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NO COHOMOLOGICALLY TRIVIAL NONTRIVIAL
AUTOMORPHISM OF GENERALIZED

KUMMER MANIFOLDS

KEIJI OGUISO

Dedicated to Professor Tomohide Terasoma on the occasion of

his sixtieth birthday

Abstract. For a hyper-Kähler manifold deformation equivalent to a general-

ized Kummer manifold, we prove that the action of the automorphism group

on the total Betti cohomology group is faithful. This is a sort of generalization

of a work of Beauville and a more recent work of Boissière, Nieper-Wisskirchen,

and Sarti, concerning the action of the automorphism group of a generalized

Kummer manifold on the second cohomology group.

§1. Introduction

Throughout this note, we work over C. Our main result is Theorem 1.3.

The global Torelli theorem for K3 surfaces ([PS71, BR75], see also

[BHPV04]) says that the contravariant action

ρ2 : Aut(S)→GL(H2(S, Z)); g 7→ g∗|H2(S,Z)

is faithful for any K3 surface S. On the other hand, Dolgachev [Do84, 4.4]

and Mukai and Namikawa [MN84, Mu10] show that there are Enriques

surfaces E such that the action ρ2 : Aut(E)→GL(H2(E, Z)) is not faithful.

Here and hereafter, we denote

GL(L) := Autgroup(L)

for a finitely generated abelian group L, possibly with nontrivial torsion.

Throughout this note, by a hyper-Kähler manifold, we mean a simply con-

nected compact Kähler manifold M admitting an everywhere nondegenerate

global holomorphic 2-form ωM such that H0(M, Ω2
M ) = CωM . Standard

Received January 10, 2018. Revised August 4, 2018. Accepted August 4, 2018.
2010 Mathematics subject classification. 14J50, 14J40.
The author is supported by JSPS Grant-in-Aid (S) No 25220701, JSPS Grant-in-Aid

(S) 15H05738, JSPS Grant-in-Aid (B) 15H03611, and by KIAS Scholar Program.

c© 2018 Foundation Nagoya Mathematical Journal

https://doi.org/10.1017/nmj.2018.29 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.29
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/nmj.2018.29&domain=pdf
https://doi.org/10.1017/nmj.2018.29


GENERALIZED KUMMER MANIFOLDS 111

examples of hyper-Kähler manifolds are the Hilbert scheme Hilbn(S) of 0-

dimensional closed subschemes of length n on a K3 surface S, the generalized

Kummer manifold Kn−1 (A), of dimension 2(n− 1) > 4, associated to a 2-

dimensional complex torus A, and their deformations ([Be83, Sections 6, 7],

see also Section 2).

Beauville [Be83-2, Propositions 9, 10] considered a similar question for

hyper-Kähler manifolds and found the following.

Theorem 1.1.

(1) The action ρ2 : Aut(Hilbn(S))→GL(H2(Hilbn(S), Z)) is faithful.

(2) The action ρ2 : Aut(Kn−1(A))→GL(H2(Kn−1(A), Z)) is not faithful.

More precisely, T (n)⊂Ker ρ2.

Here T (n)' (Z/n)⊕4 is the group of automorphisms induced by the group

of n-torsion points T [n] := {a ∈A|na= 0} of A= Aut0(A).

It is natural and interesting to determine Ker ρ2 in Theorem 1.1(2). In

this direction, Boissière, Nieper-Wisskirchen, and Sarti [BNS11, Theorem 3,

Corollary 5(2)] found the following complete answer.

Theorem 1.2. Ker(ρ2 : Aut(Kn−1(A))→GL(H2(Kn−1(A), Z))) =

T (n) C 〈ι〉.

Here ι is the automorphism induced by the inversion −1 of A and T (n) C
〈ι〉 is the semidirect product of T (n) and 〈ι〉, in which T (n) is normal.

It is also natural and interesting to ask if the action of Aut(Kn−1(A)) on

the total cohomology group H∗(Kn−1(A), Z) :=
⊕4(n−1)

k=0 Hk(Kn−1(A), Z) is

faithful or not.

Our aim is to answer this question in a slightly more generalized form.

Theorem 1.3. The action ρ : Aut(Y )→GL(H∗(Y, Z)) is faithful for

any hyper-Kähler manifold Y deformation equivalent to Kn−1(A).

