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Abstract

Although immune checkpoint inhibitors (ICIs) have produced remarkable responses in non-
small cell lung cancer (NSCLC) patients, receivers still have a relatively low response rate.
Initial response assessment by conventional imaging and evaluation criteria is often unable
to identify whether patients can achieve durable clinical benefit from ICIs. Overall, there
are sparse effective biomarkers identified to screen NSCLC patients responding to this ther-
apy. A lot of studies have reported that patients with specific gene mutations may benefit from
or resist to immunotherapy. However, the single gene mutation may be not effective enough
to predict the benefit from immunotherapy for patients. With the advancement in sequencing
technology, further studies indicate that many mutations often co-occur and suggest a drastic
transformation of tumour microenvironment phenotype. Moreover, co-mutation events have
been reported to synergise to activate or suppress signalling pathways of anti-tumour immune
response, which also indicates a potential target for combining intervention. Thus, the differ-
ent mutation profile (especially co-mutation) of patients may be an important concern for
predicting or promoting the efficacy of ICIs. However, there is a lack of comprehensive knowl-
edge of this field until now. Therefore, in this study, we reviewed and elaborated the value of
cancer mutation profile in predicting the efficacy of immunotherapy and analysed the under-
lying mechanisms, to provide an alternative way for screening dominant groups, and thereby,
optimising individualised therapy for NSCLC patients.

Introduction

Cancer is a disease characterised by abnormal proliferating cells caused initially by genetic
mutations including non-small cell lung cancer (NSCLC) and other cancers. The causes of
genetic mutations can be roughly divided into two categories: acquired mutations, including
TP53, PTEN and other somatic mutations induced by ageing, poor lifestyles, environmental
factors, etc., and inherited mutations, such as mutations in the BRAC1/BRAC2. In a retro-
spective study, researchers showed that 13.3% of cancer patients had inheritable cancer-related
genetic mutations, including six most common types: BRCA1/BRCA2 mutation, MUTYH
mutation, CHEK2 mutation, ataxia-telangiectasia mutated (ATM) mutation, mismatch repair
(MMR) gene mutations including MLH1, MSH6, MSH2, MSH3, PMS2 (Ref. 1). In addition,
most of the somatic mutations are passenger mutations but they still occupy the predominate
gene mutations leading to the initiation of a tumour. Driver mutations are recognised to be the
origin of malignances, such as encoding oncogenes (MYC, anaplastic lymphoma kinase
(ALK), V-Ki-ras2 Kirsten rat sarcoma viral oncogene (KRAS), mesenchymal-to-epithelial
transition (MET), epidermal growth factor receptor (EGFR), nuclear factor erythroid 2-like
factor 2/Kelch-like ECH-associated protein 1 (NRF2/KEAP1), and BRAF) and tumour sup-
pressors (TP53, PTEN, serine/threonine kinase 11/liver kinase B1 (STK11/LKB1), ATM)
(Ref. 2). Genetic mutations or alterations affect a series of biological behaviours of tumour
including tumour occurrence, development, invasion, metastasis, and so on (Refs 2, 3). And
they remain widely prevalent in NSCLC. Thus, driver gene mutations become targets of ther-
apy and biomarkers of predicting the efficacy of therapy, including ICIs, especially in NSCLC.

In the tumour microenvironment (TME), there’re various genes exerting immunomodula-
tion function via activating their downstream signalling pathways (Refs 4, 5, 6, 7). The immune
response involves tumour antigen exposure, antigen presentation, main histocompatibility
complex (MHC) expression, the expression of cell surface receptors, the secretion of cytokines
and chemokines, and the endocytosis and degradation of immune checkpoints (Refs 8, 9, 10).
At present, diverse approaches have been targeted to these processes to develop treatments for
tumours, such as adoptive cell therapy (ACT), ICIs, cancer vaccines, and oncolytic viruses
(Refs 11, 12). Nonetheless, the efficacy of current approaches remains limited. Previous studies
suggested that co-mutations were effective biomarkers of immunotherapy (Refs 13, 14) and
patients with 2 or more compound mutations were relevant to the significant benefit of
ICIs (Ref. 15). A genomic mutation signature encompassing eight genes (TP53, KRAS,
STK11, EGFR, PTPRD, KMT2C, SMAD4, and HGF) was developed to predict the efficacy
of ICIs in non-squamous NSCLC (Ref. 16). Not only that, Sun et al. found that MGA
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mutation, a tumour suppressor gene was related to a response of
ICIs (Ref. 17). Our analysis from The Cancer Genome Atlas
(TCGA) dataset also identified that the co-mutations and single
mutations of KEAP1, KRAS, and STK11 indicated TME alteration
(Ref. 18). In molecular mechanism, the downstream pathways of
these genes, including phosphatidylinositol 3 kinase (PI3 K)/AKT,
MEK/extracellular regulated protein kinases (ERK)/mitogen-
activated protein kinases (MAPK), MAPKs, signal transducer
and activator of transcription (STATs), and nuclear factor-kappa
B (NF-κB) etc., are closely correlated with an immune response
(Refs 6, 19). With the advances of sequencing technology, there
is an expanding spectrum of identified oncogenic driver muta-
tions in NSCLC. Based on these studies, the relationship between
co-mutations and tumour sensitivity to immunotherapy needs to
be further explored. Therefore, this review focused on the mono-
and co-occurring genomic alterations as novel biomarkers of
immunotherapy and sought to shed light on the underlying
mechanism.

Current situation of immunotherapy

Although targeted therapy has inspiring therapeutic benefits in
lung cancer patients with certain oncogenic mutations, the
5-year survival rate is still less than 20% due to the inevitable
drug resistance and intra-driver heterogeneity (Refs 20, 21).
Immunotherapy to revolutionise the cancer therapy, however,
has overwhelmingly appeared and been widely utilised in lung
cancer patients by inducing or reactivating antitumour immune
response. For example, cytotoxic T lymphocyte-associated
antigen-4 (CTLA-4) is a coinhibitory molecule expressed on T
lymphocytes which, upon a stronger affinity for CD80 and
CD86 than for CD28, contributes to T cell anergy (Refs 22, 23).
Programmed cell death ligand 1 (PD-L1) primarily exists in
tumour cells and interacts with its receptor, programmed cell
death 1 (PD-1), expressed notably on T lymphocytes. Once
coupled with its receptor, PD-L1 inhibits CD8 T cell cytotoxic
immune response to suppress the antitumour immune response
(Refs 24, 25). Of note, a few of ICIs have been U.S. Food and
Drug Administration (FDA)-approved through clinical trials,
such as anti–CTLA-4 agent ipilimumab, tremelimumab and
anti–PD-1/PD-L1 antibodies nivolumab, pembrolizumab, atezoli-
zumab, durvalumab and avelumab (Ref. 25). They have provided
more personalised and accurate options for lung cancer patients,
though the fact that the response rates of these ICIs only range
from 14 to 20% in unselected patients and some even suffer severe
immune-relate adverse events(irAEs) exists (Refs 25, 26, 27).
Thus, highly specific, and sensitive predictive markers for ICIs
are urgently needed to be found.

