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We prove that for all x > 0, we have

%(g)x (a:sinh %)M (1 + %) <I(z+1)

with the best possible constants « = 0 and § = Tlm)'

1. Introduction

In 1916, Ramanujan [6-8], [9, p. 339] published the following elegant double inequal-

ity for Euler’s gamma function in the Journal of the Indian Mathematical Society
without proof:

2\ 1 1/6
\/E<) (8903 + 42’ 4o+ )
e

100

<I'(x+1)
2 \* ) 1 1/6

<\/E(> <8z3+4x2+z+30> , x>0, (1.1)
(§

Karatsuba [5] proved in 2001 that (1.1) holds for all > 1. Two years later, Alzer [4]
showed that (1.1) is also valid for all z € [0, 1]. Moreover, it was proved in [4] that
on the left-hand side the constant 1/100 can be replaced by the slightly larger value

min _A(z) =0.0100450...,
0.6<x<0.7

Alz) = (i)g [F(x +1) (;)T — 823 — 4a? — 1.

In 2002, Windschitl [10] discovered a remarkable approximation formula, which
connects the gamma function with the hyperbolic sine function:

I'(x+1) 2 V2rx o xsmh; + 1046 . (1.2)

where
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710 H. Alzer

He pointed out that for z > 8, this formula is good to more than 8 decimal places,
and therefore suggested it for computing the values of the gamma function on
calculators with limited program or register memory.

Formula (1.2) inspired us to look for a counterpart of Ramanujan’s inequali-
ties (1.1). We ask: what are the best possible constants o and 3 such that

T z/2
1
27rx<x) (:z:sinh ) <1 + O;) <I'(r+1)
e x x

< %(i)x (x sinh i)m/z <1 + ﬁ,)) (1.3)

is valid for all > 07 It is the aim of this paper to answer this question. To prove
our main result we need several lemmas. They are collected in the next section. In
§3 we determine the optimal values «, 3 in (1.3), and we compare the lower and
upper bounds for I'(z + 1) given in (1.1) and (1.3).

The numerical and algebraic computations have been carried out with the com-
puter program MAPLE V, Release 5.1.

2. Lemmas

Our first lemma presents some asymptotic formulae and a limit relation. Let v
denote the logarithmic derivative of the gamma function.

LEMMA 2.1. For x — oo, we have

1 1
1 1
1 1
~loga — — — —— 4 ... 2.2
Y(x) ~logx 5r " Tom2 T (2.2)
z YV cq C2 C3 Cq Cs
Dr+D)~V2rz( ) 1+ 242023 205 2.
(z+1) wx(e)[+x+x2+x3+x4+x5+ } (2.3)
where
R R S . I 1 .. _ 163879
7120 7988 T U B18407 YT 24883200 0 209018880’
z/2
. = o1 c1 . Co c3 N 6971
lim % h=) —(1+2 42,8 2\ -7
o0 szm a:) ( * x +x2+x3+x4>} 41803776
(2.4)

Proof. Formulae (2.1)—(2.3) are given in [1, pp. 257, 259] and [11]. Let

. 1/(2t)
h(t) = <s1nht> .

t

Then we have

R(0) =1 and h®(0) = cpk! for k=1, 2, 3, 4.
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Taylor’s theorem gives
5

1 R (0) h(®) (et)
[h(t)—z o t’f}: 65 t, 0<e<l.
k=0

It follows that
4
1 R®)(0) 6971
lim — —(1 | = = .
150 75 {h(t) < + ;; it ﬂ 51 41803776

This yields (2.4). O

The following double inequality for ¢’ is proved in [2].
LEMMA 2.2. For all real numbers x > 0 and integers n > 0, we have
Ton(a) < ¥ (@) < Tonpa (), (2.5)

where

11 ’ Bo

Here, B,, denotes the nth Bernoulli number.
The next lemma provides rational bounds for 1/ sinh?.

