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 Obstacle avoidance inverse kinematics solution of redundant
 robots by neural networks
 *Ziqiang Mao &  † T . C .  Hsia

 SUMMARY
 This paper investigates the neural network approach to
 solve the inverse kinematics problem of redundant robot
 manipulators in an environment with obstacles .  The
 solution technique proposed requires only the knowledge
 of the robot forward kinematics functions and the neural
 network is trained in the inverse modeling manner .
 Training algorithms for both the obstacle free case and
 the obstacle avoidance case are developed .  For the
 obstacle free case ,  sample points can be selected in the
 work space as training patterns for the neural network .
 For the obstacle avoidance case ,  the training algorithm
 is augmented with a distance penalty function .  A
 ball-covering object modeling technique is employed to
 calculate the distances between the robot links and the
 objects in the work space .  It is shown that this technique
 is very computationally ef ficient .  Extensive simulation
 results are presented to illustrate the success of the
 proposed solution schemes .  Experimental results per-
 formed on a PUMA 560 robot manipulator is also
 presented .

 KEYWORDS :  Neural networks ;  Obstacle avoidance ;  Redun-
 dant robots ;  Inverse kinematics .

 1 .  INTRODUCTION
 Solving inverse kinematics of a manipulator is an
 important problem in robotics .  The main dif ficulty in
 solving such problems is that they are highly nonlinear
 and there exist multiple solutions .  Each solution provides
 a dif ferent manipulator posture .  For the majority of the
 industrial robots ,  which are kinematically non-redundant ,
 closed form solutions do exist and the number of
 solutions are known to be finite .  However ,  the number of
 inverse kinematic solutions for a redundant manipulator
 is infinite ,  and closed form solutions are impossible to
 find in general .

 Kinematically redundant robot manipulators have
 attracted much attentions in robotics research because of
 their ability to increase dexterity and avoid obstacles .
 Solving the inverse kinematic problem of redundant
 robot manipulators is generally complicated by the fact
 that it has an infinite number of joint space solutions to a
 given end-ef fector Cartesian space position .  To obtain an
 obstacle avoidance solution ,  it also involves object
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 modeling and distance computation .  Clearly closed form
 solution is neither possible nor necessarily computation-
 ally desirable .  Thus numerical solution methods are
 commonly used . 1 – 6  In these methods ,  the inverse
 kinematic solution redundancy is resolved by using the
 dexterity measures and / or Moore-Penrose pseudoinverse
 of the Jacobian matrix . 7  In addition ,  obstacle avoidance
 joint solution can be obtained by optimizing certain
 objective functions . 8

 Because a multi-layer neural network can form any
 continuous nonlinear mapping from one domain to
 another ,  neural network methods have been studied by
 researchers to model the forward and inverse kinematics
 mapping of robot manipulators .  It is shown that a
 multi-layer neural network with sinusoidal activation
 functions can be successfully trained to model a given
 forward kinematic mapping . 9  Modeling of inverse
 kinematics mappings by multi-layer neural network has
 also been successfully demonstrated . 10–12  It is shown that
 for a three-degree-of-freedom manipulator ,  elbow-up
 and elbow-down inverse kinematic solutions can be
 trained by choosing dif ferent initial weights in the neural
 network . 1 0  Other neural network algorithm such as
 Kohonen’s self-organizing mapping algorithm 1 3  and
 cooperative / competitive neural networks 14 , 15  have been
 used to model the inverse kinematics mappings .

 In this paper ,  we investigate the idea of solving the
 inverse kinematics problem of redundant robots using a
 neural network .  Specifically ,  we develop methodologies
 to train a neural network to learn the inverse kinematics
 solution from a given forward kinematics of a
 manipulator .  A training algorithm for finding obstacle
 avoidance inverse kinematics solutions is developed .  The
 solution scheme is presented in which the user can
 conveniently control the manipulator posture of an
 inverse kinematic solution by assigning appropriate
 initial conditions of the joint variables .  This feature is
 particularly important to redundant robot arms where
 redundancy can be resolved in favor of desirable arm
 postures satisfying collision free properties .

