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Abstract The fundamental group π of a Kodaira fibration is, by definition, the extension of a surface
group Πb by another surface group Πg, i.e.

1 → Πg → π → Πb → 1.

Conversely, Catanese (2017) inquires about what conditions need to be satisfied by a group of that
sort in order to be the fundamental group of a Kodaira fibration. In this short note we collect some
restrictions on the image of the classifying map m : Πb → Γg in terms of the coinvariant homology of
Πg . In particular, we observe that if π is the fundamental group of a Kodaira fibration with relative
irregularity g − s, then g ≤ 1 + 6s, and we show that this effectively constrains the possible choices for
π, namely that there are group extensions as above that fail to satisfy this bound, hence it cannot be
the fundamental group of a Kodaira fibration. A noteworthy consequence of this construction is that it
provides examples of symplectic 4-manifolds that fail to admit a Kähler structure for reasons that eschew
the usual obstructions.
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In this note we use the term Kodaira fibration to refer to an algebraic surface X endowed
with the structure of a smooth fibre bundle with bundle map f : X → Σb over a Riemann
surface Σb, with fibre a Riemann surface Σg so that the bundle map is not isotrivial as
a fibration (in the sense of algebraic geometry, i.e. as a pencil of curves); in particular
f is not a locally trivial complex analytic fibre bundle. It is well known that the base
and fibre genera satisfy the conditions b ≥ 2 and g ≥ 3, see e.g. [3, §V.14]; moreover, by
Arakelov’s inequality, the signature of the intersection form of X is strictly positive, see
e.g. [7, Corollary 42].

From the definition we deduce that X is aspherical and, denoting by π := π1(X) the
fundamental group of X, we have a short exact sequence

1 → Πg → π → Πb → 1 (1)
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where Πh is the fundamental group of a Riemann surface Σh. Namely, π is the extension
of a surface group by a surface group. In [7, Question 16] the author inquires about what
conditions need to be satisfied by a group of that sort in order to be the fundamental
group of a Kodaira fibration, in terms of the monodromy representation m : Πb → Γg,
where Γg is the genus-g mapping class group that classifies the bundle f : X → Σb. This
was not the very first time that such a question had been raised; previous instances include
MathOverflow posts by I. Rivin and J. Bryan, implicitly [4] (prompted by Bryan’s post),
[11], and older ones, possibly starting with [12,17]. We make reference to [7] as it is
there that the question was framed in the form we discuss here. Further results on this
question appeared recently in [1,9].

As is well known, by the Parshin rigidity theorem, for any fixed pair (g, b) there can
exist only finitely many extensions as in (1) that arise as the fundamental group of some
Kodaira fibration, so a priori ‘most’ choices of m fail that condition. It is not clear,
however, how to spell out explicit obstructions.

The question of [7] is asked under the obvious assumption that the image of m is
infinite, so that the signature does not automatically vanish. To that, we can add the
assumption that the first Betti number of π (and all its finite index subgroups) must be
even, lest π fails to be Kähler. This further restricts, although it does not decide, possible
choices for a group π as in (1); examples of this appear in [4,12].

The purpose of this note is to show how subtler restrictions follow from Xiao’s
constraints [18] on the relative irregularity of holomorphic fibrations.

To start, assume that X is an aspherical surface with fundamental group π as in (1).
As discussed by Kotschick and Hillman in [13, Proposition 1] and [10, Theorem 1],
respectively, the existence of an epimorphism from π onto an hyperbolic surface group Πb

with a finitely generated kernel entails the existence of a holomorphic fibration f : X → Σb

whose fibres are smooth and of multiplicity one. Namely, f : X → Σb is a smooth surface
bundle over a surface. By the long exact sequence of the fibration, the fibre must have
genus equal to g.

