Robotica (1997) volume 15, pp 3-10. © 1997 Cambridge University Press

Obstacle avoidance inverse kinematics solution of redundant

robots by neural networks
*Ziqiang Mao & 1T.C. Hsia

SUMMARY

This paper investigates the neural network approach to
solve the inverse kinematics problem of redundant robot
manipulators in an environment with obstacles. The
solution technique proposed requires only the knowledge
of the robot forward kinematics functions and the neural
network is trained in the inverse modeling manner.
Training algorithms for both the obstacle free case and
the obstacle avoidance case are developed. For the
obstacle free case, sample points can be selected in the
work space as training patterns for the neural network.
For the obstacle avoidance case, the training algorithm
is augmented with a distance penalty function. A
ball-covering object modeling technique is employed to
calculate the distances between the robot links and the
objects in the work space. It is shown that this technique
is very computationally efficient. Extensive simulation
results are presented to illustrate the success of the
proposed solution schemes. Experimental results per-
formed on a PUMA 560 robot manipulator is also
presented.

KEYWORDS: Neural networks; Obstacle avoidance; Redun-
dant robots; Inverse kinematics.

1. INTRODUCTION

Solving inverse kinematics of a manipulator is an
important problem in robotics. The main difficulty in
solving such problems is that they are highly nonlinear
and there exist multiple solutions. Each solution provides
a different manipulator posture. For the majority of the
industrial robots, which are kinematically non-redundant,
closed form solutions do exist and the number of
solutions are known to be finite. However, the number of
inverse kinematic solutions for a redundant manipulator
is infinite, and closed form solutions are impossible to
find in general.

Kinematically redundant robot manipulators have
attracted much attentions in robotics research because of
their ability to increase dexterity and avoid obstacles.
Solving the inverse kinematic problem of redundant
robot manipulators is generally complicated by the fact
that it has an infinite number of joint space solutions to a
given end-effector Cartesian space position. To obtain an
obstacle avoidance solution, it also involves object

* Intel Corporation, 200 Mission College Blvd, Santa Clara, CA
95052 (USA).
1 Robotics Research Laboratory, Department of Electrical and
Computer Engineering, University of California, Davis, CA,
95616 (USA).

https://doi.org/10.1017/50263574797000027 Published online by Cambridge University Press

modeling and distance computation. Clearly closed form
solution is neither possible nor necessarily computation-
ally desirable. Thus numerical solution methods are
commonly used.'® In these methods, the inverse
kinematic solution redundancy is resolved by using the
dexterity measures and/or Moore-Penrose pseudoinverse
of the Jacobian matrix.” In addition, obstacle avoidance
joint solution can be obtained by optimizing certain
objective functions.®

Because a multi-layer neural network can form any
continuous nonlinear mapping from one domain to
another, neural network methods have been studied by
researchers to model the forward and inverse kinematics
mapping of robot manipulators. It is shown that a
multi-layer neural network with sinusoidal activation
functions can be successfully trained to model a given
forward kinematic mapping.” Modeling of inverse
kinematics mappings by multi-layer neural network has
also been successfully demonstrated.'®? It is shown that
for a three-degree-of-freedom manipulator, elbow-up
and elbow-down inverse kinematic solutions can be
trained by choosing different initial weights in the neural
network.'” Other neural network algorithm such as
Kohonen’s self-organizing mapping algorithm'® and
cooperative/competitive neural networks'*'> have been
used to model the inverse kinematics mappings.

In this paper, we investigate the idea of solving the
inverse kinematics problem of redundant robots using a
neural network. Specifically, we develop methodologies
to train a neural network to learn the inverse kinematics
solution from a given forward kinematics of a
manipulator. A training algorithm for finding obstacle
avoidance inverse kinematics solutions is developed. The
solution scheme is presented in which the user can
conveniently control the manipulator posture of an
inverse kinematic solution by assigning appropriate
initial conditions of the joint variables. This feature is
particularly important to redundant robot arms where
redundancy can be resolved in favor of desirable arm
postures satisfying collision free properties.

The result is derived based on a simple ball-covering
object modeling technique which allows distance
functions to be calculated very efficiently. The properties
of the proposed scheme are validated by simulation
results and experimentation. Thus a successfully trained
neural network using the proposed schemes can provide
accurate continuous inverse kinematics solutions on-line
in a given robot work space with or without obstacles.

