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Abstract

We discuss an alternative approach to Fréchet derivatives on Banach spaces inspired by a characterisation
of derivatives due to Carathéodory. The approach allows many questions of differentiability to be reduced
to questions of continuity. We demonstrate how that simplifies the theory of differentiation, including the
rules of differentiation and the Schwarz lemma on the symmetry of second-order derivatives. We also
provide a short proof of the differentiable dependence of fixed points in the Banach fixed point theorem.
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1. Introduction

The aim of this paper is to promote an alternative approach to Fréchet derivatives
of functions defined on open subsets of a real or complex Banach space. The main
feature is a simplification of many proofs by reducing questions of differentiability to
a question of continuity. The approach is inspired by Carathéodory’s characterisation
of differentiability of functions on the complex plane from [9] and its extension to
vector-valued functions in [1, 8].

To motivate our approach let us start with the notion of a tangent to the graph of a
function f : J → R, where J ⊆ R is an open interval. Given x ∈ J, the tangent to the
graph of f at (x, f (x)) is by definition the limit of secants through the points (x, f (x))
and (y, f (y)) as y→ x. The slope of that secant is given by

ϕx(y) :=
f (y) − f (x)

y − x
,

and we say that f is differentiable at x if ϕx(y) has a limit as y→ x. In other words, ϕx

has an extension from J \ {x} to J that is continuous at x. Hence, f is differentiable at
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x ∈ J if and only if there exists a function ϕx : J → R, continuous at y = x, such that

f (y) = f (x) + ϕx(y)(y − x) (1-1)

for all y ∈ J. By design, the derivative at x is given by f ′(x) := ϕx(x). We call ϕx the
slope function of f at x. The continuity of ϕx at x built into the definition offers the
biggest advantage over a traditional approach.

For functions between Banach spaces we can apply an idea similar to that in (1-1).

Definition 1.1. Let E, F be real or complex Banach spaces and U ⊆ E open. Suppose
that f : U → F and let x ∈ U. We say that f is Carathéodory differentiable at x if there
exists a map Φx : U →L(E, F), continuous at x, such that

f (y) = f (x) + Φx(y)(y − x) (1-2)

for all y ∈ U. Here, L(E, F) is the space of bounded linear operators from E to F and
continuity is with respect to the operator norm in L(E, F). We call Φx a slope function
of f at x and

D f (x) := Φx(x) ∈ L(E, F)

the derivative of f at x.

As Φx is continuous at x, it is a direct consequence of (1-2) that f is continuous at
every point at which it is differentiable.

We show in Section 2 that the above notion of derivative is equivalent to the usual
notion of Fréchet derivative. Adding to the exposition in [1, 8], we provide some
geometric insight and allow for any real or complex Banach space. As a demonstration
of the simplicity of the approach, we then establish the standard rules of differentiation
in Section 3.

To further support the case for our alternative approach to derivatives, we provide
short and conceptually simple proofs of two further results. First, in Section 5, we
establish the Schwarz lemma about the symmetry of second-order derivatives. Second,
in Section 7, we provide a simple proof of the differentiable dependence of fixed points
in the Banach fixed point theorem. That theorem can be applied directly to prove the
inverse function theorem or the differentiable dependence on parameters of solutions
to ordinary differential equations; see [7] for many such applications.

If f is differentiable at every point x ∈ U, then it is convenient to view the slope
function as a function of two variables and write

Φ(x, y) := Φx(y),

where x is the point where we differentiate. By definition, the map y 7→ Φ(x, y) is
continuous at y = x and D f (x) = Φ(x, x). We show that in general, the map x 7→ Φ(x, y)
cannot be expected to be continuous at x = y, not even if f is very smooth. In contrast to
that, we show that if E is finite-dimensional, then there always exists a slope function
that is separately continuous on the diagonal x = y as a function of x and y. Such
examples are discussed in Section 6.
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While an arbitrary slope function can behave badly as a function of x regardless of
the smoothness of f , we show that f is continuously differentiable at x if and only if
there exists a slope function that is jointly continuous on the diagonal as a function of
both variables. The proof, given in Section 4, requires a mean value inequality which,
unlike most references, we prove for functions between complex Banach spaces.

We conclude this introduction by providing some historical comments. The core
idea goes back to the definition of the derivative given by Carathéodory in [9].
However, Carathéodory does not really make use of his definition, but instead reverts
to a standard approach. Others much later observed the the usefulness of his definition.
In the single-variable case, the most complete discussion appears in [15]. In [12,
Section III.6], a comparison of the definitions of the derivative due to Cauchy,
Weierstrass and Carathéodory is given, and Carathéodory’s definition is used to prove
the standard rules of differentiation. The text [4] uses Carathéodory’s approach to
prove some rules of differentiation, but not beyond that. The approach is used quite
consistently in the calculus textbook [16].

The first time the definition seems to appear in the multi-variable case is in [5].
The most comprehensive exposition is given in [1]. There is a generalisation to
functions on Banach spaces in [8], and [17] focuses on the two-variable case, providing
comparisons with other notions of differentiability. The definition also appears in
[12, Section IV.3].

2. Equivalence with Fréchet derivatives

Before we start our discussion of differentiability we need some notation. The norm
of B ∈ L(E, F) is the operator norm given by

‖B‖L(E,F) := sup
x∈E\{0}

‖Bx‖F
‖x‖E

= sup
‖x‖E≤1

‖Bx‖F = sup
‖x‖E=1

‖Bx‖F ;

see, for instance, [20, Section II.1]. A special case is the dual space E′ := L(E,K) of E,
where K = R if E is a real Banach space and K = C if E is complex. The dual norm
‖ · ‖E′ is just the operator norm in L(E,K). When no confusion is likely we denote the
norms on E and F simply by ‖ · ‖.

Let f : U → F, where U ⊆ E is open. The usual definition of the derivative at x ∈ U
is the Fréchet derivative. The idea is to find a linear operator A ∈ L(E, F) providing
the best linear approximation of f near x ∈ U in the sense that

lim
y→x

f (y) − f (x) − A(y − x)
‖y − x‖

= 0 (2-1)

in F. The map A is called the derivative of f at x and is denoted by D f (x). The name
goes back to Fréchet [11], but Fréchet attributes the definition to Stolz [19].

