
Adv. Appl. Probab. 54, 688–717 (2022)
doi:10.1017/apr.2021.51

LINKING REPRESENTATIONS FOR MULTIVARIATE EXTREMES VIA A
LIMIT SET

NATALIA NOLDE,
∗

University of British Columbia
JENNIFER L. WADSWORTH,

∗∗
Lancaster University

Abstract

The study of multivariate extremes is dominated by multivariate regular variation,
although it is well known that this approach does not provide adequate distinction
between random vectors whose components are not always simultaneously large.
Various alternative dependence measures and representations have been proposed, with
the most well-known being hidden regular variation and the conditional extreme value
model. These varying depictions of extremal dependence arise through consideration of
different parts of the multivariate domain, and particularly through exploring what hap-
pens when extremes of one variable may grow at different rates from other variables.
Thus far, these alternative representations have come from distinct sources, and links
between them are limited. In this work we elucidate many of the relevant connections
through a geometrical approach. In particular, the shape of the limit set of scaled sam-
ple clouds in light-tailed margins is shown to provide a description of several different
extremal dependence representations.

Keywords: Multivariate extreme value theory; conditional extremes; hidden regular
variation; limit set; asymptotic (in)dependence

1. Introduction

Multivariate extreme value theory is complicated by the lack of natural ordering in R
d,

and the infinite possibilities for the underlying set of dependence structures between random
variables. Some of the earliest characterizations of multivariate extremes were inspired by
consideration of the vector of normalized componentwise maxima. Let X = (X1, . . . , Xd) ∈R

d

with Xj ∼ Fj, and consider a sample Xi = (X1i, . . . , Xdi), i = 1, . . . , n, of independent copies of
X. For a fixed j, defining Mj,n = max1≤i≤n

(
Xji
)
, we know from the extremal types theorem that

if we can find sequences such that
(
Mj,n − bj,n

)
/aj,n converges to a nondegenerate distribution,

then this is the generalized extreme value distribution. Moreover, the sequence bj,n ∼ F−1
j (1 −

c/n), n → ∞, i.e., is of the same order as the 1 − 1/n quantile. A natural multivariate extension
is then to examine the distribution of the vector of componentwise maxima,

(
Mn − bn

)
/an.

This is intrinsically tied up with the theory of multivariate regular variation, because it leads to
examination of the joint behaviour of the random vector when all components are growing at
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Linking representations for multivariate extremes via a limit set 689

the rate determined by their 1 − 1/n quantile. If all components were marginally standardized
to focus only on the dependence, then all normalizations would be the same.

In normalizing all components by the same amount, we only consider the dependence struc-
ture in a single ‘direction’ in R

d. In some cases this turns out to provide a rich description
of the extremal dependence: if the limiting distribution of componentwise maxima does not
have independent components, then an infinite variety of dependence structures are possible,
indexed by a moment-constrained measure on a (d − 1)-dimensional unit sphere. However,
when the limiting dependence structure is independence, or even when some pairs are inde-
pendent, this representation fails to discriminate between qualitatively different underlying
dependence structures. While consideration of componentwise maxima is not necessarily a
commonly applied methodology these days, the legacy of this approach persists: statistical
methods that assume multivariate regular variation, such as multivariate generalized Pareto
distributions, are still very popular in practice (e.g. [16]). A recent theoretical treatment of
multivariate regular variation is given in [31].

Various other representations for multivariate extremes have emerged that analyze the struc-
ture of the dependence when some variables are growing at different rates from others. These
include the so-called conditional extreme value model [25, 24], where the components of X
are normalized according to how they grow with a single component, Xj say. Related work
examines behaviour in relation to an arbitrary linear functional of X [3]. The conditional rep-
resentation allows consideration of those regions where some or all variables grow at a lesser
rate than Xj if this is the region where the observations tend to lie. In other words, the limit the-
ory is suited to giving a more detailed description of a broader range of underlying dependence
structures. Another representation that explicitly considers different growth rates is that of [44].
They focus particularly on characterizing joint survival probabilities under certain classes of
inhomogeneous normalization; this was found to reveal additional structure that is not evident
when applying a common scaling. More recently, [42] have examined certain types of unequal
scaling with a view to classifying the strength of dependence in any subgroup of variables
of X.

An alternative approach to adding detail to the extremal dependence structure focuses not
on different scaling orders, but rather on second-order effects when applying a common scal-
ing. This idea was introduced by [33] and falls under the broader umbrella of hidden regular
variation [39]. Various manuscripts have focused on analogizing concepts from standard mul-
tivariate regular variation to the case of hidden regular variation (e.g. [37]), but this approach
still only focuses on a restricted region of the multivariate space where all variables are large
simultaneously. For this reason, although higher-dimensional analogues exist, they are often
not practically useful for dimension d> 2.

Another manner of examining the extremal behaviour of X is to consider normalizing the
variables so that they converge onto a limit set (e.g. [12, 4]), described by a so-called gauge
function. This requires light-tailed margins, which may occur naturally or through a transfor-
mation. If the margins are standardized to a common light-tailed form, then the shape of the
limit set is revealing about the extremal dependence structure of the random variables, exposing
in which directions we expect to see more observations.

Although various connections have been made in the literature, many of these representa-
tions remain somewhat disjointed. For example, there is no obvious connection between the
conditional extremes methodology and the representation of [33, 34], and whilst [44] provided
a modest connection to conditional extremes, many open questions remain. In this paper we
reveal several hitherto unknown connections that can be made through the shape of the limit
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690 N. NOLDE AND J. L. WADSWORTH

set and its corresponding gauge function, when it exists, and provide a step towards unifying
the treatment of multivariate extremes.

We next provide further elaboration and definition of the different representations of
extremal dependence. For some definitions, it is convenient to have a standardized marginal
form; we focus mainly on standard Pareto or standard exponential margins with notation
XP and XE, respectively. As mentioned above, working with common margins highlights
dependence features. In Section 2 we recall the formulations of various representations for
multivariate extremes, and provide a thorough background to the concepts of limit sets and
their gauge functions, proving a useful new result on marginalization. Section 3 details con-
nections linking conditional extremes, the representation of [44], [33], and that of [42]. We
provide illustrative examples in Section 4 and conclude in Section 5.

2. Background and definitions

2.1. Multivariate regular variation

A measurable function f : R+ →R+ is regularly varying at infinity (respectively, zero) with
index ρ ∈R if, for any x> 0, f (tx)/f (t) → xρ as t → ∞ (respectively, t → 0). We write f ∈
RV∞

ρ or f ∈ RV0
ρ , omitting the superscript in generic cases. If f ∈ RV0, then it is called slowly

varying.
The random vector X is multivariate regularly varying on the cone E= [0,∞]d \ {0}, with

index α > 0, if for any relatively compact B ⊂E,

tP(X/b(t) ∈ B) → ν(B), t → ∞, (2.1)

with ν(∂B) = 0, b(t) ∈ RV∞
1/α , and the limit measure ν homogeneous of order −α; see e.g. [40,

Section 6.1.4]. The parts of E where ν places mass reveal the broad-scale extremal dependence
structure of X. Specifically, note that we have the disjoint union E=⋃

C EC, where

EC = {
x ∈E : xj > 0, j ∈ C; xi = 0, i 	∈ C

} =: (0,∞]C × {0}D\C, (2.2)

and the union is over all possible subsets C ⊆ D = {1, . . . , d}, excluding the empty set. If
ν
(
EC
)
> 0 then the variables indexed by C can take their most extreme values simultaneously,

whilst those indexed by D \ C are non-extreme.
The definition of multivariate regular variation in (2.1) requires tail equivalence of the mar-

gins. In practice, it is rare to find variables that have regularly varying tails with common
indices, and multivariate regular variation is a dependence assumption placed on standardized
variables. Without loss of generality, therefore, we henceforth consider X = XP with standard
Pareto(1) margins, in which case α = 1 and b(t) = t.

Frequently, the set B in (2.1) is taken as [0, x]c =E \ [0, x], leading to the exponent
function,

V(x) = ν([0, x]c). (2.3)

Suppose that derivatives of V exist almost everywhere; this is the case for popular paramet-
ric models, such as the multivariate logistic [23], Hüsler–Reiss [27], and asymmetric logistic
distributions [43]. Let ∂ |C|/∂xC =∏

i∈C ∂/∂xi. If the quantity limxj→0,j 	∈C ∂
|C|V(x)/∂xC is

nonzero, then the group of variables indexed by C places mass on EC (see [10]).
Multivariate regular variation is often phrased in terms of a radial–angular decomposition.

If (2.1) holds, then for r ≥ 1,

P(XP/‖XP‖ ∈ A, ‖XP‖> tr)/P(‖XP‖> t) → H(A)r−1, t → ∞,
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where A ⊂ S =
{

w ∈R
d+ : ‖w‖ = 1

}
and ‖·‖ is any norm. That is, the radial variable R = ‖XP‖

and the angular variable W = XP/‖XP‖ are independent in the limit, with R ∼ Pareto(1) and
W ∈ S following the distribution H. The support of the so-called spectral measure H can also
be partitioned in a similar manner to E. Letting

AC = {
w ∈ S : wj > 0, j ∈ C; wi = 0, i 	∈ C

}
,

we have S =⋃
C AC. The measure ν places mass on EC if and only if H places mass on AC.

2.2. Hidden regular variation

Hidden regular variation arises when (i) there is multivariate regular variation on a cone
(say E), but the mass concentrates on a subcone Ẽ⊂E, and (ii) there is multivariate regular
variation on the subcone E

′ ⊆E \ Ẽ with a scaling function of smaller order than on the full
cone. Suppose that (2.1) holds, and ν concentrates on Ẽ, in the sense that ν

(
E \ Ẽ)= 0. For

measurable B ⊂E
′, we have hidden regular variation on E

′ if

tP
(
XP/c(t) ∈ B

)→ ν′(B), t → ∞, c(t) = o(t), c(t) ∈ RV∞
ζ , ζ ∈ (0, 1], (2.4)

with ν′(∂B) = 0 and the limit measure ν′ homogeneous of order −1/ζ (see [40, Section 9.4.1]).
The most common cone to consider is E′ = (0,∞]d. This leads to the residual tail depen-

dence coefficient, ηD ∈ (0, 1] (see [33]). That is, suppose that (2.4) holds on (0,∞]d; then the
regular variation index ζ = ηD. The residual tail dependence coefficient for the subset C ⊂ D
is found through considering cones of the form

E
′
C = {

x ∈E : xj > 0, j ∈ C; xi ∈ [0,∞], i 	∈ C
} =: (0,∞]C × [0,∞]D\C,

for which ζ = ηC.

