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SUMMARY
In this paper an algorithm for real-time estimation of the
position and orientation of a moving object using a video
camera is presented. The algorithm is based on the extended
Kalman filter which iteratively computes the object pose
from the position measured in the image plane of a set of
feature points of the object. A new technique is proposed
for the selection of the optimal feature points based on the
representation of the object geometry by means of a Binary
Space Partitioning (BSP) tree. At each sample time, a visit
algorithm of the tree allows pre-selecting all the feature
points of the object that are visible from the camera in the
pose predicted by the Kalman filter. A further selection is
performed to find the optimal set of visible points to be
used for image feature extraction. Experimental results are
presented which confirm the feasibility and effectiveness of
the proposed technique.

KEYWORDS: Visual tracking; Object boundary; Real-time
estimation; BSP tree; Kalman filter.

1. INTRODUCTION
The use of visual sensors may have a high impact in
applications where it is required to measure the pose
(position and orientation) and the visual features of objects
moving in unstructured environments. Typical industrial
applications are assembling of mechanical parts, edge
following, object grasping; non industrial applications are
automotive guidance, spatial and underwater robotics. In
fact, visual sensors offer the possibility to extract multiple
information from a workspace in a noninvasive manner.
Moreover, in the last decade, high performance vision
systems are becoming less and less expensive. This scenario
is quite appealing for industries and researchers which are
stimulated at developing innovative strategies that actual
technology is able to support.

In robotics, the measurements provided by video cameras
can be directly used to perform closed-loop position control
of the robot end effector, usually denoted as visual servoing
control.1 In this case, the position tracking error can be
defined either in the Cartesian space (position-based visual-
servoing2) or in the image space of the cameras (image based

visual servoing3,4). More recently, vision measurements
have been used in combination with force measurements
to develop control strategies aimed at improving the robot
performance for the execution of tasks in scarcely structured
environments.5

A strict requirement in visual servoing applications is
that the information extracted from visual measurements
must be available at control sampling rate. In particular,
for position-based visual servoing, computational efficient
visual tracking techniques, able to estimate the position and
orientation of moving objects, must be adopted. Moreover,
visual measurements are usually affected by significant
noise and disturbances due to temporal and spatial sampling
and quantization of the image signal, lens distortion, etc.,
which may produce large errors in the pose estimation.
The adoption of the extended Kalman filter represents a
good trade-off between computational load and estimation
accuracy.6−9

In fact, Kalman filtering offers many advantages over
other pose estimation methods,10−12 e.g. implicit solution of
photogrammetric equations with iterative implementation,
temporal filtering, ability to change the measurement set
during the operation. Moreover, the statistical properties
of Kalman filter may be tuned to those of the image
measurements noise of the particular vision system. Last
but not least, the prediction capability of the filter allows
setting up a dynamic windowing technique of the image
plane which may sensibly reduce image processing time.
Applications of a Kalman filter in machine vision range
from visual tracking of objects with many internal degrees of
freedom,13 to automatic grasp planning14 as well as pose and
size parameters estimation of objects with partially known
geometry.15

A widely adopted strategy that can be used to estimate the
object pose is based on the recognition of some geometric
features of the object, such edges and corners, from a camera
image. In particular, strategies based on the extraction of a
suitable number of corners (feature points) allow the object
pose to be computed using a simple point CAD model.2,14

In principle, the accuracy of the estimate increases with the
number of the available feature points, at the expense of the
computation time. However, when Kalman filter is used, it
has been shown that the best achievable accuracy can be
obtained using a number of five or six feature points, if
properly chosen.7
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Suitable selection algorithms have been developed to find
the optimal feature points for pose estimation.16,17 It should
be pointed out, however, that the computational complexity
of these algorithm grows at factorial rate and thus, in case
of objects with a large number of corners, it is crucial to
perform a pre-selection, e.g. by eliminating all the points
that are occluded with respect to the camera.18,19

In this paper, a new pre-selection technique of the feature
points is proposed, based on the detection at each sample
time of all the points that are to be visible to the camera at
next sample time. This algorithm exhibits a complexity which
grows linearly, thanks to the use of Binary Space Partitioning
(BSP) tree to represent the object geometry.20 Differently
from reference [20], the BSP Tree data structures are used to
represent the object geometry using only the object corners
which may be also used for the pose reconstruction process.
In this way, the computational complexity of the proposed
pre-selection algorithm is very small because it depends on
operations that work on geometrical zero-dimensional data.
In detail, the prediction of the object pose provided by the
Kalman filter is used to drive a visit algorithm of the BSP
tree which allows identifying all the feature points that are to
be visible at the next sample time. After the pre-selection, an
optimal point selection algorithm and a dynamic windowing
algorithm are adopted to find the windows of the image plane
to be considered for feature extraction.