Currently, microsatellite instability (MSI) status and PD-L1
expression on tumour cells by immunohistochemical (IHC)
stain are approved biomarkers to predict ICIs efficacy.
Numerous studies have demonstrated that MSI is caused by the
defect of the DNA MMR gene, which is closely related to the
occurrence of tumours. MSI has been proved to improve
immune-related objective response rate and immune-related
progression-free survival rate in different types of solid tumours
(Refs 28, 29), especially in colorectal cancers (Refs 30, 31).
Thus, MSI is widely regarded as an important and effective
marker for predicting the response of ICIs efficacy (Ref. 28).
However, the researches of MSI in lung cancer are rare and the
ratio of dMMR/MSI-H in lung cancers is very low and thus
hasn’t been widely used in lung cancer patients.

Testing for PD-L1 expression on tumour cells by IHC has a
huge challenge because some PD-L1-negative patients exhibit a
dramatic response to ICIs while a part of PD-L1-positive patients
have no or low response (Ref. 32). In the KEYNOTE-024 trial

(Ref. 33), pembrolizumab monotherapy as the first-line therapy
significantly improved progression-free survival (PFS), objective
response rate (ORR) and overall survival (OS) in patients with
tumours with PD-L1 ≥ 50%, while atezolizumab as the second-
line therapy in metastatic patients, showed an improved survival
versus docetaxel in all subgroups with different PD-L1 IHC assays
and its benefit was independent of PD-L1 expression compared
with pembrolizumab (Ref. 34). Meanwhile, different detection
platforms and assay conditions in distinct immunotherapy agents
(Ref. 35), the inconsistent cut-points for PD-L1 expression and
the heterogeneity of PD-L1 expression in different tumours
(Refs 36, 37) have indicated that it is a profound issue to identify
more powerful predictive markers for ICIs response in NSCLC
patients.

Subsequently, TMB as the potential predictive biomarkers for
ICIs response, in view of the occurrence of neoantigen presented
to reactivate immune responses, needs to be explored more.
Previous studies have demonstrated the compelling evidence for
TMB to predict the response rates of ICIs in various tumours
including NSCLC across whole-exome sequencing (WES) or
next-generation sequencing (NGS) to assess mutational burden
through quantifying the number of non-synonymous mutations
(Refs 38, 39). Of note, the CheckMate 227 trial (Ref. 40) elabo-
rated the significant value of a high tumour mutational burden,
independent of PD-L1 expression level in predicting response to
the combination of ipilimumab with nivolumab. Nonetheless, a
combination of a low TMB (<10 mutations per Mb) with a
PD-L1 TPS <1% was regarded as exclusion criteria to exclude
patients who were not benefiting from ICIs in CheckMate 227
trial (Ref. 40). Likewise, Hellmann et al. presented compelling evi-
dence that TMB is a potent biomarker with improved objective
response, durable benefit, and progression-free survival, even
OS in lung cancer patients (including NSCLC and SCLC) with
combination immunotherapy though WES (Refs 41, 42, 43).
Furthermore, TMB as a predictive marker exists other limitations
such as the discrepancy between blood-based TMB and tissue-
based TMB (Refs 44, 45, 46), the difference of testing platforms
and the definite define of ‘higher’ TMB within various tumours
(Refs 36, 47). Although TMB-H (≥10 mut/Mb) was FDA-
approved to screen progressed advanced NSCLC patients after
receiving standard-of-care to use pembrolizumab based on the
Keynote 158 study, patients of TMB-H did not show significantly
improved PFS and OS.

With the knowledge of various predictive biomarkers of
ICIs response, due to the wide genomic testing, many clinical
trials found the association between genomic mutation and
ICIs. In the following text, we will introduce the common
mutations in NSCLC and demonstrate the value of their muta-
tion profiles (especially co-mutations) as the independent pre-
dictors of immunotherapy and the potential and underlying
mechanisms.

The major types of gene mutations in tumour and their
downstream signals

Single mutations modulate the different signalling, including RAS/
MEK/ERK/MAPK, PI3 K/AKT, STK11/adenosine monophosphate-
activated protein kinase (AMPK)/mammalian target-of-rapamycin
(mTOR), JAK/STAT3, phospholipase C gamma (PLCγ)/phos-
phatidylinositol-4,5-biphosphate (PIP2), and NF-κB etc. (Ref. 48).
These pathways participate in the signal transduction, cell circle,
proliferation, apoptosis, and immune response (Refs 49, 50, 51, 52,
53, 54). Co-mutations may synergise to activate or suppress signal-
ling pathways (Fig. 1). Therefore, we briefly summarised several sig-
nals of the driver gene in the following.
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TP53

TP53, the tumour suppressor genes, encoding the p53 transcription
factor, is related to regulating various cancer-associated pathways
including cell cycle arrest, DNA damage repair, metabolism, apop-
tosis, angiogenesis, and metastasis, and even inflammation and the
immune response (Refs 51, 55). TP53 was commonly mutated in
46% lung adenocarcinoma (LUAD) patients according to TCGA
data. Consistent with the role of p53 in tumour suppression, p53
protein is in low levels because of the regulators like MDM2.
MDM2 is a p53 ubiquitin ligase to promote the degradation of
P53 in normal cells while stimulus-dependent activities such as
DNA damage facilitate p53 phosphorylation to activate p53’s func-
tion through blocking MDM2-mediated degradation (Ref. 55).
However, the study has demonstrated that the p53 gene is tran-
scriptionally induced by IFN-α/β through IFN-activated transcrip-
tion factor interferon-stimulated gene factor 3 (ISGF3) activation,
demonstrating that p53 gene is induced by a cytokine (Ref. 56).
Likewise, toll-like receptors (TLR) gene expression pattern could
be changed by the presence of p53 in damage situation (Ref. 57),
which shows the relationship between p53 mutation and immune
response. TP53 mutations have been identified as controversial bio-
markers for ICIs in NSCLC patients due to the co-occurring muta-
tions and mutation subtypes (Ref. 58), while MDM2/MDM4

amplifications have been proved to be correlated with hyperpro-
gression with anti-PD-1 therapy (Ref. 59).

KRAS

KRAS, as a member of the GTPase family, is one of the most fre-
quently oncogenes aberrations in NSCLC, occurring in 0%∼33%
of adenocarcinomas (Ref. 60). Despite the KRAS-MAPK as the
downstream of EGFR signalling, KRAS activation still signals
through the mitogen-activated protein kinase and PI3 K/AKT/
mTOR cascade mediated by EGF, irrespective of EGFR state
(Refs 48, 61, 62). KRAS mutations in lung cancer have been
regarded to be mutually exclusive driver mutations on behalf of
a genetically heterogeneous subgroup due to the variety of
KRAS-mutations and co-mutations (Ref. 63). Strikingly, up to
now, Sotorasib is the only FDA-approved tyrosine kinase inhibi-
tors (TKIs) targeting KRASG12C, which is a milestone of
KRAS-specific inhibitor (Ref. 64). A previous meta-analysis sug-
gested that NSCLC patients with KRAS mutations responded
well to ICIs compared with KRAS-wild types ( p = 0.001)
(Ref. 65). This may be attributed to that KRAS mutations are
closely associated with smoking, so as to increase the expression
of neoantigens and TMB levels (Ref. 66).