In the following sections, we will first introduce the
neural network solution scheme and the formulation of
the inverse kinematic problem for the obstacle free case.

https://doi.org/10.1017/S0263574797000027

4

Then the obstacle avoidance inverse kinematic solution is
introduced. Finally, we present both the simulation and
experimental results to demonstrate the performance of
the proposed algorithms.

2. OBSTACLE FREE NEURAL NETWORK
SOLUTION SCHEME

The inverse kinematics problem we are considering can
be stated as follows: Given the end-effector location
(position and orientation) of a robot manipulator whose
forward kinematics are known, find a set of joint variable
solution, among all possible solutions, which positions
the end-effector at the specified location while the
corresponding robot posture possesses certain desirable
properties. A neural network solution scheme for the
obstacle free case is proposed as shown in Figure 1. In
this scheme, x,; and x are the m X 1 desired and actual
end-effector location vectors respectively, q is the n X 1
robot joint variable vector, q, is the prespecified initial
value of q, q' is the neural network output joint variable
vector, and G(q) is the known forward kinematics.

IG(q)
iq

Hence, the m X n Jacobian matrix J(Q) = is also

known. A manipulator is kinematically non-redundant
when m = n, and it is redundant when m <n. The neural
network weights are trained using the location error
e =x, — X. The neural network architecture and training
algorithm will be discussed in the next section.

A particular set of joint points q, are the inverse
kinematics solutions for q if G(q,) = x,. It is well known
that q, is not unique for a given x, in general. For a
non-redundant robot, the possible inverse kinematics
solutions are isolated in joint variable space. However,
for a redundant robot, the set of all possible inverse
kinematics solutions contains several disjoint subsets in
the joint space. Each subset is topologically connected'®
and consists of infinite number of joint points. The role
that the initial value q, plays in the proposed inverse
kinematics solution is that it defines the center of a
subset of q in which a solution q, exists in the
neighborhood. Thus by judiciously choosing qy, we can
select the class of inverse kinematic solutions for which
the corresponding robot postures are most desirable for
the task to be performed.

One traditional way for solving redundancy in inverse
kinematic solutions is to require the solution to optimize

Inverse Kinematics

q
X l1°
q Y+ q
Neural network —
+

Forward kinematics
x G@ *

Fig. 1. The Learning Scheme for the Inverse

Kinematics Problem.

solving

https://doi.org/10.1017/50263574797000027 Published online by Cambridge University Press

Neural networks

certain dexterity measures.” A commonly used measure
is the minimum of a joint range availability function
defined as

h(g,)=(q.—q)"(q. — q) 1)

where q. is the center of the range of joint travel.
Therefore, if the desired range of each joint variable is
specified, then q. can be appropriately identified. Thus
we propose to choose the initial value q, of q in the same
manner as we choose q.. For example, we can place q, of
a non-redundant robot arm inside any one of the finite
and distinct subspaces of q to obtain an inverse kinematic
solution which provides either elbow up or elbow down,
right arm or left arm configurations as desired. In the
case of redundant arms, more flexibility exists in
choosing q, and additional constraining condition on the
arm configuration, such as collision avoidance, can be
imposed in obtaining a desired inverse kinematics
solution.

3. PROBLEM FORMULATION

Before we formulate the inverse kinematics problem in
detail, we briefly introduce the multilayer neural network
to be used in the proposed solution scheme of Figure 1.
A multi-layer neural network is a parallel, distributed
information processing system consisting of processing
elements interconnected together with unidirectional
signal channels. Each processing element, called as
neuron, has a single output and performs an activation
function of the weighted sum of all its inputs. The
activation function is usually chosen as a sigmoid
function or a linear function. After the structure of the
network is specified, the weights between the neurons
are updated step by step so that the input-output
mapping of the neural network approximates a desired
nonlinear continuous function. The updating rule of the
weights to be used is the back-propagation algorithm
proposed by Rumelhart et al.'” The theoretical basis of
the neural network approximation to a nonlinear
continuous function is the Kolmogorov’s theorem.'™ It
has been reported"” that any nonlinear continuous
function can be approximated by a two-layer neural
network, as shown in Figure 2.