The proposed pre-selection technique can be used also
in the case of objects and obstacles with interposing
parts.21 It should be pointed out that only few real-time
implementations of algorithms for visibility determination
have been proposed so far. Some of them consider occlusion
only as a simple case of a single convex object,22 others are
capable to track the 3D object pose only for object moving at
a fixed distance from the camera.23 A more efficient model-
based algorithm for dynamic handling of occlusions was
developed in reference [24], where the prediction of the
object pose provided by a Kalman filter is used for hidden
parts removal based on a partial 3D reconstruction of the
image features (lines and ellipses). More recently, a visual
tracking algorithm where BSP trees are used for real-time
removal of hidden lines have been proposed.25

The present work combines the computational efficiency
of the operations on Binary Space Partition trees with
the simplification introduced by the use of point features
(object corners), which are easy to identify using small
windows and can be extracted with high robustness in
various environmental conditions.17 The effectiveness of
the proposed approach is tested in experimental case
studies where the position and orientation of an object
carried by a robot manipulator is estimated using one fixed
camera.

The paper is organized as follows. In Section 2 the BSP tree
representation of the geometry of an object is derived using
a suitable object boundary representation; in Section 3 the
proposed pre-selection algorithm is illustrated; the selection
algorithm is described in Section 4, and the whole estimation
procedure is summarized in Section 5; the experimental
results are presented in Section 6, while in Section 7
some concluding remarks and future perspectives are
reported.

2. MODELING
The well known pin-hole model is considered to model a
camera fixed with respect to the base coordinate frame. The
details of the adopted camera model are presented in detail
in reference [26].

The pose reconstruction process is based on a suitable
Kalman filter formulation that considers as input the image
projections of the object corners and provides as output the
corresponding object pose. Since the output model of the ad-
opted Kalman filter formulation is nonlinear in the system
state, it is required to linearize the output equations about the
current state estimate at each sample time, considering the
extended Kalman filter (see reference [9] for the extended
Kalman filter equations).

2.1. 3D object modeling
Modeling the geometry of the objects is a crucial step
involved into an object-oriented machine vision process.
The realization of a task requiring tracking of target objects
requires the knowledge of the geometry of the objects and
their relative poses in the observed workspace. If such
information has to be provided by a visual system, then
a model of the geometry of the target objects, suitably
defined for the kind of involved image elaboration process,
is required. Unfortunately, in most cases a Cartesian CAD
model (boundary representation or B-reps) of the objects is
available (or derivable), but it cannot be directly employed by
sophisticated real-time image processing algorithms, while
a more efficient representation of the object geometry is
necessary to reduce computational complexity. As a matter
of fact, two different requirements have to be satisfied:
it is important to have an easily derivable representation
that allows a manual description of the geometry of the
object; also, it is necessary to have an efficient representation
that allows the implementation of real-time visual servoing
algorithms.

A good trade-off between these demands may be obtained
using a simple boundary representation to describe the object
geometry, and a more complex and computationally efficient
object representation that may be automatically derived from
the previous one. To achieve this goal the so called manmade
object class is considered. This class contains all objects
which may be represented (or approximated) as a union of
planar surfaces, e.g. polyhedral objects. Further, the contours
of each surface of these objects have to be representable (or
approximable) with a polygonal determined by an ordered
sequence of points. This means that a curved contour has to
be approximated as a polygonal contour via a suitable spatial
sampling.

In the following, a possible boundary representation of
manmade objects and a specific data structure representing a
recursive and hierarchical partition of an n-dimensional space
into convex subspaces, known as BSP tree, are presented. In
particular, the chosen boundary representation is very simple
and accessible for a manual geometric description of the
object, and the proposed BSP tree data structure may be
automatically derived from it.

The considered boundary representation has three specific
properties:

https://doi.org/10.1017/S0263574704001006 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704001006


Object boundary 367

Fig. 1. Example of Cartesian CAD model of a 3D manmade object. Left: object; center: object feature points (First level of representation);
right: object surfaces (Second level of representation).

� it is suitable for representing manmade objects;
� it has to be easily constructed manually;
� it has to describe the object with two hierarchical levels of

representation: the top level describes the set of the feature
points of the object, while the bottom level describes the
object surfaces using the information of the first level.