 The result is derived based on a simple ball-covering
 object modeling technique which allows distance
 functions to be calculated very ef ficiently .  The properties
 of the proposed scheme are validated by simulation
 results and experimentation .  Thus a successfully trained
 neural network using the proposed schemes can provide
 accurate continuous inverse kinematics solutions on-line
 in a given robot work space with or without obstacles .

 In the following sections ,  we will first introduce the
 neural network solution scheme and the formulation of
 the inverse kinematic problem for the obstacle free case .
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 4  Neural networks

 Then the obstacle avoidance inverse kinematic solution is
 introduced .  Finally ,  we present both the simulation and
 experimental results to demonstrate the performance of
 the proposed algorithms .

 2 .  OBSTACLE FREE NEURAL NETWORK
 SOLUTION SCHEME
 The inverse kinematics problem we are considering can
 be stated as follows :  Given the end-ef fector location
 (position and orientation) of a robot manipulator whose
 forward kinematics are known ,  find a set of joint variable
 solution ,  among all possible solutions ,  which positions
 the end-ef fector at the specified location while the
 corresponding robot posture possesses certain desirable
 properties .  A neural network solution scheme for the
 obstacle free case is proposed as shown in Figure 1 .  In
 this scheme ,   x d   and  x  are the  m  3  1 desired and actual
 end-ef fector location vectors respectively ,   q  is the  n  3  1
 robot joint variable vector ,   q 0  is the prespecified initial
 value of  q ,   q 9  is the neural network output joint variable
 vector ,  and  G ( q ) is the known forward kinematics .

 Hence ,  the  m  3  n  Jacobian matrix  J ( Q )  5
 ­ G ( q )

 ­ q
   is also

 known .  A manipulator is kinematically non-redundant
 when  m  5  n ,  and it is redundant when  m  ,  n .  The neural
 network weights are trained using the location error
 e  5  x d  2  x .  The neural network architecture and training
 algorithm will be discussed in the next section .

 A particular set of joint points  q d   are the inverse
 kinematics solutions for  q  if  G ( q d )  5  x d  .  It is well known
 that  q d   is not unique for a given  x d   in general .  For a
 non-redundant robot ,  the possible inverse kinematics
 solutions are isolated in joint variable space .  However ,
 for a redundant robot ,  the set of all possible inverse
 kinematics solutions contains several disjoint subsets in
 the joint space .  Each subset is topologically connected 1 6

 and consists of infinite number of joint points .  The role
 that the initial value  q 0  plays in the proposed inverse
 kinematics solution is that it defines the center of a
 subset of  q  in which a solution  q d   exists in the
 neighborhood .  Thus by judiciously choosing  q 0 ,  we can
 select the class of inverse kinematic solutions for which
 the corresponding robot postures are most desirable for
 the task to be performed .

 One traditional way for solving redundancy in inverse
 kinematic solutions is to require the solution to optimize

 Fig .  1 .  The Learning Scheme for solving the Inverse
 Kinematics Problem .

 certain dexterity measures . 7  A commonly used measure
 is the minimum of a joint range availability function
 defined as

 h ( q p )  5  ( q c  2  q ) T  ( q c  2  q )  (1)

 where  q c   is the center of the range of joint travel .
 Therefore ,  if the desired range of each joint variable is
 specified ,  then  q c   can be appropriately identified .  Thus
 we propose to choose the initial value  q 0  of  q  in the same
 manner as we choose  q c  .  For example ,  we can place  q 0  of
 a non-redundant robot arm inside any one of the finite
 and distinct subspaces of  q  to obtain an inverse kinematic
 solution which provides either elbow up or elbow down ,
 right arm or left arm configurations as desired .  In the
 case of redundant arms ,  more flexibility exists in
 choosing  q 0  and additional constraining condition on the
 arm configuration ,  such as collision avoidance ,  can be
 imposed in obtaining a desired inverse kinematics
 solution .