First we prove Theorem 1.3 for Kn−1(A). By Theorem 1.2, it suffices

to show that g∗|H∗(Kn−1(A),C) 6= id for each g ∈ (T (n) C 〈ι〉) \ {id}. This is

checked in Section 3. We then prove Theorem 1.3 for any Y in Section 4,

by using the density result due to Markman and Mehrotra [MM17]. In

Section 5, among other things, we remark a similar result for deformation

of the Hilbert scheme of a K3 surface (Theorem 5.1).

After posting this note on ArXiv (on 2012), Professor Y. Tschinkel kindly

informed me that the action T (n) C 〈ι〉 on Kn−1(A) extends to a faithful
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112 K. OGUISO

action on any deformation Y of Kn−1(A), in such a way that the extended

action is trivial on H2(Y, Z) [HT13, Theorem 2.1, Proposition 3.1]. In

particular, this shows that the action

ρ2 : Aut(Y )→GL(H2(Y, Z))

is not faithful even if Y is generic.

I should also mention that Theorem 1.3 is much motivated by the

following question asked by Professor D. McDuff to me at the conference in

Banff (July 2012), while the question itself is still completely open.

Question 1.4. Is there an example of a compact Kähler manifold

M such that the biholomorphic automorphism group is discrete, that is,

Aut0(M) = {idM}, but with a biholomorphic automorphism g 6= idM being

homotopic to idM in the group of diffeomorphisms?

§2. Preliminaries

In this section, we mainly fix notations we shall use. We follow [Be83]

and [Be83-2]. So, Kn(A) in [BNS11] is Kn−1(A) in this note.

We refer to [Be83, Section 7] and [GHJ03, Part III] for more details

on generalized Kummer manifolds and basic properties on hyper-Kähler

manifolds.

Let A be a 2-dimensional complex torus and let n be an integer such

that n> 3. Let Hilbn(A) be the Hilbert scheme of 0-dimensional closed

subschemes of A of length n. Then Hilbn(A) is a smooth Kähler manifold

of dimension 2n. Let

ν = νA : Hilbn(A)→ Symn(A) =An/Sn

be the Hilbert–Chow morphism. We denote the sum as 0-cycles by ⊕ and

the sum in A by +. Then each element of Symn(A) is of the form

k⊕
i=1

x⊕mi
i .

Here, xi are distinct points on A and mi are positive integers such that∑k
i=1 mi = n. We have the following surjective morphism

s := sA : Symn(A)→A;

k⊕
i=1

x⊕mi
i 7→

k∑
i=1

mixi.
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GENERALIZED KUMMER MANIFOLDS 113

The generalized Kummer manifold Kn−1(A) is defined by

Kn−1(A) := (s ◦ ν)−1(0).

Note that the morphism

s ◦ ν = sA ◦ νA : Hilbn(A)→A

is a smooth surjective morphism such that all fibers are isomorphic [Be83,

Section 7]. So, Kn−1(A) is isomorphic to any fiber of sA ◦ νA. One can also

describe Kn−1(A) in a slightly different way, as follows. Let

A(n− 1) :=

{
(P1, P2, . . . , Pn) ∈An

∣∣∣∣ n∑
i=1

Pi = 0

}
.

Then A(n− 1) is a closed submanifold of An and A(n− 1)'An−1. More-

over, A(n− 1) is stable under the action of Sn on An and

Symn(A)⊃A(n−1) := s−1(0) =A(n− 1)/Sn.

From this, we deduce that

Kn−1(A) = ν−1(A(n−1)) = Hilbn(A)×Symn(A) A
(n−1).

Recall that dim Def(A) = 4, while dim Def(Kn−1(A)) = 5 for n> 3 and any

local deformation of a hyper-Kähler manifold is a hyper-Kähler manifold

[Be83, Section 7]. So, there are hyper-Kähler manifolds which are defor-

mation equivalent to Kn−1(A) but are not isomorphic to any generalized

Kummer manifold.

From now until the end of this note, we denote by X :=Kn−1(A) (n> 3)

the generalized Kummer manifold, of dimension 2(n− 1), associated to

a 2-dimensional complex torus A and by K := T (n) C 〈ι〉 the subgroup

of Aut(Kn−1(A)) defined in the Introduction. We also use the notations

introduced in this section freely in the remaining sections.

