot be exact.
It is for example known that vortices are preferentially sampled by inertial particles.
Nevertheless, it is important to understand and quantify how big the difference is as
a function of the distance in the parameter phase space, (St, β), from the two lines
St= 0 or β = 1 where the closure must be exact (see figure 1). The starting point is
to evaluate (2.1) along tracer trajectories:

ṙ(L)t = u(r(L)t , t),
v̇t = βDtu(r(L)t , t)+ (u(r(L)t , t)− vt)/τs,

}
(3.1)

where r(L)t denotes the Lagrangian trajectory of a tracer particle. This approximation is
a closure in the sense that the first equation in (3.1) is independent of the second one,
and the second equation can be solved in terms of the Lagrangian velocity statistics
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u(r(L)t , t) of the underlying flow. We solve (3.1) for vt (disregarding initial conditions
here and below because these do not matter for the steady-state statistics) to obtain

vt = βu(r(L)t , t)+ 1− β
τs

∫ t

0
dt1 e(t1−t)/τsu(r(L)t1 , t1). (3.2)

Using this expression, the particle acceleration follows from the second of equation
(3.1)

at = βDu
Dt
(r(L)t , t)+ 1− β

τs

∫ t

0
dt1 e(t1−t)/τs

Du
Dt
(r(L)t1 , t1). (3.3)

Using equation (3.3) we express two-time acceleration statistics in terms of the two-
point Lagrangian acceleration correlation function

CL(t)≡ 〈Dtu(r(L)t , t) ·Dtu(r(L)0 , 0)〉. (3.4)

In the steady-state limit we find

〈at · a0〉 = β2CL(t)+ 1− β2

τs

[
cosh

[
t
τs

] ∫ ∞
t

dt1 e−t1/τsCL(t1)

+ e−t/τs

∫ t

0
dt1 cosh

[
t1

τs

]
CL(t1)

]
. (3.5)

The acceleration variance is obtained by letting t→ 0 in (3.5)

〈a2〉 = β2CL(0)+ 1− β2

τs

∫ ∞
0

dt1 e−t1/τsCL(t1). (3.6)

Similarly, the fourth moment of the particle acceleration is obtained as:

〈|a|4〉 = β4CL(0, 0, 0)− 4
(β − 1)β3

τs

∫ ∞
0

dt1 e−t1/τsCL(−t1, 0, 0)

+ 6
(β − 1)2β2

τ 2
s

∫ ∞
0

dt1

∫ ∞
0

dt2 e−(t1+t2)/τsCL(−t1,−t2, 0)

− (β − 1)3(3β + 1)
τ 3

s

∫ ∞
0

dt1

∫ ∞
0

dt2

∫ ∞
0

dt3 e−(t1+t2+t3)/τsCL(−t1,−t2,−t3).

(3.7)

Here isotropy of the acceleration components 〈aiajakal〉 = [δijδkl + δikδjl + δilδjk]〈a4
1〉/3

was used to express 〈|a|4〉 in terms of the four-point Lagrangian correlation function

CL(t1, t2, t3)≡ d(d+ 2)
3
〈Dtu1(r(L)t1 , t1)Dtu1(r(L)t2 , t2)Dtu1(r(L)t3 , t3)Dtu1(r(L)0 , 0)〉, (3.8)

where Dtu1 is a component of the fluid acceleration and d is the spatial dimension.
Equations (3.5)–(3.7) express the fluctuations of inertial-particle accelerations in
terms of Lagrangian correlation functions of the underlying flow, and predict how the
inertial-particle accelerations depend on β and St. The integrals in (3.6) and (3.7) are
hard to evaluate numerically for very small and for very large values of St. When
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St is small, the exponential factors in the right-hand side of (3.6) and (3.7) become
singular and one needs a very high sampling frequency of the fluid acceleration along
the particle trajectory to evaluate the integrals reliably. When St is large, on the other
hand, the integrals sum up large-time contributions with large fluctuations due to the
finite length of experimental and numerical trajectories.

