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1. Introduction

In the geometry of real hypersurfaces in complex space forms or quaternionic space
forms it can be easily checked that there does not exist a real hypersurface with
parallel shape operator S by virtue of the equation of Codazzi [16,19]. In general,
the shape operator S of a real hypersurface M in a Kähler manifold M̄ with Kähler
structure J is defined by SX = ∇̄XN for any vector field X on M where ∇̄ denotes
the Levi-Civita connection of M̄ and N a unit normal vector field of M in M̄ .
When the Reeb vector field ξ = −JN of M is principal, that is, Sξ = αξ, a real
hypersurface M in M̄ is said to be Hopf.

From this point of view many differential geometers have considered the notions
of parallel Ricci tensor ∇Ric = 0 or harmonic curvature (∇XRic)Y = (∇Y Ric)X
on Riemannian manifolds, where ∇ denotes the induced connection on M from the
Levi-Civita connection ∇̄ on M̄ . These notions are generalized conditions rather
than parallel shape operator, ∇S = 0 (see [7,9,13,18,31–33]). Recently, the Ricci
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tensors for real hypersurfaces in complex 2-plane Grassmannians, complex hyper-
bolic 2-plane Grassmannian, complex quadrics or complex hyperbolic quadric in
the class of Hermitian symmetric spaces were investigated by many geometers (see
[1–3,5,6,11,20,21,24,25,28–30]).

Among them, in the class of complex two-plane Grassmannians G2(Cm+2)
Suh [24] has given a non-existence property for Hopf real hypersurfaces with parallel
Ricci tensor as follows:

Theorem A. There does not exist a Hopf real hypersurface with parallel Ricci
tensor in G2(Cm+2), m � 3.

Okumura [17] proved that the Reeb flow on a real hypersurface in the complex
projective space CPm = SUm+1/S(UmU1) is isometric if and only if M is an open
part of a tube around a totally geodesic CP k in CPm for some k ∈ {0, . . . ,m − 1}.
For the complex 2-plane Grassmannian G2(Cm+2) = SUm+2/S(UmU2) some classi-
fications were obtained by Berndt and Suh in [1] and [2]. Among them, the following
assertion was given: the Reeb flow on a real hypersurface in G2(Cm+2) is isometric
if and only if M is an open part of a tube around a totally geodesic G2(Cm+1) in
G2(Cm+2) (see [2]). Moreover, in [25] Suh has asserted that the Reeb flow on a real
hypersurface in the non-compact Grassmannian SU2,m/S(U2Um) is isometric if and
only if M is an open part of a tube around a totally geodesic SU2,m−1/S(U2Um−1)
in SU2,m/S(U2Um). Stimulated by these results we want to investigate such prob-
lems in the complex quadric Qm = SOm+2/SOmSO2 which is a kind of Hermitian
symmetric space with rank 2 different from the above ones. In view of the previous
two results a natural expectation might be that the classification involves at least
the totally geodesic Qm−1 in Qm. But, remarkably, in [3] Berndt and Suh have
proved the following result:

Theorem B. Let M be a real hypersurface of the complex quadric Qm, m � 3.
The Reeb flow on M is isometric if and only if m is even, say m = 2k, and M is an
open part of a tube around a totally geodesic CP k in Q2k.

The complex quadric Qm is known to be a complex hypersurface in complex
projective space CPm+1. Moreover, it can be regarded as a kind of real Grassmann
manifold of compact type with rank 2 (see [8,12]). Accordingly, it admits both the
Kähler structure J and the real structure A, which anti-commute with each other,
that is, AJ = −JA. In addition, it has a special geometric structure A named a
parallel rank 2 vector bundle as the set of all real structures on the tangent spaces
of Qm. That is, the set is denoted by A[z] = {Aλz̄ |λ ∈ S1 ⊂ C} at any point [z] of
Qm. This geometric structure determines a maximal A-invariant subbundle Q of
the tangent bundle TM of a real hypersurface M in Qm. Here the notion of parallel
vector bundle A means that (∇̄UA)W = q(U)JAW for any vector fields U and W
on Qm, where ∇̄ and q denote a connection and a certain 1-form defined on T[z]Q

m,
[z] ∈ Qm, respectively (see [23]).

Recall that a nonzero tangent vector W ∈ T[z]Q
m is called singular if it is tan-

gent to more than one maximal flat in Qm. Since the complex quadric Qm is a
Hermitian symmetric space with rank 2, there are two types of singular tangent
vectors for Qm:
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1. If there exists a conjugation A ∈ A such that W ∈ V (A) := {W |AW = W},
then W is singular. Such a singular tangent vector is called A-principal.

2. If there exist a conjugation A ∈ A and orthonormal vectors X,Y ∈ V (A) such
that W/||W || = (X + JY )/

√
2, then W is singular. Such a singular tangent

vector is called A-isotropic.

When we consider a real hypersurface M in the complex quadric Qm, the unit
normal vector field N of M in Qm can be either A-isotropic or A-principal (see
[2,3,26]). In the first case where M has an A-isotropic unit normal vector field N ,
we have asserted in [2] that M is locally congruent to a tube over a totally geodesic
CP k in Q2k as mentioned in theorem B. As the second case if the unit normal
vector field N is A-principal, we have the following:

Theorem C [4]. Let M be a connected orientable real hypersurface with con-
stant mean curvature in the complex quadric Qm, m � 3. Then M is a contact
hypersurface if and only if M is congruent to an open part of a tube around the
m-dimensional sphere Sm which is embedded in Qm as a real space form of Qm.

Motivated by theorem A and ∇Ric = 0 for a Hopf real hypersurface M in the
complex quadric Qm, we assert the following

Main theorem 1. Let M be a Hopf real hypersurface in the complex quadric Qm,
m � 3, with parallel Ricci tensor. Then the unit normal vector field N is singular,
that is, N is either A-principal or A-isotropic.

Now at each point z ∈ M let us consider the maximal A-invariant subspace

Qz = {X ∈ TzM | AX ∈ TzM for all A ∈ Az}
of TzM , z ∈ M . Thus in the case that the unit normal vector field N is A-isotropic
it can be easily checked that the orthogonal complement Q⊥

z = Cz �Qz, z ∈ M ,
of the distribution Q in the complex subbundle C = Span{ξ}⊥, becomes Q⊥

z =
Span{Aξ,AN}. Here it can be easily checked that the vector fields Aξ and AN
belong to the tangent space TzM , z ∈ M if the unit normal vector field N becomes
A-isotropic. Then by virtue of theorems B and C, and our main theorem 1, in this
paper we give a non-existence theorem for Hopf real hypersurfaces in the complex
quadric Qm with parallel Ricci tensor as follows:

Main theorem 2. There does not exist a Hopf real hypersurface in the complex
quadric Qm, m � 4, with parallel Ricci tensor.