 3 .  PROBLEM FORMULATION
 Before we formulate the inverse kinematics problem in
 detail ,  we briefly introduce the multilayer neural network
 to be used in the proposed solution scheme of Figure 1 .
 A multi-layer neural network is a parallel ,  distributed
 information processing system consisting of processing
 elements interconnected together with unidirectional
 signal channels .  Each processing element ,  called as
 neuron ,  has a single output and performs an activation
 function of the weighted sum of all its inputs .  The
 activation function is usually chosen as a sigmoid
 function or a linear function .  After the structure of the
 network is specified ,  the weights between the neurons
 are updated step by step so that the input-output
 mapping of the neural network approximates a desired
 nonlinear continuous function .  The updating rule of the
 weights to be used is the back-propagation algorithm
 proposed by Rumelhart et al . 1 7  The theoretical basis of
 the neural network approximation to a nonlinear
 continuous function is the Kolmogorov’s theorem . 1 8  It
 has been reported 1 9  that any nonlinear continuous
 function can be approximated by a two-layer neural
 network ,  as shown in Figure 2 .

 In Figure 2 ,   x j   is the  j th element of the input vector at
 the input layer ,   q 9 k   is the  k th element of the output vector
 at the output layer ,   z i   is the  i th element of the output
 vector at the hidden layer ,   w o k i   is the weight on the
 channel from  z i   to the input of  k th output  q 9 k , w o k 0  is the
 bias entering the  k th neuron at output layer ,   w h i j   is the
 weight on the channel from input  x j   to the input of  i th
 hidden layer neuron ,  and  w h i 0  is the bias entering the  i th
 neuron at the hidden layer .   z i   and  q 9 k   are computed by

 z i  5  f h ( u i )  where  u i  5  w h i 0  1  O m
 j 5 1

 w h i j x j  (2)

 q 9 k  5  y  k  where  y  k  5  w o k 0  1  O r

 i 5 1
 w o k i z i  (3)

 where  i  5  1 ,  2 ,  .  .  .  ,  r , j  5  1 ,  2 ,  .  .  .  ,   k  5  1 ,  2 ,  .  .  .  ,  , r  is the
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 Fig .  2 .  A Two-Layer neural Network .

 number of neurons at hidden layer ,  and  f h ( u ) is a sigmoid
 function at the hidden layer given by  f h ( u )  5

 1
 1  1  e 2 u  .

 The updating rule for adjusting the weights  w  at time  k
 is the steepest descent algorithm with momentum term
 given by

 w ( k  1  1)  5  w ( k )  1  h S  2
 dE ( w )

 d w
 D  1  a  ( w ( k )  2  w ( k  2  1))

 (4)

 where  E ( w ) is the objective function to be minimized ,   a
 is the momentum coef ficient and  h   is the learning rate .

 The task of training the neural network to solve the
 inverse kinematics problem can be stated as follows .
 Given  L  desired end-ef fector locations  h x d p  3  p  5
 1 ,  2 ,  .  .  .  ,  L j   as the input patterns  x  to the neural
 network ,  adjust the weights  w  such that the outputs of
 the inverse kinematics block in Figure 1 converge to the
 desired joint variable solution  h q d p  3  p  5  1 ,  2 ,  .  .  .  ,  L ,
 x d p  5  G ( q d p ) j .