We now show that Fréchet’s and Carathéodory’s notions of derivatives are
equivalent. This is shown in [1, 8], but unlike these references we include a proof
emphasising the geometric significance of the constructions and allow for complex
Banach spaces.
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Assume that f is Carathéodory differentiable in the sense of Definition 1.1 and set
A := Φx(x). Then
‖ f (y) − f (x) − A(y − x)‖

‖y − x‖
=
‖(Φx(y) − Φx(x))(y − x)‖

‖y − x‖

≤ ‖Φx(y) − Φx(x)‖L(E,F)
‖y − x‖
‖y − x‖

= ‖Φx(y) − Φx(x)‖L(E,F).

Due to the continuity of y 7→ Φx(y) at x, we know that

‖Φx(y) − Φx(x)‖L(E,F) → 0

as y→ x and hence (2-1) holds, showing that f is Fréchet differentiable.
Assuming that f is Fréchet differentiable at x, we need to construct a slope function

Φx at x. Given y ∈ U with y , x, that slope function is uniquely defined in the direction
of y − x by (1-2), namely by

Φx(y)(y − x) = f (y) − f (x).

We then need to define Φx on a subspace complementary to the line {t(y − x) : t ∈ K}.
Such a complement is given by the kernel of a linear functional `(x, y) ∈ E′ with
〈`(x, y), y − x〉 , 0. For z ∈ ker(`(x, y)) we define Φx(y)z = D f (x)z. That construction
is possible by the Hahn–Banach theorem which guarantees the existence of a bounded
linear functional `(x, y) ∈ E′ such that 〈`(x, y), y − x〉 = ‖y − x‖ and ‖`(x, y)‖E′ = 1; see
[6, Corollary 1.3]. Geometrically this means that, in the direction of ker(`(x, y)), the
slope function Φx is determined by the tangent of f at (x, f (x)); see Figure 2.1. We can
write

Φx(y)z :=


f (y) − f (x) − D f (x)(y − x)

‖y − x‖
〈`(x, y), z〉 + D f (x)z if x , y,

D f (x)z if x = y,
(2-2)

for all z ∈ E. This is a slope function since 〈`(x, y), y − x〉 = ‖y − x‖, and so by
construction f (y) = f (x) + Φx(y)(y − x). Moreover, since ‖`(x, y)‖E′ = 1,

‖Φx(y)z − Φx(x)z‖ =
‖ f (y) − f (x) − D f (x)(y − x)‖

‖y − x‖
|〈`(x, y), z〉|

≤
‖ f (y) − f (x) − D f (x)(y − x)‖

‖y − x‖
‖z‖

for all z ∈ E. By definition of the operator norm and since f is Fréchet differentiable,

‖Φx(y) − Φx(x)‖L(E,F) ≤
‖ f (y) − f (x) − D f (x)(y − x)‖

‖y − x‖
y→x
−−−→ 0.

Hence f is Carathéodory differentiable. Note that if the dual norm on E′ is strictly
convex, then the functional `(x, y) given by the duality map is uniquely determined; see
[6, Exercise 1.1]. For this reason we call (2-2) the canonical slope function. We note
that it is sufficient for `(x, y) ∈ E′ to have a bound independent of y in a neighbourhood
of x for the above arguments to work.

We next look at some cases where it is possible to make a natural choice for `(x, y).
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Figure 2.1. Plane spanned by secant and tangent to define the canonical slope function.

Example 2.1. (a) If E = H is a finite- or infinite-dimensional Hilbert space with inner
product 〈· , ·〉H , then `(x, y) is the orthogonal projection onto the subspace spanned by
y − x, or more precisely the component in that direction. This is given by

〈`(x, y), z〉 :=
〈 y − x
‖y − x‖H

, z
〉

H
(2-3)

and illustrated in Figure 2.1. For a complex Hilbert space we take the inner product
conjugate linear in the first argument.

(b) If E = Lp(Ω) for some measure space (Ω, µ) with 1 < p <∞, then

〈`(u, v),w〉 :=
1

‖v − u‖p−1
p

∫
Ω

|v − u|p−2(v − u)w dµ.

Clearly 〈`(u, v), v − u〉 = ‖v − u‖p and by Hölder’s inequality |〈`(u, v),w〉| ≤ ‖w‖p, so
‖`(u, v)‖(Lp)′ = 1. In the Hilbert space case p = 2 this coincides with (2-3).

(c) If the norm ‖ · ‖E on E is equivalent to a norm ‖ · ‖H induced by an inner product
〈· , ·〉H , then we can choose

〈`(x, y), z〉 :=
‖y − x‖E
‖y − x‖H

〈 y − x
‖y − x‖H

, z
〉

H
.

In particular, this is the case when working on any finite-dimensional space such as Rn

or Cn, where every norm is equivalent to the Euclidean norm. We do not necessarily
have ‖`(x, y)‖E′ = 1, but we still maintain the required uniform bound.

Given the nonuniqueness of complements of the space spanned by y − x used to
construct the slope function (2-2), it is clear that the slope function cannot be unique
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unless dim(E) = 1. Also, the slope function does not need to be of the form (2-2). For
examples we refer to [1, Section 2] and to our more comprehensive discussion of slope
functions in Section 6. However, the derivative is in fact unique. We provide a proof
simpler than that given in [1, Section 2].

Proposition 2.2 (Uniqueness of derivative). Let E, F be Banach spaces, U ⊆ E open
and f : U → F Carathéodory differentiable at x ∈ U. Then the derivative at x is
unique.