In Figure 2, x; is the jth element of the input vector at
the input layer, g is the kth element of the output vector
at the output layer, z; is the ith element of the output
vector at the hidden layer, w,,; is the weight on the
channel from z; to the input of kth output gz, W, is the
bias entering the kth neuron at output layer, w,,; is the
weight on the channel from input x; to the input of ith
hidden layer neuron, and wy,, is the bias entering the ith
neuron at the hidden layer. z; and g, are computed by

m
zi = fu(u;) where w; =wy+ Z WhijX; @)
i=1

qr=v. where v =Wyt D, Woili 3)
i=1
Ck=1,2,...

wherei=1,2,...,r,j=1,2,... ,, ris the

https://doi.org/10.1017/S0263574797000027

Neural networks

Input Hidden
layer layer layer

e
@ sigmoid
neuron

Fig. 2. A Two-Layer neural Network.

linear
O buffer @ neuron

number of neurons at hidden layer, and f,(u) is a sigmoid
function at the hidden layer given by f,(u)=
1
1+e ™™
The updating rule for adjusting the weights w at time &
is the steepest descent algorithm with momentum term
given by

dE(w)
dw

w(k+1)=w(k)+n<— >+a(w(k)—w(k—1))
(4)
where E(w) is the objective function to be minimized, «
is the momentum coefficient and 7 is the learning rate.
The task of training the neural network to solve the
inverse kinematics problem can be stated as follows.
Given L desired end-effector locations {x,, ‘ p=
1,2,...,L} as the input patterns x to the neural
network, adjust the weights w such that the outputs of
the inverse kinematics block in Figure 1 converge to the
desired joint variable solution {q,, | p=12,...,L,
Xap = G(qdp)}
Since we assume that the forward kinematics mapping

x=G(q) and the m Xn Jacobian matrix J(q)=
oG

a((]q) are known, we can define a kinematic error as
e, =X, — X, =X, — G(q,). Minimizing e, achieves the

goal in finding the desired inverse kinematics mapping.
Thus the objective function E(w) in (4) can be defined as
the sum of the norm of all squared kinematic errors e,:

1 & .
E,= mpzl (Xd,p - Xp)l (Xd,p - Xp)' (5)

oFE
The corresponding gradient 670 is
w

L [(X x)rmr
mL 2 L5 7P aq, 0w
1 & aq, 1"
S) (SIS

(6)

https://doi.org/10.1017/50263574797000027 Published online by Cambridge University Press

5

When the neural network is perfectly trained, E, is
minimized to zero and the neural network solution
provides the exact inverse kinematics solution g, for each
Cartesian position x,,. In practice, we specify an
accuracy threshold ¢ >0 for the neural network training.
The weight updating algorithm (4) can be terminated
whenever E, is less than a threshold &. The neural
network thus obtained provides an approximation to the
inverse kinematics solution in the trained domain.
Simulation studies, which will be presented later, show
that the proposed scheme works very well and converges
fast.

4. OBSTACLE AVOIDANCE INVERSE
KINEMATICS SOLUTION

4.1. Object modeling method

When obstacles are present in the robot work space,
inverse kinematics solution must be found in such a way
that it avoids the collision between robot links and
obstacles. To find obstacle avoidance inverse kinematics
solution, we need to appropriately model the obstacles
and links and then measure the distance between the
obstacles and links. Many researchers™® have dealt with
the modeling problem by assuming convexity of links and
obstacles and then measuring the distance among convex
sets. The advantage of this modeling method is that it
can precisely compute the distance between a pair of two
objects. The disadvantage is that computing the distance
is time consuming.

Since a robot work space is bounded, the obstacles and
links in the work space are also bounded. Mathematical
theorem'® shows that only finite number of balls are
required to cover a bounded set. So if robot links and
obstacles and links is in the union of all the balls. Of
course smaller balls can more accurately describe the set
occupied by the links and obstacles, but it would also
require more balls and computations. We recommend to
use balls with different radii to cover different shapes of
links and objects so that more accurate converge is
possible without increasing complexity. This object
modeling method is called the ball-covering modeling
method. Similar method was proposed as the spherical
representation in the study of human body modeling.?