LEMMA 2.3. Let

11 1, 2, 14 2 8

10395
For all real numbers t > 0, we have
() < m <0(t). (2.6)
Proof. First, we prove the right-hand side of (2.6). We define
o(t) = 0(t)(sinh t)? — 1.
Differentiation gives
,2et @' (t) = 0'(t)(e* — 1) + 20(t)(e* + 1). (2.7)
sinh ¢
A short calculation reveals that
6(t) >0 fort>0 (2.8)
and that there exists a number tg € (2.052,2.053) such that
(t—1t)0'(t) >0 for 0 <t #tp. (2.9)

Using (2.7)-(2.9), we conclude that ¢’ is positive on (g, 00).
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712 H. Alzer
Next, we prove that ¢'(t) is also positive for ¢ € (0, t]. Let

4
. 2k By,
o(t) = Z’}th2k with v, = B
k=0
We have
teotht — 6(t) = > yort™ =D (qar—o + yart?)t* 72, (2.10)
k=5 k=3
Applying the inequalities
2(2n)! 1 2(2n)! 1
1B, < >1 2.11
reni—zo <V B S Gy 2L (2.11)
where )
log(1 -6
poo4 086/ 6o
log 2
(see [3]), for k > 3 we obtain
_ 2
—Vak o — By, , 1 =227k /¢
= < ) <1, o<t<m 2.12
Vak—2 ]{1(4/€ — 1)B4k_2 1—20—4k\ 1 T ( )
From (2.10) and (2.12) we conclude that
ot
cotht > %, 0<t<. (2.13)
Let 0 < t < to. Using (2.7), (2.8) and (2.13) gives
2¢! , 5(t) 2t7
@' (t) = 0'(t) +20(t) cotht > 0'(t) + 20(t) — = =z V(¢
(@@~ Dsnng? (D) = 00 +20() cotht > 6(8) +26() == = o5ormp v ():

where
v(t) = —7t5 + 120t — 1550¢% + 21000

Since v is positive on (0, ¢o], we conclude that ¢'(t) > 0 for 0 < ¢ < to.

Thus, ¢ is strictly increasing on (0, c0), so that, for ¢ > 0, we obtain

¢(t) > lim ¢(z) = 0.

z—0

This completes the proof of the right-hand side of (2.6).
Now we show that

n(t) =1 — (sinht)*x(t)

is positive on (0, 00). By differentiation we get

2et
sinh ¢ "

"(t) = X' (t)(€* — 1) + 2x(t)(e* +1). (2.14)

We have
X'(t) <0 fort>0. (2.15)

https://doi.org/10.1017/50308210508000644 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210508000644

Sharp upper and lower bounds for the gamma function 713

Furthermore, there exists a number ¢; € (2.235,2.239) such that
(t—1t1)x(t) <0 for 0 <t#t. (2.16)

It follows from (2.14)—(2.16) that n'(¢) > 0 for ¢ > ¢;. Let

5

k(t) = Z Yort2F.

k=0

Then we obtain

oo
teotht — k(t) =Y (ak + Yanrat®)t*.
k=3

Using (2.11) for k > 3 gives

2
Vak+2 0 1—2_4k t
St < g () <L 0<t<m

This leads to
k(1)

cotht < T, 0<t<Lm. (217)

Let 0 < t < t1. From (2.14), (2.15) and (2.17) we get

a0 = oy 200 < 200 = T B
where
p1(t) = 100t% — 1760¢° 4 23 023t* — 269 280t + 3420 450
and

po(t) = 10t10 — 99¢% + 990° — 10 395t* 4 155 925¢> + 467 775.

Since p; and ps are positive on [0, 2.239], we conclude that »'(¢) > 0 for t € (0, ¢1].
Hence, for ¢ > 0, we have

n(t) > lim n(z) = 0.
z—0

This implies the left-hand side of (2.6). O

Moreover, we need inequalities for certain polynomials of degree 13 and 21,
respectively.