Proof. Let Φx : U → L(E, F) be an arbitrary slope function. Fix z ∈ E and suppose
that t0 > 0 is small enough so that x + tz ∈ U for all t ∈ (0, t0]. This is possible since U
is open. By definition of Φx we have f (x + tz) − f (x) = Φx(x + tz)tz for all t ∈ (0, t0],
and so, by the continuity of Φx at x,

lim
t→0+

f (x + tz) − f (x)
t

= lim
t→0+

Φx(x + tz)z = Φx(x)z. (2-4)

As the left-hand side of (2-4) is independent of the particular slope function Φx, it
follows that Φx(x)z is uniquely determined by f , x and z. As this is true for every
z ∈ E, the derivative is unique. �

Remark 2.3. If f : Rn → Rm (or f : Cn → Cm), then the identity (2-4) also shows that
the matrix representation of D f (x) with respect to the standard basis is given by the
Jacobian matrix. Indeed, if we choose z = ek to be the kth standard basis vector of Rn

(or Cn), then the left-hand side of (2-4) by definition is the partial derivative of f with
respect to xk. Hence,

D f (x)ek =
∂ f
∂xk

(x) :=


∂ f1
∂xk

(x)

...
∂ fm
∂xk

(x)


for k = 1, . . . , n, giving the kth column of the Jacobian matrix.

3. The rules of differentiation

The proofs of the standard rules of differentiation provide a convincing case for
the simplicity of Carathéodory’s characterisation of derivatives. The idea is always
the same: through simple algebraic manipulations we identify a slope function and
exploit its continuity at the point at which the derivative is taken. Unlike the traditional
approach, no ‘ε–δ’ or ‘little o’ arguments are needed, only clean and transparent
arguments involving continuity properties of the slope function and the function itself.

Proposition 3.1 (Linearity). Suppose that E, F are real or complex Banach spaces,
that U ⊆ E is open and that f , g : U → F are differentiable at x ∈ U. If λ, µ ∈ R (or C),
then D(λ f + µg)(x) = λD f (x) + µDg(x).
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Proof. Take slope functions Φx and Ψx at x for f and g, respectively. Then

λ f (y) + µg(y) = λ f (x) + µg(x) + (λΦx(y) + µΨx(y))(y − x).

Clearly, λΦx(y) + µΨx(y) ∈ L(E, F) is continuous at y = x and hence

D(λ f + µg)(x) = λΦx(x) + µΨx(x) = λD f (x) + µDg(x),

as claimed. �

We next prove the chain rule, which is a good example of how our approach
reduces questions about differentiability to questions of continuity by identifying an
appropriate slope function. Compare, for instance, with the traditional proof of the
chain rule in [18, Theorem 9.15]. The proof below is given in [1] for functions defined
on Euclidean space, but translates without change to real and complex Banach spaces.

Theorem 3.2 (Chain rule). Suppose that E, F,G are Banach spaces and that U ⊆ E
and V ⊆ F are open sets. Assume that g : U → F is differentiable at x ∈ U and that
g(x) ∈ V. Further, assume that f : V → G is differentiable at g(x). Then f ◦ g is
differentiable at x and D( f ◦ g)(x) = D f (g(x))Dg(x).

Proof. Suppose that Φ : V →L(F,G) is a slope function of f at g(x) and that Ψ : U →
L(E, F) is a slope function of g at x, that is,

f (z) = f (g(x)) + Φ(z)(z − g(x)) for all z ∈ V ,
g(y) = g(x) + Ψ(y)(y − x) for all y ∈ U.

In particular, f and g are continuous at g(x) and x, respectively. Using the two identities
we can write

( f ◦ g)(y) = f (g(x)) + Φ(g(y))(g(y) − g(x))
= ( f ◦ g)(x) + Φ(g(y))Ψ(y)(y − x).

Hence, y 7→ Λ(y) := Φ(g(y))Ψ(y) is a slope function for f ◦ g at x. Using that the
composition of continuous functions is continuous, Λ is continuous at y = x and thus

D( f ◦ g)(x) = Λ(x) = Φ(g(x))Ψ(x) = D f (g(x))Dg(x),

as claimed. �

We next prove a product rule. Products are not generally defined on Banach spaces,
but the main feature of products is that they are bilinear. We let E, F1 and F2 be
Banach spaces and U ⊆ E an open set. Let G be another Banach space and assume
that b : F1 × F2→G is bounded and bilinear. ‘Bounded’ means that there exists M > 0
such that

‖b(y1, y2)‖G ≤ M‖y1‖F1‖y2‖F2

for all y1 ∈ F1 and y2 ∈ F2. Given functions fk : U → Fk, k = 1, 2, we consider
g : U → G given by

g(x) := b( f1(x), f2(x))

for all x ∈ U. The following proposition applies to pointwise products of functions, the
cross product, inner products and other bilinear operations.
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Proposition 3.3 (Product rule). Let the above assumptions be satisfied and assume that
f1, f2 are differentiable at x ∈ U. Then g is differentiable with derivative given by

Dg(x)z = b(D f1(x)z, f2(x)) + b( f1(x),D f2(x)z) (3-1)

for all z ∈ E.

Proof. Let Φ1,Φ2 be slope functions for f1 and f2 at x, respectively. Then, using that
b is bilinear, we obtain

g(y) = b( f1(y), f2(y)) = b( f1(x), f2(y)) + b(Φ1(y)(y − x), f2(y))
= b( f1(x), f2(x)) + b(Φ1(y)(y − x), f2(y)) + b( f1(x),Φ2(y)(y − x))
= g(x) + Ψ(y)(y − x),

where we have set

Ψ(y)z := b(Φ1(y)z, f2(y)) + b( f1(x),Φ2(y)z)

for all z ∈ E. As b is bounded and bilinear we deduce that Ψ(y) ∈ L(E,G) is continuous
at y = x, implying (3-1) since Φk(x) = D fk(x) by definition. �

Another common rule of differentiation is the quotient rule, but like the usual
product rule it does not directly apply in Banach spaces. Note, however, that the
quotient rule is really a composition of a function with inversion t 7→ 1/t = t−1 on
R or C. Hence the natural generalisation of the quotient rule is the derivative of the
map B 7→ B−1 on the set of bounded invertible linear operators. It is known that this
set is open in L(E) and that the map B 7→ B−1 is continuous; see, for instance, [20,
Theorem IV.1.5]. Based on this fact, we show that this map is also differentiable at
every invertible A ∈ L(E).