2.3. Different scaling orders

2.3.1. Coefficients τC(δ). Simpson et al. [42] sought to examine the extremal dependence
structure of a random vector through determination of the cones EC for which ν

(
EC
)
> 0.

Direct consideration of (hidden) regular variation conditions on these cones is impeded by the
fact that P(XP/b(t) ∈ B) = 0 for all B ⊂EC, C 	= D, since no components of XP/b(t) are equal
to zero for t<∞. Simpson et al. [42] circumvent this issue by assuming that if ν

(
EC
)
> 0,

then there exists δ < 1 such that

lim
t→∞tP

(
min
i∈C

XP,i > xt, max
j∈D\C

XP,j ≤ ytδ
)

= lim
t→∞ tP

(
min
i∈C

XP,i/t> x, max
j∈D\C

XP,j/t ≤ ytδ−1
)
> 0, x, y> 0. (2.5)

Consequently, under normalization by t, components of the random vector indexed by C
remain positive, whereas those indexed by D \ C concentrate at zero. Note that if the assump-
tion (2.5) holds for some δ < 1, then it also holds for all δ′ ∈ [δ, 1]. Simpson et al. [42]
expanded the assumption (2.5) to

P

(
min
i∈C

XP,i > xt, max
j∈D\C

XP,j ≤ ytδ
)

∈ RV∞−1/τC(δ), δ ∈ [0, 1], (2.6)

where (2.6) is viewed as a function of t, and the regular variation coefficients τC(δ) ∈ (0, 1].
For a fixed δ, τC(δ)< 1 implies either that ν

(
EC
)= 0, or that ν

(
EC
)
> 0, but that δ is too small

for (2.5) to hold; see [42] for further details. Considering the coefficients τC(δ) over all C and
δ ∈ [0, 1] provides information about the cones on which ν concentrates.
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2.3.2. Angular dependence function λ(ω). Wadsworth and Tawn [44] detail a representation
for the tail of XP where the scaling functions are of different order in each component. They
focus principally on a sequence of univariate regular variation conditions, characterizing

P
(
XP > tω

)= �(t; ω)t−λ(ω), ω ∈ S� =
⎧⎨⎩ω ∈ [0, 1]d :

d∑
j=1

ωj = 1

⎫⎬⎭ , (2.7)

where �(t; ω) ∈ RV∞
0 for each ω and λ : S� → [0, 1]. Equivalently, P

(
XE >ωv

)=
�
(
ev; ω

)
e−λ(ω)v. When all components of ω are equal to 1/d, connection with hidden regular

variation on the cone ED is restored, and we have ηD = dλ(1/d, . . . , 1/d). When the sub-
cone ED of E is charged with mass in the limit (2.1), we have λ(ω) = max1≤j≤d ωj. One can
equally focus on subvectors indexed by C to define λC(ω) for ω in a (|C| − 1)-dimensional
simplex; we continue to have ηC = |C|λC(1/|C|, . . . , 1/|C|) and ν

(
EC
)
> 0 implies λC(ω) =

max1≤j≤|C| ωj.

2.4. Conditional extremes

For conditional extreme value theory [24, 25], we focus on XE. Let XE,−j represent the
vector XE without the jth component. The basic assumption is that there exist functions
aj : R→R

d−1, bj : R→R
d−1+ and a nondegenerate distribution Kj on R

d−1 with no mass at
infinity, such that

P

(
XE,−j − aj

(
XE,j

)
bj(XE,j

) ≤ z, XE,j − t> x
∣∣∣XE,j > t

)
→ Kj(z)e−x, t → ∞. (2.8)

Typically, such assumptions are made for each j ∈ D. The normalization functions satisfy
some regularity conditions detailed in [24], but as [24] only standardize the marginal distri-
bution of the conditioning variable (i.e. Xj), allowing different margins in other variables, these
conditions do not strongly characterize the functions aj and bj as used in (2.8).

When joint densities exist, application of L’Hôpital’s rule gives that the convergence (2.8)
is equivalent to

P

(
XE,−j − aj(t)

bj(t)
≤ z

∣∣∣XE,j = t

)
→ Kj(z), t → ∞.

We will further assume convergence of the full joint density

∂d−1

∂z
P

(
XE,−j − aj(t)

bj(t)
≤ z

∣∣∣XE,j = t

)
→ ∂d−1

∂z
Kj(z) =: kj(z), t → ∞, (2.9)

which is the practical assumption needed for undertaking likelihood-based statistical inference
using this model.

Connected to this approach is the work of [3], who study asymptotic behaviour of a suitably
normalized random vector X conditional on lying in tH, where H is a half-space not containing
the origin and t → ∞. The distribution of X is assumed to have a light-tailed density whose
level sets are homothetic and convex and have a smooth boundary. In this setting, with H taken
to be the vertical half-space

{
x ∈R

d : xd > 1
}
, the limit is the so-called Gauss–exponential

distribution with density exp
{− uTu/2 − v

}
/(2π )(d−1)/2, u ∈R

d−1, v> 0.
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FIGURE 1. Sample clouds of n = 105 points simulated from meta-Gaussian distributions with standard
exponential margins and copula correlation parameter ρ = 0.5 (left panel), ρ = 0 (middle panel), and
ρ = −0.5 (right panel). The samples are scaled by the factor rn = log n. See Examples 4.1.1 and 4.1.2 for
details.

2.5. Limit sets

2.5.1. Background. Let X1, . . . ,Xn be independent and identically distributed random vectors
in R

d. A random set Nn = {
X1/rn, . . . ,Xn/rn

}
represents a scaled n-point sample cloud. We

consider situations in which there exists a scaling sequence rn > 0, rn → ∞, such that scaled
sample clouds Nn converge onto a deterministic set containing at least two points. Figure 1
illustrates examples of sample clouds for which a limit set exists. Let Kd denote the family of
non-empty compact subsets of Rd, and let dH(·, ·) denote the Hausdorff distance between two
sets [35]. A sequence of random sets Nn in Kd converges in probability onto a limit set G ∈
Kd if dH(Nn,G)

P→ 0 for n → ∞. The following result gives convenient criteria for showing
convergence in probability onto a limit set; see [2].

Proposition 2.1. Random samples on R
d scaled by rn converge in probability onto a determin-

istic set G in Kd if and only if

(i) nP(X/rn ∈ Uc) → 0 for any open set U containing G;

(ii) nP(X/rn ∈ {x + εB}) → ∞ for all x ∈ G and any ε > 0, where B is the Euclidean unit
ball.

Limit sets under various assumptions on the underlying distribution have been derived in
[20, 21, 18, 12, 2]. Kinoshita and Resnick [30] give a complete characterization of the possible
limit sets, as well as describing the class of distribution functions for which sample clouds can
be scaled to converge (almost surely) onto a limit set. Furthermore, convergence in probability
onto a limit set is implied by the tail large deviation principle studied in [15, 14].

Kinoshita and Resnick [30] showed that if sample clouds can be scaled to converge onto
a limit set almost surely, then the limit set is compact and star-shaped. A set G in R

d is star-
shaped if x ∈ G implies tx ∈ G for all t ∈ [0, 1]. For a set G ∈Kd, if the line segment 0 + tx,
t ∈ [0, 1), is contained in the interior of G for every x ∈ G, then G can be characterized by a
continuous gauge function:

g(x) = inf{t ≥ 0 : x ∈ tG}, x ∈R
d.

A gauge function satisfies homogeneity—g(tx) = tg(x) for all t> 0—and the set G can be
recovered from its gauge function via G = {

x ∈R
d : g(x) ≤ 1

}
. Examples of a gauge function

include a norm ‖·‖ on R
d, in which case G = {x ∈R

d : ‖x‖ ≤ 1} is the unit ball in that norm.

https://doi.org/10.1017/apr.2021.51 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.51


694 N. NOLDE AND J. L. WADSWORTH

The shape of the limit set conveys information about extremal dependence properties of the
underlying distribution. In particular, [4] make a connection between the shape of the limit
set and asymptotic independence, whilst [36] links its shape to the coefficient of residual tail
dependence. We emphasize that the shape of the limit set depends on the choice of marginal
distributions, as well as the dependence structure. For example, if the components of (X1, X2)
are independent with common marginal distribution, then G = {

(x, y) ∈R
2+ : x + y ≤ 1

}
if the

margins are exponential; G = {
(x, y) ∈R

2 : |x| + |y| ≤ 1
}

if the margins are Laplace; and G ={
(x, y) ∈R

2+ :
(
xβ + yβ

)1/β ≤ 1
}

if the margins are Weibull with shape β > 0. In contrast, if the
margins are exponential but G takes the latter form, this implies some dependence between the
components.

2.5.2. Conditions for convergence onto a limit set. Proposition 2.1 provides necessary and suf-
ficient conditions for convergence onto the limit set G, but these conditions are not particularly
helpful for determining the form of G in practice.

In the following proposition, we state a criterion in terms of the joint probability density for
convergence of suitably scaled random samples onto a limit set. This result is an adaptation
of Proposition 3.7 in [4]. The marginal tails of the underlying distribution are assumed to be
asymptotically equal to a von Mises function. A function of the form e−ψ is said to be a von
Mises function if ψ is a C2 function with a positive derivative such that (1/ψ ′(x))′ → 0 for
x → ∞. This condition on the margins says that they are light-tailed and lie in the maximum
domain of attraction of the Gumbel distribution; i.e., for a random sample from such a univari-
ate distribution, coordinatewise maxima can be normalized to converge weakly to the Gumbel
distribution (see [38, Proposition 1.1]).

Proposition 2.2. Let the random vector X on [0,∞)d have marginal distribution functions
asymptotically equal to a von Mises function, i.e. 1 − Fj(x) ∼ e−ψj(x) for ψj(x) ∼ψ(x), x → ∞
(j = 1, . . . , d), and a joint probability density f satisfying

− log f (txt)

ψ(t)
→ g∗(x), t → ∞, xt → x, x ∈ [0,∞)d (2.10)

for a continuous function g∗ on [0,∞)d, which is positive outside a bounded set. Then a
sequence of scaled random samples Nn = {X1/rn, . . . ,Xn/rn} from f converges in probability
onto a limit set G with G = {x ∈ [0,∞)d : g∗(x) ≤ 1}. The scaling sequence rn can be chosen
as ψ(rn) ∼ log n. Moreover, max G = (1, . . . , 1).