§3. Proof of Theorem 1.3 for Kn−1(A)

In this section, we prove Theorem 1.3 for Kn−1(A).

First we prove the following.

Proposition 3.1. Let g ∈K \ T (n). Then g∗|H3(X,C) 6= id.
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Proof. Let (z1
i , z

2
i ) (1 6 i6 n) be the standard global coordinates of the

universal cover C2
i of the ith factor Ai =A of An. Then the universal cover

C2(n−1) of A(n− 1)'An−1 is a closed submanifold of C2n defined by

(3.1) z1
1 + z1

2 + · · ·+ z1
n−1 + z1

n = 0, z2
1 + z2

2 + · · ·+ z2
n−1 + z2

n = 0.

In particular, (z1
i , z

2
i ) (1 6 i6 n− 1) give the global coordinates of the

universal cover C2(n−1) of A(n− 1). Note that 1-forms dz1
i and dz2

i (1 6
i6 n) can be regarded as global 1-forms on A(n− 1). They satisfy

(3.2)

dz1
1 + dz1

2 + · · ·+ dz1
n−1 + dz1

n = 0, dz2
1 + dz2

2 + · · ·+ dz2
n−1 + dz2

n = 0,

and {dz1
i , dz

2
i (1 6 i6 n− 1)} forms a basis of the space of global holomor-

phic 1-forms on A(n− 1)'An−1. Consider the following global (2, 1)-form

τ̃ on A(n− 1):

τ̃ = dz1
1 ∧ dz2

1 ∧ dz2
1 + · · ·+ dz1

n−1 ∧ dz2
n−1 ∧ dz2

n−1 + dz1
n ∧ dz2

n ∧ dz2
n.

Lemma 3.2. τ̃ descends to a nonzero element τ of H2,1(X).

Proof. Recall that, for compact Kähler orbifolds, the Hodge decomposi-

tion is pure and the Hodge theory works in the same way as smooth compact

manifolds [St77].

Since τ̃ is Sn-invariant, it descends to a global (2, 1)-form, say τ , on the

compact Kähler orbifold A(n−1). Then τ = (ν|X)∗τ ∈H2,1(X) under ν|X :

X →A(n−1). It remains to show that τ 6= 0. Since (ν|X)∗ is injective, it

suffices to show that τ 6= 0 in H2,1(A(n−1)). For this, it suffices to show

that τ̃ 6= 0 in H2,1(A(n− 1)), as q∗ is also injective for the quotient map

q :A(n− 1)→A(n−1). By Equation (3.2), we have

τ̃ = dz1
1 ∧ dz2

1 ∧ dz2
1 + · · ·+ dz1

n−1 ∧ dz2
n−1 ∧ dz2

n−1

−

(
n−1∑
k=1

dz1
k

)
∧

(
n−1∑
k=1

dz2
k

)
∧

(
n−1∑
k=1

dz2
k

)
.

This is the expression of τ̃ in terms of the standard basis of H2,1(A(n− 1)).

As n− 1 > 2, the term

dz1
1 ∧ dz2

2 ∧ dz2
2

appears with coefficient −1 in this expression. Hence τ̃ 6= 0 in

H2,1(A(n− 1)). This proves Lemma 3.2.
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Lemma 3.3. Let g ∈K \ T (n) and τ ∈H2,1(X) be as in Lemma 3.2.

Then g∗τ =−τ . In particular, g∗|H3(X,C) 6= id.

Proof. The automorphism g acts equivariantly on A(n− 1)→
A(n−1)←X. For ι, hence for g ∈K \ T (n), we have

ι∗dzqi =−dzqi , g∗dzqi =−dzqi (1 6 i6 n, q = 1, 2).

Hence g∗τ̃ =−τ̃ by the shape of τ̃ . Thus g∗τ =−τ . By Lemma 3.2, τ 6= 0 in

H2,1(X). Hence g∗|H3(X,C) 6= id as claimed.

Lemma 3.3 completes the proof of Proposition 3.1.

Next we prove the following.

Proposition 3.4. Let a ∈ T (n) \ {id}. Then a∗|H∗(X,C) 6= id.