The first, trivial, observation is that the condition on the non-vanishing of the signature
implies that the image of m cannot be contained in subgroups of Γg for which the signature
of the corresponding surface bundle is zero; this entails the well-known facts that the
image of m cannot be contained in the hyperelliptic subgroup, or in the Torelli subgroup,
of the mapping class group.

We pause to give a different proof of the latter statement, which positions us in the
spirit of this note.

Lemma 1.1 (Folklore). Let X be an aspherical Kähler surface with fundamental
group π := π1(X) as in (1). Then if the image of the monodromy representation m : Πb →
Γg is contained in the Torelli subgroup, it is trivial and X = Σg × Σb.

Proof. The Hochschild–Serre spectral sequence associated with the sequence in (1)
gives, in low degrees, the long exact sequence

H2(X; Z)
f∗→ H2(Σb; Z) → H1(Σg; Z)Πb

→ H1(X; Z)
f∗→ H1(Σb; Z) → 0, (2)

where H1(Σg; Z)Πb
is the group of coinvariants under the action of Πb on the homology

of the fibre, i.e. the homological monodromy.
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It is well known that f∗ : H2(X; Z) → H2(Σb; Z) is an epimorphism over rational coef-
ficients. It follows that the relative irregularity qf = q(X) − q(Σb) is given by the half of
the rank of the group of coinvariants (which must be even for X to have even first Betti
number), i.e.

qf = 1
2rkZH1(Σg; Z)Πb

.

As m(Πb) is contained in the Torelli group, the action of Πb on H1(Σg; Z) is trivial,
hence qf = g. By a result of Beauville (see [6, Lemme]), this can occur if and only if X is
birational to the product Σg × Σh with the fibration corresponding to the projection; as
we assume that X is aspherical, this implies that X is actually isomorphic to Σg × Σh. �

As a Kodaira fibration is aspherical and non-isotrivial, it cannot be isomorphic to a
product. The Lemma implies therefore that the image of m cannot be contained in the
Torelli subgroup.

The take-home point of the previous proof is that we can use constraints on the relative
irregularity of fibred surfaces (as we used Beauville’s) to control the coinvariants of the
homological monodromy. This leads to the following.

Proposition 1.2. Let X be an aspherical Kähler surface with fundamental group
π := π1(X) as in (1). Then if the coinvariant homology H1(Σg; Z)Πb

has rank 2g − 2s,
then g ≤ 1 + 6s.

Proof. Following verbatim the proof of Lemma 1.1, we have a holomorphic fibration
f : X → Σb that is a smooth surface bundle over a surface, whose low-degree homology is
described in (2). As the action of Πb on H1(Σg; Z) is non-trivial, the fibration is necessarily
non-trivial, hence by [18, Corollary 3] its relative irregularity satisfies the bound qf ≤
5g+1

6 . By our assumption again we have qf = g − s, whence the bound follows. �

Corollary 1.3. A Kodaira fibration of relative irregularity qf = g − 1 has fibre of
genus g ≤ 7.

It has been conjectured (see e.g. [2]) that Xiao’s bound on then relative irregularity could
be improved to qf ≤ g

2 + 1 (the modified Xiao’s conjecture; [2] makes some steps in that
direction using the Clifford index of a fibration). It that were the case, we would get that
the fibre genus is 4 at most (and similar improvements would occur to Proposition 1.2). As
Kodaira fibrations have fibres of genus g at least 3, this would leave an even narrower room
for the genera of possible fibres. In fact, with extra assumptions on the genus of the base,
we can actually improve that result: as observed in [7], using standard inequalities for
non-isotrivial smooth fibrations (see [6,14]) it is not hard to prove that the holomorphic
Euler characteristic of a Kodaira fibration satisfies the inequalities

3(b − 1)(g − 1) < 3χ(X) < 4(b − 1)(g − 1), (3)

so when b = 2 there are no Kodaira fibrations of genus 3 or 4 (regardless of the relative
irregularity). We can then rephrase the above results.