To illustrate the idea stated above, a planar redundant
robot is considered as shown in Figure 3. Suppose that
there are N, balls covering links and N, balls covering

Y-axis

Obstacle

Fig. 3. Object Modeling Method.

https://doi.org/10.1017/S0263574797000027

6

obstacles. Let the pairs (R;, Z;) and (R,;, Z,;) be the
radii and centers of two balls among all balls covering the
links and obstacles, where i=1,2,..., N, and j=
1,2,...,N,. Radii R; and R,; are preselected, therefore
they are fixed. The center position vector Z, depends on
joint angles, hence Z;, can be written as Z;(q). Z, is
fixed if the obstacles are stationary. The sufficient
condition for keeping the links and obstacles a minimum
distance o apart is

(Ri + R, +8) — ||Z/i_Zoj||2§0 (7)
for all ball pairs one taken from the links and one taken
from the obstacles.

Suppose that the obstacles are stationary. For each pth
output joint variable set ¢, we can define a
corresponding N X1 distance vector g(q,) whose
elements are given by

8i(qy) = (Ri + Ry + 8)° — 1 Z4(q,) — Zos|I” (8)
where i=1,2,...,N,j=1,2,...,N, and N=N, * N,.
Therefore,

g(q,) =0 for all output index p =1,2,..., L, (9)
where g(q,) is differentiable with respect to .
Satisfaction of this condition for all q, guarantees
collision free inverse kinematics solutions. This condition
leads to an inequality constraint in the neural network
solution which is an undesirable complication that must
be appropriately dealt with.

oj

4.2 Penalty function method

The inverse kinematics problem at hand becomes one of
minimizing the objective function E, in (5) with the
inequality constraint (9). The complexity of the
optimization problem with inequality constraints can be
reduced if we convert (9) into a penalty function in E,
and then minimize the augmented objective function of
the constraint.”!

Let P be the penalty function

1 L Ny N, .
P=73 3 > gilq,) (10)
p=1i=1j=1
where
gi(q,) = max {0, g;(q,)} (11)

If all solutions q, satisty condition (9), then P would be

equal to zero. P >0 occurs when at least one element

gi(q,) of g(q,) is greater than zero which implies that

collision occurs. Therefore, the objective is to minimize P

and E, to zero in solving the inverse kinematics problem.
Let us define an augmented objective function as

E=E,+puP (12)
where E, is defined in (5) and u is the Lagrange
multiplier which is positive. The objective function E is

oE
differentiable, so the gradient w can be easily computed.
w

When p is sufficiently large, the minimization of E is
equivalent to the minimization of E, with inequality (9).
The proper choice of u depends on the problem at hand.

S. SIMULATIONS
For the purpose of illustration, we examine the inverse
kinematics solutions of a four-link planar robot shown in

https://doi.org/10.1017/50263574797000027 Published online by Cambridge University Press

Neural networks

Y -
l/q 93
7 L2 Ly
L, VAN
q L\ % " Bobot End-eftector
' /
X

Fig. 4. A Four-link Planar Robot.

Figure 4. The forward kinematics function of the robot is

G(q) = [L1C1 + Lycip + Laciz + L4C1234] (13)
Lysy + Losia + LaSias + LaSio3a
and the corresponding Jacobian matrix is
—Ly8y — LStz — L3S123 — LuS1234
J(q) = — L3812 — L3S123 — LaS1234
—L35123 = LaS1234
—L4S1234
Lici+ Lycis + Lscios + Lycioag |”
Lycip+ Lscips + Lyc
2t12 34123 441234 (14)
Licios + LycCinzg
Liciz3a
where L, =1.0 is the length of the ith link for all i,
sy =sin(q1), Spp=sin(q +¢q2), Sz =sin(q: +q>+ q3),
S1234 = 8in (g1 + g2 + g3 + q4), and g; is the ith joint angle
as shown in Figure 4. The symbol ¢ corresponds to cosine
function.

In the simulation study, we use the two-layer neural
network as shown in Figure 2 with 40 neurons at hidden
layer. The momentum coefficient « is chosen as o =0.9
and the learning rate 7 is chosen as n =0.5. The initial
values of weights are selected as zero-mean random
values with uniform distribution in [—1, +1].