Fig. 1. The downstream signalling pathway of Tumour-related gene mutation. Bold fonts indicated that the protein existed corresponding gene mutation. Green
represented suppressor gene while orange represented proto-oncogene.
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PI3 K/PTEN

PI3 K-AKT signalling is involved in various biological processes
in many types of cancer, its overactivation contributes to abnor-
mal cell cycle progression, epigenetic modification, adhesions
and motility changes, inhibition of apoptosis and induction of
angiogenesis (Refs 67, 68) by activating mutations in PIK3CA,
loss of PTEN and so on. PIK3CA gene encodes a catalytic sub-
unit, p110α, which catalyses PIP2 into phosphatidylinositol tri-
phosphate (PIP3) to mediate the phosphorylation of Akt at
thr308 by promoting PDK1 (phosphoinositide-dependent kinase
1) and Akt interaction, and thus activating downstream signalling
(Ref. 69). While the tumour suppressor gene PTEN negatively
regulates the PI3 K/AKT activation by encoding a dual protein/
lipid phosphatase (Ref. 70). PTEN dephosphorylates PIP3 to
PIP2 to antagonises the function of PI3 K, and thus, the loss of
PTEN also contributes to the activation of Akt (Refs 69, 70).
There were 7% LUAD patients harbouring PI3KCA mutation
(Ref. 60). There is a lack of data to find out the association
between PI3KCA mutation and ICIs efficacy in NSCLC patients.

KEAP1/NRF2

NRF2 is encoded by NFE2L2, a member of a transcription factor
family which can be translocated into the nucleus and regulate the
transcription of target genes (Ref. 71). KEAP1, recognised as the
principle negative regulator of NRF2, is a cysteine-rich and redox-
sensitive protein, binding to NRF2 and inducing the CUL3-
mediated ubiquitination and proteasomal degradation (Ref. 71).
The KEAP1/NRF2 axis is pivotal in the defence mechanism against
oxidative and electrophilic stress by eliciting antioxidant, detoxifica-
tion, and anti-inflammatory proteins (Ref. 50). Thus, alterations in
the KEAP1 and NRF2 genes mainly contribute to the constitutive
activation of NRF2, which accounts for the activation of downstream
target genes for cell proliferation and resistance to therapy (Ref. 72).
The mutation of KEAP1/NRF2 was found in 17% LUAD patients
(Ref. 60), have a poor prognosis and may not benefit from
anti-PD-L1 treatment (Ref. 73). Meanwhile, this study demonstrated
that KEAP1 mutation synergises with alterations in STK11 and
KRAS to represent a more aggressive NSCLC subtype in promoting
early-onset, initiation, and proliferation of tumour (Ref. 73). The
underlying mechanism may be related to immune escape in the
tumour immune microenvironment regulated by KEAP1 (Ref. 74),
which promoted the cytokines secretion including IL-6 and IL-11
and reduced leucocyte infiltration (Ref. 75).

STK11/LKB1

STK11/LKB1 encodes a serine-threonine kinase, which is recog-
nised as a tumour suppressor and a regulator in the metabolism
of glucose and lipid in cells, cell growth and polarity through
phosphorylation of AMPK and 12 AMPK-related kinases
(Ref. 76). STK11 mutation occupied about 17% LUAD patients
(Ref. 60). The downstream pathway of STK11/AMPK is the
mTOR pathway suppressed by AMPK phosphorylation of TSC2
and raptor and mTOR complex 1 (mTORC1) modulates the
expression of cell growth regulators, such as cyclin D1,
hypoxia-inducible factor 1α (HIF-1α), and C-Myc, all of which
relate to tumorigenesis and immune response (Ref. 54). Other
associations between STK11, AMPK and p53 have been identi-
fied, including directly or indirectly activating p53 through phos-
phorylation (Ref. 76). Nonetheless, STK11 mutations in NSCLC
patients may not respond to ICIs therapy (Ref. 39). Research
has shown that STK11/LKB1 deficiency led to an immunosup-
pressive tumour microenvironment by increasing neutrophil
recruitment and reducing T cell activity in the TME (Ref. 77).

EGFR

EGFR gene encodes a type I transmembrane growth factor recep-
tor with the tyrosine kinase domain, mutant EGFR has been
proven to contribute to increased proliferation, metastasis, angio-
genesis, and decreased apoptosis by activating the PI3 K-PTEN-
AKT and RAS/MEK/ERK/MAPK pathways (Ref. 53). It’s reported
that EGFR mutation only occurred 14% in lung adenocarcinoma in
TCGA data (Ref. 60). Nonetheless, cancers with EGFR alterations
generally exhibit the non-inflamed TME with reducing infiltrating
CD8+ T cells and so on (Ref. 19), via PI3 K/AKT pathways. Thus,
the studies demonstrated that NSCLC patients with EGFR muta-
tion had poor response to ICIs in NSCLC due to the uninflamed
TME with weak immunogenicity, low T cell infiltration and low
PD-L1 expression (Refs 78, 79).

BRAF

BRAF as a serine/threonine-protein kinase, its mutations occur in
3–10% of lung adenocarcinoma, the most common mutation of
which is the BRAFV600E mutation (Refs 48, 60), others including
BRAFG469A/V and BRAFD594G mutations. Constitutive BRAF acti-
vation induced by BRAFV600E mutation activates downstream
MEK/ERK signalling pathway, thus promoting tumour prolifer-
ation and growth (Refs 80, 81). The combination of MEK and
BRAF-V600-specific inhibitors further enhance treatment out-
comes in BRAF-V600E-positive NSCLC patients (Ref. 82).
However, there are still approximately 50% non-BRAF-V600E-
mutated NSCLC patients who cannot receive specific BRAF-
inhibitor (Ref. 81), indicating that it is an urgent need to explore
the potency of immunotherapy application in these patients. The
research showed that NSCLC patients harbouring BRAF muta-
tions showed limited response to ICIs although these mutations
were associated with high expression of PD-L1 and low/inter-
mediate TMB level (Refs 83, 84).

MET

Activating mutation and genomic amplification were discovered
in the MET gene, a novel and potential therapeutic target in
NSCLC (Ref. 85). Meanwhile, a mutation in MET was variable,
including exon 14 skipping and amplification. Both mutations
occupied less than 7% NSCLC patients (Refs 60, 86). MET as a
member of proto-oncogenes, encodes a receptor tyrosine kinase
binding of hepatocyte growth factor (HGF), inducing downstream
RAS-ERK/MAPKs, PI3 K/Akt, STAT, and NF-κB cascades
(Ref. 85). MET mutations were modestly correlated with the effi-
cacy of ICIs treatment in NSCLC patients in spite of high PD-L1
expression (Refs 87, 88). There is evidence that NSCLC patients
harbouring MET exon 14 mutation exhibited remarkably low
TMB levels, which is similar to BRAF mutant NSCLC and
MET exon 14 mutation contributed to an immunosuppressive
TME by inhibition of DCs and suppression of T-cell proliferation
induced by neutrophils (Refs 88, 89).