Proof. The mean measure of Nn is given by nP(X/rn ∈ ·) with intensity hn(x) = nrd
nf (rnx).

We show the convergence of that mean measure onto G, implying convergence of scaled
samples Nn; see [2, Proposition 2.3]. By (2.10) and the choice of rn, we have

− log f (rnxn)/ log n ∼ − log f (rnxn)/ψ(rn) → g∗(x), n → ∞, xn → x. (2.11)

Continuous convergence in (2.11) with g∗ continuous implies uniform convergence on compact
sets. Hence, g∗ is bounded on compact sets. For G = {g∗(x) ≤ 1}, we have g∗(x)< 1 on the
interior of G and g∗(x)> 1 on the complement of G. Furthermore, applying L’Hôpital’s rule
and Lemma 1.2(a) in [38], we have

log rn/ψ(rn) ∼ (1/ψ ′(rn))/rn → 0, rn → ∞.
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Combining these results, we see that − log hn(xn) ∼ (g∗(xn) − 1) log n, which diverges to −∞
on the interior of G and to +∞ outside of G. This implies that

hn(xn) →
{

∞, x ∈ Go,

0, x ∈ Gc,

giving convergence (in probability) of Nn onto the limit set G.
The form of the margins 1 − Fj(x) ∼ e−ψj(x) with ψj(x) ∼ψ(x) → ∞ gives − log (1 −

Fj(x)) ∼ψ(x); i.e.,

− log
(
1 − Fj(rn)

)∼ψ(rn) ∼ log n, n → ∞.

This choice of rn implies that the coordinatewise maxima scaled by rn converge in probability
to 1 [13, 22], so that max G = (1, . . . , 1). �
Remark 2.1. The condition (2.10) implies that − log f is multivariate regularly varying on
[0,∞)d. Such densities are referred to as Weibull-like. The limit function g∗ is homogeneous
of some positive order k: g∗(tx) = tkg∗(x) for all t> 0. The gauge function g of the limit set G
can thus be obtained from g∗ by setting g(x) = g1/k∗ (x).

When the margins are standard exponential, ψ(t) = t. Hence, for the random vector XE with
a Lebesgue density fE on R

d+, the condition (2.10) is equivalent to

− log fE(txt)/t → g∗(x), t → ∞, xt → x, x ∈ [0,∞)d, (2.12)

with the limit function g∗ equal to the gauge function g.
Whilst the assumption of a Lebesgue density might appear strict, it is a common feature in

statistical practice of extreme value analysis. The assumption permits simple elucidation of the
connection between different representations for multivariate extremes. Furthermore, many
statistical models, including elliptical distributions and vine copulas [7, 8, 28], are specified
most readily in terms of their densities.

Convergence at the density level such as in (2.10) may not always hold. The condition
requires the limit function and hence the gauge function of the limit set to be continuous,
excluding limit sets for which rays from the origin cross the boundary in more than one point.
We provide an example of such a situation in Section 4; see Example 4.1.2. A less restrictive
set of sufficient conditions for convergence of sample clouds onto a limit set can be obtained
using the survival function. The following proposition is Theorem 2.1 in [12], with a minor
reformulation in terms of scaling.

Proposition 2.3. Suppose that the random vector X has support on [0,∞)d; the margins are
asymptotically equal to a von Mises function, 1 − Fj(x) ∼ e−ψ(x) for x → ∞ (j = 1, . . . , d);
and the joint survival function satisfies

− log P(X ≥ tx)

ψ(t)
→ g∗(x), t → ∞, x ∈ [0,∞)d \ {0}. (2.13)

Further assume that g∗ is strictly increasing, so that g∗(x)< g∗(y) if x ≤ y and x 	= y. Then for
rn satisfying ψ(rn) ∼ log n, the sample cloud Nn = {X1/rn, . . . ,Xn/rn} converges onto G ={
x ∈ [0,∞)d : g∗(x) ≤ 1

}
.
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2.5.3. Marginalization. When d> 2, a key question is the marginalization from dimension d
to dimension m< d. We prove below that, as long as the minimum over each coordinate of g
is well-defined, the gauge function determining the limit set in m dimensions is found through
minimizing over the coordinates to be marginalized.

A continuous map h from the vector space V into the vector space Ṽ is positive-
homogeneous if h(rx) = rh(x) for all x ∈ V and all r> 0. If Ṽ =R

m, the map h is determined
by the m coordinate maps hj : V →R, j = 1, . . . ,m, and in this case it suffices that these maps
are continuous and positive-homogeneous.

Convergence onto a limit set is preserved under linear transformations (e.g. Lemma 4.1 in
[36]) and more generally under continuous positive-homogeneous maps with the same scaling
sequences (Theorem 1.9 in [6]). A consequence of the latter result, referred to as the Mapping
Theorem, is that projections of sample clouds onto lower-dimensional subspaces also converge
onto a limit set.

Proposition 2.4. Let Nn be an n-point sample cloud from a distribution of the random vector X
on R

d. Assume Nn converges in probability, as n → ∞, onto a limit set G = {x ∈R
d : g(x) ≤ 1}

for a gauge function g. Let X̃ = (Xi)i∈Im denote an m-dimensional marginal of X, where Im ⊂
I = {1, . . . , d} is an index set with |Im| = m. Sample clouds from X̃ also converge, with the same
scaling, and the limit set G̃ = Pm(G) = {

y ∈R
m : g̃(y) ≤ 1

}
, where Pm is a projection map onto

the coordinates of X̃ and

g̃(y) = min{xi : i∈I\Im} g(x), x = (x1, . . . , xd), y = (xi)i∈Im .

Proof. Consider the bivariate case first with X̃ = X2. Sample clouds from X2 converge onto
the limit set G̃ ⊂R, which is the projection of G onto the x1-coordinate axis, by the Mapping
Theorem. The projection is determined by the tangent to the level curve

{
x ∈R

2 : g(x) = 1
}

orthogonal to the x1-coordinate axis. Similarly, level curves of the gauge function g̃ of the set
G̃ are determined by tangents to the level curves

{
x ∈R

2 : g(x) = c
}

for c ∈ [0, 1] orthogonal
to the x1-coordinate axis. These projections correspond to x1 values which minimize g(x1, x2).
Sequentially minimizing over each of the coordinates to be marginalized gives the result. �

An illustration of this result is given in Section 4.2.

3. Linking representations for extremes to the limit set

For simplicity of presentation, in what follows we standardize to consider exponential mar-
gins for the light-tailed case. This choice is convenient when there is positive association in
the extremes, but hides structure related to negative dependence. We comment further on this
case in Section 5. Owing to the standardized marginals, it makes sense to refer to the limit set,
rather than a limit set.

Connections between multivariate and hidden regular variation are well established, with
the latter requiring the former for proper definition. Some connection between regular variation
and conditional extremes was made in [11, 24], although they did not specify to exponential-
tailed margins. The shape of the limit set has been linked to the asymptotic (in)dependence
structure of a random vector [4, 5]. Asymptotic independence is related to the position of
mass from the convergence (2.1) on E, but regular variation and the existence of a limit set
in suitable margins are different conditions and one need not imply the other. The paper [36]
links the limit set G to the coefficient of residual tail dependence, ηD.

In this section we present some new connections between the shape of the limit set, when
it exists, and normalizing functions in conditional extreme value theory, the residual tail
dependence coefficient, the function λ(ω), and the coefficients τC(δ).
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3.1. Conditional extremes

For the conditional extreme value model, the form of the normalizing functions aj, bj is
determined by the pairwise dependencies between

(
XE,i, XE,j

)
, i ∈ D \ j. The two-dimensional

marginalization of any d-dimensional gauge function is given by Proposition 2.4, and we
simply denote this by g here.

Proposition 3.1. Suppose that for XE = (
XE,1, XE,2

)
, the convergence (2.9) and the assump-

tion (2.12) hold, where the domain of Kj includes (0,∞). Define αj = limx→∞ aj(x)/x, j = 1, 2.
Then the following hold:

(i) We have g(1, α1) = 1, g(α2, 1) = 1.

(ii) Suppose that − log fE(txt)/t = g(xt) + v(t), with v(t) ∈ RV∞−1 or v(t) = o(1/t), and
aj(t) = αjt + Bj(t), with either Bj(t)/bj(t) ∈ RV∞

0 or Bj(t) = o(bj(t)). For β1, β2 ≤
1, if g(1, α1 + ·) − 1 ∈ RV0

1/(1−β1), then b1(x) ∈ RV∞
β1

; similarly if g(α2 + ·, 1) − 1 ∈
RV0

1/(1−β2), then b2(x) ∈ RV∞
β2

.

(iii) If there are multiple values α satisfying g(1, α) = 1, then α1 is the maximum such α, and
likewise for α2.

Before the proof of Proposition 3.1, we give some geometric intuition. Figure 2 presents
several examples of the unit level set of possible gauge functions, illustrating the shape of
the limit set, for two-dimensional random vectors with exponential margins. On each figure,
the slope of the red line indicates the value of α1; i.e., the equation of the red line is y =
α1x. Intuitively, conditional extreme value theory poses the following question: given that the
variable X is growing, how does the variable Y grow as a function of X? We can now see that
this is neatly described by the shape of the limit set: to first order, the values of Y occurring
with large X are determined by the direction for which X is growing at its maximum rate. The
necessity of a scale normalization in the conditional extreme value limit depends on the local
curvature and particularly on the rate at which g(α1 + u, 1) approaches 1 as u → 0. For Cases
(i), (iv), (v), and (vi) of Figure 2, the function approaches zero linearly in u: as a consequence
bj(t) ∈ RV∞

0 . For Case (ii) the order of decay is u2 and so bj(t) ∈ RV∞
1/2, whilst for Case (iii)

the order is u1/θ so bj(t) ∈ RV∞
1−θ .

The class of distributions represented by the gauge function (vi) (bottom left) can be thought
of as those arising from a mixture of distributions with gauge functions (i) and (iii), up to
differences in parameter values. In such an example, there are two normalizations that would
lead to a nondegenerate limit in (2.8), but ruling out mass at infinity produces the unique choice
α1 = α2 = 1, β1 = β2 = 0. If instead we chose to rule out mass at −∞, then we would have
α1 = α2 = 0 and β1 = β2 = 1 − θ .

Proof of Proposition 3.1. In every case we prove just one statement, as the other follows
analogously.