This paper is composed as follows: In § 2 we give some basic material about
the complex Qm, including its Riemannian curvature tensor and a description of
its singular vectors for A-principal or A-isotropic unit normal vector field. Apart
from the complex structure J there is another distinguished geometric structure
on Qm, namely a parallel rank two vector bundle A which covers an S1-bundle of
real structures, that is, complex conjugations A on the tangent spaces of Qm. A
maximal A-invariant subbundle Q of the tangent bundle TM of a real hypersurface
M in Qm is determined by one of these real structure A.
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Accordingly, in § 3, we study the geometry of this subbundle Q for real hypersur-
faces in Qm and the equation of Codazzi from the curvature tensor of the complex
quadric Qm and some important formulas from the complex conjugation A of M
in Qm. Moreover, we give a remarkable proposition 3.4 which asserts that the unit
normal vector field N of M in Qm with parallel Ricci tensor must be singular. This
gives a crucial point in the proof of our main theorem 1.

In § 4, in order to prove our main theorem 2 for an A-principal normal vector
field, the first step is to derive the Ricci tensor from the equation of Gauss for
real hypersurfaces M in Qm, and next by using the assumption of parallel Ricci
tensor for A-principal normal vector field we will get some useful formulas and a
remarkable proposition 4.2. As a final proof of main theorem 2, we will prove that
a contact real hypersurface in Qm, which are tubes over an m-dimensional unit
sphere Sm in Qm, does not admit a parallel Ricci tensor.

In § 5, we give a complete proof of our main theorem 2. The first part of
this proof is to give some crucial equations from the parallel Ricci tensor for an
A-isotropic unit normal vector field. Then in the middle part of the proof we will
devote ourselves to the study of important formulas which can be derived from
the parallelism of the Ricci tensor. Moreover, in the proof of our main theorem 2
we will show an important lemma 5.1 which assures that SAξ = 0 and SAN = 0
on the distribution Q⊥ = Span {Aξ,AN} for the complex conjugation A of TzQ

m,
z ∈ Qm.

Remark 1. Along the development of real hyersurfaces in the complex quadric
Qm over the years, we can make a more progress on the Ricci parallelism for real
hypersurfaces in the complex quadric Qm. So in this article we can give a new
classification better than the contents given in the previous paper due to Suh [27].

2. The complex quadric

For more details in this section we refer to [4], [10], [12], [15], [22], [27] and [28].
The complex quadric Qm is the complex hypersurface in CPm+1 which is defined by
the equation z2

1 + · · · + z2
m+2 = 0, where z1, . . . , zm+2 are homogeneous coordinates

on CPm+1. We equip Qm with the Riemannian metric which is induced from the
Fubini Study metric on CPm+1 with constant holomorphic sectional curvature 4.
The Kähler structure on CPm+1 induces canonically a Kähler structure (J, g) on
the complex quadric. For each z ∈ Qm we identify TzCPm+1 with the orthogonal
complement C

m+2 � Cz of Cz in C
m+2 (see [12]). The tangent space TzQ

m can
then be identified canonically with the orthogonal complement C

m+2 � (Cz ⊕ Cρ)
of Cz ⊕ Cρ in C

m+2, where ρ ∈ νzQ
m is a normal vector of Qm in CPm+1 at the

point z.
The complex projective space CPm+1 is defined by using the Hopf fibration

π : S2m+3 → CPm+1, z → [z],

which is a Riemannian submersion. Then naturally we can consider the following
diagram for the complex quadric Qm:

https://doi.org/10.1017/prm.2020.83 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.83


1850 H. Lee and Y.J. Suh

Q̃ = π−1(Q) ĩ−−−−→ S2m+3⊂C
m+2

π

⏐⏐� π

⏐⏐�
Q = Qm i−−−−→ CPm+1

The submanifold Q̃ of codimension 2 in S2m+3 is called the Stiefel manifold of
orthonormal 2-frames in R

m+2, and is given by

Q̃ = {x + iy ∈ C
m+2|g(x, x) = g(y, y) =

1
2

and g(x, y) = 0},

where g(x, y) =
∑m+2

i=1 xiyi for any x = (x1, . . . , xm+2), y = (y1, . . ., ym+2) ∈ R
m+2.

Then the tangent space is decomposed as TzS
2m+3 = Hz ⊕ Fz and TzQ̃ = Hz(Q) ⊕

Fz(Q) at z = x + iy ∈ Q̃ respectively, where the horizontal subspaces Hz and Hz(Q)
are given by Hz = (Cz)⊥ and Hz(Q) = (Cz ⊕ Cz̄)⊥, and Fz and Fz(Q) are fibers
which are isomorphic to each other. Here Hz(Q) is a subspace of Hz of real codi-
mension 2 and orthogonal to the two unit normals −z̄ and −Jz̄. Explicitly, at the
point z = x + iy ∈ Q̃ it can be described as

Hz = {u + iv ∈ C
m+2 | g(x, u) + g(y, v) = 0, g(x, v) = g(y, u)}

and

Hz(Q) = {u + iv ∈ Hz | g(u, x) = g(u, y) = g(v, x) = g(v, y) = 0},
where C

m+2 = R
m+2 ⊕ iRm+2, and g(u, x)=

∑m+2
i=1 uixi for any u = (u1, . . . , um+2),

x = (x1, . . . , xm+2) ∈ R
m+2.

These spaces can be naturally projected by the differential map π∗ as π∗Hz =
Tπ(z)CPm+1 and π∗Hz(Q) = Tπ(z)Q respectively. Thus at the point π(z) = [z] the
tangent subspace T[z]Q

m becomes a complex subspace of T[z]CPm+1 with complex
codimension 1. The unit normal fields −π∗z̄ and −π∗Jz̄ span the normal space of
Qm in CPm+1 at every point (see [22]).