ALK

The echinoderm microtubule-associated protein-like 4 (EML4)
and ALK fusion gene was initially found in NSCLC patients by
Soda, resulting from an inversion in chromosome 2 (Ref. 90).
The inversion protein mediates constitution activation of ALK
by ligand-independent dimerisation. The activation of RAS/
MEK/ERK, JAK/STAT3, PLCγ and PI3 K/AKT pathways are
vital signalling pathways contributing to cellular proliferation
and growth, which can be modulated by ALK activity (Ref. 52).
However, in TCGA data, ALK fusion gene mutation was found
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only in 1% LUAD patients (Ref. 60). NSCLC patients harbouring
ALK rearrangements were associated with a low response to ICIs
due to the low PD-L1 expression and low infiltration of CD8+
tumour infiltrating lymphocytes (Ref. 79).

ATM

ATM gene, initially mutated in the autosomal recessive disease
ataxia–telangiectasia (AT), encodes a 370-kDa protein of the PI3 K
superfamily and activates downstream protein targets in different
cell circleswhen it senses double-strand breaks of cellularDNAdam-
age caused by ionising radiation (IR) and other agents (Refs 91, 92).
Whereas, the activation of ATM is correlated with the protein
serine–threonine phosphatase 5 (PP5) (Ref. 93). Studies also have
illustrated that ATM and XRCC4-like factor (XLF) have redundant
functions in the process of V(D)J recombination in developing
lymphocytes and ATM and XLF co-deficiencies contribute to a
severe combined immunodeficiency (SCID) phenotype similar to
that observed in the background of canonical-nonhomologous
end-joining (C-NHEJ) deficiency (Ref. 94). Thus, ATM plays a piv-
otal role in various pathways including genomic instability, cancer
susceptibility, as well as immunodeficiency and so on. However,
there is a lack of research to study the role of ATM mutation in
NSCLC and in NSCLC patients treating with ICIs.

Myc

Myc oncoproteins are regarded as transcription factors with three
members in its family, C-Myc, N-Myc, and L-Myc (Ref. 95),
which is amplified in approximately 3.3% of LUAD patients.
They are called ‘super-transcription factors’ due to latently modu-
lating the transcription of more than 15% of the entire genome
(Ref. 96). Thus, Myc oncogenes regulate a number of biological
functions, including cell proliferation, differentiation, survival,
as well as immune surveillance through orchestrating downstream
effectors, such as ribosome synthesis, protein translation, metab-
olism and cell cycle progression (Ref. 97). The underlying mech-
anism of Myc oncoproteins to promote cell proliferation and
tumourigenesis may not only alter target gene expression but
also change the basic transcription mechanisms by modulating
transcription elongation with cell cycle progression (Ref. 49). In
addition, Myc has been discussed to regulate the association
between tumour cells and immune cells by controlling the synthe-
sis of relevant cytokines. Nonetheless, Myc mutation repro-
grammed the tumour immune microenvironment by loss of T
cells, NK cells and B cells mediated by CCL9 and IL-23
(Ref. 98). Their relationship with ICIs efficacy is still unclear.

Although most of the single gene mutations, including TP53,
KRAS, KEAP1, STK11, BRAF, MET and ALK, have been verified
to be related to the efficacy of ICIs, not all mutations of them
have equivalent effects due to the different mutation subtypes
among these mutations. For example, TP53 missense has shown bet-
ter clinical benefits from anti-PD-1/PD-L1 therapy compared with
nonsense mutants. In addition, co-occurring mutation subtypes
such as mutations in KRAS and other genes (STK11 or TP53)
also have different influences on the ICIs efficacy in NSCLC.
Next, we predominantly reviewed the research of co-mutations in
NSCLC patients receiving ICIs to explore the independent predictors
of immunotherapy and the potential and underlying mechanisms.

The co-mutation subtypes related to ICIs

The Underlying mechanism of co-mutation

The underlying mechanisms of genetic mutations including
oncogenic mutation and suppressor genetic mutation are very

complicated. Currently, a study (Ref. 99) analysed ten typical
and classical pathways with commonly altered genes to explore
the patterns of reoccurrence, co-mutations, and mutual exclusiv-
ity. The results were that co-mutation events mediated synergistic
activation of each pathway such as LKB1 and KEAP1/NRF2 path-
ways synergically driving glutamine-dependent metabolic repro-
gramming (Ref. 100) and explicitly showed that some pathways
were markedly mutually exclusive such as RTK-RAS pathway
while others often had co-occurring mutations per tumour
including PI3 K and NRF2 pathways (Ref. 101). Moreover, resist-
ance to therapy was also reflected by patterns of co-mutation in
many tumours when targeting one of the alterations (Ref. 101).
For example, TP53 co-mutation in Her2-mutant LUAD cause
resistant to Afatinib (Refs 102, 103). Major studies have identified
that mutations are mutually exclusive due to pathway structure
which may correlate with functional redundancy.

Genetic epistasis may account for that a driver mutation is
unlikely to occur after an existing mutation with common or
superfluous functional effects in the same molecular pathway
due to non-additively to tumour fitness in the same pathway
with multiple genes (Refs 104, 105). Furthermore, the latter muta-
tion will not provide a further evolutionary advantage of tumours
in the presence of the prior mutation because of the effect of syn-
thetic lethality, as cells cannot survive with both alterations
(Ref. 106). Thus, it may be promising to exploit and identify
the second-site targets including oncogenic and non-oncogenic
mutations, which are aberrant in alliance with a tumour-specific
mutation, based on synthetic lethality. For instance, poly
(ADP-ribose) polymerase (PARP) inhibitors are used to treat
BRCA1/2 mutated ovarian cancers (Refs 107, 108) and together
with MYC blockade to treat triple-negative breast (Ref. 109).

Of note, Haar et al. (Ref. 105) illustrated that mutually exclu-
sive mutations also resulted from interactions with disease sub-
type and tumour mutation load through pan-cancer analysis. It
demonstrated that mutations contributing to low mutation load
in tumour subtype might be mutually exclusive. For example,
oncogene EGFR with low tumour mutation load in LUAD of
nonsmoking patients presented with mutual exclusivity
(Ref. 60). ‘Mutation load association’ (MLA) was calculated to
estimate the higher mutation frequencies in cancers with low or
high mutation loads. In addition, due to different cancer types,
gene mutation status was significantly distinct in different path-
ways. Thus, the specific MLA of each gene correlated with cancer
type. Researchers speculated that gene with low MLA was more
likely to be mutual exclusive by correcting for tumour type.
Moreover, driver mutation might tend to have a low MLA while
passenger mutation might positively correlate with higher MLA.
In conclusion, the results demonstrated that complicated interac-
tions between mutation loads, gene mutation frequencies, gene
mutation state, gene mutation types and tumour subtypes con-
tributed to a complex system in which both direct gene-gene
interactions (epistasis) and indirect causal paths, which might
drive patterns of mutual exclusivity or co-mutation between
mutations (Ref. 105).