Corollary 1.4. If the modified Xiao’s conjecture holds true, a Kodaira fibration with
fibre of genus g and base of genus b = 2 has relative irregularity qf ≤ g − 2.
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Remark. Without entering into much detail, we note that the inequalities in (3),
or other standard inequalities for surfaces, do not seem to provide any further infor-
mation for the case of b = 2 beyond those observed above; for example, when g = 5,
we cannot exclude the existence of a Kodaira fibration with χ(X) = 5 which may have
qf = 4 (although it is worth noting that such a surface would have K2

X = 44, hence slope
K2

X/e(X) = 2.75, higher than any known examples). In that sense, it seems necessary
to invoke the modified Xiao’s conjecture in the statement of Corollary 1.4. Similarly, if
b = 3, for g = 3 we are aware of no constraints to the existence of a Kodaira fibration with
qf = 2 that would have again χ(X) = 5, K2

X = 44. The information of (3) gets further
diluted as b and g grow.

To complete the picture, we need to show that Proposition 1.2 is effective, namely that
there do exist surface bundles over a surface that violate the constraints on the fibre genus
contained therein. As previously observed, this entails that there exist actual groups π as
in (1) with coinvariant homology of rank 2g − 2s that cannot be the fundamental groups
of a Kodaira surface.

We will provide examples for some choice of the value s; it is not too hard, with minor
modifications of the constructions described below, to extend the class of such s: we leave
this task to the interested reader. For good measure, the surface bundles we will describe
have even Betti numbers and strictly positive signature, so there are no (to the best of
our understanding) simpler obstructions to the existence of a Kodaira fibration.

Instead of reinventing the wheel, our construction will follow the template of [4] (to
which we refer the reader), and exploit as a building block a remarkable surface bundle
over a surface discovered in [8]. This manifold, which will be denoted as Z, has fibres
of genus 3, base of genus 9, strictly positive signature σ(Z) = 4 and a section with self-
intersection 0.

Proposition 1.5. There exists an integer s0 ∈ [1, 3] such that for every b ≥ 9 there
exists a surface bundle Zg,b with fibre of genus g over a surface of genus b, of strictly
positive signature, whose coinvariant homology H1(Σg; Z)Πb

has rank 2g − 2s0 and g >
1 + 6s0. Its fundamental group cannot occur as the fundamental group of a Kodaira
fibration.

Proof. We start by producing the example with b = 9. Consider the aforementioned
surface bundle ϕ : Z → Σ9; as the fibres have genus 3, we must have rkZH1(Σ3; Z)Π9 ∈
[0, 5]. (It is probably not too difficult to actually determine the exact value—which must
be strictly smaller than the maximal possible value rkZH1(Σ3; Z) = 6, otherwise the mon-
odromy would be contained in the Torelli group—but our construction is independent of
the outcome of such calculation; as this construction can be applied to surface bundles
other than Z, we will keep the discussion general.)

At this point, depending on the parity of this rank, we proceed as follows.

• If the rank happens to be even, we will perform a section sum of Z and the product
bundle Σh+1 × Σ9 along sections of self-intersection 0, i.e. a normal connected sum in
which the boundaries of fibred tubular neighbourhoods of the sections are identified
with a base-preserving diffeomorphism, see [5]. (Here and in what follows, the normal
connected sum operation is not determined uniquely by the data above, but also by
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the isotopy class of the gluing map; all results we state, however, apply irrespective
of those choices.)

• If the rank happens to be odd, we will first perform a section sum of Z and a standard
building block Q, where Q can be defined as the torus bundle over a surface of genus
9 obtained by fibre summing the Kodaira–Thurston manifold—a torus bundle over a
torus—with the product bundle T 2 × Σ8. (Note that b1(Q) = b1(Σ8) + 1.) Next, we
will proceed with a further section sum with Σh × Σ9.