 Since we assume that the forward kinematics mapping
 x  5  G ( q ) and the  m  3  n  Jacobian matrix  J ( q )  5
 ­ G ( q )

 ­ q
   are known ,  we can define a kinematic error as

 e p  5  x d p  2  x p  5  x d p  2  G ( q p ) .  Minimizing  e p   achieves the
 goal in finding the desired inverse kinematics mapping .
 Thus the objective function  E ( w ) in (4) can be defined as
 the sum of the norm of all squared kinematic errors  e p :

 E 0  5
 1

 2 mL
 O L
 p 5 1

 ( x d ,p  2  x p ) T  ( x d , p  2  x p ) .  (5)

 The  corresponding  gradient
 ­ E 0

 ­ w
 is

 ­ E 0

 ­ w
 5  2

 1
 mL

 O L
 p 5 1

 F ( x d , p  2  x p ) T  ­ G ( q p )  ­ q p

 ­ q p  ­ w
 G T

 5  2
 1

 mL
 O L
 p 5 1

 F ( x d , p  2  x p ) T  J ( q p )
 ­ q 9 p
 ­ w

 G T

 .  (6)

 When the neural network is perfectly trained ,   E 0  is
 minimized to zero and the neural network solution
 provides the exact inverse kinematics solution  q p   for each
 Cartesian position  x d p .  In practice ,  we specify an
 accuracy threshold  »  .  0 for the neural network training .
 The weight updating algorithm (4) can be terminated
 whenever  E 0  is less than a threshold  » .  The neural
 network thus obtained provides an approximation to the
 inverse kinematics solution in the trained domain .
 Simulation studies ,  which will be presented later ,  show
 that the proposed scheme works very well and converges
 fast .

 4 .  OBSTACLE AVOIDANCE INVERSE
 KINEMATICS SOLUTION

 4 . 1 .  Object modeling method
 When obstacles are present in the robot work space ,
 inverse kinematics solution must be found in such a way
 that it avoids the collision between robot links and
 obstacles .  To find obstacle avoidance inverse kinematics
 solution ,  we need to appropriately model the obstacles
 and links and then measure the distance between the
 obstacles and links .  Many researchers 3 , 8  have dealt with
 the modeling problem by assuming convexity of links and
 obstacles and then measuring the distance among convex
 sets .  The advantage of this modeling method is that it
 can precisely compute the distance between a pair of two
 objects .  The disadvantage is that computing the distance
 is time consuming .

 Since a robot work space is bounded ,  the obstacles and
 links in the work space are also bounded .  Mathematical
 theorem 1 6  shows that only finite number of balls are
 required to cover a bounded set .  So if robot links and
 obstacles and links is in the union of all the balls .  Of
 course smaller balls can more accurately describe the set
 occupied by the links and obstacles ,  but it would also
 require more balls and computations .  We recommend to
 use balls with dif ferent radii to cover dif ferent shapes of
 links and objects so that more accurate converge is
 possible without increasing complexity .  This object
 modeling method is called the ball-covering modeling
 method .  Similar method was proposed as the spherical
 representation in the study of human body modeling . 2 0

 To illustrate the idea stated above ,  a planar redundant
 robot is considered as shown in Figure 3 .  Suppose that
 there are  N l   balls covering links and  N o   balls covering

 Fig .  3 .  Object Modeling Method .
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 obstacles .  Let the pairs ( R l i  ,  Z l i ) and ( R o j  ,  Z o j ) be the
 radii and centers of two balls among all balls covering the
 links and obstacles ,  where  i  5  1 ,  2 ,  .  .  .  ,  N l   and  j  5
 1 ,  2 ,  .  .  .  ,  N o .  Radii  R l i   and  R o j   are preselected ,  therefore
 they are fixed .  The center position vector  Z l i   depends on
 joint angles ,  hence  Z l i   can be written as  Z l i ( q ) .   Z o j   is
 fixed if the obstacles are stationary .  The suf ficient
 condition for keeping the links and obstacles a minimum
 distance  d   apart is

 ( R l i  1  R o j  1  d  ) 2  2  i  Z l i  2  Z o j  i  2  #  0  (7)

 for all ball pairs one taken from the links and one taken
 from the obstacles .