The co-mutation subtypes and predictive role of ICIs

Generally, EGFR mutation is mutually exclusive. However, Yang
et al. found patients with EGFR-MAPK co-mutations had
increasing levels of both TMB and PD-L1 protein expression
through analysing data from TCGA and The Cancer Proteome
Atlas (TCPA), which might identify a subgroup of NSCLC
patients benefiting from ICIs with longer disease-free survival
(DFS) (median DFS: EGFR-Mut: WT: Co-Mut = 1.87: 3.77: 7.82
(months), p-value = 0.03) (Ref. 110). Nonetheless, due to the
advances and benefits of TKIs, scarce studies explore the efficacy
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of ICIs in NSCLC patients with EGFR mutation or co-mutation.
The KRAS-mutation is the opposite, and there has been no effect-
ive drugs targeting KRAS mutation sites in the past except
Sotorasib, which makes it difficult to treat. Thus, KRAS-mutation
was reported to have a causal relationship with immunoresistance
in the lung cancer microenvironment with coexisting alterations
and correlated with poor prognosis. For co-mutation, Kortlever
et al. initially identified that Myc and KRAS co-mutation elicit
immunosuppressive TME through exclusion T, B, and NK cells
in the mice model (Ref. 98). Furthermore, studies also defined
KRAS-STK11/LKB1 (KL) or KRAS-TP53 (KP) co-mutations as
distinct subgroups of KRAS-mutant LUAD patients. KL tumours
were recognised to be resistant to PD-1/PD-L1 inhibitors while
KP LUAD were relatively responsive to PD-1/PD-L1 inhibitors
(mOS: KP: K-only: KL = 6.4: 16.1: 16.0 (months), p-value =
0.0045) (Ref. 111). What is more, studies demonstrated that KP
lung cancers associated with epithelial–mesenchymal transition
(EMT) were more sensitive to PD-1/PD-L1 axis inhibitors than
epithelial KP tumours (Ref. 112). Additionally, co-mutation of
KEAP1/NFE2L2 and KRAS, as an independent prognostic factor,
demonstrated worse OS in NSCLC patients with ICIs (mOS:
KRAS-KEAP1/NFE2L2: K-only = 10: 24 (months), p-value <
0.001), irrespective of the level of TMB (Ref. 113). However, not
all KRAS mutations were equal in predicting the efficacy of ICIs
in LUAD patients. For example, KRASG12C-TP53 co-mutation
identified the positive responders to PD-1 inhibitor pembrolizu-
mab in PD-L1 high (≥50%) LUAD patients ICIs (mOS:
KRASG12C-TP53mut: KRASother-TP53wt = NE: 22.2 (months), HR
for mOS: 0.17 (95% CI 0.04–0.76), p-value = 0.02) while
KRASG12D/TP53 co-mutation created an immunosuppressive
microenvironment and might be a negative predictive biomarker
for anti-PD-1/PD-L1 ICIs in LUAD (Refs 114, 115). Additionally,
KEAP1-PTEN co-mutation also exhibited an immunosuppressive
microenvironment in the LUAD of mice model, along with the
high expression of PD-L1, which might be sensitive to ICIs
(Ref. 116). A sustained PI3 K signalling in combination with the
activated KEAP1 pathway might facilitate lung tumourigenesis
(Ref. 116). KEAP1 and STK11 co-mutation was reported to
increase the risk of death in NSCLC patients with ICIs, such as
in the tNGS cohort (HR of Co-Mut vs. WT for OS: 1.73 (95%
CI 1.17–2.57)), thus as a predictor to recognise population of
NSCLC patients unresponsive to ICIs (Ref. 14).

Likewise, TP53 mutations are also varied and distinct. For
example, TP53 missense and nonsense mutations were correlated
with elevated neoantigen and TMB levels, and lead to DNA damage
repair deficiency (Ref. 43). However, TP53 missense but not non-
sense mutants were associated with better clinical benefits from
anti-PD-1/PD-L1 therapy (Ref. 43). Thus, only suchTP53 subgroups
are expected to respond well to ICIs. A current study found that in
lung cancer patients with DSPP and TP53 co-mutation subtype
had a better PFS of immunotherapy with significantly infiltrated
CD8 + T cell and decreased M2 macrophage level compared
with wild-type (mPFS: co-mutation: WT= 9.3:4.9 (months),
p-value = 0.008) (Ref. 117). Not only that, lung cancer patients har-
bouring TP53/Histone-lysine N-methyltransferase 2C (KMT2C)
co-mutation also had significant benefit from ICIs (HR of Co-Mut
vs WT for DFS: 0.48 (95% CI 0.24–0.94)) (Ref. 118). TP53 and
ATM co-mutation was correlated with better OS compared with a
single mutation or no mutation in NSCLC patients treated with
ICIs (mOS: TP53-ATM co-mutation: TP53 mutation alone: ATM
mutation alone: no mutation = not reached: 11.0: 16.0: 14.0
(months), p-value = 0.24) (Ref. 119). In patients with TP53 and
ATM co-mutation, other mutations such as EGFR or ALK occurred
in parallel without concurrent or exclusive patterns (Ref. 119).

Notably, TP53 and ATM are also members of the DNA dam-
age response (DDR) pathway, other co-mutations in which were

also demonstrated to associate with the efficacy of ICIs in
NSCLC patients, such as homologous recombination repair and
mismatch repair (HRR-MMR) or HRR and base excision repair
(HRR-BER) (Ref. 13). Moreover, co-mutation between other sig-
nal pathways, such as NOTCH, and homologous repair genes
were also reported to associated positively with the efficacy of
ICIs in patients with advanced NSCLC (Ref. 120). The DDR sys-
tems contain eight pathways: MMR, BER, check point factors,
Fanconi anaemia, HRR, nucleotide excision repair (NER), nonho-
mologous end-joining, and DNA translesion synthesis (Refs 13,
121). DDR genes are responsible to regulate genetic instability
and susceptibility due to its involvement in the damaged reper-
toire of DNA repair and DNA-damage signalling capabilities.
The alteration in the DDR system will lead cells to fail to protect
the genome against endogenous and exogenous damage
(Ref. 107). Therefore, many gene mutations in DDR pathways
have been identified to relate with tumourigenesis, such as
MMR (MLH1, MSH2, MSH6, as well as PMS2), BER (POLE),
HRR (BRCA2), and ATM (Ref. 13). Overall, DDR pathway alter-
ation is related to tumour mutation burden and tumour-specific
neoantigen load, which may be the explanation of its predictive
value in ICIs efficacy in cancer. Moreover, the gene mutation dis-
rupting the DDR pathway will present as high mutation loads and
indicate benefit from ICIs, such as KMT2C mutation (Refs 122,
123).