LEMMA 2.4. Let

A(t) = 10t + 90t12 + 283t + 147¢10 — 962¢° — 2585 4 7473t7 4 5673t°
— 44493t° — 120 572t* — 131 208t% — 65912t% — 17325t — 1925.  (2.18)

For all t € [0,2.1] we have A(t) < 0.
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Proof. Let 0 <t < 2.1. Then

A(t) < t7(10t* — 962) + 1°(90t” — 44 493) + ¢3(283t° — 131 208)
+ t2(147t% — 65912) + t*(7473t> + 5673t% — 120572)
<0,

since all terms in brackets are negative. O

LEMMA 2.5. Let

ult) = alt) - b(1), (2.19)
where
17 21
a(t) = Zaktk and b(t) = Z btk
k=0 k=9
with
ag = 8891467 200, a1 = 97806 139 200, as = 468 363 546 000,

az = 1239747720750, a4 = 1797428036250, a5 = 1595137522770,
ag = 877527340470, a7y = 280158434100, ag = 36995476375,
ag = a9 = a11 =0, a12 = 32584 465, a13 = a14 = a15 = a1 = 0,
ay7 = 1375, by = 5041210075, b1o = 2139981547,
b11 = 61322767, bi12 =0, b13 = 16261905,
b14 = 11624085, b15 = 2771604, b1g = 232419,
b7 =0, bi1g = 6655, b19 = 3685,
boo = 847, bay = T77.

For all t € [0,2], we have p(t) > 0.
Proof. If 0 <t < 1, then

w(t) = a(0) —b(1) = 1618051 534.
Let 1 <t < 2. We have

p(t) = "2 (a17t® + ara — baot® — bat?) + t3(as — bigt'')
+t" (a7 — bigt') 4+ t5(ag — b1t'®) + t°(as — bist'?)
+ t(agt® + ag — byat'® — byizt'? — byot?)
+t%(ag — by1t?) + (ast® 4+ ag — bot?).

A short calculation shows that the terms in brackets are positive. Hence, u(t) > 0.
O

3. Main result

We are now in a position to determine the largest number « and the smallest
number [ such that (1.3) holds for all positive x.
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THEOREM 3.1. For all real numbers x > 0, we have

AN 1 /2 o
271'36() (xsmh ) (1 + 5) <I(x+1)
e x x
2\ 1 z/2 ﬂ
< \/27rx<> (a:sinh ) <1—|—5) (3.1)
e x x
1

with the best possible constants a =0 and 3 = 1555

Proof. First, we prove the left-hand side of (3.1) with « = 0. For « > 0, we define
1
f(z) =logI'(z + 1) + = — Sz logsinh (x> — 2(1+3z)logz — 1 log(2m).

Differentiation gives

1
2f'(z) = g() (3.2)
x
where
1
g(t) = 27/1(1 + t) —1—t+3logt —logsinht + tcotht.
We obtain
, 2, 1 3 )
g'(t) ==y (1+ <) + 5 — 1+t —t(cotht)?. (3.3)
t t t
Lemma 2.2 yields
1 1 1 1 1 1
Ty(x) ==+ 5+ + - < (). (3.4)

z 222 6z 3025 ' 4227 3029
Using (3.4) and (2.6) leads to

t

2 1 3
< -1y )+ 21
g®) t2 4( + )+t (sinht)?
3
t

t

2 1

< —=Ty(14+ =
2 4( +t)+

t5
S Y
51975(t + 1)° ®),

— 1 —tx(t)

where A is defined in (2.18). From lemma 2.4 we conclude that ¢’ is negative on
(0,2.1].
Applying (3.4) and cotht > 1 (¢ > 0), from (3.3) we obtain

g'(t) < —t%T4 (1 + 1) + % —1=uw(t), say. (3.5)
Let
w(t) = 105t(t + 1)%u(t). (3.6)
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Then,

w(t) = —105t'° — 630t — 1286t% — 87" + 4657t% + 10 353t°
+ 11977t* 4 8505¢% 4 3745t + 945¢ + 105.