Theorem 3.4 (Inversion). Let A ∈ L(E) be invertible. Then the map f given by f (B) :=
B−1 is differentiable at A, and, for Z ∈ L(E),

D f (A)Z = −A−1ZA−1. (3-2)

Proof. If A, B ∈ L(E) are invertible, then

B−1 = A−1 − A−1 + B−1

= A−1 − A−1(B − A)B−1 = A−1 + Φ(A, B)(B − A),

where Φ(A, B)Z := −A−1ZB−1 for all Z ∈ L(E). Then Φ(A, B) ∈ L(L(E)) and

‖Φ(A, B)Z − Φ(A, A)Z‖ = ‖A−1Z(A−1 − B−1)‖ ≤ ‖A−1‖ ‖A−1 − B−1‖ ‖Z‖.

Here, ‖ · ‖ is the norm in L(E). By definition of the operator norm, continuity of
inversion and since the set of invertible operators is open,

‖Φ(A, B) − Φ(A, A)‖L(L(E)) ≤ ‖A−1‖ ‖A−1 − B−1‖ → 0

as B→ A in L(E). Hence Φ is a slope function for f and Φ(A, B)→ Φ(A, A) in
L(L(E)), proving (3-2). �
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Finally, we look at functions on a product space and partial derivatives.

Proposition 3.5 (Partial derivatives). Let E1, E2 and F be Banach spaces and let
U ⊆ E1 × E2 be open. Assume that f : U → F is differentiable at x = (x1, x2) ∈ U with
slope function Φ. For z1 ∈ E1 we define the partial slope function Φ1 by

Φ1(x, y1)z1 := Φ(x, (y1, x2))(z1, 0). (3-3)

Then the function y1 7→ f (y1, x2) defined on Ux2 := {y1 ∈ E1 : (y1, x2) ∈ U} is
differentiable with slope function Φ1(x, ·) : Ux2 → L(E1) and derivative given by
D1 f (x1, x2)z1 = D f (x)(z1, 0) for all z1 ∈ E1.

Proof. By definition of a slope function and (3-3),

f (y1, x2) = f (x) + Φ(x, (y1, x2))(y1 − x1, 0) = f (x) + Φ1(x, y1)(y1 − x1).

From properties of Φ we have that Φ1(x, y1)→ Φ1(x, x1) in L(E1, F) as y1 → x1.
Hence, y1 7→ f (y1, x2) is differentiable at x1 with slope function Φ1(x, ·) at x1. �

Note that the slope function of y1 7→ f (y1, x2) depends on x2. For that reason we
have kept x = (x1, x2) as the first argument of Φ1 and not just x1. As usual, we
sometimes write Dx1 f (x1, x2) or D1 f (x1, x2) for the partial derivative. In a similar
fashion we obtain the partial derivative with respect to x2. A similar approach works
for products of more than two spaces.

4. Characterisation of continuous differentiability

Assume that U ⊆ E is open and that f : U → F is differentiable. For every slope
function Φ(x, y) we require the continuity of y 7→ Φ(x, y) at x by definition. We do not
say anything about continuity as a function of x, let alone joint continuity as a function
of (x, y). It turns out that continuous differentiability can be characterised by means of
such a joint continuity property. Such a characterisation appears in [1, Section 5], but
apart from a generalisation to the Banach space case we also provide details on how
exactly the mean value theorem is used.

Theorem 4.1. Suppose that E, F are Banach spaces, that U ⊆ E is open and that
f : U → F is differentiable. Then D f is continuous at x0 if and only if there exists
a slope function Φ(· , ·) for f that is (jointly) continuous at (x0, x0) as a function of
(x, y). In that case, the canonical slope function given by (2-2) is jointly continuous at
(x0, x0).

It is tempting to believe that every slope function has the above joint continuity
property if D f is continuous at x0. However, as we show in Section 6, one can always
construct a slope function that is not even separately continuous. This is not bad
because in practice we only need to know that a jointly continuous slope function
exists. Note also that we make no claim on the continuity of Φ at points other than
(x0, x0).
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The main tool to prove the above theorem is a mean value inequality. To simplify
the statement, we denote the line segment connecting x and y in E by

[[x, y]] := {x + t(y − x) : t ∈ [0, 1]}.

The idea is taken from [18, Theorem 5.19], but instead of inner products in Rn we use
duality in Banach spaces. We also deal with the case of complex Banach spaces.

Theorem 4.2 (Mean value inequality). Assume that E, F are Banach spaces, that
U ⊆ E is open and that f : U → F is differentiable. Let A ∈ L(E, F) and let x, y ∈ U
be distinct points such that [[x, y]] ⊆ U. Then there exists c ∈ [[x, y]], c , x, y, such that

‖ f (y) − f (x) − A(y − x)‖ ≤ ‖D f (c)(y − x) − A(y − x)‖. (4-1)

Proof. By the Hahn–Banach theorem there exists ϕ ∈ F′ with ‖ϕ‖F′ = 1 such that

〈ϕ, f (y) − f (x) − A(y − x)〉 = ‖ f (y) − f (x) − A(y − x)‖F ; (4-2)

see [6, Corollary 1.3]. We next define the function g : [0, 1]→ C by

g(t) := 〈ϕ, f (x + t(y − x)) − f (x) − tA(y − x)〉. (4-3)

It is well defined since [[x, y]] ⊆ U by assumption. It is real-valued if E, F are
real Banach spaces. To allow for complex Banach spaces, we define the function
H : [0, 1]→ R by

H(t) = Re(g(1)g(t))

for all t ∈ [0,1]. We note that a complex-valued function of t ∈ R is differentiable if and
only if its real and imaginary parts are differentiable. As g(0) = 0 and hence H(0) = 0,
by the classical mean value theorem there exists t0 ∈ (0, 1) such that

|g(1)|2 = H(1) − H(0) = H′(t0) = Re(g(1)g′(t0)) ≤ |g(1)||g′(t0)|.

Hence, |g(1)| ≤ |g′(t0)|. Using (4-2), (4-3) and the chain rule we deduce that

‖ f (y) − f (x) − A(y − x)‖
= |g(1)| ≤ |g′(t0)|
= |〈ϕ,D f (x + t0(y − x))(y − x) − A(y − x)〉|
≤ ‖D f (x + t0(y − x))(y − x) − A(y − x)‖.