Before we proceed to a quantitative assessment of the model let us make a few
general remarks about the range of applicability and accuracy of the approximation
made. First, in (3.6) and (3.7) we need to evaluate the acceleration correlation function
of the tracers for general values of t. This might be seen as a problem because the
trajectories of tracers and of inertial particles must depart on a time scale of the order
of the Lyapunov time. On the other hand, the acceleration correlation function of
the tracer is known to decay on a time of the order of the Kolmogorov time, τK ,
which is ten times smaller than the typical Lyapunov time of heavy particles (Bec
et al. 2006b) and stays close to zero in the inertial range of scales (Falkovich et al.
2012). Therefore we do not see any problem in the evaluation of the integrals in the
above equations. Second, we are only interested in stationary properties of the inertial
particle statistics and we always assume that the initial conditions for all particles
are chosen from their stationary distribution functions. As a result no influence of
the initial condition should appear in the closure. The Lagrangian closure adopted
here can also be applied to correlation functions of other observables of the particle,
or of the flow, provided that the underlying Lagrangian correlation functions decay
quickly enough. Here, we focus on the acceleration statistics because of their highly
non-Gaussian properties and high sensitivity to the parameters β and St. Finally, let
us stress that our closure is fully based on Lagrangian properties and does require
the use of any Eulerian correlation function, as opposed to closures based on the
fast Eulerian approach by Ferry & Balachandar (2001) or the Lagrangian–Eulerian
closure to predict two-particle distributions (Derevich 2000; Zaichik & Alipchenkov
2003; Alipchenkov & Zaichik 2007; Pan & Padoan 2010). To make further progress
we need to determine the Lagrangian correlation functions. In § 4 we present the
most important new results, we determine the Lagrangian correlation functions by
DNS of inertial particle dynamics in turbulence, substitute into (3.5)–(3.7) and assess
the accuracy of these equations in predicting particle acceleration fluctuations and
correlations.

4. Direct numerical simulations
4.1. Simulation method

We present here the analysis of data obtained from DNS of a homogeneous and
isotropic turbulent flow seeded with point-like particles with different inertia and
particle–fluid density ratios (see figure 1 for a summary of the (St, β) values
available). The data set was previously obtained by Bec et al. (2010b). The flow
obeys the Navier–Stokes equations for an incompressible velocity field u(x, t):

∂tu+ u · ∇u=−∇p+ ν∇2u+ f , ∇ · u= 0. (4.1)

The external forcing f is statistically homogeneous, stationary and isotropic, injecting
energy in the first low wavenumber shells by keeping their spectral content constant
(Chen et al. 1993). The viscosity ν is set such that the Kolmogorov length scale
η ≈ δx, where δx is the grid spacing. The numerical domain is 2π-periodic in the
three directions. We use a fully dealiased pseudospectral algorithm with second-order
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FIGURE 2. (Colour online) Acceleration variance (a) and flatness (b) for DNS data at
changing β, St and Re. (a) Points correspond to the DNS data (same symbols of figure 1).
Solid lines (labelled with their corresponding value of β) show the closure scheme
prediction for the acceleration variance of light and heavy particles, (3.6), normalized with
the fluid variance, for all data from Run I; dashed line corresponds to the closure for
Run II. (b) The flatness measured on the DNS data and the one predicted by the closure
scheme, (3.7), for heavy and light particles. Thin dashed black line shows the limit of
normal distributed acceleration components. Additional data for β=3 (blue, ) are omitted
in (b) because the flatness was not evaluated in Calzavarini et al. (2009) and Prakash et al.
(2012).

Adams–Bashforth time stepping. For details see Bec et al. (2006a), Cencini et al.
(2006). Two series of DNS are analysed: Run I, with a numerical resolution of 5123

grid points and the Reynolds number at the Taylor scale Reλ ≈ 200; Run II, with
20483 resolution and Reλ ≈ 400. Details can be found in table 1.

4.2. Comparison for acceleration variance and flatness against DNS

In figure 2(a) we show the comparison of the acceleration variance, 〈a2〉, to DNS data
as a function of St for different values of β. Consider first heavy particles (β < 1). It
is clear that the closure (3.1) captures the general trend and it becomes better and
better for larger Stokes numbers. Similarly, this approximation must become exact as
St→ 0, but the DNS data set does not contain values of St small enough to reach
this limit. At intermediate Stokes numbers the Lagrangian closure described in § 3
does not match the DNS results. This mismatch for Stokes numbers between 0.1 and
1 is certainly due to preferential sampling, as already remarked by Bec et al. (2006a).
Yet, the closure predicts a small Reynolds-number dependency (compare solid and
dashed red lines for β = 0) inherited by the dependency of the fluid tracers. Such
a small variation is not detectable within the accuracy of our numerical data. Now
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N Reλ η δx ε ν τK tdump δt TL