Then let us denote by Az̄ the shape operator of Qm in CPm+1 with respect
to the unit normal π∗z̄. It satisfies Az̄π∗w = ∇̃π∗wz̄ = π∗w̄ for every w ∈ Hz(Q),
where ∇̃ denotes the covariant derivative of CPm+1 induced by its Fubini-Study
metric. That is, the shape operator Az̄ is just a complex conjugation restricted to
T[z]Q

m. Moreover, it satisfies the following for any w ∈ T[z]Q
m and any λ ∈ S1 ⊂ C

A2
λz̄w = Aλz̄Aλz̄w = Aλz̄λw̄

= λAz̄λw̄ = λ∇̄λw̄z̄ = λλ̄ ¯̄w

= |λ|2w = w.

Accordingly, A2
λz̄ = I for any λ ∈ S1. So the shape operator Az̄ becomes an anti-

commuting involution such that A2
z̄ = I and AJ = −JA on the complex vector
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space T[z]Q
m and

T[z]Q
m = V (Az̄) ⊕ JV (Az̄),

where V (Az̄)= π∗(Rm+2 ∩ HzQ) is the (+1)-eigenspace and JV (Az̄) = π∗(iRm+2 ∩
Hz(Q)) is the (−1)-eigenspace of Az̄. That is, Az̄X = X and Az̄JX = −JX,
respectively, for any X ∈ V (Az̄).

The Gauss equation for Qm ⊂ CPm+1 implies that the Riemannian curvature
tensor R̄ of Qm can be described in terms of the complex structure J and any
complex conjugation A ∈ A:

R̄(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(JY,Z)JX − g(JX,Z)JY − 2g(JX, Y )JZ

+ g(AY,Z)AX − g(AX,Z)AY + g(JAY,Z)JAX − g(JAX,Z)JAY.

Note that J and each complex conjugation A anti-commute, that is, AJ = −JA
for each A ∈ A.

For every unit tangent vector W ∈ TzQ
m there exist a conjugation A ∈ A and

orthonormal vectors X,Y ∈ V (A) such that

W = cos(t)X + sin(t)JY

for some t ∈ [0, π/4]. The singular tangent vectors correspond to the values t = 0
and t = π/4. If 0 < t < π/4 then the unique maximal flat containing W is RX ⊕
RJY .

3. Some general equations

Let M be a real hypersurface in Qm and denote by (φ, ξ, η, g) the induced almost
contact metric structure. Note that ξ = −JN , where N is a (local) unit normal
vector field of M . The tangent bundle TM of M splits orthogonally into TM =
C ⊕ Rξ, where C = ker(η) is the maximal complex subbundle of TM . The structure
tensor field φ restricted to C coincides with the complex structure J restricted to
C, and φξ = 0.

At each point z ∈ M we define the maximal A-invariant subspace of TzM , z∈M
as follows:

Qz = {X ∈ TzM | AX ∈ TzM for all A ∈ Az}.

Lemma 3.1 see [26]. For each z ∈ M we have

(i) If Nz is A-principal, then Qz = Cz.

(ii) If Nz is not A-principal, there exist a conjugation A ∈ A and orthonormal
vectors X,Y ∈ V (A) such that Nz = cos(t)X + sin(t)JY for some t ∈ (0, π/4].
Then we have Qz = Cz � C(JX + Y ).
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We now assume that M is a Hopf hypersurface. Then we have

Sξ = αξ

with the smooth function α = g(Sξ, ξ) on M . When we consider JX by the Kaehler
structure J on Qm for any vector field X on M in Qm, we may write

JX = φX + η(X)N

for a unit normal N to M . Then we now consider the Codazzi equation

g((∇XS)Y − (∇Y S)X,Z)

= η(X)g(φY,Z) − η(Y )g(φX,Z) − 2η(Z)g(φX, Y ) + g(X,AN)g(AY,Z)

− g(Y,AN)g(AX,Z) + g(X,Aξ)g(JAY,Z) − g(Y,Aξ)g(JAX,Z).

(3.1)

Putting Z = ξ we get

g((∇XS)Y − (∇Y S)X, ξ)

= −2g(φX, Y ) + g(X,AN)g(Y,Aξ) − g(Y,AN)g(X,Aξ)

− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ).

On the other hand, we have

g((∇XS)Y − (∇Y S)X, ξ)

= g((∇XS)ξ, Y ) − g((∇Y S)ξ,X)

= (Xα)η(Y ) − (Y α)η(X) + αg((Sφ + φS)X,Y ) − 2g(SφSX, Y ).

By comparing the previous two equations and putting X = ξ, we have the following

Y α = (ξα)η(Y ) − 2g(ξ,AN)g(Y,Aξ) + 2g(Y,AN)g(ξ,Aξ). (3.2)

Reinserting (3.2) into the previous equation yields

g((∇XS)Y − (∇Y S)X, ξ)

= −2g(ξ,AN)g(X,Aξ)η(Y ) + 2g(X,AN)g(ξ,Aξ)η(Y )

+ 2g(ξ,AN)g(Y,Aξ)η(X) − 2g(Y,AN)g(ξ,Aξ)η(X)

+ αg((φS + Sφ)X,Y ) − 2g(SφSX, Y ).

Altogether this implies

0 = 2g(SφSX, Y ) − αg((φS + Sφ)X,Y ) − 2g(φX, Y )

+ g(X,AN)g(Y,Aξ) − g(Y,AN)g(X,Aξ)

− g(X,Aξ)g(JY,Aξ) + g(Y,Aξ)g(JX,Aξ)

+ 2g(ξ,AN)g(X,Aξ)η(Y ) − 2g(X,AN)g(ξ,Aξ)η(Y )

− 2g(ξ,AN)g(Y,Aξ)η(X) + 2g(Y,AN)g(ξ,Aξ)η(X).
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At each point z ∈ M we can choose A ∈ Az such that

N = cos(t)Z1 + sin(t)JZ2

for some orthonormal vectors Z1, Z2 ∈ V (A) and 0 � t � π/4 (see proposition 3 in
[22]). Note that t is a function on M . First of all, since ξ = −JN , we have

ξ = sin(t)Z2 − cos(t)JZ1,

AN = cos(t)Z1 − sin(t)JZ2,

Aξ = sin(t)Z2 + cos(t)JZ1.