In the last step we used that ‖ϕ‖F′ = 1. To complete the proof of (4-1) we finally set
c := x + t0(y − x). Clearly c ∈ [[x, y]], c , x, y, since t0 ∈ (0, 1). �

From the above mean value inequality we can derive an inequality involving the
canonical slope function (2-2).

Corollary 4.3. Suppose that the assumptions of Theorem 4.2 are satisfied, and that
Φ(x, y) is the canonical slope function of f given by (2-2). If x, y ∈ U are distinct points
such that [[x, y]] ⊆ U, then there exists c ∈ [[x, y]], c , x, y, such that

‖Φ(x, y) − A‖L(E,F) ≤ ‖D f (c) − D f (x)‖L(E,F) + ‖D f (x) − A‖L(E,F). (4-4)
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Proof. We start by noting that, for all z ∈ E,

‖Φ(x, y)z − Az‖

=

∥∥∥∥∥ f (y) − f (x) − D f (x)(y − x)
‖y − x‖

〈`(x, y), z〉 + D f (x)z − Az
∥∥∥∥∥

≤

∥∥∥∥∥ f (y) − f (x) − D f (x)(y − x)
‖y − x‖

∥∥∥∥∥‖`(x, y)‖E′‖z‖

+ ‖D f (x) − A‖L(E,F)‖z‖

=

∥∥∥∥∥ f (y) − f (x) − D f (x)(y − x)
‖y − x‖

∥∥∥∥∥‖z‖ + ‖D f (x) − A‖L(E,F)‖z‖,

where we used that ‖`(x, y)‖E′ = 1. Hence, by definition of the operator norm,

‖Φ(x, y) − A‖L(E,F) ≤

∥∥∥∥∥ f (y) − f (x) − D f (x)(y − x)
‖y − x‖

∥∥∥∥∥ + ‖D f (x) − A‖L(E,F).

Applying Theorem 4.2, there exists c ∈ [[x, y]] with∥∥∥∥∥ f (y) − f (x) − D f (x)(y − x)
‖y − x‖

∥∥∥∥∥
≤

1
‖y − x‖

‖D f (c)(y − x) − D f (x)(y − x)‖

≤ ‖D f (c) − D f (x)‖L(E,F)
‖y − x‖
‖y − x‖

= ‖D f (c) − D f (x)‖L(E,F).

Combining the above, (4-4) follows. �

Remark 4.4. As seen from the proof of Theorem 4.2 and Corollary 4.3, it is sufficient
to assume that f is continuous at the endpoints of [[x, y]] and differentiable inside.

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1. First assume that there exists a slope function Φ that is
continuous at (x0, x0). Then in particular the function x 7→ Φ(x, x) = D f (x) is
continuous at x0, that is, D f is continuous at x0.

Assume now that D f is continuous at x0. We choose the slope function Φ(x, y) of
f given by (2-2). As U is open we can find r > 0 such that B(x0, r) ⊆ U. If we fix
x, y ∈ B(x0, r), then, applying (4-4) with A = D f (x0), there exists cx,y ∈ [[x, y]] with

‖Φ(x, y) − D f (x0)‖L(E,F)

≤ ‖D f (cx,y) − D f (x)‖L(E,F) + ‖D f (x) − D f (x0)‖L(E,F). (4-5)

As cx,y is a convex combination of x and y, it follows that cx,y ∈ B(x0, r) and that
cx,y → x0 as (x, y)→ (x0, x0). By the continuity of D f at x0, we deduce from (4-5) that

lim
(x,y)→(x0,x0)

‖Φ(x, y) − D f (x0)‖L(E,F) = 0,

proving the joint continuity of Φ at (x0, x0). �
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5. The symmetry of second-order derivatives

If f : U → E is differentiable, then it makes sense to consider the second-order
derivative. As D f : U → L(E, F), the second-order derivative D2 f (x) is a linear
operator from E into L(E, F), that is, D2 f (x) ∈ L(E,L(E, F)). As commonly done,
we identify L(E,L(E, F)) with the space L2(E × E; F) of bounded bilinear maps
from E × E to F; see, for instance, [3, Theorem 4.3]. With that identification D2 f (x) ∈
L2(E × E; F). We use the theory developed so far to provide a simple proof of the
well-known fact that D2 f (x) is symmetric, named after Schwarz, Young or Clairaut
depending on local tradition. Most references provide a proof if the second-order
derivative is continuous. We only assume that it exists at one point.

Theorem 5.1 (Symmetry of second-order derivatives). Assume that f : U → F is such
that D2 f (x) exists at the point x ∈ U. Then D2 f (x) is symmetric, that is, D2 f (x)[u, v] =

D2 f (x)[v, u] for all u, v ∈ E.

Proof. We first note that for D2 f (x) to exist, f needs to be differentiable in a
neighbourhood of x. We fix u, v ∈ E. As f is differentiable in a neighbourhood of x,
for fixed s > 0 small enough, the function g : [0, s]→ F given by

g(t) := f (x + su + tv) − f (x + tv) (5-1)

is well defined and differentiable. Thus the mean value inequality from Theorem 4.2
implies the existence of θ ∈ (0, 1) such that

‖g(s) − g(0) − s2D2 f (x)[u, v]‖ ≤ ‖g′(θs)s − s2D2 f (x)[u, v]‖, (5-2)

where we have set At := tsD2 f (x)[u, v] for the linear map A : R→ F. As D f is
differentiable at x there exists a slope function Φ : U → L2(E × E; F) for D f at x.
Using the chain rule to compute g′, we see that

g′(θs) = D f (x + su + θsv)v − D f (x + θsv)v
= (D f (x + su + θsv) − D f (x))v − (D f (x + θsv) − D f (x))v
= Φ(x + su + θsv)[su + θsv, v] − Φ(x + θsv)[θsv, v]
= s(Φ(x + su + θsv) − Φ(x + θsv))[θv, v] + sΦ(x + su + θsv)[u, v].