(i) By the assumption (2.12),
(
XE,1, XE,2

)
have a joint density fE, and so the conditional

extremes convergence (2.9) can be expressed as

b1(t)fE
(
t, b1(t)z + a1(t)

)
et → k1(z) =: e−h1(z), t → ∞, z ∈

[
lim

t→∞ −a1(t)/b1(t),∞
)
,

with k1 = e−h1
a density. Taking logs, we have

− log fE
(
t, b1(t)z + a1(t)

)− t− log b1(t) → h1(z), t → ∞. (3.1)
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FIGURE 2. Unit level sets of six possible gauge functions for bivariate random vectors with exponen-
tial margins (bold lines). The limit set G is the set bounded by these level sets and the axes. In each
case the red dotted line is y = α1x, the blue solid lines represent λ(ω, 1 −ω), and the dot η1,2 (see
Section 3.2). Black dashed lines represent the boundary max(x, y) = 1. Clockwise from top left, the gauge
functions represented are as follows: (i) max(x, y)/θ + (1 − 1/θ ) min(x, y); (ii) (x + y − 2θ

√
xy)/(1 −

θ2); (iii)
(

x1/θ + y1/θ
)θ

; (iv) max{(x − y)/θ, (y − x)/θ,min(x −μy, y −μx)/(1 − θ −μ)}; (v) max((x −
y)/θ, (y − x)/θ, (x + y)/(2 − θ )); (vi) min

{
max(x, y)/θ1 +

(
1 − 1/θ1

)
min(x, y),

(
x1/θ2 + y1/θ2

)θ2
}

. In

each case, θ ∈ (0, 1); in some cases the endpoints are permitted as well. For Case (iv), θ +μ< 1.

Now use the assumption (2.12) with xt = (1, xt) = (
1, a1(t)/t + zb1(t)/t

)
. That is,

− log fE
(
t, b1(t)z + a1(t)

)= tg(1, x)[1 + o(1)] = tg(1, xt)[1 + o(1)], (3.2)

with x = limt→∞ a1(t)/t + zb1(t)/t. As the support of K1 includes (0,∞), h1(z)<∞ for all
z ∈ (0,∞), and combining (3.1) and (3.2) we have

g(1, xt)[1 + o(1)] = 1 + h1(z)/t + log b1(t)/t + o(1/t). (3.3)

Suppose that b1(t)/t → γ > 0. Then xt → α1 + γ z, and taking t → ∞ in (3.3) leads to
g(1, α1 + γ z) = 1 for any z. But since the coordinatewise supremum of G is (1, 1), g(x, y) ≥
max(x, y), which would entail z ≤ (1 − α1)/γ . No such upper bound applies, so we conclude
γ = 0, i.e., b1(t) = o(t). Now taking limits in (3.3) leads to g(1, α1) = 1.

(ii) Let g(1, α1 + u) − 1 =: r(u) ∈ RV0
ρ , ρ > 0. From (3.3) we also have

g
(
1, α1 + b1(t)/t + B1(t)/t

)− 1 = h1(1)/t + log b1(t)/t − v(t) + o(1/t),

so that the function b1(t) is a solution to the equation

r
(
b1(t)/t + B1(t)/t

)= h1(1)/t + log b1(t)/t − v(t) + o(1/t). (3.4)
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Equation (3.4) admits a solution if b1 is regularly varying at infinity. A rearrangement provides
that

b1(t) = tr−1(h1(1)/t + log b1(t)/t − v(t) + o(1/t)
)[

1 + B1(t)/b1(t)
]−1;

if b1 is regularly varying then log b1(t)/t ∈ RV∞−1, so that using the fact that v(t) ∈ RV∞−1 or
v(t) = o(1/t), combined with r−1 ∈ RV0

1/ρ , yields b1(t) ∈ RV∞
1−1/ρ . We now argue that such

a solution is unique in this context. We know that the normalization functions a1, b1 lead to
a nondegenerate distribution K1 that places no mass at infinity. By the convergence to types
theorem ([32, p. 7]; see also Part (iii) of this proof), any other function b̃1 leading to a nonde-
generate limit with no mass at infinity must satisfy b̃1(t) ∼ db1(t), t → ∞, for some d> 0, so
that b̃1 ∈ RV∞

1−1/ρ also. Finally, setting β1 = 1 − 1/ρ gives b1 ∈ RV∞
β1

.
(iii) Suppose that

P

(
XE,2 − a1(t)

b1(t)
≤ z

∣∣XE,1 > t

)
→ K1(z), P

(
XE,2 − ã1(t)

b̃1(t)
≤ z

∣∣XE,1 > t

)
→ K̃1(z),

where neither K1 nor K̃1 has mass at +∞. Then by the convergence to types theorem,
ã1(t) = a1(t) + cb1(t) + o(b1(t)) and b̃1(t) = db1(t) + o(b1(t)), for some d> 0, and K̃1(z) =
K1(z/d + c). Therefore, ã1(t)/t ∼ a1(t)/t ∼ α1. We conclude that if there were a nondegenerate
K̃1 limit for which ã1(t)/t ∼ α̃1 >α1, then K1 must place mass at +∞; since by assumption it
does not, we conclude that α1 is the maximum value satisfying g(1, α1) = 1.

For distributions whose sample clouds converge onto a limit set described by a gauge func-
tion with piecewise continuous partial derivatives possessing finite left and right limits, further
detail can be given about βj.

Proposition 3.2. Let G be a limit set whose gauge function g has piecewise continuous partial
derivatives g1(x, y) = ∂g(x, y)/∂x, g2(x, y) = ∂g(x, y)/∂y possessing finite left and right lim-
its, and for which the conditions of Proposition 3.1 hold. Then (i) β1 ≥ 0 if g2(1, (α1)+) = 0;
(ii) β1 = 0 if 0< g2(1, (α1)+)<∞. Furthermore, if α1 > 0 then 0 ≤ g2(1, (α1)+)<∞, so that
β1 ≥ 0. Analogous statements hold for α2, β2.

Proof. Consider the partial derivative

g2(1, (α1)+) = lim
u→0+

g(1, α1 + u) − g(1, α1)

u
≥ 0,

as g(1, α1 + u) ≥ g(1, α1). We note g(1, α1) = 1, so that g(1, α1 + u) − 1 ∼ ug2(1, (α1)+),
u → 0+. Since this is regularly varying with index 1/(1 − β1) by assumption, g2(1, (α1)+) = 0
implies g(1, α1 + u) − 1 = o(u), so 1/(1 − β1) ≥ 1, and 0< g2(1, (α1)+)<∞ implies 1/(1 −
β1) = 1, so (i) and (ii) follow. If g is differentiable at the point (1, α1), then since g(1, y) ≥ 1,
g2(1, (α1)+) = g2(1, (α1)−) = 0 and (i) holds. Otherwise, in a neighbourhood of (1, α1), we
can write

g(x, y) =
{

ĝ(x, y), y ≤ α1x,

g̃(x, y), y ≥ α1x,

where the homogeneous functions g̃ and ĝ have continuous partial derivatives at (1, α1).
Euler’s homogeneous function theorem gives 1 = g̃1(1, α1) + g̃2(1, α1)α1 = g1(1−, α1) +
α1g2(1, (α1)+), so that for α1 > 0, g2(1, (α1)+)<∞, and hence (i) or (ii) holds. �
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We remark on links with existing work on conditional extreme value limits for variables
with a polar-type representation, whereby (X1, X2) = R(W1,W2) for R> 0 and (W1,W2) con-
strained by some functional dependence. The papers [1, 19, 41] consider a type of conditional
extremes limit for certain such polar constructions, where in the light-tailed case, the shape of
the constraint on (W1,W2) feeds into the normalization and limit distribution. However, limit
sets are sensitive to marginal choice, and because the above papers do not consider condi-
tional extreme value limits in standardized exponential-tailed margins, further connections are
limited.

3.2. Different scaling orders: λ(ω)

We now focus on the connection with λ(ω), as defined in Section 2.3. When ω =
(1/d, . . . , 1/d), this yields the link with the residual tail dependence coefficient ηD, which
has already been considered in [36]. Define the region

Rω =
(

ω1

max(ω1, . . . , ωd)
,∞

]
× · · · ×

(
ωd

max(ω1, . . . , ωd)
,∞

]
.

Proposition 3.3. Suppose that the sample cloud Nn = {
X1

E/ log n, . . . ,Xn
E/ log n

}
converges

onto a limit set G, and that for each ω ∈ S� , Equation (2.7) holds. Then

λ(ω) = max(ω) × r−1
ω ,

where
rω = min

{
r ∈ [0, 1] : rRω ∩ G = ∅}.

Corollary 3.1. ([36]) We have

1/ηD = dλ(1/d, . . . , 1/d) = r−1
(1/d,...,1/d) = [

min
{
r ∈ [0, 1] : (r,∞]d ∩ G = ∅}]−1.

Proof of Proposition 3.3. The lines of the proof are very similar to those of the proof
of [36, Proposition 2.1]. First note that λ(ω) = κ(ω), where κ : [0,∞)d \ {0} → (0,∞) is a
1-homogeneous function defined by

P
(
XE > βt

)= �
(
et; β

)
e−tκ(β), �(·; β) ∈ RV∞

0 for everyβ ∈ [0,∞)d \ {0}.
As a consequence,

λ(ω)

max(ω)
= lim

t→∞ − log P{XE > tω/max(ω)}/t. (3.5)

Without loss of generality, suppose that max(ω) =ωd, so that Rω = (ω1/ωd,∞] × · · · ×
(ωd−1/ωd,∞] × (1,∞]. Because of the convergence of the sample cloud onto G, we have
by Proposition 2.1 that for any ε > 0 and large enough t,

P
(
XE ∈ teεrωRω

)≤ P
(
XE ∈ tR(0,...,0,1)

)= e−t ≤ P
(
XE ∈ te−εrωRω

)
,

implying − log P
(
XE ∈ trωRω

)∼ t. Therefore − log P
(
XE ∈ tRω

)∼ tr−1
ω , and combining with

Equation (3.5) gives the result.
Figure 3 illustrates some of the concepts used in the proof of Proposition 3.3 when d = 2

and ω = (ω, 1 −ω).
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FIGURE 3. Illustration of the concepts used in the proof of Proposition 3.2: the green line from the origin
represents the ray x = {ω/(1 −ω)}y, ω< 1/2. The region above the purple line y = 1 represents R(0,1),
the region to the northeast of the thick blue dotted lines represents rωRω, and the two sets of thin blue
dotted lines illustrate the regions e−εrωRω and eεrωRω. The ratio of the distance from the origin to where
the green line intersects the boundary of the limit set G, and the distance from the origin to where the
green line intersects the boundary max(x, y) = 1, is equal to rω.