In this work, the so-called feature points are all the points
which allow the contours of the object to be fully described.
Generally, they are found by the discontinuities in the
direction of the contours and by the intersection of multiple
contours. In the case of curved contours, a suitable spatial
sampling is required to approximate the contour with a
polygonal line.

The considered B-reps may be constructed in two steps.
During the first step all the feature points of the object are
individuated and measured with respect to a chosen object
frame, fixed with the object. During the second step an easy
description of the object surfaces is achieved by choosing the
sequences of feature points delimiting the considered surface.
The sequences of feature points are ordered in anticlockwise
direction with respect to the outgoing unit vector orthogonal
to the object surface. With this choice, it will be possible to
recognize the external side of a surface.

In Fig. 1 an example of a manmade object is shown, along
with its feature points and its surfaces. In the first level of
representation, 16 feature points have been found, which are
sufficient to represent all the contours of the object. Each
point (fi , with i = 1, . . . , 16) is represented by its position
with respect to the object frame. In the second level of
representation 10 surfaces are found and described using
the previous feature points. Table I reports the representation
of the surfaces with the corresponding ordered sequences of
feature points, as described above.

Notice that it is not important which is the first point of the
sequence but only its order.

Table I. Boundary representation. Ordered sequences of feature
points corresponding to the surfaces of the object of Fig. 1.

Surface Feature points

S1 {f1f4f6f7f9f12f16f13}
S2 {f1f2f3f4}
S3 {f2f14f15f11f10f8f5f3}
S4 {f16f15f14f13}
S5 {f1f13f14f2}
S6 {f12f11f15f16}
S7 {f9f10f11f12}
S8 {f9f7f5f10}
S9 {f6f5f8f7}
S10 {f6f4f3f5}

2.2. BSP tree geometric modeling
A BSP tree is a data structure representing a recursive and
hierarchical partition of a n-dimensional space into convex
subspaces27 which can be effectively adopted to represent the
3D CAD geometry of a set of manmade objects. Each object
surface is a polygon, characterized by a set of feature points
(the vertices of the polygon) and by the vector normal to the
plane leaving from the object. Without loss of generality, the
case of a single object is considered.

The BSP-tree structure is a binary tree whose nodes are
composed by four elements:

� the partition plane;
� the set of surfaces contained on the partition plane;
� the link to the front sub-tree;
� the link to the back sub-tree.

The partition plane is used to divide the 3-dimensional
space into two sub-spaces; it is characterized by a point on
the plane and by the unit vector normal to the plane. The sub-
space containing the normal vector is named front sub-space,
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while the other is named back sub-space. For the purpose of
this work, the partition plane has to be chosen in the set
of the planes containing the polygons corresponding to the
object surfaces; hence, the partition plane contains at least
one polygon of the object.

Each node is the root of two subtrees: the front subtree
corresponding to a subset of polygons lying entirely in the
front sub-space, and the back sub-tree, corresponding to a
subset of polygons lying entirely in the back sub-space.

In fact, in order for a BSP tree to represent a solid object,
each cell of the tree must be classified as being either entirely
inside or outside of the object; thus, each leaf node cor-
responds to either an in-cell or an out-cell. The boundary of
the set then lies between in-cells and out-cells; since the cells
are bounded by the partitioning hyperplanes, it is necessary
for all of the boundaries to lie in the partitioning hyperplanes.

Therefore, it can convert from a boundary representation to
a tree simply by using all the face hyperplanes as partitioning
hyperplanes (auto-partition). The face hyperplanes can be
chosen in any order and the resulting tree will always
generate a convex decomposition of the internal side and
the external side. If the hyperplane normals to the boundary
representation faces are consistently oriented to point to the
external side, then all back leaves will be in-cells and all front
leaves will be out-cells.

However, the choice of partition plane will strongly affect
the results. If a polygon happens to span the partition plane,
it will be split into two or more pieces. A poor choice of the
partition plane can result in many such splits, and a marked
increase in the number of polygons. Usually there will be
some trade off between a well-balanced tree and a large
number of splits.