Proof. Let a ∈ T (n)' (Z/nZ)⊕4 be an element of order p 6= 1 (p is not

necessarily a prime number). Set d= n/p. Then d is a positive integer such

that d < n. We freely regard a also as a torsion element of order p in A

and automorphisms of various spaces which are naturally and equivariantly

induced by the translation automorphism x 7→ x+ a of A.

We will show first Lemma 3.5, Theorem 3.6 and Lemma 3.7, and then we

will conclude the proof of Proposition 3.4.

Lemma 3.5. The fixed locus Xa consists of p3 connected components

Fi (1 6 i6 p3). Moreover, each Fi is isomorphic to the generalized Kummer

manifold Kd−1(A/〈a〉) associated to the 2-dimensional complex torus A/〈a〉.

Proof. Let S ⊂A be a 0-dimensional closed subscheme of length n. As

〈a〉 acts freely on A, the quotient map π :A→A/〈a〉 is étale of degree p. It

follows that a∗S = S if and only if there is a 0-dimensional closed subscheme

T ⊂A/〈a〉 of length d= n/p such that S = π∗T . This T is clearly unique

and we obtain an isomorphism

(3.3) Hilbd(A/〈a〉)' (Hilbn(A))a; T 7→ π∗T .

Let S ∈ (Hilbn(A))a. Then ν(S) ∈ (Symn(A))a as well, and ν(S) is then of

the form

ν(S) =

k⊕
i=1

p−1⊕
j=0

(xi + ja)⊕mi
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(and vice versa). Here
∑k

i=1 mi = d and all points xi + ja are distinct.

Observe also that

Kn−1(A)a = (Hilbn(A))a ∩Kn−1(A).

As S ∈ (Hilbn(A))a by our choice of S, it follows from the equality above

that S ∈Kn−1(A)a if and only if S ∈Kn−1(A), that is, S ∈ (Hilbn(A))a

satisfies (by the definition of Kn−1(A) and by the shape of ν(S)) that

(3.4) p(m1x1 +m2x2 + · · ·+mkxk + α) = 0

in A. Here n(p− 1)/2 ∈ Z and α ∈A is an element such that

pα= (n(p− 1)/2)a

in A. We choose and fix such α.

Let A[p] be the group of p-torsion points of A. Then, Equation (3.4) is

equivalent to

(3.5) m1x1 +m2x2 + · · ·+mkxk + α ∈A[p].

Since a is also a p-torsion point, Equation (3.5) is also equivalent to

(3.6) m1π(x1) +m2π(x2) + · · ·+mkπ(xk) + π(α) ∈ π(A[p]) =A[p]/〈a〉.

Write S = π∗T . Then, Equation (3.6) holds if and only if T is in the fibers

of

sA/〈a〉 ◦ νA/〈a〉 : Hilbd(A/〈a〉)→A/〈a〉

over π(A[p]). We have |π(A[p])|= p3, as a is also p-torsion. Hence, by the

isomorphism (3.3), the fixed locus Kn−1(A)a is isomorphic to the union of

p3 fibers of sA/〈a〉 ◦ νA/〈a〉 and each fiber is isomorphic to Kd−1(A/〈a〉) as

remarked in Section 2. This completes the proof of Lemma 3.5.

Set

σ(n) =
∑

16b|n

b,

the sum of all positive divisors of a positive integer n. The following

fundamental result due to Göttche and Soergel ([GS93, Corollary 1], see

also [Go94, De10]) is crucial in our proof.

Theorem 3.6. The topological Euler numberχtop(Kn−1(A)) ofKn−1(A)

is n3σ(n). (This is also valid for n= 1, 2.)
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GENERALIZED KUMMER MANIFOLDS 117

Now we consider the Lefschetz number of h ∈Aut(X):

L(h) :=

4(n−1)∑
k=0

(−1)k tr h∗|Hk(X,C).

Lemma 3.7.

(1) If h ∈Aut(X) is cohomologically trivial, then L(h) = n3σ(n).

(2) L(a) = n3σ(d) for any element a of order p in T (n) \ {id} with d= n/p.