5.1 Obstacle free case

We examine through simulation the neural network
training on a specified domain spanned by 25 Cartesian
positions {(x, y) |x =0.0, 0.6, 1.2, 1.8, 2.4; y =0.6, 1.2,
1.8, 2.4, 3.0} as shown in Figure 5. If qq is specified as

Four-link robot posture

.4 . .
4 -2 0 2 4

(+)desired position, (x) actual position

Fig. 5. Robot Postures With q, = (90°, 0°, 0°, 0°)".

https://doi.org/10.1017/S0263574797000027

Neural networks

Table I. Training Results of Case 1 and 2

Case E, Iterations
1 0.000179 1000
2 0.001 166

(90°, 0°, 0°, 0°)7, which corresponds to an upright robot
posture, then the robot postures for the desired solutions
are elbow-up.

Table I lists two training results for g, = (90°, 0°, 0°,
0°)”. Case 1 shows the minimized E, value after 1000
training iterations. The final inverse kinematics solutions
are plotted in Figure 5. Case 2 shows that the training is
converged at 166 iterations for an error threshold ¢ =
0.001. Thus the convergence rate is fast for most practical
applications.

Shown in Figure 6 is an alternate training result when
qo=(0°, 0°, 0°, 0°)” is used. As expected, robot postures
are elbow down. This exercise demonstrates the property
that choice of ¢ affects robot postures.

5.2 Obstacle avoidance case
The same four-link planar robot and neural network are
used to investigate the obstacle avoidance solution of the

Four-link robot posture

(+)desired position, (x) actual position

Fig. 6. Robot Postures with q, = (0, 0°, 0°, 0°)".

Four-link robot posture

PN
N/

(+)desired position, (x) actual position

Fig. 7. Robot Postures without Obstacles.

https://doi.org/10.1017/50263574797000027 Published online by Cambridge University Press

Four-link robot posture and obstacle

O\
5\ W

(+)desired position, (x) actual position

Fig. 8. Robot Postures with One Obstacle.

inverse kinematics problem. As shown in Figures 7, 8
and 9, the domain is spanned by 10 Cartesian positions
{(x,y)|x =035, 0.7, 1.05, 1.40, 1.75, 2.10, 2.45, 2.80,
3.15, 3.50; y =0} along a straight line on the y axis. To
obtain elbow-up solution we chose q, = (45°, 0°, 0°, 0°)".
Each robot is covered by 4 circles with identical radius of
0.125, and each obstacle is a circle of radius of 0.5. The
minimum distance & between links and obstacles is
chosen as 0.1. The Lagrange multiplier p is 3.0. The
neural network weights are trained to minimize the
objective function E in (12). Training is terminated when
Ey,=0.001.

Listed in Table II are three simulation results with
different environments. Figure 7 shows that the robot is
trained for the 10 posiitons on the x-axis without
obstacles. The training took 125 iterations to reach an
accuracy of E,=0.001. When one obstacle is introduced
as shown in Figure 8, the robot postures are altered to
avoid the obstacle. 535 iterations were needed for E, to
converge to the same value of E, = 0.001. Figure 9 shows
the solution when more obstacle is added in the working
space in Figure 8. We see that avoidance of two obstacles
is successfully accomplished after 591 iterations.

These simulations verify that the proposed learning
scheme can solve the inverse kinematics problem with
obstacle avoidance.

Four-link robot posture using q"-scheme

N W L
i

(=3 —
'

-1
2t i

3t _

4
"4 2 0 2 4

(+)desired position, (x) actual position

Fig. 9. Robot Postures with Two Obstacles.

https://doi.org/10.1017/S0263574797000027

Table II. Obstacle Avoidance Results

Figure Number of qo E, iterations
obstacles
7 0 (45°, 0°, 0°, 0°)7 0.001 125
8 1 (45°, 0°, 0°, 0°)7 0.001 535
9 2 (45°, 0°, 0°, 0°)7 0.001 591

The values of w affects the convergence of training
process. For example, when u is too large, it takes more
iterations to reduce the kinematic error to the preset
threshold. The convergence of the kinematic error is
faster for a smaller w, however collision between robot
and obstacles may occur even though kinematic error
threshold has been met. Thus the appropriate choice of
w1 depends on the problem at hand.