The blue lines in Figure 2 represent λ(ω), depicting the unit level set of λ(ω, 1 −
ω)/max(ω, 1 −ω), and the dots illustrate the value of r1/2 = η1,2. We can now see clearly how,
in two dimensions, different dependence features are picked out by the conditional extremes
representation and hidden regular variation based on η1,2. Often, values of η1,2 > 1/2 or α > 0
are associated with positive extremal dependence. From Case (iv) of Figure 2 (bottom right),
we observe η1,2 < 1/2 but α > 0. We have that Y does grow with X (and vice versa) but only
at a specific rate. On the other hand, joint extremes, where (X,Y) take similar values, are rare,
occurring less frequently than under independence.

From Case (iv) we can also see that one of the conclusions following Proposition 2.1 in [36]
is not true: the point (r1/2, r1/2) need not lie on the boundary of G, meaning that we do not
necessarily have ηD = 1/g(1), although we can deduce the bound ηD ≥ 1/g(1). Similarly, there
are occasions when g(rωω/max(ω)) = 1, implying λ(ω) = g(ω), but clearly this is not always
true. In Proposition 3.4, we resolve when this is the case by representing rω in terms of g.

Define Bω to be the boundary of the region Rω, i.e.,

Bω =
d⋃

i=1

{
x ∈R

d+ : xi =ωi/max(ω), xj ≥ωj/max(ω), j 	= i
}

.

Proposition 3.4. Assume the conditions of Proposition 3.3. Then

rω =
[
min
y∈Bω

g(y)

]−1

, and hence λ(ω) = max(ω) × min
y∈Bω

g(y).

From Proposition 3.4, we observe that λ(ω) = g(ω) if arg miny∈Bω g(y) = ω/max(ω), i.e.,
the vertex of the set Bω. The proof of Proposition 3.4 is deferred until after Proposition 3.7, for
which the proof is very similar.

Remark 3.1. We note that miny∈Bω g(y) = miny∈Rω g(y).
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(1 g(1, δ) , δ g(1, δ))
(1 , δ)

(1 argminγ∈(0 , δ) g(1, γ) , 1)

(δ , 1)

FIGURE 4. Illustration of λ(ω) and τj(δ) for the gauge function g(x, y) = max{(x − y)/θ, (y − x)/θ, (x +
y)/(2 − θ )}. In the left and centre panels the unit level set of g is illustrated with black dashed lines. The
left panel illustrates λ(ω, 1 −ω) with blue solid lines. The centre panel illustrates τj(δ) with purple solid
lines: τ1(δ), δ ∈ [0, 1] is represented by the values below the main diagonal, whilst τ2(δ) is represented
by the values above. The set G is added on both panels with dashed lines. The right panel illustrates τ1(δ)
and τ2(δ) in terms of the gauge function.

3.3. Coefficients τC(δ)

3.3.1. Connections to limit set G. In two dimensions, the coefficients τ1(δ) and τ2(δ) provide
a somewhat complementary concept to the function λ(ω). Rather than considering the impact
of the limit set G on the shape of the function defined by both variables exceeding thresholds
growing at different rates, we are considering what is occurring when one variable exceeds a
growing threshold and the other is bounded above by a certain lesser growth rate. The left and
centre panels in Figure 4 provide an illustration of λ(ω) and τj(δ) in two dimensions.

Define the region

RC,δ = (1,∞]C × [0, δ]D\C = {x : xi ∈ (1,∞], i ∈ C, xj ∈ [0, δ], j ∈ D \ C},
so that, for example, when d = 3, R{1,3},δ = (1,∞] × [0, δ] × (1,∞].

Proposition 3.5. Suppose that the sample cloud Nn = {
X1

E/ log n, . . . ,Xn
E/ log n

}
converges

onto a limit set G, and that the assumption in (2.6) holds. For δ ∈ [0, 1] and C ⊂ D,

τC(δ) = rC,δ = min
{
r ∈ [0, 1] : rRC,δ ∩ G = ∅} .

The coefficient τD = ηD, and does not depend on δ.

Proof. The coefficient τD describes the order of hidden regular variation on the cone
(0,∞]d, which is precisely the same as ηD. For τC(δ), |C|< d, we consider the function of
t given by

P

(
min
i∈C

XP,i > tx, max
j∈D\C

XP,j ≤ ytδ
)

∈ RV∞−1/τC(δ), 0< x, y<∞.

Take x = y = 1. Then

τC(δ) = lim
t→∞

− log P(XP,1 > t)

− log P
(
mini∈C XP,i > t,maxj∈D\C XP,j ≤ tδ

)
= lim

t→∞
− log P(XE,1 > t)

− log P
(
mini∈C XE,i > t,maxj∈D\C XE,j ≤ δt

) , (3.6)
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where the denominator in (3.6) can be expressed as − log P(XE ∈ tRδ). As in the proof of
Proposition 3.3, the convergence onto the limit set and exponential margins enable us to con-
clude that − log P(XE ∈ trC,δRδ) ∼ t, and hence − log P(XE ∈ tRδ) ∼ tr−1

C,δ . Combining with
(3.6) gives τC(δ) = rC,δ . �

In the two-dimensional case, it is possible to express τj(δ) simply in terms of the gauge
function. For higher dimensions, we refer to Proposition 3.7.

Proposition 3.6. Assume the conditions of Proposition 3.5. When d = 2, τ1(δ) =
[minγ∈[0,δ] g(1, γ )]−1 and τ2(δ) = [minγ∈[0,δ] g(γ, 1)]−1.

Proof. For γ ∈ [0, 1], the points (1/g(1, γ ), γ /g(1, γ )) lie on the curve {(x, y) ∈
[0, 1]2 : g(x, y) = 1, x ≥ y}. The value r1,δ is the maximum value of 1/g(1, γ ) for γ ∈ [0, δ];
hence τ1(δ) = [minγ∈[0,δ] g(1, γ )]−1. A symmetric argument applies to τ2(δ). �

The right panel of Figure 4 provides an illustration: in blue (bottom right), the value of δ is
such that τ1(δ)< 1; in red (top left), the value of δ is such that τ2(δ) = 1. Further detail on this
example is given in Section 4.1.5.

The question arises: does Proposition 3.6 still hold for d> 2, |C| = 1? Let gC denote the
gauge function for the limit set of (XE,j : j ∈ C). By Proposition 2.4, we know that

gi,j(xi, xj) = min
x−i,−j∈[0,∞)d−2

gD(x).

Therefore, equality will hold if

arg min
x−i,−j∈[0,∞)d−2

gD(x) ∈ [0, δ]d−2.

Note that the dimension does indeed play a key role here: when looking at τj(δ) for a
d-dimensional problem, we are looking at the situation where d − 1 coordinates are bounded
above by a growth rate determined by δ. In contrast, if we marginalize and look at τj(δ) for
a two-dimensional problem, the d − 2 coordinates that we have marginalized over are unre-
stricted and so can represent small or large values. Thus, the answer to our question is negative
in general.

Proposition 3.7 details the precise value of τC(δ) in terms of g for any dimension d. In a
similar spirit to that of Section 3.2, define the boundary of the region RC,δ as

BC,δ = B1
C,δ ∪ BδC,δ,

where

B1
C,δ =

⋃
i∈C

{
x ∈R

d+ : xi = 1, xj ≥ 1∀j ∈ C \ i, xk ≤ δ∀k ∈ D \ C
}
,

BδC,δ =
⋃

i∈D\C

{
x ∈R

d+ : xi = δ, xj ≤ δ∀j ∈ (D \ C) \ i, xk ≥ 1∀k ∈ C
}
,

so, for example, when d = 3,

B{1,3},δ = {
x ∈R

3+ : x1 = 1, x2 ≤ δ, x3 ≥ 1
}

∪ {
x ∈R

3+ : x1 ≥ 1, x2 = δ, x3 ≥ 1
}∪ {

x ∈R
3+ : x1 ≥ 1, x2 ≤ δ, x3 = 1

}
.

For C = D, RD = (1,∞]d, and BD = {x : min(x) = 1}.
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Proposition 3.7. Assume the conditions of Proposition 3.5. For any C ⊆ D,

τC(δ) =
[

min
y∈BC,δ

g(y)

]−1

=
[

min
y∈B1

C,δ

g(y)

]−1

.

Proof. The vertex of the region RC,δ , or its boundary BC,δ , which has components
1 on the coordinates indexed by C, and δ in the other coordinates, lies on S∨ : = {x ∈
R

d+ : max(x) = 1}. The region G ⊆ S∨, and because the coordinatewise supremum of G is 1,
the boundary of G intersects S∨. Now consider scaling the region RC,δ by rC,δ ∈ (0, 1] until
it intersects G. The point of intersection must lie on the boundary of the scaled region
rC,δRC,δ , i.e., on rC,δBC,δ , and on the boundary of G,

{
x ∈R

d+ : g(x) = 1
}
. Therefore, there

exists x� ∈ BC,δ such that g(rC,δx�) = 1, which is rearranged to give τC(δ) = rC,δ = 1/g(x�).
Furthermore, we must have that such a point x� = arg miny∈BC,δ g(y); otherwise there exists
some x′ ∈ BC,δ such that g(x′)< g(x�) and so g(rC,δx′)< 1, meaning that rC,δ 	= min{r ∈
(0, 1] : rRC,δ ∩ G = ∅}. We conclude that x� = arg miny∈BC,δ g(y), so τC(δ) = 1/miny∈BC,δ g(y).
To show that arg miny∈BC,δ g(y) ∈ B1

C,δ , let x̄ = arg miny∈B1
C,δ

g(y), x̃ = arg miny∈BδC,δ
g(y), and

x̃l = mink∈C x̃k ≥ 1. Then g(x̃) = x̃lg(x̃/x̃l), but x̃/x̃l ∈ B1
C,δ , so g(x̃/x̃l) ≥ g(x̄), and hence

x̃lg(x̃/x̃l) ≥ g(x̄) as x̃l ≥ 1. �
When d = 2 and |C| = 1, we note that B1{j},δ = {x : xj = 1, xi ≤ δ}, which gives the equality

in Proposition 3.6.