Either way, the resulting manifold will be a surface bundle Zg,9 with fibre of genus
g := h + 4 and even first Betti number; the monodromy representation of section sums
is elucidated in [5, § 2.2] and a little bookkeeping for the constructions above shows
that in all cases rkZH1(Σg; Z)Π9 = 2g − 2s0 for some s0 ∈ [1, 3]. Moreover, by Novikov
additivity (and by the choice of the building block using in the stabilizations, all having
vanishing signature) the bundle Zg,9 has signature σ(Zg,9) = σ(Z) > 0. We can then
increase the genus of the base by fibre sum with Σg × Σc to get a surface bundle Zg,b

with base a surface of any genus b ≥ 9. Again, Novikov additivity and a straightforward
Mayer–Vietoris argument show that the signature and the coinvariant homology keep the
properties discussed above.

As g ≥ 4 is a free parameter in the construction above, we can make it large as
wanted, in particular larger than 1 + 6s0, in which case its fundamental group is not
the fundamental group of a Kodaira fibration by Proposition 1.2. �

We can make a minor variation to the construction above to illustrate another phe-
nomenon, which shows that at times we can gain insight into the (non-)existence of the
structure of a Kodaira fibration by reiterated application of Proposition 1.2 to finite
covers.

Proposition 1.6. There exists a surface bundle Wg+1,b with fibre of genus g + 1 over
a surface of genus b ≥ 9, which satisfies the constraints of Proposition 1.2 but admits an
unramified cover Sg+1,5b−6 that fails them. Its fundamental group cannot occur as the
fundamental group of a Kodaira fibration.

Proof. The construction of our examples will build on the construction of Proposition
1.5. Consider the (say right-handed) trefoil knot T (2, 3). As detailed, e.g. in [15, Chapter
10], the trefoil is a fibred knot of genus 1, whose exterior can thus be identified with
the mapping torus of an automorphism φ : F → F of a surface F on genus 1 with one
boundary component ∂F , fixed pointwise by the monodromy φ. With a suitable choice
of a basis for H1(F ; Z) = Z

2, the homological monodromy is given by

φ∗ =
(

1 1
−1 0

)
. (4)

Next, perform a 0-surgery of S3 along the trefoil knot; the resulting closed 3-manifold
N has b1(N) = 1 and admits a torus fibration over S1, whose fibre comes from capping
off F with a disk. The 4-manifold S1 × N is then a torus bundle over a torus, and the
coinvariant homology of the fibre is trivial, as the homology monodromy representation is
induced by that of the trefoil knot and coincides with that in (4). Moreover, the signature
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of this bundle vanishes. Next, fibre sum with T 2 × Σb−1 to get a torus bundle M with
base Σb; by the usual arguments, the coinvariant homology of the fibre and the signature
vanish. The torus bundle M admits a section of self-intersection 0 (inherited from the
dual of the trefoil knot in N).

Take the surface bundle Zg,b, which retains a section of self-intersection 0, and per-
form a section sum with M . The resulting manifold Wg+1,b is a surface bundle with
fibre and surface genus as in the indices, and σ(Wg+1,b) > 0. The homology monodromy
representation in SL(2g + 2, Z) factors in block diagonal form, with a 2 × 2 block as in
(4) that comes from the homological monodromy of the trefoil knot. The coinvariant
homology of the fibre satisfies rkZH1(Σg+1; Z)Πb