5.3 Applications to PUMA 560 robot

The PUMA 560 robot arm has six joints. When both the
Cartesian position and orientation are taken into
account, the PUMA 560 arm is a non-redundant robot.
However, if we only consider the position of the end
point of an attached tool, the PUMA 560 arm as shown
in Figure 10 will become a redundant robot since the tool
tip in the three-dimensional Cartesian space is related to
five joint angles (a two degree redundancy). With the
joint angle and link parameters defined in Table III, the
positional forward kinematics is expressed as follows:

X = Cl[dé(C23C4S5 + 523C5) + 853d,

+ a3Cos + a,C] — 81[d6S4Ss + d>) (15)

Fig. 10. PUMA 560 Robot with A Long Tool.

Neural networks
Y= [da(C23C4SS + 523C5) + 853d,
+ a3C23 + a2C2] + C] (dﬁS4SS + d2) (16)

Z= dé(CZBCS - S23C4S5) + Cpdy — a355 + a,$,
17)

A set of 15 points on a straight line, as shown in Figure
11(a) and listed in Table IV, is used for training. The first
run of training is in the environment without obstacles.
We use a neural network with 45 neurons at the hidden
layer. In order to obtain the elbow-up solution, qq is
chosen as (0°, —90°, 90°, 0°, 0)”. It took 1765 iterations to
reduce the kinematics error E, to below 0.001. The joint
solutions are plotted in Figure 11(b). The robot links of
the solution are almost in a plane.

When there is an obstacle in the work space as shown
in Figure 12(a), the obstacle avoidance solution took
3826 iterations to reduce the kinematics error to below
0.001. The joint solutions are plotted in Figure 12(b).

joint 4 joint §

joint 3

joint 6

joint 2

joint 1 —»

Six-Joint Arm

Fig. 11(a). Robot Posture without Obstacle.

Joint Values at 15 Positions

150

100 77,] 1

/

degree
V3
S

-100} |
-150} ']
200} |

250l =m oo oo e

Legend: - Joint 1,-. Joint 2, -- Joint 3, ++ Joint 4, .. Joint 5

Fig. 11(b). Joint Solutions at 15 Positions.

Table III. PUMA 560 Arm Link Coordinate Parameters

Joint i 6, a; a; d; Joint range
1 90 =90 0 0 —159 to +159
2 0 0 431.8 mm 149.09 mm —180 to —0,0 to 43, +137 to 180
3 90 90 —20.32 mm 0 —180 to —128, —51.9 to +180
4 0 =90 433.07 mm —110 to +170
5 0 90 0 —100 to +1
tool 256.25 mm

https://doi.org/10.1017/50263574797000027 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574797000027

Neural networks

Table IV. 15 Training Points on a Straight Line
(in meters)

X y 4
—0.700 0.700 0
—0.725 0.725 0
—0.750 0.750 0
=0.775 0.775 0
—0.800 0.800 0
—0.825 0.825 0
—0.850 0.850 0
—0.875 0.875 0
—0.900 0.900 0
—0.925 0.925 0
—0.950 0.950 0
—-0.975 0.975 0
—1.000 1.000 0
—1.025 1.025 0
—1.050 1.050 0

obstacle

- 4
joint 1 —

Six-Joint Arm

Fig. 12(a). Robot Posture with an Obstacle.

150 Joint Values at 15 Positions

0 2 4 . 6 8 10 12 14 16
Legend: - Joint 1,-. Joint 2, -- Joint 3, ++ Joint 4, .. Joint 5

Fig. 12(b). Obstacle Avoidance Joint Solutions at 15 Tool Tip
Positions.

The robot links are no longer in a plane, rather they are
twisted to avoid the obstacle.

VI. CONCLUSION

A neural network technique has been introduced in this
paper to solve the inverse kinematics problem of
redundant robot manipulators with obstacle avoidance
capabilities. The solution technique requires only the
knowledge of robot forward kinematics including the
corresponding Jacobian. Both obstacle free and obstacle

https://doi.org/10.1017/50263574797000027 Published online by Cambridge University Press

9

avoidance cases were studied. The latter case was
effectively solved by employing the ball-covering object
modeling technique which is mathematically tractable
and computationally efficient. Extensive simulations have
been performed, which showed that the proposed neural
network schemes are very effective in obtaining accurate
robot inverse kinematics solution in a given work space
through training in a straightforward manner. The
feasibility of the solution technique is also successfully
demonstrated on a PUMA 560 arm. Thus the proposed
technique is highly useful in practice.