Run I 512 185 0.01 0.012 0.9 0.002 0.047 0.004 0.0004 2.2
Run II 2048 400 0.0026 0.003 0.88 0.00035 0.02 0.00115 0.000115 2.2

TABLE 1. Eulerian parameters for the two runs analysed in this article: Run I and Run II
in the text. N is the number of grid points in each spatial direction; Reλ is the Taylor-scale
Reynolds number; η is the Kolmogorov dissipative scale; δx=L /N is the grid spacing,
with L = 2π denoting the physical size of the numerical domain; τK = (ν/ε)1/2 is the
Kolmogorov dissipative time scale; ε is the average rate of energy injection; ν is the
kinematic viscosity; tdump is the time interval between two successive dumps along particle
trajectories; δt is the time step; TL = L/U0 is the eddy turnover time at the integral scale
L=π and U0 is the typical large-scale velocity.

consider light particles (β > 1). Figure 2(a) shows that also in this case the agreement
between the DNS data and the closure scheme is good, except around St∼ 10 where
the closure underestimates the DNS data. In this case inertial preferential sampling
must be important. The reason is that light particles are drawn into vortex filaments
where they experience high accelerations. Nevertheless, inertial preferential sampling
must become irrelevant in the limit St→∞ as shown by the trend for very large
St in the same figure. It is interesting to remark that the closure scheme (solid line)
becomes better and better the closer β is to unity, and/or the smaller the Stokes
number is, suggesting the possibility to develop a systematic perturbative expansion in
the small parameter ε = St(1− β). Furthermore it is important to note that while the
acceleration variance increases monotonically as both β and St increase, the flatness
of the acceleration, defined as

FSt,β = 〈|a|4〉/〈a2〉2, (4.2)

has a non-monotonic dependency on St. In figure 2(b) we show that light particles
have a maximum in their flatness at St ∼ 0.5 and heavy particles have minimum
flatness for St>1 (except for the case of very heavy particles with β=0). Importantly,
our closure approximation predicts these extrema qualitatively, indicating that the
non-Gaussian tails observed numerically and experimentally (Volk et al. 2008) in the
acceleration probability distribution function of bubbles are not only due to inertial
preferential sampling, which is neglected by the closure. Let us also note that the
non-monotonicity shown by the model for St∼ 0.1 and β= 0, 0.25 and 3 are artefacts
due to insufficient accuracy in the numerical evaluation of the integral in (3.7). In
conclusion, remarkably, the closure approximation is in reasonable agreement with the
DNS data, with the exception of those values of Stokes number where preferential
sampling is important. This is an important result, supporting the idea that many key
properties, including deviations from Gaussian statistics, of the acceleration statistics
of inertial particles are due to the kinematic structure of the equation of motion
together with the non-trivial Lagrangian properties of the fluid tracers evolution, and
not only due to inertial preferential sampling.

In order to quantify the accuracy of the closure described in § 3 we plot in figure 3
the relative error in the prediction of the acceleration variance for both light and heavy
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FIGURE 3. (Colour online) Relative error 1a2 (4.3) between the DNS data and the closure
scheme prediction for heavy particles (a) and light particles (b). Markers according to
figure 1. Lines are drawn as a guide to the eye.

particles:

1a2 =
∣∣∣∣1− 〈a2〉
〈a2〉DNS

∣∣∣∣ , (4.3)

where with 〈a2〉 we refer to the expression (3.6) and with 〈a2〉DNS to the numerical
value obtained from the DNS results. As one can see the approximation is never very
bad, with a maximum discrepancy of the order of 30–40 % at those values where
inertial preferential sampling is important, i.e. for St ∼ O(1) for heavy particles and
for St∼O(10) for light particles.