Since
w®(21)<0for k=0,1,...,6 and w7 (t) <0 fort >0,

we conclude that w(t) < 0 for ¢ > 2.1. It follows from (3.5) and (3.6) that ¢’ is also
negative on [2.1, 00).
Hence, ¢ is strictly decreasing on (0, 00). Using (2.2) yields

g(t) < il_%g(z) =0, t>0.
From (3.2) we conclude that f’ is negative on (0,00). Applying (2.1) gives
f(z) > lim f(z) =0.
zZ— 00
This leads to the first inequality in (3.1) with o = 0.
Next, we prove the right-hand side of (3.1) with 8 = 1620 Let x > 0 and

1
u(z) =log I'(x + 1) + = — Fxlogsinh (x)

— (1 + 3z)logz — log <1 + ff)) — 3 log(2m).
We have )
2 — 3.7
(@) =o(3). (3.7
where

1053t5

B+ 1 +3logt — logsinht + t coth t.

v(t):2¢<1+1>—1—t+

From (2.5) we obtain

1 1 1 1 1 5

1
’ T _ = _ — . .
V@) <T@) = 4 55+ 65 " 3005 T a7 3009 T 66a (3.8)

Applying (3. 8) and (2.6) gives

) 1 108t>(5t° + 6) 2
<1+t> +*—1+t+w_t(00thw
1 3 108t (Bt° + 6) 1
>—— (1+t) +t_1+t+(5t5+1)2_t<1+(sinht)2>
2 1 3 1065 (Bt + 6)
t7
n(t), (3.9)

T 51975(¢ + 1)'L(#5 + 1620)2
where p is defined in (2.19). Lemma 2.5 yields that v'(t) > 0 for 0 <t < 2.
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Sharp upper and lower bounds for the gamma function v
Using

1 1 1 .
1/}/(1') <T1(LE): E+Tx2+@ and t<Slnht, t>0,

we obtain from (3.9) that

2 1 1065 (Bt5 1
v/(t)>_tQT1(1+t)+3_1+t+Oﬂt(ﬁt—i_e))_t<1+)

t (Bt5 +1)2 (sinh ¢)2
2 1 2 108t°(Bt° + 6)
— ST 1+ - Sl = = .
> tQTl( + t) + . + B 1172 o(t), say
We define

3
T(t) = Z(t+ 1)3(t° +1620)20 (t).
Then we have

T(t) = 2712 + 87t 4 89¢10 + 30t + 281 880t + 865 080¢°
+ 871 560t° + 291 600t* — 78732002 — 7873 200¢ — 2 624 400.

Since
7®(2)>0 fork=0,1,2 and 7"(t)>0 fort>0,

we conclude that 7, o and v’ are positive on [2,00).
Thus, v is strictly increasing on (0, 00) with

il_I{(l)’U(Z) =0,

so that (3.7) implies that «’(z) > 0. It follows that

u(z) < lim u(z) =0.

Z—00
This yields the second inequality in (3.1) with g = ﬁ.
The double inequality (3.1) is equivalent to
a< F(r) < 8,
where
I 1 ®
= (L
V2mz(zsinh(1/z))*/2
We have
311—>H10 F(z)=0
and using (2.3) and (2.4) gives
. 163 879 6971 1
lim F(z) = — = )
T—00 209018880 41803776 1620

1

This implies that in (3.1) the best possible constants are a = 0 and 3 = 1555-
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REMARK 3.2. We denote the lower and upper bounds for I'(z + 1) given in (1.1)
by Li(z) and Uy (x), respectively, and the lower and upper bounds given in (3.1)
by Lo(z) and Us(x), respectively. Then we have the following limit relations:

_Ly(z) — Lo(x) _ V7 - spla(@) — Lo(x) 7
1 = 1 = — V2
250 (afe) J10° aoroo (z/e)® 14400V ™
. Ui(x) — Us(x) 2me . Ui(z) — Us(z) 11
9/2V1 _ 7/2 _ fo—
g (z/e)" 6200 ook? (z/e)® 11520 V2™

This implies that for all sufficiently small  the lower and upper bounds in (1.1) are
better than those in (3.1), whereas for all sufficiently large z, the lower and upper
bounds in (3.1) improve those given in (1.1).
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