= 2g − 2s0, as the monodromy of the
2 × 2 block coming from M increases by 1 in the genus of the fibre but does not con-
tribute to the coinvariant homology. Choose then g such that 1 + 6s0 < g + 1 ≤ 7 + 6s0;
the latter inequality ensures that Wg+1,b does not violate the inequality of Proposition
1.2, while the rationale for the first inequality will be apparent momentarily. Recall now
that the homological monodromy of the trefoil knot is periodic of period 6, as can be
verified from (4) by computing explicitly (φ∗)6 = I. Then it is not too hard to see the
existence of a 6-fold (unramified) cyclic cover of Wg+1,b, which we will denote Sg+1,6b−5,
induced by a 6-fold cyclic cover Σ6b−5 → Σb of the base determined by a normal subgroup
Π6b−5 ≤ Πb. The covering map on Wg+1,b is trivial on the fibres, hence the resulting cover
Sg+1,6b−5 is again a surface bundle of fibre Σg+1 over the base Σ6b−5, as recorded in the
notation. Its coinvariant homology satisfies rkZH1(Σg+1; Z)Π6b−5 ≥ 2g + 2 − 2s0: there is
in fact a gain, in rank, of at least two due to the periodicity of the 2 × 2 block in the
homological monodromy representation in SL(2g + 2; Z). (Further gain would depend
on the monodromy of Z, as well as the choice of the gluing data in the section sums
above.) Application of Proposition 1.2 entails that this manifold cannot carry the struc-
ture of Kodaira fibration, as having rkZH1(Σg+1; Z)Π6b−5 ≥ 2g + 2 − 2s0 would require
having at least g + 1 ≤ 1 + 6s0, which violates the above choice of g + 1 > 1 + 6s0. (If
rkZH1(Σg+1; Z)Π6b−5 happens to be odd, this would follow as well for simple parity rea-
sons). As the finite cover of a Kodaira fibration must be a Kodaira fibration, Wg+1,b

does not carry the structure of Kodaira fibration either. In summary, reiterated use of
Proposition 1.2 for finite covers may unveil further information. �

Remarks
(1) The surface bundles Zg,b and Wg+1,b identified in the proofs of Propositions 1.5 and

1.6 admit a symplectic structure by [16]. They fail, however, to admit a Kähler structure.
We recap the argument: if they did admit a Kähler structure, as their fundamental group
surjects onto Πb with finitely generated kernel, they would admit a holomorphic fibra-
tion over Σb. By the aforementioned results of Kotschick and Hillman, the fibres would
be smooth with multiplicity one; as the signature is non-zero, these would be Kodaira
fibrations, in violation of Proposition 1.2. To our knowledge, this type of obstruction to
the existence of a Kähler structure on a symplectic manifold has not been spelled out in
this form before.

(2) We conclude this note observing the rather annoying fact that none of the discussion
above has any bearing on the a priori more basic question of whether a group as in (1)
can occur as the fundamental group of some projective (or even Kähler) variety (compare
Question (5) of [11]). In fact, we have no means to exclude the possibility that any of the
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groups we dismissed above could be the fundamental group of some projective variety,
and hence, by standard arguments, of some algebraic surface Y . As the fundamental
group of Y would surject onto Πb, such a surface would admit a fibration with base Σb.
By the above considerations, reversing the aforementioned result of [10,13], we can only
infer that the fibration would be necessarily non-smooth, Y would not be aspherical, and
its Euler characteristic would have to exceed (2g − 2)(2b − 2).
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6. A. Beauville, L’inégalité pg ≥ 2q − 4 pour les surfaces de type général, Appendix to
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France 110(3) (1982), 319–346.

7. F. Catanese, Kodaira fibrations and beyond: methods for moduli theory, Jpn. J. Math.
12(2) (2017), 91–174.

8. H. Endo, M. Korkmaz, D. Kotschick, B. Ozbagci and A. Stipsicz, Commutators,
Lefschetz fibrations and the signatures of surface bundles, Topology 41 (2002), 961–977.

9. L. Flapan, Monodromy of Kodaira fibrations of genus 3, preprint (arXiv:1709.03164,
2017).

10. J. Hillman, Complex surfaces which are fibre bundle, Topology Appl. 100 (2000), 187–191.

11. J. Hillman, Sections of surface bundles, in Interactions between low-dimensional topology
and mapping class groups (ed. R. Inanc Baykur, John Etnyre and Ursula Hamenstädt),
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