However, not all co-mutations have been defined to be a bio-
marker of ICIs in NSCLC patients. For instance, the correlation
between MET exon 14 skipping and TP53 co-mutation and
immunotherapy hasn’t been identified although they are asso-
ciated with increased PD-L1 expression (Refs 124, 125). TP53
and EGFR co-mutation is also lack of evidence for predicting
the response of ICIs (Ref. 126) although the co-mutation is closely
associated with poor prognosis in LUAD (Ref. 127). The study
demonstrated that EGFR and co-mutational tumour suppressor
genes (TP53, KEAP1, STK11, etc.) had increased TMB, as an
independent subtype of LUAD (Ref. 128). To date, the sparse
study evaluates the association between EGFR co-mutation with
the efficacy of ICIs. Besides, the value of KRAS mutation patients
harbouring with CDKN2A/B or PIK3CA mutations in predicting
the ICIs response is also still uncertain (Refs 129, 130). In total,
the relationship between co-mutation and efficacy of immuno-
therapy may rely on mutation subtypes, mutation sites, a function
of mutant genes, and their association with TMB and immune
response, which needs a more comprehensive evaluation.

Potential Mechanisms of predicting ICIs by co-mutation

Although NSCLC patients with driver gene mutations are usually
regarded to have a low response to ICIs (Refs 79, 131), several dri-
ver genes have participated in the signalling pathway related to
immune response and the regulation of tumour immune micro-
environment (Refs 77, 132, 133, 134, 135, 136) (Figs 2 and 3).
For instance, evidence from several research studies demonstrated
that tumour suppressor proteins participate in modulating
immune response and regulating the expression of immune
checkpoints proteins. Thiem et al. found that P53 played a pivotal
role in boosting IFN-γ-induced PD-L1 expression by inducing
JAK2 expression (Ref. 137). IFN-γ produced by CD8+ cells was
also reported to elicit the expression of the immune checkpoints
in contrast to attracting cytotoxic immune cells, including PD-L1
on tumour cells and indoleamine-2,3-dioxygenase (IDO) on den-
dritic cells or macrophages, which promoted tumour evading and
created the immunosuppressive TME. Besides that accumulated
IFN-γ was recognised as the best incentive for PD-L1 expression,
IL-17, as a proinflammatory cytokine secreted by Th17 cells
(Ref. 138), has also been reported to regulate the expression of
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PD-L1 or modulate the level of CD38 to facilitate immunotherapy
resistance in KP lung cancer (Ref. 112).

What’s more, cell-intrinsic oncogenic signalling, such as
EGFR, was reported to facilitate PD-L1 expression in cancer
cells via PI3 K-AKT-mTOR pathway (Ref. 5). In addition, studies
showed that EGFR-TKI resistant NSCLC may respond to ICIs
therapy, based on the expression of PD-L1 (Refs 139, 140).
Thus, resistant mechanisms in EGFR mutation of increasing
PD-L1 expression and attenuating immune response were identi-
fied (Ref. 140). MAPK, PI3 K and NF-κB pathways participated in
resistance mechanism-induced PD-L1 overexpression, such as
HGF, c-MET amplification and EGFR-T790M resistance
mechanisms (Ref. 140). EGFR co-occurring alterations with inter-
feron regulatory factor 1 (IRF1) was reported to downregulate
CXC-chemokine ligand 10 (CXCL10) and thus decrease effector
CD8+ T cells infiltration (Refs 19, 141). The activation of MYC
also indirectly increased the expression of PD-L1 in tumour
cells through the influx of Chemokine (C-C motif) ligand 9
(CCL9)-dependent macrophage while Myc and KRAS co-mutation
in LUAD haven’t shown the similar mechanism to exert the

immunosuppressive tumour environment (Ref. 98). Meanwhile,
the studies identified that RAS signalling upregulated PD-L1
expression in tumour cells through inhibition of the AU-rich
element-binding protein tristetraprolin (TTP) via MEK signalling
to increase the stability of PD-L1 mRNA (Refs 133, 142).

DDR gene mutations, leading to unpaired DNA lesions and
S-Phase-Specific DNA Damage, may enhance the accumulation
of cytosolic DNA, which activates the stimulator of interferon
genes (STING)-mediated pathway and then induces the expres-
sion of type I IFN, indicating neoantigen-independent pathways
to activate innate antitumour immunity and boost the immune
recognition and response. What’s more, DDR-deficient molecular
subtype may promote the expression of PD-L1 both in tumour
cells and infiltrating lymphocytes (Refs 143, 144). The HR muta-
tion in DDR gene mutations contributed to increased TMB and
neoantigen exposure, enhancing the immune response against
tumours while NOTCH was associated with the development,
maintenance, and activation of T cells, in which co-mutation
will represent the distinct subtype sensitive to ICIs in NSCLC
(Ref. 120). Conversely, MET amplification decreased STING

Fig. 2. The immune microenvironment of tumour. The tumour immune microenvironment changed with the onset and evolution of tumour. Tumour antigen was
presented to CD8+ T cells directly or presented to CD4+ T cells indirectly by APC (antigen-presenting cell) to elicit anti-tumour response. M1 macrophage cells also
exerted anti-tumour immune response. Additionally, tumour cells also secreted chemokines such as CXCL10 to recruit lymphocytes. Tumour-associated macro-
phage, Tregs and MDSC play a role in suppressing anti-tumour immune response through secreting TGF-β, IL-10, and expressing IDO-1 and IDO-2. Neutrophils
secreted neutrophil elastase (NE) to promote tumour proliferation. Meanwhile, cellular matrix mediated by TGF-β in tumour blocked the infiltration of lymphocytes.
Cancer-associated fibroblasts (CAFs) released stromal cell derived factors, angiogenic factors to promote tumour cell growth and tumour blood vessel regeneration.

Expert Reviews in Molecular Medicine 7

https://doi.org/10.1017/erm.2022.9 Published online by Cambridge University Press

https://doi.org/10.1017/erm.2022.9


expression through inducing phosphorylation of UPF1 and atte-
nuated the IFN response. Thus, the tumour infiltrating CD8+ T
and NK cells were reduced (Ref. 145).

STK11 mutation was initially shown to upregulate the expres-
sion of KRAS genes and enhance the KRAS-induced signalling
and gene expression responses for driving tumourigenesis. And
in parallel it was correlated with reduced T cells in tumours likely
through reducing the activity of NF-κB pathways, a pivotal
immune regulatory pathway to mediate inhibition of immune
surveillance (Ref. 146). Additionally, co-mutation STK11 and
KRAS in a mouse model contributed to the recruitment of neu-
trophils with T cell suppressive effects and increasing the levels
of T cell exhaustion markers (PD-1, CTLA-4, and T-cell immuno-
globulin and mucin-domain containing-3 (TIM3)) as well as
tumour-promoting cytokines by interleukin-6 (IL-6) (Ref. 77).
In addition, STK11/LKB1 loss contributed to significant silencing
of STING expression which may be insensitivity to cytoplasmic
double-strand DNA (dsDNA) (Ref. 147). Thus, co-occurring
KRAS and STK11/LKB1 alterations reduced the level of innate
immune signalling including inhibition of cytotoxic type 1 IFNs

and chemokines CXCL10 which promoted T-cell recruitment
by silencing STING and thus, promoted tumour immune escape
(Refs 143, 147). Importantly, they correlated with low expression
of PD-L1 whether in a mouse model or in patient tumours
(Ref. 77). Thus, STK11 was associated with primary immunother-
apy resistance. Likewise, in a cohort of NSCLC patients harbour-
ing STK11/KEAP1 alterations, patients manifested as lower T cell
receptor (TCR) richness and diversity and lower expression of
Th1 and immunomodulatory genes, but had higher wound heal-
ing subsets compared with wild type, which was regarded as pre-
dictors of poor survival.