The problem is that polygons get split during the
construction phase, which may give rise to a larger number
of polygons. Larger numbers of polygons translate into
larger storage requirements and longer tree traversal times.
This is undesirable in all applications of BSP Trees, and
thus some scheme for minimizing splitting will improve
tree performance. If should be considered that minimization
of splitting requires pre-existing knowledge about all the
polygons that will be inserted into the tree. This knowledge
may not be available for interactive use such as solid
modelling, but it is available for the application considered
in this paper. The easiest strategy to minimize splitting is to
choose a partition plane, if it may be extracted from the list of
the remaining polygons, that does not intersect with any other
polygon. This strategy has a visibility on the recursive steps
of only one step, and thus it does not assure that the obtained
tree contains the minimal number of polygons. However,
some other more sophisticated strategy may be applied to
impact this problem.

The BSP tree can be built using a recursive procedure
described in the following Pascal-like code:

procedure Build_BSP_tree(node:BSP_tree;polygons:

polygon_list); var poly = polygon;

var front_surfaces, back_surfaces = polygon_list;

begin

{get a surface from the list}

poly:=get\_polygon(polygons);

{add poly to the list of surfaces of the current node}

add_to_list(node->surfaces,poly);

{compute the partition plane}

node->partition\_plane:=get_plane(poly);

{classify remaining polygons with respect to

the partition plane}

poly:=get\_polygon(polygons);

while (poly NOT NULL) do}

case classify_polygon(poly,node->partition_plane)

COINCIDENT:

add_to_list(node->surfaces,poly);

IN_FRONT_OF:

add_to_list(front_sufaces,poly);

IN_BACK_OF:

add_to_list(back_sufaces,poly);

INTERSECTING:

split_polygon(poly,node->partition_plane,

front_surfaces,back_surfaces);

end {case}

poly:=get_polygon(polygons);

end {while}

if front_surfaces NOT EMPTY then

{build front sub-tree}

node->front\_link:=allocate_node();

Build_BSP_tree(node->front_link;front_surfaces);

end {if}

if back_surfaces NOT EMPTY then

{build back sub-tree}

node->back_link:=allocate_node();

Build_BSP_tree(node->back_link;back_surfaces);

end {if}

end {begin}

In the above procedure, the function get polygon()
extracts a polygon from the input list of polygons; the first
extracted polygon is used to compute the partition plane (so
that it contains the polygon).

The function get plane() computes the partition plane
for the current node, i.e., computes the vector p =
[a b c d]T of the coefficients of the equation of the plane
containing the input polygon

ax + by + cz + d = 0,

where n = [a b c]T is the unit vector normal to the input
polygon.

The function classify polygon() allows to determine
if the current polygon is coincident, in front of, in back of,
or intersect the partition plane, in order to complete the list
of polygons of the current node and generate the lists of
polygons of the front sub-tree and of the back-subtree. When
a polygon intersects the partition plane, it is split into two
polygons using the procedure split polygon() and the
resulting parts are added to the corresponding lists.

Notice that the procedure is recursive and ends when all
the polygons and their parts are placed in a node of the tree.

As an example, consider the object represented in
Fig. 2, which contains ten polygons. A possible BSP-tree
representation of the object is reported in Fig. 3, which has
been obtained by considering as root node the partition plane
containing polygon number 10. Notice that different choices
of the initial node correspond to different trees.

The front sub-tree departing from the root node is empty
while the back sub-tree contains all the remaining polygons.
The partition plane of the back sub-tree contains the polygon
number 1; its the front sub-tree is empty while the back
sub-tree contains the polygons from number 2 to number 9.
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Fig. 2. Object and corresponding polygons.

Remarkably, the partition plane containing the polygon
number 2 intersects polygons number 5 and 7 (notice that
polygons number 9 and 10, which also intersect the partition
plane, were already added to previous nodes of the tree and
therefore were deleted form the current list of polygons),
and thus they have been split into two pieces each (see
polygons number 5f, 5b, 7f, 7b in Fig. 4). Notice that, in the
example, the choice of the partition planes has been made to
include also one intersecting case. In most cases, however, it
is possible to choose the partition planes so that splitting of
polygons is avoided. In this way, the construction process of
the tree and the visit algorithm are faster; this is especially
important when the BSP tree has to be built on line.21

3. PRE-SELECTION ALGORITHM
The accuracy of the estimate provided by the Kalman filter
depends on the number of the available feature points. The

Fig. 4. Case of partition plane splitting polygons number 5 and
number 7.

inclusion of extra points will improve the estimation accuracy
but will increase the computational cost. It has been shown
that a number of five or six feature points, if properly
chosen, may represent a good trade-off.7 Automatic selection
algorithms have been developed to find the optimal feature
points.17 In order to increase the computational efficiency
of the selection algorithms, it is advisable to perform a pre-
selection of the points that are visible to the camera at a
given sample time. The pre-selection technique proposed in
this paper is based on Binary Space Partitioning (BSP) trees.