(3.3)

On the other hand, we have JAξ = −AJξ = −AN , and inserting this formula into
the previous equation implies

Lemma 3.2. Let M be a Hopf hypersurface in Qm with (local) unit normal vec-
tor field N . For each point z ∈ M we choose A ∈ Az such that Nz = cos(t)Z1 +
sin(t)JZ2 holds for some orthonormal vectors Z1, Z2 ∈ V (A) and 0 � t � π/4. Then

0 = 2g(SφSX, Y ) − αg((φS + Sφ)X,Y ) − 2g(φX, Y ) + 2g(X,AN)g(Y,Aξ)

− 2g(Y,AN)g(X,Aξ) + 2g(ξ,Aξ){g(Y,AN)η(X) − g(X,AN)η(Y )}

holds for all vector fields X and Y on M .

By the equation of Gauss, the curvature tensor R(X,Y )Z for a real hypersurface
M in Qm induced from the curvature tensor R̄ of Qm can be described in terms
of the complex structure J and the complex conjugations A ∈ A as follows: for any
tangent vector fields X, Y and Z of M

R(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(JY,Z)(JX)T − g(JX,Z)(JY )T

− 2g(JX, Y )(JZ)T + g(AY,Z)(AX)T − g(AX,Z)(AY )T

+ g(JAY,Z)(JAX)T − g(JAX,Z)(JAY )T

+ g(SY,Z)SX − g(SX,Z)SY,

(3.4)

where (· · · )T denotes the tangential component of the vector (· · · ) in Qm.
Let {e1, e2, . . . , e2m−1, e2m := N} be a basis of the tangent vector space TzQ

m of
Qm at z ∈ Qm. From (3.4), contracting Y and Z on M in Qm, we have

Ric(X) = (2m − 1)X − 3η(X)ξ − g(AN,N)(AX)T + g(AX,N)(AN)T

− g(JAN,N)(JAX)T + g(JAX,N)(JAN)T

+ (Tr S)SX − S2X,

(3.5)
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where we have used the following

2m−1∑
i=1

g(Jei, ei) =
2m∑
i=1

g(Jei, ei) − g(JN,N) = TrJ − g(JN,N) = 0,

2m−1∑
i=1

g(JX, ei)(Jei)T =
2m∑
i=1

g(JX, ei)(Jei)T − g(JX,N)(JN)T

= (J2X)T − g(JX,N)(JN)T = −X + g(X, ξ)ξ,
2m−1∑
i=1

g(Aei, ei) =
2m∑
i=1

g(Aei, ei) − g(AN,N)

= TrA − g(AN,N) = −g(AN,N),
2m−1∑
i=1

g(AX, ei)(Aei)T =
2m∑
i=1

g(AX, ei)(Aei)T − g(AX,N)AN

= X − g(AX,N)(AN)T ,

2m−1∑
i=1

g(JAei, ei)(JAX)T =
2m∑
i=1

g(JAei, ei)(JAX)T − g(JAN,N)(JAX)T

= (Tr JA)(JAX)T − g(JAN,N)(JAX)T

= −g(JAN,N)(JAX)T ,

and

2m−1∑
i=1

g(JAX, ei)(JAei)T =
2m∑
i=1

g(JAX, ei)(JAei)T − g(JAX,N)(JAN)T

= (JAJAX)T − g(JAX,N)(JAN)T

= X − g(JAX,N)(JAN)T .

On the other hand, for a real structure A of Qm we decompose AX into its tan-
gential and normal components given by AX = BX + g(AX,N)N . From this and
the anti-commuting property between the complex structure J and real structure A,
we get

AN = AJξ = −JAξ = −φAξ − g(Aξ, ξ)N. (3.6)

In addition, from (3.3) we obtain that g(Aξ,N) = 0, which means that the unit
vector field Aξ is tangent to M . Thus, by using the Gauss formula, ∇̄XY = ∇XY +
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g(SX, Y )N , we get

∇X(Aξ) = ∇̄X(Aξ) − g(SX,Aξ)N

= (∇̄XA)ξ + A(∇̄Xξ) − g(SX,Aξ)N

= q(X)JAξ + A(∇Xξ + g(SX, ξ)N) − g(SX,Aξ)N

= q(X)JAξ + AφSX + g(SX, ξ)AN − g(SX,Aξ)N

= q(X)φAξ + q(X)g(Aξ, ξ)N + BφSX + g(φSX,AN)N

− g(SX, ξ)φAξ − g(SX, ξ)g(Aξ, ξ)N − g(SX,Aξ)N

= q(X)φAξ + q(X)g(Aξ, ξ)N + BφSX − g(Aξ, SX)N

+ g(Aξ, ξ)g(SX, ξ)N − g(SX, ξ)φAξ

− g(SX, ξ)g(Aξ, ξ)N − g(SX,Aξ)N,

where we have used the formulas (∇̄XA)Y = q(X)JAY and (3.6). From this, by
comparing the tangential and normal parts of both sides, we can assert the following:

Lemma 3.3. Let M be a real hypersurface in the complex quadric Qm, m � 3. Then
we obtain

∇X(Aξ) = q(X)φAξ + BφSX − g(SX, ξ)φAξ (3.7)

and

q(X)g(Aξ, ξ) = 2g(SX,Aξ) (3.8)

for any tangent vector field X of M .

By virtue of lemma 3.3 and the equations related to the Ricci tensor for real hyper-
surfaces in the complex quadric Qm, we can prove our main theorem 1 in the
introduction as follows:

Proposition 3.4. Let M be a Hopf real hypersurface in the complex quadric Qm,
m � 3, with parallel Ricci tensor. Then the unit normal vector field N becomes
either A-isotropic or A-principal.

Proof. From the properties of complex structure J and real structure A, we get

JAX = φBX + g(φAξ,X)ξ + g(Aξ,X)N

for any tangent vector field X of M . By using this formula and (3.6), the
equation (3.5) can be rearranged:

Ric X = (2m − 1)X − 3η(X)ξ + g(Aξ, ξ)BX + g(φAξ,X)φAξ

+ g(Aξ,X)Aξ + (TrS)SX − S2X,

together with g(AN,N) = −g(Aξ, ξ) and g(JAN,N) = g(Aξ,N) = 0. Substituting
the Reeb vector field ξ in this equation, we have

Ric ξ = 2(m − 2)ξ + 2g(Aξ, ξ)Aξ + (αh − α2)ξ, (3.9)

where h denotes the trace of the shape operator S, that is, h = TrS.
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From this, by using the assumption of Ricci parallelism, ∇Ric = 0, and (3.7), it
follows that

0 = (∇XRic)ξ

= 2(m − 2)∇Xξ + 2g
(∇X(Aξ), ξ

)
Aξ + 2g(Aξ,∇Xξ)Aξ

+ 2g(Aξ, ξ)∇X(Aξ) + X(αh − α2)ξ + (αh − α2)∇Xξ − Ric(∇Xξ)

= 2(m − 2)φSX + g(BφSX, ξ)Aξ + 2g(Aξ, φSX)Aξ

+ 2g(Aξ, ξ)
{
q(X)φAξ + BφSX − αη(X)φAξ

}
+

(
X(αh − α2)

)
ξ + (αh − α2)φSX − Ric(φSX).