TP53 mutation causing loss of TP53 function, co-occurring
with KRAS or not, was closely correlated with increased TMB
and significantly enhance the tumour genomic instability to gen-
erate tumour neo-antigens, thereby eliciting tumour immunogen-
icity with increasing recruitment of cytotoxic T lymphocytes into
TME, thus improving the efficacy of ICIs (Refs 134, 148).
Neutrophils and dendritic cells were also closely correlated with
TP53 mutation status (Ref. 149). Moreover, studies also demon-
strated that altered unfold TP53 proteins caused by destabilising

Fig. 3. The pathway of gene mutation to influence the tumour-associated immune response. The diverse signalling pathways and transcriptional factors promoted
the expression of PD-L1 to assist tumour to evade immune response. Tumour cells evade anti-tumour effects of T cells in part by elevating PD-L1 mRNA expression
at transcriptional level via activation of different upstream signalling pathways.
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TP53 may also become tumour-specific antigens presented by
class I MHC molecules, which could augment T cell reactivity
(Ref. 134). In contrast, Cha et al. has shown that p53 aberrant
mutation assessed by IHC was closely correlated with PD-L1
expression in tumour cells (Ref. 150). Likewise, p53 was proved
to modulate PD-L1 expression by regulating the transcription of
miR-34, a specific microRNA binding to PD-L1 in p53R172HΔg/
+ K-rasLA1/+ syngeneic mouse model with lung adenocarcinoma.
However, the inert relationship among them needs more evidence
from clinical specimens to verify. Strikingly, TP53 and KRAS
co-mutation presented with increased expression of PD-L1, and
decreased expression of other non-PD-L1 immune inhibitory
checkpoints, including Lymphocyte Activating 3 (LAG3) and
V-Set Domain Containing T Cell Activation Inhibitor 1
(VTCN1), indicating a potential population benefiting from
ICIs (Ref. 151).

In conclusion, the aberrant co-mutations of genes synergistically
contribute to the immune function disorder to promote tumour
immune evasion by influencing the immune checkpoint expres-
sion, the level of cytokines and inflammatory factors. The under-
lying complex mechanism may account for why patients with
single gene mutation have no response to ICIs, but co-mutations
have a surprising effect on predicting the response of ICIs.

The Relationship between co-mutations and current
biomarkers of immunotherapy

A large body of studies has revealed that both single mutation and
co-mutation affect the current biomarkers of immunotherapy,
such as PD-L1, TMB and so on (Refs 21, 115, 118). For example,
EGFR mutations are correlated with a lower TMB (Ref. 152) and
lack of tumour infiltrating lymphocytes (TIL) (especially PD-L1
+ /CD8 + TIL) that contributes an uninflamed TME and weak
immunogenicity (Ref. 78), suggesting an inferior response to
ICIs in NSCLC patients (Refs 78, 79). Interestingly, the aberrant
mutations in EGFR can also drive PD-L1 expression, which indi-
cates potential benefits from immunotherapy (Ref. 153). The dis-
crepancy between the above studies seems unable to determine
whether patients with EGFR mutation can benefit from immuno-
therapy, so we expect more clinical/pre-clinical studies to demon-
strate the response of ICIs in these patients. Meanwhile, we also
lack the data of the PD-L1 expression, TMB, and TIL in different
EGFR co-mutation subtypes.

Dong et al. found that TP53 and KRAS co-mutation had a
possible synergistic effect on boosting PD-L1 expression
(Ref. 154). They also correlated with increased TMB level, accel-
erated T cell infiltration, as well as enhanced tumour immunogen-
icity (Ref. 154). Likely, higher TMB and copy number alteration
(CNA) are presented by co-occurring TP53- or STK11-KRAS
co-mutation than KRAS mutation alone. However, as mentioned
above, the biological phenotype may differ among different KRAS
mutation sites. However, KRASG12D/TP53 co-mutation showed
decreased TMB, PD-L1 expression, and immune cells infiltration,
consisting of activated CD4 memory T cells, T helper cells, NK
cells and M1 macrophages (Ref. 115). KMT2C was associated
with a higher level of TMB and higher PD-L1 expression com-
pared with the wild type due to the genetic instability
(Ref. 118). In this regard, Zhao et al. demonstrated that truncating
TP53 mutations were associated with poor survival in NSCLC
patients in ICIs therapy with low TMB (Ref. 149), indicating
that the TP53 mutation status may associate with different prog-
nostic outcomes in NSCLC patients with ICIs. For TP53
co-mutation in NSCLC patients, increased TMB and PD-L1
expression were reported, such as TP53 and ATM co-mutation
(Ref. 119). Furthermore, TP53 and ATM co-mutation were corre-
lated with high TMB regardless of the presence of other driver

mutations, such as KRAS (Ref. 119). Similarly, in mechanism,
co-mutations in DDR way (HRR-MMR or HRR-BER) also pre-
sented with increased TMB and neoantigen load and may elevate
the expression of immune checkpoint (PD-L1 and LAG3) and
T-effector and IFN-γ-associated signatures and so on (Ref. 13).
Beyond above reports, some co-mutations may exert predictive
value independent to TMB. Although emerging studies suggested
that high TMB positively correlated with the efficacy of ICIs,
Marinelli and coworkers demonstrated that co-mutation of
KEAP1-STK11 had a shorter survival in LUAD patients receiving
ICIs, even with high TMB, indicating that the level of TMB may
not absolutely associated with the efficacy of ICIs (Ref. 14).
Concomitant STK11-KEAP1 loss has been reported to enhance
the activation of NRF2 (Ref. 155), which modulates antioxidant
response proteins, upregulates ferroptosis-protective mechanisms,
and decreases inflammatory factors. Therefore, whether the
patients with co-mutation benefit from ICIs may be influenced
by various factors, including the interaction between co-mutation
genes.

Other mutations were also reported associating with TMB,
TIL, and PD-L1 expression. KMT2C was associated with a higher
level of TMB and higher PD-L1 expression compared with the
wild type due to the genetic instability (Ref. 118). MET exon 14
skipping has been reported to have a median TMB burden and
demonstrate a poor response to ICIs albeit the higher of PD-L1
expression (Ref. 88) and CD8 + T cell infiltration level (Ref. 87).
The co-mutation of MET exon 14 skipping with TP53 will not
change the phenomenon. We analysed that the prevalence of
co-mutation types of NSCLC patients in TCGA, and summarised
the relationship between co-mutation types and their relationship
with ICIs therapy (Table 1).