Proof. If h is cohomologically trivial, then tr h∗|Hk(X,C) = bk(X). This

implies (1). By the topological Lefschetz fixed point formula, Lemma 3.5

and Theorem 3.6, we obtain

L(a) = χtop(Xa) = p3χtop(Kd−1(A/〈a〉)) = p3 · d3σ(d) = n3σ(d).

This is nothing but the assertion (2). This proves Lemma 3.7.

Since d|n and d 6= n, it follows that

σ(d) 6 σ(n)− n < σ(n).

Hence a ∈ T (n) \ {id} is not cohomologically trivial by Lemma 3.7. This

proves Proposition 3.4.

Theorem 1.3 for Kn−1(A) now follows from Theorem 1.2, Propositions 3.1

and 3.4. This completes the proof of Theorem 1.3 for Kn−1(A).

§4. Proof of Theorem 1.3

In this section, we shall prove Theorem 1.3 for any Y .

Let Λ = (Λ, (∗, ∗∗)) be a fixed abstract lattice isometric to

(H2(Kn−1(A), Z), b). Here b is the Beauville–Bogomolov form of Kn−1(A)

(see e.g. [GHJ03, Example 23.20]).

Let Y be a hyper-Kähler manifold deformation equivalent to a generalized

Kummer manifold X =Kn−1(A). Let g ∈Aut(Y ) such that g∗|H∗(Y,Z) = id.

We are going to show that g = idY .

Let M0 be the connected component of the marked moduli space of

MΛ, containing (Y, η). Here η :H2(Y, Z)→ Λ is a marking. Huybrechts

constructed the marked moduli spaceMΛ [Hu99, 1.18] by patching Kuran-

ishi spaces via local Torelli theorem for hyper-Kähler manifolds ([Be83,

Theorem 5], [GHJ03, 25.2]). By construction, MΛ is smooth, but highly
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non-Hausdorff. He also showed that the period map

p :M0→D = {[ω] ∈ P(Λ⊗ C)|(ω, ω) = 0, (ω, ω)> 0}

is a surjective holomorphic map of degree 1 ([Hu99, Theorem 8.1], see

also [Ve13, Hu12] for degree and further development). Let [ω] ∈ D. If

p−1([ω]) (⊂M0) is not a single point, then p−1([ω]) consists of points, being

mutually inseparable, corresponding to birational hyper-Kähler manifolds

[Hu99, Theorem 8.1].

By using the Hodge theoretic Torelli type theorem [Ma11], Markman

and Mehrotra [MM17, Theorem 4.1] proved that the marked generalized

Kummer manifolds are dense in M0. Actually they proved the following

stronger density result:

Theorem 4.1. There is a dense subset D′ ⊂D such that if [ω] ∈ D′,
then any point of p−1([ω]) corresponds to a marked generalized Kummer

manifold.

Consider the Kuranishi family u : U →K of Y . Here and hereafter we

freely shrink K around 0 = [Y ]. Since the Kuranishi family is universal,

g ∈Aut(Y ) induces automorphisms g̃ ∈Aut(U) and g ∈Aut(K) such that

u ◦ g̃ = g ◦ u and g̃|Y = g. Since K is locally isomorphic to D by the local

Torelli theorem, the locus

K′ ⊂K,

consisting of the point t such that u−1(t) is a generalized Kummer manifold,

is dense in K. This is a direct consequence of Theorem 4.1 and the

construction ofM0 explained above. Here we also emphasize that the density

in M0 is not sufficient to conclude this.

From now, we follow Beauville’s argument [Be83-2, proof of Proposi-

tion 10].

Let TY be the tangent bundle of Y . Then, one can take K as a small

polydisk in H1(Y, TY ) with center 0. As ωY is everywhere nondegenerate,

we have an isomorphism

H1(Y, TY )'H1(X, Ω1
Y )

induced by the isomorphism

TY ' Ω1
Y = T ∗Y : v 7→ ωY (v, ∗).
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As g is cohomologically trivial and H2,0(Y ) =H0(Y, Ω2
Y ) = CωY , we have

g∗ωY = ωY and g∗|H1(Y,Ω1
Y ) = id. Hence by the isomorphism above, we

obtain g∗|H1(Y,TY ) = id, and therefore, g = idK.

Let t ∈ K be any point of K. Then, by g = idK, the morphism g̃ preserves

the fiber Yt = u−1(t), that is,

g̃|Yt ∈Aut(Yt).