Proof of Proposition 3.4. The proof follows exactly as for the first equality in
Proposition 3.7, replacing RC,δ, BC,δ , and rC,δ with Rω, Bω, and rω. �
3.3.2. Estimation of coefficients τC(δ). When C = D, Equation (2.6) yields

P

(
min
i∈D

XP,i > t
)

∈ RV∞−1/τD
,

implying that τD can be estimated as the reciprocal of the tail index of the so-called structure
variable mini∈D XP,i. This is identical to estimating the residual tail dependence coefficient ηD,
for which the Hill estimator is commonly employed. However, for C with |C|< d, we assume

P

(
min
i∈C

XP,i > t, max
j∈D\C

XP,j < tδ
)

∈ RV∞−1/τC(δ),

but this representation does not lend itself immediately to an estimation strategy, as there is no
longer a simple structure variable for which 1/τC(δ) is the tail index.

In order to allow estimation, [42] considered

P

(
min
i∈C

XP,i > t, max
j∈D\C

XP,j <

(
min
i∈C

XP,i

)δ)
,

but they offered only empirical evidence that the assumed index of regular variation for this
probability was the same as in (2.6). We now prove this to be the case.

Define
Rx

C,δ =
{

x ∈R
d+ : xi > 1, i ∈ C, xj ≤ δ min

l∈C
xl, j ∈ D \ C

}
,
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and let Bx
C,δ = Bx,1

C,δ ∪ Bx,δ
C,δ denote its boundary, where

Bx,1
C,δ = B1

C,δ =
⋃
i∈C

{
x ∈R

d+ : xi = 1, xj ≥ 1∀j ∈ C \ i, xk ≤ δ min
l∈C

xl = δ∀k ∈ D \ C
}
,

Bx,δ
C,δ =

⋃
i∈D\C

{
x ∈R

d+ : xi = δ min
l∈C

xl, xj ≤ δ min
l∈C

xl∀j ∈ (D \ C) \ i, xk ≥ 1∀k ∈ C
}
,

and we specifically note the equality Bx,1
C,δ = B1

C,δ .

Proposition 3.8. Assume the conditions of Proposition 3.5. If

P

(
min
i∈C

XP,i > t, max
j∈D\C

XP,j < tδ
)

∈ RV∞−1/τC(δ)

and

P

(
min
i∈C

XP,i > t, max
j∈D\C

XP,j <

(
min
i∈C

XP,i

)δ)
∈ RV∞

−1/τ̃C(δ),

then τ̃C(δ) = τC(δ).

Proof. Define

rx
C,δ = min

{
r ∈ [0, 1] : rRx

C,δ ∩ G = ∅} ,
where for r> 0, rRx

C,δ = {
x ∈R

d+ : xi > r, i ∈ C, xj ≤ δ minl∈C xl, j ∈ D \ C
}
. Similarly to

Propositions 3.3 and 3.5, we have

− log P

(
XE ∈ trx

C,δR
x
C,δ

)
= − log P

(
min
i∈C

XE,i > trx
C,δ, max

j∈D\C
XE,j < δ min

i∈C
XE,i

)
∼ t,

and we conclude τ̃C(δ) = rx
C,δ . As in Proposition 3.7, we have rx

C,δ = miny∈Bx
C,δ

g(y). Noting

again that arg miny∈Bx
C,δ

g(y) ∈ Bx,1
C,δ = B1

C,δ shows that rx
C,δ = rC,δ = τC(δ). �

4. Examples

We illustrate several of the findings of Section 3 with some concrete examples. In
Section 4.1 we focus on the intuitive and geometrically simple case d = 2; in Section 4.2, we
examine some three-dimensional examples for which visualization is still possible but more
intricate. Additional examples are given in the arXiv version of this article.

Proposition 2.2 implies that on R
d+, the same limit set G as in exponential margins will arise

for any marginal choice with ψj(x) ∼ x, x → ∞, provided e−ψj(x) is a von Mises function. In
some of the examples below, it is convenient to establish a limit set and its gauge function
using this observation rather than transforming to exactly exponential margins.

Models with convenient dependence properties are often constructed through judicious
combinations of random vectors with known dependence structures; see, for example, [17] for
a detailed study of so-called random-scale or random-location constructions. In Section 4.3,
we use our results to elucidate the shape of the limit set when independent exponential-tailed
variables are mixed additively. The spatial dependence model of [26] provides a case study.
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4.1. Examples and illustrations for d = 2

All of the examples considered in this section are symmetric, so, for the conditional
extremes representation and coefficients τj(δ), we consider only one case, omitting the sub-
script on the quantities αj and βj. Table 1 summarizes the dependence information from various
bivariate distributions described in Sections 4.1.1–4.1.4, as well as the arXiv version.

4.1.1. Meta-Gaussian distribution: nonnegative correlation. Starting with a Gaussian bivariate
random vector and transforming its margins to standard exponential, we obtain a meta-
Gaussian distribution with exponential margins. Such a distribution inherits the copula of the
Gaussian distribution. For simplicity, we consider the case where the underlying Gaussian
random vector has standard normal components with correlation ρ.

Then, for ρ ≥ 0, the joint probability density fE satisfies

− log fE(tx, ty)/t = (
x + y − 2ρ(xy)1/2)/(1 − ρ2)+ O(log t/t), t → ∞, x, y ≥ 0,

so that g(x, y) = (
x + y − 2ρ(xy)1/2

)
/
(
1 − ρ2

)
. The convergence in (2.10) holds on [0,∞)d,

and hence the limit set exists and is given by {x ∈ [0,∞)d : g(x) ≤ 1}. This is Case (ii) in
Figure 2.

Conditional extremes: Setting g(α, 1) = 1 leads to
(
α1/2 − ρ

)2 = 0, i.e., α = ρ2. For β we
have g

(
ρ2 + u, 1

)− 1 = u2/
{
2ρ
(
1 − ρ2

)}+ O
(
u3
) ∈ RV0

2; hence β = 1/2.

Function λ(ω): By Proposition 3.4, we need to find 1/rω = miny∈Bω g(x, y). If min(ω,
1 −ω)/max(ω, 1 −ω) ≤ ρ2, then miny∈Bω g(x, y) = 1, with the minima occuring at the points
(1, ρ2), (ρ2, 1). Otherwise, if min(ω, 1 −ω)/max(ω, 1 −ω) ≥ ρ2, then miny∈Bω g(x, y) =
g(1,min(ω, 1 −ω)/max(ω, 1 −ω)). Putting this together with Proposition 3.3, we find

λ(ω, 1 −ω) =
{

max(ω, 1 −ω), min(ω, 1 −ω)/max(ω, 1 −ω) ≤ ρ2,

g(ω, 1 −ω) = 1−2ρ(ω(1−ω))1/2

1−ρ2 , min(ω, 1 −ω)/max(ω, 1 −ω) ≥ ρ2.

This is the same form as given in [44]. We therefore have η1,2 = [2g(1/2, 1/2)]−1 =
g(1, 1)−1 = (1 + ρ)/2.

Coefficients τj(δ): From Proposition 3.6, we have τ1(δ) = [
minγ∈[0,δ] g(1, γ )

]−1 =[
g
(
1,min

(
δ, ρ2

))]−1. Therefore, τ1(δ) = 1 if δ ≥ ρ2, and otherwise τ1(δ) = (1 − ρ2)/
(
1 +

δ − 2ρδ1/2
)
< 1. Note that these values are very laborious to calculate via Gaussian survival

functions, and they were not given in [42].

4.1.2. Meta-Gaussian distribution: negative correlation. When ρ < 0, Proposition 2.2 cannot
be applied as the continuous convergence condition (2.10) does not hold along the axes. Hence
we gain only a partial specification, when x> 0, y> 0, through this route. Instead, here we can
apply Proposition 2.3, since the limit function g in (2.13) satisfies the monotonicity condition
given immediately thereafter. This limit function is given by

g(x, y) =

⎧⎪⎨⎪⎩
(
x + y − 2ρ(xy)1/2

)
/
(
1 − ρ2

)
, x> 0, y> 0,

x, y = 0,

y, x = 0.
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TABLE 1. Summary of dependence measures across a range of bivariate examples

Copula g(x,y) λ(ω, 1 −ω) η1,2 τ1(δ) α, β

Gaussian
ρ ≥ 0

x+y−2ρ(xy)1/2

1−ρ2

⎧⎨⎩max(ω, 1 −ω), min(ω,1−ω)
max(ω,1−ω) ≤ ρ2

1−2ρ(ω(1−ω))1/2

1−ρ2 ,
min(ω,1−ω)
max(ω,1−ω) ≥ ρ2

1+ρ
2

⎧⎨⎩1 δ ≥ ρ2

1−ρ2

1+δ−2ρδ1/2 δ < ρ2

{
α = ρ2

β = 1/2

Logistic GP 1
θ

max(x, y)
+(1 − 1

θ

)
min(x, y)

max(ω, 1 −ω) 1
[
θ−1 + (1 − θ−1δ)

]−1

{
α = 1

β = 0

Inverted
logistic

(
x1/θ + y1/θ

)θ
g(ω, 1 −ω) 2−θ 1

{
α = 0

β = 1 − θ

Hüsler–
Reiss
GP

{∞, x 	= y

x, x = y
max(ω, 1 −ω) 1

{
0, δ < 1

1, δ = 1

{
α= 1

β undetermined

Inverted
Hüsler–
Reiss

x�

(
λ
2 + log

(
x
y

)
λ

)
+y�

(
λ
2 + log( y

x )
λ

) g(ω, 1 −ω)
[
2�

(
λ
2

)]−1
1

{
α = 0

β = 1
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FIGURE 5. Top row: limit sets {(x, y) : g(x, y) ≤ 1} for a bivariate meta-Gaussian distribution with
exponential margins. Bottom row: corresponding plots of function g(x,y) for a fixed value of y.

Figure 5 illustrates the limit sets G for the three cases ρ > 0, ρ = 0, and ρ < 0. In the latter
case, large values of one variable tend to occur with small values of the other, which causes the
limit set to include lines along the axes, and the function g is not continuous. Such difficulties
can be alleviated by consideration of Laplace margins for distributions displaying negative
dependence, which is discussed further in Section 5.

4.1.3. Logistic generalized Pareto copula. The logistic generalized Pareto distribution
with conditionally exponential margins

(
P
(
XẼ > x

)= P
(
XẼ > 0

)
e−x, x> 0

)
and dependence

parameter θ ∈ (0, 1) satisfies

fẼ(x, y) = θ−12−θe−(x+y)/θ (e−x/θ + e−y/θ )θ−2
,

− log fẼ(tx, ty)/t = θ−1 max(x, y) + (
1 − θ−1)min(x, y) + O(1/t),

so the gauge function is g(x, y) = θ−1 max(x, y) + (
1 − θ−1

)
min(x, y). This form of gauge

function is found throughout several symmetric asymptotically dependent examples, such as
those distributions whose spectral measure H places no mass on 0 and 1 and whose densities
are regularly varying at the endpoints 0, 1, so that dH(w)/dw ∈ RV0

1/θ−2, −dH(1 − w)/dw ∈
RV0

1/θ−2. This is Case (i) in Figure 2.