By putting X = ξ in the above equation, it yields that

2g(Aξ, ξ)
(
q(ξ) − α

)
φAξ +

(
ξ(αh − α2)

)
ξ = 0,

because M is Hopf. Taking the inner product with ξ, it gives us ξ(αh − α2) = 0.
Therefore, we consequently have

g(Aξ, ξ)
(
q(ξ) − α)

)
φAξ = 0. (3.10)

If g(Aξ, ξ) = 0, the unit normal vector field N is A-isotropic.
From now on, we assume that the normal vector field N is not A-isotropic,

that is, g(Aξ, ξ) 
= 0. Then, by virtue of (3.8), we obtain q(ξ) = 2α. Then the
equation (3.10) gives

αφAξ = 0.

From this, firstly, assume that the Reeb function α = g(Sξ, ξ) vanishes on M . Then
(3.2) gives that g(Y,AN)g(Aξ, ξ) = 0 for any Y ∈ TxM , x ∈ M . So, g(Aξ, ξ) 
=
0 gives g(Y,AN) = 0. This implies that AN = g(AN,N)N . Accordingly, A2N =
g(AN,N)AN = g(AN,N)2N gives AN = ±N . That is, the unit normal vector field
N is A-principal.

Now, let us consider the case of φAξ = 0. We assert that the normal vector field N
becomes A-principal. In fact, applying the structure tensor φ, it leads to Aξ =
g(Aξ, ξ)ξ. Taking the inner product with Aξ and using the self-adjoint property for
real structure, that is, A2 = I, it implies the following

g(Aξ, ξ)2 = g(Aξ,Aξ) = g(ξ, ξ) = 1.

On the other hand, from (3.3) and as g(Aξ, ξ) 
= 0, we see that g(Aξ, ξ) = − cos 2t,
t ∈ [0, π/4). According to these facts, g(Aξ, ξ) = −1, that is, t = 0. It implies that
the normal vector field N is A-principal. �

Summing up lemma 3.3 and proposition 3.4, we give a complete proof of our
main theorem 1 in the introduction.

Now let us give more information on Hopf real hypersurfaces in the complex
quadric Qm with A-principal or A-isotropic normal vector field. By using the for-
mulas given in this section, we want to introduce well-known lemmas which are key
roles in the proof of main theorem 2 as follows:
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Lemma 3.5 [26]. Let M be a Hopf hypersurface in Qm such that the normal vector
field N is A-principal everywhere. Then α is constant. Moreover, if X ∈ C is a
principal vector field of M with principal curvature λ, then 2λ 
= α and φX is a
principal vector field of M with principal curvature (αλ + 2)/(2λ − α).

Lemma 3.6 [26]. Let M be a Hopf hypersurface in Qm, m � 3, such that the normal
vector field N is A-isotropic everywhere. Then α is constant.

In § 4 and 5, the above two lemmas 3.5 and 3.6 will give a contribution in the
proof of our main theorem 2 in the introduction.

4. Proof of main theorem 2 with A-principal unit normal vector field

Now in this section we consider only an A-principal unit normal vector field N for
a real hypersurface M in Qm with parallel Ricci tensor. Then from the curvature
tensor in § 3 the Ricci tensor is given by

RicX = (2m − 1)X − 3η(X)ξ − g(AN,N)(AX)T + g(AX,N)(AN)T

− g(JAN,N)(JAX)T + g(JAX,N)(JAN)T + (TrS)SX − S2X, (4.1)

where (· · · )T denotes the tangential component of the vector (· · · ) in Qm.
From this, by using AN = N , Aξ = −ξ and AX = BX for an A-principal unit

normal vector field, we have

Ric X = (2m − 1)X − 2η(X)ξ − AX + hSX − S2X, (4.2)

where the mean curvature h = TrS is defined by the trace of the shape operator S
of M in Qm. From this, let us use the assumption of parallel Ricci tensor, that is,
∇XRic = 0 for any X ∈ TxM , x ∈ M . Then it follows that

0 = −2g(∇Xξ, Y )ξ − 2η(Y )∇Xξ − (∇XA)Y + (Xh)SY

+ h(∇XS)Y − (∇XS2)Y

= −2g(φSX, Y )ξ − 2η(Y )φSX − (∇XA)Y + (Xh)SY

+ h(∇XS)Y − (∇XS2)Y,

(4.3)

where (∇XA)Y = ∇X(AY ) − A∇XY , Here, AY belongs to TxM , x ∈ M , from the
fact that g(AY,N) = g(Y,AN) = g(Y,N) = 0 for any tangent vector Y on M . Then
by putting Y = ξ in (4.3), we know that

2φSX = −(∇XA)ξ + (Xh)Sξ + h(∇XS)ξ − (∇XS2)ξ

= −q(X)JAξ − αη(X)AN + α(Xh)ξ

+ h(∇XS)ξ − (∇XS2)ξ

(4.4)
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In order to get the equation (4.4) we have used the following

(∇XA)ξ = ∇X(Aξ) − A∇Xξ

= (∇̄X(Aξ))T − A∇Xξ

=
{
(∇̄XA)ξ + A∇̄Xξ

}T − AφSX

= q(X)JAξ + AφSX + g(SX, ξ)AN − AφSX

= q(X)JAξ + αη(X)AN,

where (· · ·)T denotes the tangential component of the vector (· · ·) in Qm. Moreover,
we get

(∇XS)ξ = ∇X(Sξ) − S∇Xξ = (Xα)ξ + αφSX − SφSX,

and

(∇XS2)ξ = ∇X(S2ξ) − S2∇Xξ = (Xα2)ξ + α2φSX − S2φSX.