Combining the above identity with (5-2) and using that θ ∈ (0, 1), we arrive at∥∥∥∥∥g(s) − g(0)
s2 − D2 f (x)[u, v]

∥∥∥∥∥
F

≤

∥∥∥∥∥g′(θs)
s
− D2 f (x)[u, v]

∥∥∥∥∥
F

≤ ‖Φ(x + su + θsv) − Φ(x + θsv)‖L2(E×E;F)‖v‖2E
+ ‖Φ(x + su + θsv) − D2 f (x)

∥∥∥
L2(E×E;F)‖u‖E‖v‖E . (5-3)

By definition of differentiability, Φ is continuous at x and hence

lim
s→0+

Φ(x + su + θsv) = lim
s→0+

Φ(x + θsv) = D2 f (x)

[12] 213An alternative approach to Fréchet derivatives
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in L2(E × E; F). Hence, the right-hand side of (5-3) goes to zero as s→ 0+, that is,

lim
s→0+

g(s) − g(0)
s2 = D2 f (x)[u, v].

Looking at the definition of g given in (5-1), we see that g(s) − g(0) is symmetric as a
function of (u, v), so by interchanging the roles of u and v we also have

lim
s→0+

g(s) − g(0)
s2 = D2 f (x)[v, u],

proving that D2 f (x)[u, v] = D2 f (x)[v, u]. �

Remark 5.2. By an induction argument, the above theorem implies the symmetry of
all higher-order derivatives. The induction argument used in [3, Corollary VII.4.7] can
be adapted for that purpose. In the case of a function f : Rn → R, symmetry means
that the Hessian matrix is symmetric, and more generally that partial derivatives can
be taken in any order to yield the same result.

6. Further discussion of slope functions

In this section we provide a further discussion of slope functions. In particular, we
discuss joint and separate continuity, symmetry, and derivatives of Lipschitz functions.

6.1. Joint and separate continuity. If g : R→ R is differentiable, then the slope
function is uniquely determined and given by

ϕ(s, t) :=


g(t) − g(s)

t − s
if t , s,

g′(s) if t = s.
(6-1)

Clearly ϕ(s, t) = ϕ(t, s) and hence ϕ is separately continuous at (s, s), that is, t 7→ ϕ(s, t)
is continuous at s and t 7→ ϕ(t, s) is continuous at s. We show that this is not necessarily
the case for functions of two or more variables.

Example 6.1. For s ∈ R define g(s) := s2 cos(1/s) if s , 0 and g(0) := 0. We can define
a function of two variables by setting

f (x) := g(x1)

for all x = (x1, x2) ∈ R2. If x1 = 0, then the canonical slope function (2-2) is the 1 × 2
matrix given by

Φ(x, y) =
f (y)
‖y − x‖2

[
y1 y2 − x2

]
for all y , x. If x1 , 0, then it is given by

Φ(x, y) =
f (y) − f (x) − D f (x)(y − x)

‖y − x‖2
[
y1 − x1 y2 − x2

]
+ D f (x)

=
y1 − x1

‖y − x‖2
(ϕ(x1, y1) − g′(x1))

[
y1 − x1 y2 − x2

]
+

[
g′(x1) 0

]
,
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where ϕ is the slope function of g given by (6-1). Obviously Φ(0, x) , Φ(x, 0),
which is not surprising given the geometric interpretation of slope functions from
Section 2. What is more interesting is that Φ is not separately continuous at (0, 0).
In particular, limx→0 Φ(x, 0) does not exist. Indeed, since |g′(x1)| ≤ 2 for |x1| ≤ 1 and
ϕ(x1, 0)→ g′(0) = 0 as x1 → 0 it follows that

lim
x→0

x1

‖x‖2
(ϕ(x1, 0) − g′(x1))

[
x1 x2

]
= 0.

However, the second term [g′(x1) 0] does not converge as x1 → 0.
The above example also shows that the canonical slope function is not always the

best one to use. Here, there is a much simpler one with much better properties, namely
Ψ(x, y) :=

[
ϕ(x1, y1) 0

]
.

Inheriting the properties of ϕ, it follows that Ψ is separately continuous and symmetric.

At every point (0, x2), the function f in the above example is not continuously
differentiable. We now show that separate continuity of the slope function can fail
regardless of how smooth the function is. This makes it clear that Theorem 4.1 is
optimal in the sense that it can only ever assert the existence of a jointly continuous
slope function, but nothing can be said about an arbitrary slope function.

Example 6.2. Consider the zero function f (x) := 0 for all x ∈ R2, whose derivative is
given by D f (x) = [0 0] for all x ∈ R2. Suppose that g : R2 × R2 → R is such that

lim
y→x

g(x, y) = 0. (6-2)

Then the linear operator Φ(x, y) ∈ L(R2,R) given by

Φ(x, y) := g(x, y)
[
−

y2 − x2

‖y − x‖
y1 − x1

‖y − x‖

]
if x , y and Φ(x, x) := [0 0] defines a slope function for f at x. Indeed, note that
Φ(x, y)(y − x) = 0 and that ‖Φ(x, y)‖ ≤ |g(x, y)| for all x, y ∈ R2. Therefore, by (6-2), for
every x ∈ R2 we have Φ(x, y)→ [0 0] as y→ x. We choose g to be given by

g(x, y) :=

1 if y = 0 and x , 0,
0 otherwise.

Then (6-2) holds for all x ∈ R2, but g(x,0) = 1→ 1 , 0 = g(0,0) as x→ 0. In particular,
lim
y→0

Φ(0, y) =
[
0 0

]
but lim

x→0
Φ(x, 0) does not exist.

This means that Φ is not separately continuous as a function of x and y at (0, 0) even
though f is as smooth as we like. Given an arbitrary smooth function from R2 to R,
we can always add Φ to the corresponding slope function and get a badly behaved one.
Likewise, we can do that at any point in the domain by translation.

The example can be modified to work on any Banach space E by looking at a pair
of nontrivial complemented subspaces E = E1 ⊕ E2 and choosing x ∈ E1 and y ∈ E2.

In contrast to the above examples we show that at least in finite dimensions, for any
differentiable function (not necessarily continuously differentiable) one can always
construct a separately continuous and symmetric slope function.
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6.2. Symmetry and separate continuity of the slope function. We know that the
slope function ϕ of a differentiable function of one variable is symmetric, that is,
ϕ(x, y) = ϕ(y, x). We also know from previous discussions and Example 6.1 that this
is not necessarily the case for any given slope function Φ of a function of several
variables. If Φ is separately continuous, then the symmetric part

Ψ(x, y) := 1
2 (Φ(x, y) + Φ(y, x))

is a slope function. Hence, there is a symmetric slope function if and only if there
exists a separately continuous slope function. If f is continuously differentiable,
then, by Theorem 4.1, we have such a slope function. We could ask whether it is
possible to construct a separately continuous slope function for a function that is just
differentiable. It turns out that this is the case for a function of finitely many variables.