Conditional extremes: Solving for g(α, 1) = 1, we obtain α = 1, whilst g(1 + u, 1) − 1 =
u/θ ∈ RV0

1, and hence β = 0.
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Function λ(ω): We have that arg miny∈Bω g(y) = (1, 1), so rω = 1 and λ(ω, 1 −ω) =
max(ω, 1 −ω). Therefore η1,2 = 1.

Coefficients τj(δ): We have τ1(δ) = [minγ∈[0,δ] g(1, γ )]−1 = [g(1, δ)]−1 = [θ−1 + (1 −
θ−1δ)]−1. This matches the value calculated in the Supplementary Material of [42].

4.1.4. Inverted extreme value distribution. The inverted extreme value copula is the joint lower
tail of an extreme value copula, translated to be the joint upper tail. That is, if (U1,U2) have an
extreme value copula with uniform margins, then (1 − U1, 1 − U2) have an inverted extreme
value copula. In two dimensions, its density in exponential margins may be expressed as

fE(x, y) = {l1(x, y)l2(x, y) − l12(x, y)} exp{−l(x, y)},
where l(x) = V(1/x), for V the exponent function in (2.3), is the 1-homogeneous stable tail
dependence function (e.g. [9, Chapter 8]) of the corresponding extreme value distribution, and
l1(x, y) = ∂l(x, y)/∂x, etc. We thus have

− log fE(tx, ty)/t = l(x, y) + O(1/t), t → ∞,

so g(x, y) = l(x, y).

Conditional extremes: Stable tail dependence functions always satisfy l(x, 0) = x, l(0, y) = y,
and so g(1, 0) = g(0, 1) = 1. Hence, if α= 0 is the only solution to g(α, 1) = 1, then a(x)/x ∼ 0.
An example of this is given by the inverted extreme value logistic copula, whereby l(x, y) =(
x1/θ + y1/θ

)θ
, θ ∈ (0, 1]. This is Case (iii) of Figure 2, for which we have α = 0 and β =

1 − θ .
Further examples in this class are given in the arXiv version of this paper.

Function λ(ω): Since g(x, y) = l(x, y), and l is a convex function satisfying l(x, 0) = x, l(0, y) =
y, we have arg miny∈Bω g(y) = (ω, 1 −ω)/max(ω, 1 −ω). Hence, λ(ω, 1 −ω) = g(ω, 1 −ω)
in this case.

Coefficients τj(δ): Since g(1, 0) = 1, we have τ1(δ) = 1 for all δ ∈ [0, 1].

4.1.5. Density defined by g. If g : Rd+ →R+ is a gauge function describing a limit set G, then
f (x) = e−g(x)/(d!|G|) is a density (see [4]). In general, except for the case of g(x) =∑d

i=1 xi,
the margins are not exactly exponential, and may be heavier than exponential, for example in
the case g(x) = max1≤i≤d (xi).

We consider the density defined by g(x, y) = max{(x − y)/θ, (y − x)/θ, (x + y)/(2 − θ )},
θ ∈ (0, 1]: this is Case (vi) in Figure 2, and illustrated in Figure 4. The marginal density is
given by [

2e−x − θe−x/θ − 2(1 − θ )e−x/(1−θ)
]
/
[
4θ − 3θ2].

Conditional extremes: Solving for g(α, 1) = 1, we obtain α = 1 − θ , whilst g(1 − θ + u, 1) −
1 = u/(2 − θ ) ∈ RV0

1, and hence β = 0.

Function λ(ω): If min(ω, 1 −ω)/max(ω, 1 −ω) ≤ 1 − θ , then arg miny∈Bω = (1, 1 − θ ), or
(1 − θ, 1) and rω = 1; otherwise, arg miny∈Bω = (1, ω/(1 −ω)) or ((1 −ω)/ω, 1), and rω =
{1 + min(ω, 1 −ω)/max(ω, 1 −ω)/(2 − θ )}. Therefore,

λ(ω, 1 −ω) =
{

max(ω, 1 −ω), min(ω, 1 −ω)/max(ω, 1 −ω) ≤ 1 − θ,

g(ω, 1 −ω) = 1
2−θ , min(ω, 1 −ω)/max(ω, 1 −ω) ≥ 1 − θ,

and the residual tail dependence coefficient η1,2 = 1 − θ/2.
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Coefficients τj(δ): We have τ1(δ) = [minγ∈[0,δ] g(1, γ )]−1 = [g(1,min(δ, 1 − θ ))]−1.
Therefore, τ1(δ) = 1 if δ ≥ 1 − θ ; otherwise, τ1(δ) = θ/(1 − δ)< 1.

Further examples presented in the arXiv version include the Hüsler–Reiss generalized
Pareto copula and two boundary cases with g(x, y) = max(x, y), one displaying asymptotic
dependence and one asymptotic independence. In the latter of these, we find that there is no
conditional extreme value limit with positive support, but there is one with negative support.
We comment that the results of Proposition 3.1 do indeed focus predominantly on the posi-
tive end of the support for limit distributions, but most known examples of conditional limits
have support including (0,∞). A natural next step is to consider the implications relating to
negative support. We particularly note the possibility that the orders of regular variation of the
two functions g(1, α1 + u) − 1 ∈ RV0

1/
(

1−β+
1

) and g
(
1, α1 − u

)− 1 ∈ RV0
1/
(

1−β−
1

) need not be

equal, though for each of our examples where both functions are regularly varying, β+ = β−.
If β+ >β−, it seems likely that a limit distribution with positive support only would arise, and
vice versa when β+ <β−.

4.2. Examples and illustrations for d = 3

In this section we give two examples, focusing on issues that arise for d> 2.

4.2.1. Gaussian copula. The general form of the gauge function for a meta-Gaussian dis-
tribution with standard exponential margins and correlation matrix � with nonnegative
entries is

g(x) = (
x1/2)��−1x1/2.

Figure 6 displays the level set g(x) = 1 when the Gaussian correlations in � are ρ12 =
0.75, ρ13 = 0.25, ρ23 = 0.4. The red dots on the level set are the points (1, 1, γ )/g(1, 1, γ ),
(1, γ, 1)/g(1, γ, 1), and (γ, 1, 1)/g(γ, 1, 1) for γ ∈ [0, 1]. The figure also provides an illus-
tration of τ2,3(δ) for δ = 0.2 and δ = 0.8: in each case the light blue line from the origin is
γ × (δ, 1, 1), γ ∈ [0, 1], whilst the pink lines trace out the boundary B{2,3},δ and τ2,3(δ)B{2,3},δ .
We see that when δ = 0.2 (left panel), τ2,3(0.2) = 1/g(0.2, 1, 1), i.e., miny∈B{2,3},0.2 g(y) =
g(0.2, 1, 1). However, when δ = 0.8, miny∈B{2,3},0.8 g(y) = g(γ �, 1, 1), for γ � ∈ [0, 0.8], so
τ2,3(0.8) = 1/g(γ �, 1, 1). We note that the same value of τ2,3(δ) applies for any δ ≥ γ �: for
this example, when δ ≥ γ � ≈ 0.51, τ2,3(δ) = 0.7 = η2,3.

The reason that τ2,3(δ) = η2,3 for sufficiently large δ is that, in this case,
arg minx1 g(x1, 1, 1) = γ �, meaning that the two-dimensional marginalization g{2,3}(1, 1) =
g(γ �, 1, 1), and we further have that g{2,3}(1, 1) = miny∈B2,3 g{2,3}(y), so η2,3 = 1/g2,3(1, 1).
In Section 4.2.2 we will illustrate a gauge function for which arg minx3 g(1, 1, x3)> 1, and
consequently τ1,2(δ)<η1,2 for all δ ≤ 1.

The right panel of Figure 6 illustrates τ1(δ) for δ = 0.2 and δ = 0.6. When δ = 0.6, the
boundary B1,δ already touches G, and so τ1(0.6) = 1. In this example, τ1(δ) = 1 for any
δ ≥ 0.5625 = ρ2

12. Thus, τ1(0.2)< 1 as illustrated in the figure. We comment that if we had
marginalized over X2, and were looking at τ1(δ) for the variables (X1, X3), then we would have
τ1(δ) = 1 for any δ ≥ 0.0625 = ρ2

13. This provides an illustration of the dimensionality of the
problem interacting with τC(δ), and is again related to the point at which the minimum point
defining the lower-dimensional gauge function occurs.

4.2.2. Vine copula. Three-dimensional vine copulas are specified by three bivariate copulas:
two in the ‘base layer’, giving the dependence between, e.g., X1, X2 and X2, X3, and a further
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FIGURE 6. Level set g(x) = 1 for a trivariate meta-Gaussian distribution with exponential margins. The
left panel illustrates τ2,3(0.2): the boundary set indicated by the pink solid lines is scaled along the blue
trajectory emanating from the origin until it touches G, which happens in this case at the corner point
(0.2, 1, 1)/g(0.2, 1, 1). The centre panel illustrates τ2,3(0.8): the boundary set is again pulled back along
the indicated trajectory until it touches G; in this case this does not occur at a corner point. The right
panel illustrates τ1(δ) in a similar manner, for δ= 0.2, 0.6.

copula specifying the dependence between X1|X2 and X3|X2. Here we take the base copu-
las to be independence for (X1, X2), and the inverted Clayton copula with parameter β > 0
for (X2, X3). The final copula is taken as inverted Clayton with parameter γ > 0. The gauge
function that arises in exponential margins is

g(x) = (1 + β) max(x2, x3) − β min(x2, x3) − γ x1 − (γ + 1)(β + 1)( max(x2, x3) − x2)

+ (2γ + 1) max(x1, (β + 1)( max(x2, x3) − x2)). (4.1)

Figure 7 displays the level set g(x) = 1. In this figure we also give an illustration of
a case where τC(1)<ηC: in particular, for this example τ1,2(1)<η1,2,3 = η1,2 = 1/2. The
purple lines (near right of image) represent the boundary of the region τ1,2(1)R{1,2},1 =
τ1,2(1,∞]2 × [0, 1], while the green lines (back right of image) represent the boundary of
the region η1,2,3(1,∞]3. Theorem 1 of [42] tells us that η1,2 = max(τ1,2(1), τ1,2,3), where
τ1,2,3 = η1,2,3. Therefore τ1,2(1)<η1,2 guarantees that η1,2 = η1,2,3.