Put gt := g̃|Yt . Then gt is also cohomologically trivial, because g∗t |H∗(Yt,Z) is

derived from the action of g̃ on the constant system
⊕4(n−1)

k=0 Rku∗Z. Then

gt = idYt for all t ∈ K′, as we already proved Theorem 1.3 for Kn−1(A) in

Section 3. Since U is Hausdorff and g̃ is continuous, it follows that g̃ = idU .

Hence g = g0 = idY as well. This completes the proof of Theorem 1.3.

§5. A few concluding remarks

In this section, we remark a few relevant facts, which should be known

to some experts.

Our first remark is about an analogue of Theorem 1.3 for a hyper-Kähler

manifold deformation equivalent to the Hilbert scheme Hilbn(S) of a K3

surface S.

Markman and Mehrotra [MM17, Theorem 1.1] also proved the strong

density result for Hilbn(S) of K3 surfaces S. So, the same argument as

in Section 4 together with Beauville’s result (Theorem 1.1(1)) implies the

following result due to Mongardi [Mo13, Lemma 1.2]:

Theorem 5.1. Let W be a hyper-Kähler manifold deformation equiva-

lent to Hilbn(S). Then, the action ρ2 : Aut(W )→GL(H2(W, Z)) is faithful.

Our second remark is about the fixed locus of symplectic automorphism

of finite order.

In Lemma 3.5, we described the fixed locus Xa. Our description shows

that Xa is a disjoint union of smooth hyper-Kähler manifolds. However, this

is not accidental:

Proposition 5.2. Let (M, ωM ) be a holomorphic symplectic manifold

of dimension 2d, that is, M is a compact Kähler manifold and ωM is an

everywhere nondegenerate holomorphic 2-form on M (not necessarily unique

up to C×). Let h ∈Aut(M) such that h∗ωM = ωM and h is of finite order m.

Let F be a connected component of the fixed locus Mh = {P ∈M |h(P ) = P}.
Then (F, ωM |F ) is a holomorphic symplectic manifold (possibly a point).
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Proof. F is isomorphic to the intersection of the graph of h and the

diagonal ∆ in M ×M . So it is compact and Kähler, possibly singular. Let

P ∈ F . Since h is of finite order, h is locally linearizable at P (see the proof

of [Ka84, Lemma 1.3]). That is, there are local coordinates (y1, y2, . . . , y2d)

at P such that

(5.1) h∗yi = yi (1 6 ∀i6 r), h∗yj = cjyj (r + 1 6 ∀j 6 2d).

Here cj 6= 1 and satisfies cmj = 1. Then F is locally defined by yj = 0 (r + 1 6
j 6 2d) in M . Hence F is smooth. Consider the linear differential map

dhP : TM,P → TM,P

of the tangent space TM,P of M at P . By Equation (5.1), we have the

decomposition

(5.2) TM,P = TF,P ⊕N.

Here, N =
⊕2d

j=r+1 Cvj for some vj (r + 1 6 j 6 2d) such that dhP (vj) =

c−1
j vj and the tangent space TF,P of F at P is exactly the invariant subspace

(TM,P )dhP . Using h∗ωM = ωM , we deduce that

ωM,P (v, vj) = ωM,P (dhP (v), dhP (vj)) = ωM,P (v, c−1
j vj) = c−1

j ωM,P (v, vj),

for any v ∈ TF,P and vj (r + 1 6 j 6 2d). As cj 6= 1, it follows that

ωM,P (v, vj) = 0

for all v ∈ TF,P and vj with r + 1 6 j 6 2d. Hence, the decomposition (5.2) is

orthogonal with respect to ωM,P . As ωM,P is nondegenerate, it follows from

the orthogonality of the decomposition that ωM,P |TF,P
is also nondegenerate

on TF,P (possibly {0}). Hence (F, ω|F ) is a smooth symplectic manifold

(possibly a point) as well. This completes the proof of Proposition 5.2.

Remark 5.3. Proposition 5.2 is a formal generalization of a result of

Camere [Ca12, Proposition 3] for a symplectic involution.
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bitsky), Séminaire Bourbaki: Vol. 2010/2011. Exposés 1027–1042, Astérisque
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