Then (4.4) can be written as follows:

2φSX = −q(X)JAξ − αη(X)AN + α(Xh)ξ + h(Xα)ξ + hαφSX − hSφSX

− (Xα2)ξ − α2φSX + S2φSX.

As its scalar product with ξ yields X(αh − α2) = 0, it can be reduced as follows:

2φSX = −q(X)JAξ − αη(X)AN + hαφSX − hSφSX

− α2φSX + S2φSX.

From this, if we take the tangential part, we have the following:

(2 + α2 − hα)φSX = −hSφSX + S2φSX (4.5)

for any tangent vector X ∈ TxM , x ∈ M , because we have assumed that the unit
vector field N is A-principal, that is, AN = N , and JAξ = −AJξ = −AN .

On the other hand, by lemma 4.2 in Berndt and Suh [3] for a contact hypersurface
in complex quadric Qm with A-principal normal vector field N we have

2SφSX = α(φS + Sφ)X + 2φX.

From this, it follows that

2S2φSX = α(SφS + S2φ)X + 2SφX

= α
({α

2
(Sφ + φS)X + φX

})
+ αS2φX + 2SφX

=
α2

2
(Sφ + φS)X + αφX + αS2φX + 2SφX.

(4.6)
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Then summing up (4.5) and (4.6), we have

(2 + α2 − hα)φSX = −h
{α

2
(Sφ + φS)X + φX

}
+

α2

4
(Sφ + φS)X

+
α

2
φX +

α

2
S2φX + SφX.

(4.7)

On the other hand, we give the following important lemma which will be useful
in the proof of our main theorem 1. Then for A-principal unit normal vector field
we assert the following

Lemma 4.1. Let M be a real hypersurface in the complex quadric Qm, m � 3, with
A-principal singular normal vector field N . Then we obtain:

(i) AX = BX

(ii) AφX = −φAX

(iii) AφSX = −φSX and q(X) = 2g(SX, ξ)

(iv) ASX = SX − 2g(SX, ξ)ξ = SAX

for any X ∈ TxM , x ∈ M .

Proof. In this case we must have g(AX,N) = 0 for an A-principal normal N . This
means that AX ∈ TxM , x ∈ M . So it gives (i) in lemma 4.1.

On the other hand, the complex structure J and the real structure A satisfy the
anti-commuting property, JA = −AJ . From this and JX = φX + η(X)N , we get

φAX − η(X)N = φAX + η(AX)N = JAX

= −AJX = −A
(
φX + η(X)N

)
= −AφX − η(X)N.

Hence it implies AφX = −φAX. That is, we get (ii) in lemma 4.1. Moreover, dif-
ferentiating the equations Aξ = −ξ and AN = N with respect to the Levi-Civita
connection ∇̄ of Qm, respectively, it follows that

− q(X)N + AφSX + g(SX, ξ)N = q(X)JAξ + AφSX + g(SX, ξ)AN

= (∇̄XA)ξ + A(∇̄Xξ) = −∇̄Xξ = −φSX − g(SX, ξ)N

and

− q(X)ξ − ASX = q(X)JAN − ASX

= (∇̄XA)N + A(∇̄XN) = ∇̄XN = −SX,

together with ∇̄XY = ∇XY + g(SX, Y )N , ∇̄XN = −SX (so-called the Gauss and
Weingarten formulae) and ∇Xξ = φSX. The tangential and normal part of the
above two equations give (iii) and (iv) in lemma 4.1, respectively. Since the shape
operator S of M and the real structure A are symmetric, we also obtain ASX =
SAX.

Summing up all the facts above, we give a complete proof of our lemma 4.1. �
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By virtue of lemma 4.1, some characterizations of Hopf hypersurfaces in terms
of singularity of the normal vector field are being investigated. Among them, as a
new characterization of A-principal singular normal vector field, Lee and Suh [14]
have proved a remarkable result as follows:

Proposition 4.2. Let M be a Hopf real hypersurface in the complex quadric Qm,
m � 3. Then M has an A-principal singular normal vector field N if and only if
M is a contact real hypersurface with constant mean curvature and non-vanishing
Reeb function in Qm.

Moreover, Berndt and Suh [3] have proved that a real hypersurface M is locally
congruent to a tube over Sm in Qm if and only if the shape operator S of M
satisfies Sφ + φS = kφ for a non-zero constant k. Here we note that kα = −2 for
the constant Reeb function α on M . Then let us check whether a tube over Sm

could satisfy (4.7) or not. Then (4.7) gives

(2 + α2 − hα)φSX = −h

{
αk

2
+ 1

}
φX +

α2

4
kφX

+
α

2
φX +

α

2
S2φX + SφX.

If we consider an eigenvector such that SX = λX, then (Sφ + φS)X = kφX gives
that SφX = (k − λ)φX. From this, together with (4.7) using αk = −2, it follows
that

αλ2 − 2(α2 − hα + 1)λ = 0.

Then either λ = 0 or λ =
√

2 tan
√

2r. Moreover, the trace h of the shape operator
becomes h = α + (m − 1)k (see also [3]). But for a tube over a sphere Sm we know
that

√
2 tan

√
2r =

2
α

(α2 − hα + 1)

= 2(α − h) +
2
α

=
4(m − 1)

α
+

2
α

=
2(2m − 1)

α

= −(2m − 1)
√

2 tan
√

2r,

where in the third equality we have used α − h = −(m − 1)k = 2(m − 1)/α. This
gives that 2m

√
2 tan

√
2r = 0, which gives us a contradiction. So we conclude that

a real hypersurface in Qm which is a tube over a m-dimensional sphere Sm does not
admit parallel Ricci tensor. Of course, in this case the unit normal N is A-principal.

Summing up the above documents, we conclude that there does not exist a Hopf
real hypersurface in the complex quadric Qm with parallel Ricci tensor when the
unit normal vector field N is A-principal.
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5. Proof of main theorem with A-isotropic unit normal vector field

In § 4, we proved that there does not exist a Hopf real hypersurface with parallel
Ricci tensor in the complex quadric Qm with A-principal unit normal vector field.
Motivated by the result of § 4, in this section we give a complete proof of our main
theorem for real hypersurfaces with parallel Ricci tensor when M has an A-isotropic
unit normal vector field.