We also illustrate Proposition 2.4, minimizing (4.1) over x3. If x2 > x3 then the minimum
over x3 occurs if we set x3 = x2 and is equal to x2 + (1 + γ )x1. If x2 < x3 then owing to
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FIGURE 7. Level set g(x) = 1 with g as in (4.1). The figure illustrates τ1,2(1) and η1,2,3 = η1,2 = 1/2.

the final term we need to consider the cases x3 ≶ x1/(1 + β) + x2. In both cases, the mini-
mum is attained at x3 = x1/(1 + β) + x2, and is equal to x1 + x2 < (1 + γ )x1 + x2. Therefore,
minx3 g(x1, x2, x3) = x1 + x2. This result is as expected since the bivariate margins of vine cop-
ulas that are directly specified in the base layer are equal to the specified copula: in this case,
independence.

4.3. Mixing independent vectors

Here we exploit the results from previous sections to consider what happens when inde-
pendent exponential random vectors are additively mixed so that the resulting vector still has
exponential-type tails. We consider as a case study the spatial model of [26], which following
a reparameterization can be expressed as

{
XẼ(s) = γ SE + VE(s) : s ∈ S ⊂R

2}, γ ∈ (0,∞), (4.2)

where SE ∼ Exp(1) is independent of the spatial process VE, which also possesses unit expo-
nential margins and is asymptotically independent at all spatial lags s1 − s2 	= 0. The process
VE is assumed to possess hidden regular variation, with residual tail dependence coefficient sat-
isfying ηV (s1, s2)< 1 for all s1 	= s2. The resulting process XẼ is asymptotically independent
for γ ∈ (0, 1] and asymptotically dependent for γ > 1; see also [17] for related results.
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When γ < 1, P
(
XẼ(s)> x

)∼ e−x/(1 − γ ). In this case, [26] show that the residual tail
dependence coefficient for the process XẼ is given by

ηX =
{
ηV , γ < ηV ,

γ, ηV ≤ γ ≤ 1.
(4.3)

That is, the strength of the extremal dependence as measured by the residual tail dependence
coefficient ηX is increasing in γ for γ ≥ ηV . In contrast, [45] show that under mild conditions,
the process (4.2) has the same conditional extremes normalization as the process VE(s), with
identical limit distribution when the scale normalizations bs−s0 (t) → ∞ as t → ∞. Here, the
subscript s − s0 alludes to the fact that the conditioning event in (2.8) is {VE(s0)> t} and we
study the normalization at some other arbitrary location s ∈ S . In combination, we see that
the results of [26, 45] suggest that the addition of the variable γ SE to VE affects the extremal
dependence of XẼ differently for different extreme value representations. We elucidate these
results further in the context of the limit sets and their gauge functions. A summary is provided
here, with full derivations in the arXiv version of the paper.

Let us suppose that SE ∈R
d+ has unit exponential margins, density fSE , and gauge func-

tion gS, and is independent of VE ∈R
d+, which has unit exponential margins, density fVE , and

gauge function gV . Let ZE = (SE,VE) ∈R
2d+ be the concatenation of these vectors; this has

exponential margins and gauge function gZ(z) = gS(z1, . . . , zd) + gV (zd+1, . . . , z2d).
Now consider the linear transformation of ZE to

AZE = (
γZE,1 + ZE,d+1, . . . , γZE,d + ZE,2d, ZE,1, . . . , ZE,d

)
= (
γSE + VE, SE

)= (
XẼ, SE

)
,

where A ∈R
2d×2d is the matrix describing this transformation. By Lemma 4.1 of [36], the

normalized sample cloud {AZE,i/ log n : i = 1, . . . , n} converges onto the set AG, where G ={
z ∈R

2d+ : gZ(z) ≤ 1
}
, so

AG = {z ∈R
2d+ : A−1z ∈ G} = {

z ∈R
2d+ : gZ(A−1z) ≤ 1

}
.

Consequently, the gauge function of AZE is gZ(A−1z); i.e., gZ(x, s) = gS(s) + gV (x − γ s), for
x> γ s.

Next we apply Proposition 2.4 to the vector AZ, marginalizing over the last d coordinates,
which are equal to SE. This leaves us with the gauge function of XẼ, denoted by gX , and
given by

gX(x) = min
s∈[0,x/γ ]

gS(s1, . . . , sd) + gV (x1 − γ s1, . . . , xd − γ sd).

To illustrate the results of [26, 45] concerning the model (4.2), we need to take SE = SE1,
i.e., perfect dependence. Although such a vector does not have a d-dimensional Lebesgue
density, convergence of the sample cloud based on the univariate random variable SE onto the
unit interval [0,1] implies that the limit set is GS = {

x ∈R
d+ : x1 = x2 = · · · = xd = x, x ≤ 1

}
.

Such a set can be described by the gauge function

gS(s) =
{

∞, si 	= sj for any i, j,

s, s1 = · · · = sd = s.

Therefore, in this case, gX(x) = mins∈[0,min(x)/γ ]{s + gV (x − γ s)}.
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FIGURE 8. Red solid lines depict the level sets gV (x) = 1, where gV is of the form (ii), (iii), and (iv) (left
to right) from Figure 2. Black dashed lines depict the level sets gX(x) = 1. In each picture the blue solid
line segment is from (0,0) to (γ, γ ) and denotes the limit set of the fully dependent random vector γ SE.
From left to right, γ = 0.9, 0.5, 0.8.

Residual tail dependence: To find the residual tail dependence coefficient ηX , we require

min
x : min(x)=1

gX(x) = min
x : min(x)=1

min
s∈[0,min(x)/γ ]

{s + gV (x − γ s)}
= min

s∈[0,1/γ ]
min

x : min(x)=1
{s + gV (x − γ s)}.

For fixed s, consider

min
x : min(x)=1

gV (x − γ s) = min
z : min(z)=1−γ s

gV (z) = gV (y� × (1 − γ s)),

where y� = arg miny : min(y)=1 gV (y). Thus

min
x : min(x)=1

gX(x) = min
s∈[0,1/γ ]

{s + gV (y�)(1 − γ s)} =
{

gV (y�), γ < 1/gV (y�),

1/γ, γ ≥ 1/gV (y�).

Recalling that ηX = [minx : min(x)=1 gX(x)]−1 and ηV = 1/gV (y�), this yields (4.3).

Conditional extremes: For the conditional extremes normalization, we now let gV and gX

denote two-dimensional gauge functions. Suppose that αV , βV are such that gV (αV , 1) = 1 and
gV (αV + u, 1) − 1 ∈ RV0

1/(1−βV ). We have

1 = gX(αX, 1) = min
s

{s + gV (αX − γ s, 1 − γ s)}. (4.4)

Suppose that the right-hand side of (4.4) is minimized at s� ≥ 0; i.e., gX(αX, 1) = s� + gV (αX −
γ s�, 1 − γ s�). Because αX ≤ 1 and gV (v1, v2) ≥ max(v1, v2), this yields 1 = gX(αX, 1) ≥ 1 +
(1 − γ )s�; therefore we must have s� = 0 for γ ∈ (0, 1). Consequently, αX = αV = α.

Calculations for the scale normalization are more involved and can be found in the arXiv
version of the paper. We find that for gV differentiable at (α, 1), gX(α+ u, 1) − 1 ∼ gV (α+
u, 1) − 1, u → 0, whereas in the non-differentiable case we do not necessarily have this link
but can deduce that the regular variation indices are βX = βV = 0.

Figure 8 displays examples of gauge functions gV and gX . We observe from this figure how,
when γ is sufficiently large, the shape of gV is modified to produce gX . The modification is
focused around the diagonal, and explains visually why the residual tail dependence coeffi-
cient changes while the conditional extremes normalization does not. The left and right panels
illustrate differentiable cases, and the centre panel a non-differentiable case.
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5. Discussion

In this work we have demonstrated how several concepts of extremal dependence
can be unified through the shape of the limit set G of the scaled sample cloud Nn =
{X1/rn, . . . ,Xn/rn} arising for distributions with light-tailed margins. For concreteness our
focus has been on exponential margins, but other choices can be useful. In the case of neg-
ative dependence between extremes—such that large values of one variable are most likely
to occur with small values of another—the double exponential-tailed Laplace margins can be
more enlightening. As an example, for the bivariate Gaussian copula with ρ < 0 we observed
that the limit set G is described by a discontinuous gauge function g that cannot be estab-
lished through the simple mechanism of Proposition 2.2. In [36], the gauge function for this
distribution in Laplace margins is calculated as

g(x, y) =
{(|x| + |y| − 2ρ|xy|1/2)/(1 − ρ2

)
, x, y ≥ 0 or x, y ≤ 0,(|x| + |y| + 2ρ|xy|1/2)/(1 − ρ2
)
, x ≥ 0, y ≤ 0 or x ≤ 0, y ≥ 0.

When ρ < 0, this yields g
(
1,−ρ2

)= 1, and g
(
1,−ρ2 + u

) ∈ RV0
2, so that, extending

Proposition 3.1, we would find that the conditional extremes normalizations are aj(t) ∼ −ρ2t
and bj(t) ∈ RV0

1/2, as given in [29].
The study of extremal dependence features through the limit set G is enlightening both

for asymptotically dependent and asymptotically independent random vectors, particularly as
it can be revealing for mixture structures where mass is placed on a variety of cones EC as
defined in (2.2). However, many traditional measures of dependence within the asymptotically
dependent framework, which are typically functions of the exponent function V given in (2.3),
or the spectral measure H, are not revealed by the limit set G. For example, it was noted
in the example of Section 4.1.3 that the limit set described by the gauge function g(x, y) =
θ−1 max(x, y) + (1 − θ−1) min(x, y) can arise for several different spectral measures, although
clearly the parameter θ demonstrates some link between strength of dependence and shape
of G.

Nonetheless, multivariate regular variation and associated limiting measures have been well
studied in extreme value theory, but representations that allow greater discrimination between
asymptotically independent or mixture structures much less so. The limit set elucidates many of
these alternative dependence concepts and provides meaningful connections between them. We
have not directly considered connections between the various dependence measures without
reference to G, and we note that the limit set might not always exist. We leave such study to
future work.
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