5. Statistical Eulerian velocity model
Mathematical analysis and numerical studies of the particle dynamics become easier

when the turbulent fluctuations of u(r, t) are approximated by a stochastic process.
Following Gustavsson & Mehlig (2016) we use a smooth, homogeneous and isotropic
Gaussian random velocity field with root-mean-squared speed u0 and typical length
and time scales η and τ . The model is characterized by a dimensionless number,
the Kubo number, Ku = τ/(η/u0), that measures the degree of persistence of flow
structures in time. Very small Kubo numbers correspond to a rapidly fluctuating
fluid velocity field. In this limit, the closure approximation described in § 3 is exact,
inertial preferential sampling is negligible and the Lagrangian correlation functions of
tracer particles are well approximated by the Eulerian correlation functions. In this
limit it is also possible to perform a systematic perturbative expansion (Gustavsson
& Mehlig 2016). In this paper we are interested in comparing the validity of the
Lagrangian closure for the statistical model at Ku∼O(1), where no analytical results
can be obtained, and to further compare them with the DNS results shown in § 4.
The motivation is the following. The statistical model has no ‘internal intermittency’,
i.e. there is no Reynolds-number dependency on the acceleration statistics (there
is not even the meaning of a Reynolds number). Nevertheless, once the Gaussian
Eulerian velocity field is prescribed, we can calculate the acceleration probability
density function of the fluid tracers. It turns out that this is not Gaussian and that
it depends on the Kubo number, due to the effect of the quadratic advection term,
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af = ∂tu + Ku[∇uT]u. As a result, we expect that many of the properties shown by
the acceleration distribution of inertial particles evolved in real turbulent flows are
shared by particles evolved in a Gaussian random flow. Finally, a comparison between
DNS data and the statistical model will allow us to assess further the importance of
internal intermittency.

5.1. Construction of the random-velocity field
For simplicity we discuss only the two-dimensional case. Generalization to three
dimensions is straightforward. The velocity field is given in terms of the stream-
function: u(r, t) = ∇ψ(r, t) ∧ ê3 , which is defined as a superposition of Fourier
modes with a Gaussian cutoff,

ψ(x, t)= η2u0√
πL

∑
k

ak(t)eix·k−k2η2/4. (5.1)

Here the system size L is 10η, ki = 2πni/L and ni are integers with an upper
cutoff |ni| 6 2L/η because higher-order Fourier modes are negligible. The resulting
spatial correlation function of ψ is Gaussian, if L� η we have: 〈ψ(x, 0)ψ(0, 0)〉 =
(u2

0η
2/2) e−x2/(2η2). The random coefficients ak(t) in ψ are drawn from random

Gaussian distributions with zero means, smoothly correlated in time. To do that
we used an Ornstein–Uhlenbeck process convolved with a Gaussian kernel of the
form w(t) ≡ exp[−t2/(2t2

0)]/(t0

√
2π) to have a smooth correlation function also for

the acceleration. The parameter t0 must be small, t0� τ , in order for the flow field
to decorrelate at long times in a similar fashion as in fully developed turbulence. The
Eulerian autocorrelation function of u is:

〈u(x0, t) · u(x0, 0)〉 = u2
0

2
√

π
e−t2/(4t20)

(
F

[
t0

τ
+ t

2t0

]
+ F

[
t0

τ
− t

2t0

])
, (5.2)

where F (x) = √π exp(x2)erfc(x). Note that the flow field is homogeneous in space
and also in time and 〈u(x0, t) · u(x0, 0)〉 is a function of |t| only. For |t| � t0 this
correlation function is Gaussian and for |t|� t0 the correlation function is exponential:
〈u(x0, t) · u(x0, 0)〉 ∼ e−|t|/τ .

5.2. Results for the random-velocity model
We consider first the acceleration variance. Simulation results for the statistical model
are compared with the Lagrangian closure (3.6)–(3.7) in figure 4 by changing both
St, β for Ku = 5 (panel a). We observe a good agreement between the Lagrangian
closure and the numerical simulations, comparable to what was observed for the
DNS data. In figure 4(b) we show the results for the flatness. It is important to stress
two facts. Also here, both heavy and light particles depart from the corresponding
fluid value with a qualitative trend similar to that observed for the DNS case in
the previous section. Also, for the random velocity field, the Lagrangian closure
works qualitatively well. The departure from the numerical data is a signature of
the corresponding importance of preferential sampling at those Stokes numbers. Let
us notice nevertheless an important difference with respect to the DNS data. Here
the absolute values of the flatness are much smaller, due to the absence of internal
intermittency. In the stochastic signal the acceleration of the fluid is non-Gaussian
only because of kinematic effects. In real flows, the acceleration is more intense and
more fluctuating because of the vortex stretching mechanism and of the turbulent
energy cascade.
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FIGURE 4. (Colour online) Same as in figure 2 but for the statistical model given by (5.1)
at Ku= 5.