Since we assumed that the unit normal N is A-isotropic, by the definition in § 3
we know that t = π/4. Then by the expression of the A-isotropic unit normal vector
field, the equation (3.3) gives N = (1/

√
2)Z1 + (1/

√
2)JZ2. This implies that

g(ξ,Aξ) = 0, g(ξ,AN) = 0, g(AN,N) = 0, g(Aξ,N) = 0,

and

g(JAN, ξ) = −g(AN,N) = 0.

Then the vector fields AN and Aξ become tangent vector fields to M in Qm.
Moreover, by using these equations, we take the derivative of the Ricci tensor as
follows:

(∇Y Ric)X = ∇Y (Ric(X)) − Ric(∇Y X)

= −3(∇Y η)(X)ξ − 3η(X)∇Y ξ + g(X,∇Y (AN))AN

+ g(AX,N)∇Y (AN) + g((∇Y (Aξ),X)Aξ

+ g(Aξ,X)∇Y (Aξ) + (Y h)SX + h(∇Y S)X − (∇Y S2)X.

(5.1)

Since AN is a tangent vector field for an A-isotropic normal vector field, we know
that

∇Y (AN) = {(∇̄Y A)N + A∇̄Y N}T = {q(Y )JAN − ASY }T ,

and

∇Y (Aξ) = −q(Y )AN + BφSY + g(SY, ξ)AN,

where we have used (3.6) and (3.7), and (· · ·)T denotes the tangential component of
the vector (· · ·) in Qm. By our assumption of Ricci parallelism, the above formula
becomes

0 = −3g(φSY,X)ξ − 3η(X)φSY + {q(Y )g(JAN,X) − g(ASY,X)}AN

+ g(AX,N){q(Y )JAN − ASY }T

+ {−q(Y )g(AN,X) + g(BφSY,X) + αη(Y )g(AN,X)}Aξ

+ g(Aξ,X){−q(Y )AN + BφSY + αη(Y )AN}
+ (Y h)SX + h(∇Y S)X − (∇Y S2)X.

(5.2)

Now we assert an important lemma which gives a key role in the proof of our
main theorem 2 as follows:
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Lemma 5.1. Let M be a Hopf real hypersurface in the complex quadric Qm, m � 3,
with A-isotropic unit normal vector field N . Then

SAξ = 0 and SAN = −SφAξ = 0.

Proof. Let us denote by Q⊥ = Span{Aξ,AN}, where Q is the maximal A-invariant
subspace in the complex subbundle of C. By differentiating g(AN,N) = 0 and using
(∇̄XA)Y = q(X)JAY and the equation of Weingarten, we know that

0 = g(∇̄X(AN), N) + g(AN, ∇̄XN)

= g(q(X)JAN − ASX,N) − g(AN,SX)

= −2g(ASX,N).

Then SAN = 0. From (3.6), we obtain AN = −φAξ. So, it implies that SφAξ = 0.
Moreover, by differentiating g(Aξ,N) = 0 and using g(AN,N) = 0, we have:

0 = g(∇̄X(Aξ), N) + g(Aξ, ∇̄XN)

= g(q(X)JAξ + A(φSX + g(SX, ξ)N), N) − g(SAξ,X)

= −2g(SAξ,X)

for any X∈TzM , z∈M , where in the third equality we have used φAN = JAN =
−AJN = Aξ. Then it follows that

SAξ = 0.

It completes the proof of our assertion. �

By taking the inner product of (5.2) with the Reeb vector field ξ, we have

0 = −3g(φSY,X) − g(AX,N)g(ASY, ξ) + g(AX, ξ)g(BφSY, ξ)

+ (Y h)αη(X) + hg((∇Y S)X, ξ) − g((∇Y S2)X, ξ).
(5.3)

On the other hand, let us use the following calculation

(∇XS)ξ = (Xα)ξ + αφSX − SφSX,

(∇XS2)ξ = (Xα2)ξ + α2φSX − S2φSX.

By putting X = ξ in (5.2) and using the above formulas, we get the following

3φSY = (Y h)Sξ + h(∇Y S)ξ − (∇Y S2)ξ − g(ASY, ξ)AN + g(BφSY, ξ)Aξ

= (Y h)αξ + h{(Y α)ξ + αφSY − SφSY }
− {(Y α2)ξ + α2φSY − S2φSY } − g(ASY, ξ)AN + g(BφSY, ξ)Aξ

= αhφSY − hSφSY − α2φSY + S2φSY − g(ASY, ξ)AN

+ g(BφSY, ξ)Aξ +
(
α(Y h) + h(Y α) − (Y α2)

)
ξ,

(5.4)
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where we have used g(Aξ,N) = 0 and g(AN,N) = g(Aξ, ξ) = 0. Besides, taking the
inner product of (5.4) with ξ, it gives

(α(Y h) + h(Y α) − (Y α2)) = 0. (5.5)

From this and by virtue of lemma 5.1, the equation (5.4) can be rearranged as
follows:

(3 + α2 − αh)φSY = −hSφSY + S2φSY. (5.6)

On the other hand, by virtue of lemma 4.2 in [26], we have the following

2SφSX = α(Sφ + φS)X + 2φX − 2g(X,AN)Aξ + 2g(X,Aξ)AN. (5.7)

Now let us consider the distribution Q⊥, which is an orthogonal complement of
the maximal A-invariant subspace Q in the complex subbundle C of TxM , x ∈ M
in Qm. Then by lemma 3.1 in § 3, the orthogonal complement Q⊥ = C�Q becomes
C�Q = Span{AN,Aξ}. Then by lemma 5.1 the distribution Q⊥ is invariant by the
shape operator S. Moreover, we have known that SAN = 0 and SAξ = 0.

On the distribution Q, we know that AX ∈ TxM , x ∈ M , because AN ∈ Q⊥.
Moreover, by using the property of g(X,Aξ) = 0 for any X ∈ Q, the equation (5.7)
gives that

2SφSX = α(Sφ + φS)X + 2φX ∀X ∈ Q. (5.8)

Then the shape operator S can be expressed in such a way that

S = diag (α, 0, 0, λ1, . . . , λm−2, μ1, . . . , μm−2)

where diag (ε1, ε2, . . . , εm) denotes a (m × m)-diagonal matrix with the main
diagonal entries εk, k = 1, 2, . . . ,m.

Now, we can take an orthonormal basis X1, . . . , X2(m−2) ∈ Q such that AXi =
λiXi for i = 1, . . .,m − 2. Then by (5.8) we know that α 
= 2λi for all i. Furthermore,
we get

SφXi =
αλi + 2
2λi − α

φXi.