Once that a BSP-tree representation of an object is
available, it is possible to select the feature points of the
object that can be visible from a given camera position and
orientation by implementing a suitable visit algorithm of
the tree. The algorithm can be applied recursively to all the
nodes of the tree, starting from the root node, as detailed in
the following Pascal-like procedure:
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Fig. 3. BSP tree of the object shown in Fig. 2.
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procedure

pre-selection(node:BSP_tree;view:point;

visible_points:point_list);

begin

if node NOT EMPTY then

case classify_point(view,node->partition_plane)

ON_THE_PLANE:

pre-selection(node->front_link,view,

visible_points);

pre-selection(node->back_link,view,

visible_points);

IN_FRONT_OF:

pre-selection(node->back_link,view,

visible_points);

process_polygons(node->surfaces,view,

visible_points);

pre-selection(node->front_link,view,

visible_points);

IN_BACK_OF:

pre-selection(node->front_link,view,

visible_points);

process_polygons(node->surfaces,view,

visible_points);

pre-selection(node->back_link,view,

visible_points);

end {case}

end {if}

end {begin}

In the above procedure, the input variable view is the point of
view (corresponding to the image plane of the camera) from
which the current set of visible feature points of the object
is evaluated. The visible points are listed in the variable
visible points, which contains also the projections of
these points on the image plane of the camera.

The function classify point() evaluates the position
of the point of view with respect to the partition plane.

The core of the pre-selection algorithm is the procedure
process polygons(), which updates the current set of
visible points by adding all the feature points of the polygons
of the current node and by eliminating all the feature points
that are hidden by the polygons of the current node.

The procedure is recursive and ends when all the nodes of
the tree have been visited; at the end, the current set of visible
points will contain all and only the feature points visible from
the point of view. Notice that construction of the set proceeds
so that the polygons are added in a sequence corresponding
to their distance with respect to the point of view from the
background to the foreground.

Notice that the code implementing the whole pre-selection
algorithm (visit of the tree and polygons processing) exhibits
a complexity O(N), where N is the number of polygons
of the object.27 Moreover, some modifications can be intro-
duced which allow a considerable reduction of the compu-
tational time. For example, all the polygons that are hidden
with respect to the point of view (i.e., the angle between the
normal vector to the polygon and the unit vector normal to
the image plane is not in the interval [−π/2, π/2] or the
polygon is behind the image plane) can be discarded from
the list and their feature points are not processed.

With reference to the BSP tree of Fig. 3, assuming that the
point of view is placed as the observer of the image in Fig. 4,
the visit sequence of nodes is: 10, 8, 7b, 4, 5b, 3, 2, 7f, 6, 5f,
9, 1; the polygons number 10, 8, 7b, 3, 7f result to be hidden

and can be discarded from the list (i.e., their feature points
are not processed).

The technique described above can be suitably exploited
to set up a real-time pre-selection algorithm of the feature
points on the camera image plane, using the prediction of the
estimated pose of the target object provided by the Kalman
filter.

4. SELECTION ALGORITHM
The pre-selection algorithm recognizes all the feature points
that are visible from a camera view point. However, this does
not ensure that all the visible points are “well” localizable,
i.e., their positions can be effectively measured with a given
accuracy. For instance, some points could be out of the
image plane of the camera, or they could be too close each
other to guarantee absence of ambiguity in the localization.
Moreover, the number of the well localizable feature points
may be larger than the optimal number of points ensuring the
best pose estimation accuracy.

In the following, a windowing test is adopted to find the
projections of the feature points that can be well localized.
Then, a selection algorithm is used to choose an optimal
subset of points to be considered for feature extraction.

4.1. Windowing test
The measurements of the coordinates of the projections
of the feature points are obtained by considering suitable
rectangular windows of the image plane to be grabbed and
processed. Each window must contain one feature point. The
windows are centered on the positions of the feature points
on the image plane so as predicted by the Kalman filter.
Their semi-dimensions are dynamically chosen in the interval
[Wrmin, Wrmax] for the base (the side parallel to the row’s
direction) and in the interval [Wcmin, Wcmax] for the height
(the side parallel to the column’s direction). The minimum
values are set so as to achieve a prescribed accuracy and
robustness in the feature extraction, while the maximum
values are set on the basis of the available memory and
processing time.