Given the relationship between gene mutations and tumour
immunity as mentioned, the genetic alterations may influence
the TIL in the TME so as to account for tumour immune hetero-
geneity and immunotherapy sensitivity. The immune-inflamed
tumours are recognised as ‘hot tumour’ with high infiltration of
CD8 + T lymphocytes, expression of PD-L1, and level of TMB
and are more responsive to ICIs (Refs 9, 10, 156). While
immune-excluded tumours and immune-desert tumours are
characterised as ‘cold tumour’ with poor T-cell infiltration or
high immunosuppressive cell populations infiltration such as
T-regulatory cells (Tregs), myeloid-derived suppressor cells
(MDSCs), and tumour-associated macrophages (TAMs)
(Ref. 156). For example, EGFR mutation contributes to ‘cold
tumour’, characterised as lack of tumour infiltrating lymphocytes
(Ref. 78) while TP53 and KRAS co-mutation may generate ‘hot
tumour’ by increasing T cell infiltration, PD-L1 expression and
TMB level (Ref. 154). Thus, targeting specific gene mutations or
signal pathways may provide us a more insightful perspective to
alter tumour immune microenvironment and improve the effi-
cacy of ICIs (Ref. 157). Meanwhile, gene mutations may also pre-
dict the efficacy of ICIs by reconstructing tumour immune
microenvironment.

Prospective

In The past, studies demonstrated that NSCLC patients with dri-
ver mutations may be less responsive to ICIs than wild type, irre-
spective of PD-L1 expression. Nonetheless, cancer therapy has a
tremendous shift with the advances in sequencing technologies
(Ref. 158). Tumour-specific genetic mutation profile unveils that
each patient exists more than one mutation with synergistical or
complementary biological changes, indicating that personalised/
precision genotype-targeted cancer treatment is imperative
(Ref. 2). In addition, immunotherapy intrigues the predominant
attention in cancer therapy with the gorgeous advent of several
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ICIs. The current predictive biomarkers of ICIs have some limita-
tions of PD-L1 expression and TMB level in NSCLC. However,
some single-gene mutations have been indicated to correlate

with the efficacy of ICIs (such as TP53, KRAS, KEAP1, STK11,
BRAF, MET and ALK) or correlated with hyperprogression
with anti–PD-1 therapy (such as MDM2/MDM4 amplifications)

Table 1. The incidence of co-mutations in TCGA and their relationship with ICIs therapy

Co-mutation types

Event in
TCGA-LUAD
patients (%)

Event in
TCGA-LUSC
patients (%)

Relationship between co-mutations
and current biomarkers Response to ICIs Ref

EGFR MAPK 0 (0) 0 (0) Increasing levels of both TMB and
PD-L1 protein expression

Immunotherapy
sensitivity

(Ref. 110)

KRAS Myc 2 (0.4) 0 (0) Increasing PD-L1 expression and
eliciting immunosuppressive TME
through exclusion T, B, and NK cells

Unknown (Ref. 98)

KRAS STK11/
LKB1

31 (5.53) 0 (0) Decreasing PD-L1 expression with a
non-T-cell-inflamed tumour immune
microenvironment

Immunoresistance (Ref. 111)

KRAS TP53 49 (8.73) 37 (7.54) Increasing PD-L1 expression, TMB
level, CNA level and accelerating T cell
infiltration

Immunotherapy
sensitivity

(Ref. 111)

KRAS KEAP1/
NRF2

27 (4.81) 1 (0.20) Unknown Immunoresistance (Ref. 113)

KRAS-G12C TP53 6 (1.1) 0 (0) Unknown Immunotherapy
sensitivity

(Ref. 114)

KRAS-G12D TP53 0 (0) 0 (0) Decreasing TMB, PD-L1 expressions
and immune cells infiltration with an
immunosuppressive
microenvironment

Immunoresistance (Ref. 115)

KEAP1 PTEN 0 (0) 4 (0.81) Immunosuppressive
microenvironment and high
expression of PD-L1

Immunotherapy
sensitivity

(Ref. 116)

KEAP1 STK11 21 (3.74) 2 (0.41) High TMB and low PD-L1 expression Immunoresistance (Ref. 14)

TP53 DSPP 7 (1.25) 3 (0.61) Infiltrated CD8+ T cell and decreased
M2 macrophage level

Immunotherapy
sensitivity

(Ref. 117)

TP53 KMT2C 28 (4.99) 29 (5.91) Higher TMB and tumour-specific
neoantigen load and high PD-L1
expression

Immunotherapy
sensitivity

(Ref. 118)

TP53 ATM 10 (1.78) 21 (4.28) Increased TMB and PD-L1 expression Immunotherapy
sensitivity

(Ref. 119)

HRR MMR – – Increased TMB and neoantigen load
and elevated the expression of
immune checkpoint (PD-L1 and LAG3)
and T-effector and IFN-γ-associated
signatures and so on

Immunotherapy
sensitivity

(Ref. 13)

HRR BER – – Increased TMB and neoantigen load
and elevated the expression of
immune checkpoint (PD-L1 and LAG3)
and T-effector and IFN-γ-associated
signatures and so on

Immunotherapy
sensitivity

(Ref. 13)

HR NOTCH – – Increased TMB and neoantigen load
and elevated the expression of
immune checkpoint (PD-L1 and LAG3)
and T-effector and IFN-γ-associated
signatures and so on

Immunotherapy
sensitivity

(Ref. 120)

TP53 MET exon
14
skipping

0 (0) 0 (0) Iincreasing PD-L1 expression Lack of evidence (Refs 124,
125)

EGFR TP53 37 (6.60) 7 (1.43) Increasing TMB Lack of evidence (Ref. 126)

KEAP1 3 (0.53) 0 (0) Increasing TMB Lack of evidence (Ref. 128)

PTEN 2 (0.36) 0 (0) Increasing TMB Lack of evidence (Ref. 128)

STK11 0 (0) 0 (0) Increasing TMB Lack of evidence (Ref. 128)

KRAS PIK3CA 3 (0.53) 1 (0.20) Lack of evidence Lack of evidence (Ref. 129)

CDKN2A/B 2 (0.36) 1 (0.20) Lack of evidence Lack of evidence (Ref. 130)

LUAD, Lung adenocarcinoma; LUSC, Lung squamous cell carcinoma; TCGA, The Cancer Genome Atlas.
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in NSCLC patients but their predictive ability is influenced by
co-occurring mutations and mutation subtype. At the same
time, a genomic mutation signature risk model has successfully
predicted the efficacy of ICIs in non-squamous NSCLC
(Ref. 16). Herein, we laid special stress on analysing the recent
studies about co-mutations in NSCLC patients, which may be
more capable of predicting the effect of ICIs than monogenetic
mutations, coping with the dilemma of small groups of immuno-
therapy response. Given the emergence of co-mutation subtypes,
we hope that these specific tumour subtypes will provide better
evidence and reference for future clinical decision-making and
improve the response rate of ICIs.

We further explored several potential mechanisms among
them. Most of the tumour-specific genetic mutations are related
to immune-related pathways and T lymphocytes infiltration sig-
nalling pathways, such as the secretion of cytokines and the
expression of an immune checkpoint. Current researches support
that these cellular and molecular properties of lung cancer may
construct a vital framework for a patient with immunotherapy.
However, more clinical trials with genetical and histological test-
ing are still needed to validate the prognostic effect of co-mutation
in immunotherapy by assessing tumour subtype-specific efficacy.
With the further study of tumour-specific genetic mutations and
its relevant signalling, it is not long before they can be applied to
predicting immunotherapy response in patients with NSCLC.
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