Given a differentiable function f : U → Rm, U ⊆ Rn open, we now construct a
separately continuous slope function. The construction comes closest to the definition
of a derivative for a function of one variable as a limit of secants. The idea is to consider
a secant plane and pass to the limit to obtain the tangent plane.

For each pair of points x, y set v1 = (y − x)/‖y − x‖ and choose vectors vk, k =

2, . . . , n, so that (v1, v2, . . . , vn) forms an orthonormal basis of Rn. In what follows
we should keep in mind that the vectors vk depend on the direction of y − x, but in
order to keep the notation simple we do not indicate that dependence explicitly. We
now define a linear operator Φ(x, y) ∈ L(Rn,Rm) by defining it on the basis (v1, . . . , vn)
by

Φ(x, y)vk :=
f (x + ‖y − x‖vk) − f (x)

‖y − x‖
(6-3)

for k = 1, . . . , n. We claim that Φ is a slope function. By (6-3) and the definition of v1,

Φ(x, y)(y − x) = ‖y − x‖Φ(x, y)v1 = f (y) − f (x).

To check continuity at x as a function of y, write z ∈ Rn in the form z =
∑n

k=1 αkvk,
where αk := 〈vk, z〉. As the basis (v1, . . . , vn) is orthonormal we have ‖z‖2 =

∑n
k=1 |αk|

2

and thus, by the Cauchy–Schwarz inequality,

‖Φ(x, y)z − D f (x)z‖

=

∥∥∥∥∥ n∑
k=1

αk
f (x + ‖y − x‖vk) − f (x) − D f (x)‖y − x‖vk

‖y − x‖

∥∥∥∥∥
≤ ‖z‖

√√ n∑
k=1

[
‖ f (x + ‖y − x‖vk) − f (x) − D f (x)‖y − x‖vk‖

‖y − x‖

]2

−→ 0

as y→ x by differentiability of f at x. We next show that Φ(x, y) is continuous as a
function of x as x→ y. The trick is to rewrite Φ(x, y) with respect to the basis

(w1, . . . ,wn) := (−v1, v2 − v1, . . . , vn − v1).
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As x = y − (y − x) = y − ‖x − y‖v1 = y + ‖x − y‖w1 we conclude that for k = 2, . . . , n,

x + ‖y − x‖vk = y + ‖x − y‖(vk − v1) = y + ‖x − y‖wk.

Hence, by using (6-3), we obtain for k = 2, . . . , n,

Φ(x, y)wk = Φ(x, y)vk − Φ(x, y)v1 =
f (y + ‖x − y‖wk) − f (y)

‖x − y‖
.

Note that the final formula also applies to k = 1. Expressing z in terms of the basis
(w1, . . . ,wn), it turns out that

z =

n∑
k=1

αkvk =

n∑
k=2

αkwk −

( n∑
k=1

αk

)
w1.

If we set β1 := −
∑n

k=1 αk and βk := αk for k = 2, . . . , n, we see that
n∑

k=1

|βk|
2 ≤

n∑
k=2

|αk|
2 +

( n∑
k=1

|αk|

)2
≤ (1 + n)‖z‖2.

Hence, applying the Cauchy–Schwarz inequality as before, we have

‖Φ(x, y)z − D f (y)z‖

=

∥∥∥∥∥ n∑
k=1

βk
f (y + ‖x − y‖wk) − f (y) − D f (y)‖x − y‖wk

‖x − y‖

∥∥∥∥∥
≤
√

1 + n‖z‖

√√ n∑
k=1

[
‖ f (y + ‖x − y‖wk) − f (y) − D f (y)‖x − y‖wk‖

‖x − y‖

]2

−→ 0

as x→ y by differentiability of f at y. We conclude that Φ(x, y) is separately continuous
at every point (x, x).

Remark 6.3. (a) If n = 2 there is a natural choice for (v1, v2). We choose v2 to be the
rotation of v1 by π/2. More precisely, if v1 = (z1, z2) we let v2 = (−z2, z1). However, for
n > 2 there is no such natural choice.

(b) The slope function Φ(x, y) constructed above is separately continuous at every
point (x, x). One could ask whether or not it is possible to choose it to be continuous
at every (x, y) with x , y. In our particular construction continuity is guaranteed if
(v2, . . . , vn) is continuous as a function of v1 = (y − x)/‖y − x‖. This is equivalent to
finding n − 1 linearly independent solutions to the equation 〈v1,w〉 = 0 depending
continuously on v1. Sufficient conditions for that are established in [10], and explicit
orthonormal bases are given for dimensions n = 2, 4 and 8. As shown in [2], these are
the only possibilities! If n ≤ 8 we can construct a slope function Φ that is globally
separately continuous if we artificially look at f as a function of eight variables by
making it constant in 8 − n variables, and then restrict the constructed slope function
to n variables just like a partial derivative; see Proposition 3.5. We do not claim that
the construction of a globally separately continuous slope function is impossible for
n > 8, but only that some other method is required if it can be done.
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6.3. Lipschitz continuous functions. Let E, F be Banach spaces and U ⊆ E open.
Recall that a function f : U → F is called Lipschitz continuous if there exists L > 0
such that

‖ f (x) − f (y)‖F ≤ L‖x − y‖E

for all x, y ∈ U. We call L a Lipschitz constant of f .

Proposition 6.4 (Derivatives of Lipschitz functions). Let E, F be Banach spaces and
U ⊆ E open. Assume that f : U → F is differentiable at x ∈ U. If f is Lipschitz
continuous with Lipschitz constant L, then ‖D f (x)‖L(E,F) ≤ L.