A windowing test can be set up to select all the projections
of the feature points that can be “well” localized.

First, all the points that are out of the field of view of the
camera, or too close to the boundaries of the image plane,
are discarded. This is achieved by eliminating all the points
whose projections, so as predicted by the Kalman filter, are
out of a central window of the image plane. The central
window is obtained by reducing the height (base) of the
whole image plane of the quantity Wrmin (Wcmin) from each
side, as shown in Fig. 5.

Then, all the feature points that are too close to each other
are discarded. This happens when the estimated distance
between the projections of two or more points is lower than
Sf · Wrmin (Sf · Wcmin) along the row’s (column’s) direction;
Sf > 1 is a suitable security factor.

All the remaining points are “well” localizable; the
effective dimensions of the corresponding windows are
dynamically adapted to the maximum allowable semi-
dimension, so as to guarantee an assigned security distance
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Fig. 5. Examples of significant situations during windowing test.

from the other points and from the boundaries of the image
plane (see Fig. 5).

4.2. Optimal feature points selection
The number of feature points after pre-selection and
windowing test may be larger than the optimal number
of points (five or six) ensuring the best pose estimation
accuracy.7 The optimality of a given set of feature points
can be valued through the composition of suitably selected
quality indices into an optimal cost function. The quality
indices must be able to provide accuracy, robustness and to
minimize the oscillations in the pose estimation variables. To
achieve this goal it is necessary to ensure an optimal spatial
distribution of the projections of the feature points on the
image plane and to avoid chattering events between different
optimal subsets of feature points chosen during the object
motion.

A first quality index is the measure of spatial distribution
of the predicted projections on the image planes of a subset
of n selected points:

Qs = 1

n

n∑
k=1

min
j ∈{1, . . . , n}, j �=k

‖ pj − pk‖.

To ensure redundancy in case of faults of the feature
extraction algorithm, n is chosen between 6 and 8.

A second quality index is the measure of angular
distribution of the predicted projections on the image plane
of a subset of n selected points:

Qa = 1 −
n∑

k=1

∣∣∣∣ αk

2π
− 1

n

∣∣∣∣
where αk is the angle between the vector pk+1 − pC and the
vector pk − pC , being pC the central gravity point of the
whole subset of feature points, and the n points of the subset
are considered in a counter-clockwise ordered sequence with
respect to pC , with pn+1 = p1.

To enhance the efficiency of the feature extraction process
of the optimal subset of feature points and, hence, to
increase the effective number of available points for the

reconstruction, it is desirable to choose only those points
with a good percentage of right extraction, with respect to
each camera. Therefore, the third quality index measures the
current percentage of success for the extraction process of a
subset of q selected points for the camera:

Qp =
q∏

k=1

σk

where 0 ≤ σj ≤ 1 is the percentage of success for the
extraction of the j -th feature point. These percentages have
to be updated during the reconstruction process. At each
sampling time and for all the feature points involved in the
current extraction process, the percentage of the j -th point,
for j = 1, . . . , q, is updated by increasing (decreasing) the
current value of a quantity 0 < δp < 1 in the case of a good
(failed) extraction.

To avoid chattering phenomena, a quality index
introducing hysteresis effects on the change of the optimal
combination of points is considered:

Qh =
{

1 + ε if actual = previous combination
1 otherwise

where ε is a positive constant.
The proposed indices are only some of the possible

choices, but guarantee satisfactory performance when used
with the pre-selection method and the windowing test
presented in this paper. Other examples of quality indices
are proposed, e.g., in reference [17].

The cost function is a simple product of the quality indices,
but must be evaluated for all the possible combinations of
the visible points on n positions. In order to perform a
computationally efficient determination of the optimal set at
each sample time, the initial optimal combination of points
is first evaluated off-line; then, only the combinations that
modify at most one point with respect to the current optimal
combination are tested on-line, thus achieving a considerable
reduction of processing time.

5. ESTIMATION PROCEDURE
A functional chart of the estimation procedure is reported in
Fig. 6.

It is assumed that a BSP-tree representation of the object
is built off-line from the CAD model.

BSP tree 
build 

Pre-selection 
&

Windowing 

Optimal 
selection 

Features 
extraction AEKF wk,kCamera 

CAD
model 

Fig. 6. Functional chart of the estimation procedure.
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A Kalman filter is used to estimate the object pose with
respect to the base frame at the current sample time and to
compute the predicted pose at next sample time.