6. Conclusions

In this paper we have analysed a Lagrangian closure describing fluctuations and
correlations of inertial-particle accelerations in turbulent flows in the diluted regime
(one-way coupling), i.e. neglecting particle–particle collisions and feedback on the
flow. In this way, we have a model that is able to predict some properties of the
acceleration statistics of inertial particles for a large range of values of β and St out of
one single measurement based on fluid tracers only. We have compared the predictions
of the closure to DNS of heavy and light inertial particles in turbulence. To summarize
our results, the closure predictions are in overall good qualitative agreement with the
results of DNS of particles. The closure neglects inertial preferential sampling, i.e.
the tendency of light/heavy particles to be centrifuged in or out of vortex structures.
Hence, the good agreement with the DNS data indicates that inertial preferential
sampling has in general only a partial effect on inertial-particle accelerations. The
main trends are essentially kinematic, a consequence of the form of the equation of
motion, as also shown by the results obtained using a stochastic surrogate for the
flow velocity. A closer inspection shows that there are important differences between
the Lagrangian closure scheme and the DNS, revealing where inertial preferential
sampling is important. The effect is larger for light particles at large Stokes numbers
(St ∼ 10 in our DNS) and is a consequence of the fact that light bubbles are drawn
into intense vortex tubes. We mention that there is no small-scale fractal clustering
for these values of St, i.e. particles are distributed on a three-dimensional set at
scales much smaller than the Kolmogorov length. Finally, non-trivial non-monotonic
behaviours of the flatness for both light and heavy particles as a function of St are
predicted by the closure scheme and confirmed by the DNS results, including the
fact that light particles are always more intermittent than the fluid tracers and the
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opposite holds for heavy particles, as shown by the fact that the flatness for the
former is always larger than the one of fluid tracers and vice versa for the latter.
The Lagrangian closure scheme must become exact when St→ 0 or β→ 1, it should
therefore be possible to see it as a perturbative expansion around Lagrangian tracers
and proportional to a small parameter ε = St(1 − β), at least for quantities that
depend on Lagrangian correlation functions decaying on a time scale of the order
of the Kolmogorov time. In this case, one could try to develop an intermediate
asymptotic where for small enough time, the difference between the two trajectories
remains small and then improve the zeroth-order approximation here presented by
considering also corrections induced by the velocity gradients around the Lagrangian
tracers:

ui(rt, t)∼ ui(r(L)t , t)+ ∂iuj(r(L)t , t)δrj
t + · · · , (6.1)

where δr = rt − r(L)t . Work in this direction is in progress. Finally, we have also
investigated the validity of the Lagrangian closure using a stochastic Gaussian
surrogate for the advecting fluid velocity field. In such a case, the Ku number is
another free parameter that can be tuned to increase/decrease the effects of inertial
preferential sampling (effects vanish as Ku approaches zero). We have shown that
for large Kubo numbers, corresponding to the long-lived structures in turbulent flows,
the closure theory works as well as for the DNS data, even though the data for the
statistical model have a much smaller flatness.

Let us add some remarks about the generality and the limitations of the approach
proposed. First, there are no theoretical difficulties in incorporating buoyancy, Faxén
corrections and other forces in the closure scheme as long as the dynamics can be
described by a point-particle approach. We refrained from presenting here the results
because of lack of DNS data to compare with. On the other hand, it is known that the
equations (2.1) are not valid for all values in the (β, St) parameter space. Indeed, the
two requirements that the Reynolds number based on the particle slip velocity is small:
Rep = |u − v|R/ν < O(1) and that the particle size is smaller than the Kolmogorov
scale R/η <O(1) lead to the condition that St<O(1) if β > 1. So the prediction of
the model in the limit of large Stokes numbers for light particles cannot be taken on a
quantitative basis. We stress nevertheless that the most interesting property highlighted
by our approach, i.e. the existence of a non-monotonic behaviour for the flatness of
the acceleration of light and heavy particles, develops at values of St where the model
equations are still valid. It is difficult to precisely assess the value of Stokes where the
approximation breaks down. For instance, recently it was found (Mathai et al. 2015)
that the acceleration variance of light particles with a size up to R∼ 10η follow quite
closely the point-like approximation (2.1). For even larger particle sizes a wake-driven
dynamics becomes dominant. For such a range of particle parameters no theoretical
models for the equations of motion are known.

For instance, recently it was found (Mathai et al. 2015) that the acceleration
variance of light particles with a size up to R ∼ 10η follow quite closely the
approximate dynamics (2.1).
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