Proof. Assume that f is Lipschitz continuous with Lipschitz constant L. Let Φ be a
slope function for f at x. Then, for z ∈ E, we have

‖Φ(x + tz)tz‖ = ‖ f (x + tz) − f (x)‖ ≤ L‖tz‖

whenever t > 0 is small enough. Dividing by t and then letting t→ 0+, we obtain

‖D f (x)z‖ = lim
t→0+
‖Φ(x + tz)z‖ ≤ L‖z‖

for all z ∈ E. By definition of the operator norm, ‖D f (x)‖L(E,F) ≤ L. �

Note that the converse is true when U is convex. Indeed, by the mean value
inequality in Theorem 4.2, for every x, y ∈ U there exists c ∈ [[x, y]] such that

‖ f (y) − f (x)‖F ≤ ‖D f (c)(y − x)‖F ≤ L‖y − x‖E .

7. Application: differentiable dependence of fixed points

The aim of this section is to use our approach to derivatives to give a conceptually
simple proof of the differentiable dependence of fixed points in the Banach fixed point
theorem. The theorem is known; see, for instance, [14, Section 1.2.6] or [7, 13].

Let E, F be Banach spaces and let U ⊆ E and Λ ⊆ F be nonempty open sets. Let
f : Ū × Λ→ Ū be a uniform contraction in x ∈ U. More precisely, assume that there
exists L ∈ (0, 1) such that

‖ f (x, λ) − f (y, λ)‖E ≤ L‖x − y‖E (7-1)

for all x, y ∈ Ū and all λ ∈ Λ. By the Banach fixed point theorem, for every λ ∈ Λ there
exists a unique fixed point xλ ∈ Ū.

Proposition 7.1 (Continuous dependence of fixed points). Assume that f : Ū ×Λ→ E
satisfies (7-1) with L < 1. For every µ ∈ Λ, let xµ ∈ Ū be the unique fixed point of
f (· , µ). If λ ∈ Λ is such that µ 7→ f (xλ, µ) is continuous at λ, then the map Λ→ Ū,
µ 7→ xµ is continuous at λ.
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Proof. Using the assumption that f is a uniform contraction, we have

‖xµ − xλ‖ = ‖ f (xµ, µ) − f (xλ, λ)‖
≤ ‖ f (xµ, µ) − f (xλ, µ)‖ + ‖ f (xλ, µ) − f (xλ, λ)‖
≤ L‖xµ − xλ‖ + ‖ f (xλ, µ) − f (xλ, λ)‖.

As 0 < L < 1, by the continuity of µ 7→ f (xλ, µ) at λ,

‖xµ − xλ‖ ≤
1

1 − L
‖ f (xλ, µ) − f (xλ, λ)‖ → 0

as µ→ λ. �

We next show that the fixed points xλ depend differentiably on λ. The reader is
invited to compare our proof to a proof based on Fréchet derivatives given, for instance,
in [14, Section 1.2.6]. By exploiting continuity properties of the slope function, we can
avoid all ε–δ arguments and provide a conceptually cleaner proof.

Theorem 7.2 (Differentiable dependence of fixed points). Assume that a function
f ∈ C1(Ū × Λ, E) satisfies (7-1) with L < 1. For every µ ∈ Λ, let xµ ∈ Ū be the unique
fixed point of f (· , µ). Then the map Λ→ Ū, µ 7→ xµ is continuously differentiable.

Proof. The idea is to use algebraic manipulations to find a slope function for the fixed
points. If Φ is a slope function for f and xλ, xµ are fixed points, then

xµ − xλ = f (xµ, µ) − f (xλ, λ)
= f (xµ, µ) − f (xλ, µ) + f (xλ, µ) − f (xλ, λ)
= Φ((xλ, µ), (xµ, µ))(xµ − xλ, 0) + Φ((xλ, λ), (xλ, µ))(0, µ − λ).
= Φ1((xλ, µ), xµ)(xµ − xλ) + Φ2((xλ, λ), µ)(µ − λ),

where Φ1 and Φ2 are the partial slope functions for the functions x 7→ f (x, λ) and
λ 7→ f (x, λ) respectively, as introduced in Proposition 3.5. Rearranging, we see that

[I − Φ1((xλ, µ), xµ)](xµ − xλ) = Φ2((xλ, λ), µ)(µ − λ).

Since f is continuously differentiable on Ū ×Λ, Theorem 4.1 allows us to choose Φ to
be jointly continuous at ((λ, xλ), (λ, xλ)). Hence, as L ∈ (0,1) and µ 7→ xµ is continuous,
Proposition 6.4 implies the existence of δ > 0 such that ‖Φ1((xλ, µ), xµ)‖L(E) < 1
whenever ‖λ − µ‖ < δ. Thus [I − Φ1((xλ, µ), xµ)]−1 exists by a Neumann series
expansion; see, for instance, [20, Theorem IV.1.4]. Hence, if ‖µ − λ‖ < δ, then

xµ = xλ + [I − Φ1((xλ, µ), xµ)]−1Φ2((xλ, µ), λ)(µ − λ).

Due to the joint continuity of Φ at ((λ, xλ), (λ, xλ)) and the continuity of inversion, we
conclude that µ 7→ xµ is differentiable at λ with slope function given by

Ψ(λ, µ)γ := [I − Φ1((xλ, µ), xµ)]−1Φ2((xλ, µ), λ)γ

for all γ ∈ F and derivative

Ψ(λ, λ) = [I − Dx f (xλ, λ)]−1Dλ f (xλ, λ) ∈ L(F, E). �

[18] 219An alternative approach to Fréchet derivatives
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[4] R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis, 4th edn (John Wiley & Sons,

Hoboken, NJ, 2011).
[5] M. W. Botsko and R. A. Gosser, ‘On the differentiability of functions of several variables’, Amer.

Math. Monthly (9) 92 (1985), 663–665.
[6] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext

(Springer, New York, 2011).
[7] R. M. Brooks and K. Schmitt, The Contraction Mapping Principle and Some Applications,

Electronic Journal of Differential Equations Monograph, 9 (Texas State University – San Marcos,
Department of Mathematics, San Marcos, TX, 2009).

[8] R. C. Cabrales and M. A. Rojas-Medar, ‘Sobre la diferenciabilidad de funciones en espacios de
Banach’, Rev. Integr. Temas Mat. (2) 24 (2006), 87–100.
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