Hence, the visit algorithm described in Section 3 is applied
to the BSP tree of the object to find the set of all the feature
points that are visible from the camera, when the object is in
the predicted pose.

The resulting set of visible points is input to the selection
algorithm described in Section 4 for the windowing test and
optimal feature points selection.

At this point, the expected location of the optimal feature
points in the image plane at the next sample time is computed
and a dynamic windowing algorithm is executed to select
the windows of the image plane to be input to the feature
extraction algorithm.

Then, the image windows of the optimal selected points
are elaborated using a feature extraction algorithm. Finally,
the computed coordinates of the points in the image plane
are input to the Kalman filter.

Notice that the procedure described above can be extended
to the case of multiple objects moving among obstacles of
known geometry21; if the obstacles are moving with respect
to the base frame, the corresponding motion variables can be
estimated using Kalman filters.

6. EXPERIMENTS

6.1. Experimental set-up
The experimental set-up is composed by a PC with Pentium
IV 1.7GHz processor equipped with a MATROX Genesis
board, a SONY 8500CE B/W camera, and a COMAU
SMART3-S robot. The MATROX board is used as frame
grabber and for a partial image processing (e.g. windows
extraction from the image). The PC host is also used to realize
the whole BSP structures management, the pre-selection
algorithm, windows processing, the selection algorithm and
the Kalman filtering. Some steps of image processing have
been parallelized on the MATROX board and on the PC, so
as to reduce computational time. The robot is used to move
an object in the visual space of the camera; thus the object
position and orientation with respect to the base frame of
the robot can be computed from joint position measurements
via the direct kinematic equation. The experimental set-up is
shown in Fig. 7; notice that only one of the two cameras is
used for the experiments.

In order to test the accuracy of the estimation provided by
the Kalman filter, the camera was calibrated with respect to
the base frame of the robot using the calibration procedure
presented in reference [28], where the robot is used to place
a calibration pattern in some known pose of the visible space
of the camera. The camera resolution is 576 × 763 pixels
and the nominal focal length of the lens is 16 mm, while
the camera’s calibration parameters are reported in Table II.
Vector φc contains the Roll, Pitch and Yaw angles of the
camera frame with respect to the base frame, while the
vector c = [g1 g2 g3 g4 d1] contains the parameters used for
compensating the distortion effects due to the imperfections
of the lens profile and montage error alignment of the
optical system, as described in reference [28]. The residual

Fig. 7. Experimental set-up.

calibration error on the plane perpendicular to the zc-axis, at
a distance of about 90 cm from the camera along the zc-axis,
is about 3.6 mm. The sampling time used for estimation is
limited by the camera frame rate, which is about 26 fps. No
particular illumination equipment has been used to test the
robustness of the visual tracking system in the case of noisy
visual measurements.

All the algorithms for BSP structure management, image
processing and pose estimation have been implemented in
ANSI C. The image features are the corners of the object,
which can be extracted with high robustness in various
environmental conditions. The feature extraction algorithm
is based on Canny’s method for edge detection29 and on
a simple custom implementation of a corner detector. In
particular, to locate the position of a corner in a small window,
all the straight segments are searched first, using an LSQ
interpolator algorithm; then all the intersection points of these
segments into the window are evaluated. The intersection
points closer than a given threshold are considered as a
unique average corner, due to the image noise. All the corners
that are at a distance from the center of the window (which
corresponds to the position of the corner so as predicted
by the Kalman filter) greater than a maximum distance,
are considered as fault measurements and are discarded.
The maximum distance corresponds to the variance of the
distance between the measured corner positions and those
predicted by the Kalman filter.

Table II. Camera’s calibration parameters resulting from the
calibration procedure.

r0 = 273.51
c0 = 353.64
fu = −1963.87
fv = 1960.32
oc = [ −0.7985 −1.1789 −1.7598 ]T m
φc= [ 90.204◦ 3.091◦ 91.570◦ ]T

c = [ 2.323 −0.6521 0.2506 −16.70 154.5 ]T · 10−3
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Fig. 8. Image seen by the camera.

The object used in the experiment (with 40 feature points)
is shown in Fig. 8, so as seen from the camera during the
motion. It is possible to recognize the windows selected for
feature extraction as well as the measured positions of the
feature points marked as points close to the center of each
window.

6.2. Experimental results
In order to test the feasibility and the robustness of the
proposed visual tracking system, two different experiments
have been realized. The first experiment reflects a favorable
situation where the object moves slowly and most of the
feature points that are visible at the initial time remain visible
during all the motion. The second experiment reflects an
unfortunate situation where object moves quickly and the set
of the visible points is very variable.