References

1. W.A. Wolovich and H. Elliot, “A computational technique
for inverse kinematics” Proc. 23rd IEEE Conf. on Decision
and Control, Las Vegas, (1984) pp. 1359-1363.

2. RJ. Vaccaro and S.D. Hill, “A joint-space command
generator for Cartesian control of robotic manipulators”
IEEE J. of Robotics and Automation RA-4, 70-76 (1988).

3. T.C. Hsia and Z.Y. Guo, “New inverse kinematic
algorithms for redundant robots” J. of Robotics Systems
8(1), 117-132 (1991).

4. Z.Y. Gup and T.C. Hsia, “Joint trajectory generation for
redundant robots in an environment with obstacles” Proc.
IEEE Int. Conf. Robotics and Automation (1990) pp.
157-162.

5. C.A. Klein and C.H. Huang, “Review for pseudoinverse
control for use with kinematically redundant manipulators”
IEEE Trans. SMC 13(3), 245-250 (Mar./Apr., 1983).

6. L. Sciavicco and B. Siciliano, “A solution algorithm to the
inverse kinematic problem for redundant manipulators”
IEEE J. Robotics and Automation RA-4, 403—-410 (August,
1988).

7. C.A. Klein and B.E. Blaho, “Dexterity measures for the
design and control of kinematically redundant man-
ipulators” Int. J. of Robotics Research 72-83 (1987).

8. E.G. Gilbert and D.E. Johnson, “Distance function and
their application to robot path planning in the presence of
obstacles” IEEE J. of Robotics and Automation RA-1(1),
21-30 (1985).

9. S. Lee and R.M. Kil, “Robot kinematic control based on
bidirectional mapping neural network” Int. Joint Conf. on
Neural Networks 3, 327-335 (1990).

10. A. Guez and Z. Ahmad, ‘“Solution to the inverse
kinematics problem in robotics by neural networks” IEEE
Int. Conf. on Neural Networks (1988) Vol. II, pp. 617-621.

11. E.S.H. Hou and W. Utama, ‘“An artificial neural network
for redundant manipulator inverse kinematics computa-
tion” Proceedings of the SPIE — The International Society
for Optical Engineering (1992) pp. 1607: 668-77.

12. J.A. Francisco, ‘“‘Multilayer back-propagation network for
learning the forward and inverse kinematics” Proc. Int.
Joint Conf. on Neural Networks (1990) pp. 11-319-321.

13. S. Kieffer, V. Morellas and M. Donath, ‘“Neural network
learning of the inverse kinematic relationships for a robot
arm” Proc. IEEE Int. Conf. Robotics and Automation,
Sacramento (1991) pp. 2418-2425.

14. T. Iberall, “A ball pack approach to modelling human
prehension” IEEE Conf. on Neural Networks (1987) Vol.
4, pp. 535-544.

15. T. Iberall, “A neural network for planning hand shapes in
human prehension” IEEE Conf. on Decision and Control
(1987) pp. 2288-2293.

16. Serge Lang, “Topological spaces” Real and Functional
Analysis (Springer-Verlag, New York Inc., 1993) Chapter
2

17. D.E. Rumelhart, G.E. Hinton and R.J. Williams,
“Learning internal representations by error propagation”
Parallel Distributed Processing:Explorations in the Micro-

https://doi.org/10.1017/S0263574797000027

10

structure of Cognition, vol. I (ed. D.E. Rumelhart et al.)
(1986) pp 318-365.

18. A.N. Kolmogorov, “On the representation of continuous

19. G. Cybenko,

function of many variables by superposition of continuous
functions of one variable and addition” Dolk. Akad. Nauk,
USSR 114, 953-956 (1957).

“Approximation by superpositions of a
sigmoidal function” Mathematics of Control, Signals and

https://doi.org/10.1017/50263574797000027 Published online by Cambridge University Press

21. D.G. Luenberger,

Neural networks

Systems 2(4), 303-314 (1989).

20. N.J. Badler, J. O’'Rourke and H. Toltzis, “A spherical

representation of a human body for visualizing movement”
Proceeding of the IEEE 67(10), 1397-1403 (1979).
“Penalty and barrier methods”
Introduction to Linear and Nonlinear Programming
(Addison-Wesley Publishing Co., Reading, Mass., 1965)
pp. 277-304.

https://doi.org/10.1017/S0263574797000027