Hence, on the distribution Q, for any X and φX ∈ Q such that SX = λX and
SφX = μφX, μ = (αλ + 2)/(2λ − α), the equation (5.6) becomes the following

λ(3 + α2 − αh)φX = −hλSφX + λS2φX

= −hλμφX + λμ2φX

= λμ(μ − h)φX.

(5.9)

From this, now we consider the following two cases.

• Case 1. For non-vanishing principal curvatures λ 
= 0.
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Then in this case, by (5.9), any principal curvatures of the shape operator S on
the distribution Q satisfy the following quadratic equation

x2 − hx + (αh − α2 − 3) = 0. (5.10)

Since the discriminant of (5.10) is D = (h − 2α)2 + 12 > 0, we conclude that there
exist two distinct principal curvatures λ and μ satisfying

λ =
h +

√
D

2
and μ =

h −√
D

2
.

Moreover, by Vieta’s formula for quadratics, we get λ + μ = h. So, it follows

h = TrS

= α + (m − 2)(λ + μ)

= α + (m − 2)h.

(5.11)

From this, the mean curvature h is given by

h = − α

m − 3
(5.12)

On the other hand, by (5.5) we know that the function (αh − α2) is constant.
Then the constant (αh − α2) implies

αh − α2 = α{α + (m − 2)(λ + μ)} − α2

= (m − 2)(λ + μ)α

= (m − 2)hα.

From this, it follows that the function αh is constant. Then the constant αh,
together with the constancy of αh − α2, implies that the Reeb function α must
be constant. Thus the trace h of the shape operator S should be constant. So
the above quadratic equation (5.10) has constant coefficients. This gives that all
of principal curvatures λ and μ are constant principal curvatures. Accordingly, the
expression of the shape operator S of M in Qm with parallel Ricci tensor is given by

S = diag

⎛
⎜⎜⎝α, 0, 0,

h +
√

D

2
, . . . ,

h +
√

D

2︸ ︷︷ ︸
(m−1)

,
h −√

D

2
, . . . ,

h −√
D

2︸ ︷︷ ︸
(m−1)

⎞
⎟⎟⎠

This means that on the distribution Q the following holds

Sφ + φS = hφ.

From this, together with (5.7), we get the following for any X∈Q
2SφSX = αhφX + 2φX (5.13)

Since SX = λX, SφX = μφX, μ = (αλ + 2)/(2λ − α), (5.13) becomes

2λμ = αh + 2. (5.14)
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From this we can assert that the Reeb function α is non-vanishing. In fact, if the
constant Reeb function α vanishes, then (5.14) gives λμ = 1. But λ and μ are roots
of the quadratic equation (5.10). So they satisfy λ + μ = h. Moreover, (5.12) gives
h = 0. So it follows that λ = −μ. Then this gives a contradiction.

Now let us put k = αh + 2. Then from (5.12) it follows that k = −(α2/(m − 3 +
2)). Then (5.14) becomes

2αλ2 + (4 − 2k)λ + αk = 0, (5.15)

where 4 − 2k = 2α2/(m − 3) and αk = −(α3 − 2α(m − 3))/(m − 3). Then (5.15)
and the non-vanishing Reeb function α 
= 0 imply that the principal curvatures λ
and μ are roots of the following quadratic equation

x2 +
α

m − 3
x −

{
α2

2(m − 3)
− 1

}
= 0. (5.16)

Comparing (5.16) with the quadratic equation (5.10), we have the following

α2

2(m − 3)
− 1 = α2 + 3 − αh. (5.17)

From this, together with h = −α/(m − 3) in (5.12), it follows that

α2

2(m − 3)
− 1 = α2 + 3 − αh

= α2 + 3 +
α2

m − 3

=
2(m − 2)α2

2(m − 3)
+ 3.

(5.18)

Then it implies that

(2m − 5)α2

2(m − 3)
= −4,

which gives a contradiction for m � 4. So this case does not happen for real
hypersurfaces with parallel Ricci tensor in the complex quadric Qm.

• Case 2. For vanishing principal curvatures λ = 0.

Then in this case, by using lemma 5.1, we conclude that on the distribution
ξ ⊕ [C � Q] ⊕Q, where C�Q = Span{AN,Aξ} the shape operator becomes

S = diag (α, 0, 0,− 2
α

, . . . ,− 2
α︸ ︷︷ ︸

(m−1)

, 0, . . . , 0︸ ︷︷ ︸
(m−1)

).

Then the vanishing principal curvature λ = 0 gives μ = −2/α 
= 0. From this,
together with (5.9), the other principal curvatures also satisfy

x2 − hx + (αh − α2 − 3) = 0. (5.19)
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So, the quadratic equation (5.19) gives that h = λ + μ = μ = −2/α, because one
root is assumed λ = 0. Moreover, the constant term of (5.9) identically vanishes
αh − α2 − 3 = 0, so it follows that h = (α2 + 3)/α. Then these two formulas for
the mean curvature h gives that α2 + 5 = 0. This implies a contradiction. So this
case also can not be considered for a real hypersurface M in the complex quadric
Qm with parallel Ricci tensor.

Summing up the above two cases and all of discussions, we give a complete proof
of our main theorem 2 in the introduction.

Remark 2. In this remark let us check whether the Ricci tensor of the tube M
over a totally geodesic complex projective space CP k in the complex quadric Qm,
m = 2k, mentioned in Berndt and Suh [2] is parallel or not. Then by a theorem in
[2], the shape operator S commutes with the structure tensor φ, that is, Sφ = φS.
In this case we know that the normal vector field N of M in Q2k is A-isotropic. So
let us suppose that the Ricci tensor of M is parallel. Then for any X∈Q such that
SY = λY the equation (5.6) gives that

(3 + α2 − αh)λφY = −hλ2φY + λ3φY. (5.20)

On the other hand, by (5.7), together with the commuting property Sφ = φS, we
know that

(2λ − α)λφY = (αλ + 2)φY (5.21)

From this, we see that the function λ 
=0. Then by (5.9) with λ 
=0, we get

λ2 − hλ + (αh − α2 − 3) = 0.

Moreover, (5.21) gives that

λ2 − αλ − 1 = 0.

From these two equations we know that h = α and αh − α2 − 3 = −1. Then these
two equations give us a contradiction. So a tube over a complex k-dimensional
projective space CP k never has parallel Ricci tensor.
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