The time history of the trajectory used for the first
experiment is represented in Fig. 9. The components are
considered in the base frame. The maximum linear velocity
is about 3 cm/s and the maximum angular velocity is about
3 deg/s.

The time history of the estimation errors is shown in
Fig. 10. Noticeably, the accuracy of the system reaches the
limit allowed by camera’s calibration, for all the components
of the motion, when the object does not move; during the
motion the tracking errors grow but remain limited. As it was
expected, the errors for some motion components are larger
than others because only 2D information is available in a
single camera system. In particular, the estimation accuracy
is lower along the zc axis for the position, and about the xc

and yc axes for the orientation. Since, in the experiments, the
zc axis is almost aligned to the y axis of the base frame,
the estimation errors are expected to be larger for the y

component of the position as well as for the roll and yaw
components of the orientation.
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Fig. 9. Object trajectory with respect to the base frame used in
the first experiment. Left: Position trajectory. Right: Orientation
trajectory.

In Fig. 11 the output of the whole selection algorithm is
reported. For each of the 40 feature points, two horizontal
lines are considered: a point of the bottom line indicates
that the feature point has been classified as visible by the
pre-selection algorithm at a particular sample time; a point
of the top line indicates that the visible feature point was
chosen by the selection algorithm. Notice that 8 feature points
are selected at each sample time, in order to guarantee at
least five or six measurements in the case of fault of the
extraction algorithm for some of the points. Also, some
feature points are hidden during all the motion (points
4,12,20,28,36,40), some points are visible only over partial
time intervals (points 1,3,7,8,9,17,25,33), while some points
are visible and selected as optimal point during all the motion
(points 2,16,21). Notice that no chattering phenomena are
present, i.e. the frequency of the variations of the optimal set
composition remains low.
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Fig. 10. Time history of the estimation errors in the first experiment.
Top: Position errors. Bottom: Orientation errors.
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Fig. 11. Visible points and selected points in the first experiment.
For each point, the bottom line indicates when it is visible, the top
line indicates when it is selected for feature extraction.

The time history of the trajectory used for the second
experiment is represented in Fig. 12. The maximum linear
velocity is about 2 cm/s and the maximum angular velocity
is about 7 deg/s.

The time history of the estimation error is shown in Fig. 13.
It can be observed that the error remains low but is greater
than the estimation error of the previous experiment. This is
due to the increased velocity of the feature points and to the
fact that from about t = 15 s to t = 45 s the object moves so
that it is partially out of the visible space of the camera; also,
it rotates in such a way that a side remains almost parallel
to the image plane. This condition penalizes the estimation
accuracy and explains why the magnitude of the estimation
error components is greater than in the previous experiment.
The corresponding output of the pre-selection and selection
algorithms are reported in Fig. 14. It should be pointed out
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Fig. 12. Object trajectory with respect to the base frame used in
the second experiment. Left: Position trajectory. Right: Orientation
trajectory.
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Fig. 13. Time history of the estimation errors in the second
experiment. Top: Position errors. Bottom: Orientation errors.
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Fig. 14. Visible and selected points for the second experiment. For
each points, the bottom line indicates when it is visible, the top line
indicates when it is selected for feature extraction.

that the pre-selection and selection algorithm are able to
provide the optimal set of points independently from the
operating condition, although slight chattering phenomena
appear in some situation where the elements in the set of
visible points is rapidly changing.

7. CONCLUSION
The problem of real-time estimation of the pose (position and
orientation) of a moving object from visual measurements
was considered in this paper. The main contribution of
the paper consists in a computationally efficient selection
procedure that allows to evaluate the optimal set of feature
points of the object to be used for image feature extraction and
pose estimation. The procedure can be applied to polyhedral
objects and is based on the representation of 3D objects
by means of Binary Space Partitioning trees. The proposed
algorithm is capable to find all the feature points of the
object that are visibile to the camera at a given sample
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time with a computational complexity of order O(N), where
N is the number of polygons of the object. The estimation
technique fully exploits the noise rejection and the prediction
capabilities of the extended Kalman filter. The experimental
results have confirmed the computational feasibility and the
robustness of the proposed visual tracking scheme. Future
work will be devoted at extending the selection procedure to
the case of multiple target objects with interposing parts (e.g.
the case of a robotic hand grasping a workpiece): in such a
case a BSP tree model of the set of objects should be built
and modified on-line.
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