 Suppose that the obstacles are stationary .  For each  p th
 output joint variable set  q p  ,  we can define a
 corresponding  N  3  1 distance vector  g ( q p ) whose
 elements are given by

 g i j ( q p )  5  ( R l i  1  R o j  1  d  ) 2  2  i  Z l i ( q p )  2  Z o j  i  2  (8)

 where  i  5  1 ,  2 ,  .  .  .  ,  N l  , j  5  1 ,  2 ,  .  .  .  ,  N o   and  N  5  N o  p  N l  .
 Therefore ,

 g ( q p )  #  0 for all output index  p  5  1 ,  2 ,  .  .  .  ,  L ,  (9)

 where  g ( q p ) is dif ferentiable with respect to  q p .
 Satisfaction of this condition for all  q p   guarantees
 collision free inverse kinematics solutions .  This condition
 leads to an inequality constraint in the neural network
 solution which is an undesirable complication that must
 be appropriately dealt with .

 4 . 2  Penalty function method
 The inverse kinematics problem at hand becomes one of
 minimizing the objective function  E 0  in (5) with the
 inequality constraint (9) .  The complexity of the
 optimization problem with inequality constraints can be
 reduced if we convert (9) into a penalty function in  E 0

 and then minimize the augmented objective function of
 the constraint . 2 1

 Let  P  be the penalty function

 P  5
 1
 L
 O L
 p 5 1

 O N l

 i 5 1
 O N o

 j 5 1
 g * ij  ( q p ) 2  (10)

 where
 g * ij  ( q p )  5  max  h 0 ,  g i j ( q p ) j  (11)

 If all solutions  q p   satisfy condition (9) ,  then  P  would be
 equal to zero .   P  .  0 occurs when at least one element
 g i j ( q p )   of  g ( q p ) is greater than zero which implies that
 collision occurs .  Therefore ,  the objective is to minimize  P
 and  E 0  to zero in solving the inverse kinematics problem .

 Let us define an augmented objective function as

 E  5  E 0  1  m P  (12)

 where  E 0  is defined in (5) and  m   is the Lagrange
 multiplier which is positive .  The objective function  E  is

 dif ferentiable ,  so the gradient 
 ­ E
 ­ w

   can be easily computed .

 When  m   is suf ficiently large ,  the minimization of  E  is
 equivalent to the minimization of  E 0  with inequality (9) .
 The proper choice of  m   depends on the problem at hand .

 5 .  SIMULATIONS
 For the purpose of illustration ,  we examine the inverse
 kinematics solutions of a four-link planar robot shown in

 Fig .  4 .  A Four-link Planar Robot .

 Figure 4 .  The forward kinematics function of the robot is

 G ( q )  5 F L 1 c 1  1  L 2 c 1 2  1  L 3 c 1 2 3  1  L 4 c 1 2 3 4

 L 1 s 1  1  L 2 s 1 2  1  L 3 s 1 2 3  1  L 4 s 1 2 3 4
 G  (13)

 and the corresponding Jacobian matrix is

 J ( q )  5 3
 2 L 1 s 1  2  L 2 s 1 2  2  L 3 s 1 2 3  2  L 4 s 1 2 3 4

 2 L 2 s 1 2  2  L 3 s 1 2 3  2  L 4 s 1 2 3 4

 2 L 3 s 1 2 3  2  L 4 s 1 2 3 4

 2 L 4 s 1 2 3 4

 L 1 c 1  1  L 2 c 1 2  1  L 3 c 1 2 3  1  L 4 c 1 2 3 4

 L 2 c 1 2  1  L 3 c 1 2 3  1  L 4 c 1 2 3 4

 L 3 c 1 2 3  1  L 4 c 1 2 3 4

 L 4 c 1 2 3 4

 4
 T

 (14)

 where  L i  5  1 . 0 is the length of the  i th link for all  i ,
 s 1  5  sin  ( q 1 ) , s 1 2  5  sin  ( q 1  1  q 2 ) , s 1 2 3  5  sin  ( q 1  1  q 2  1  q 3 ) ,
 s 1 2 3 4  5  sin  ( q 1  1  q 2  1  q 3  1  q 4 ) ,  and  q i   is the  i th joint angle
 as shown in Figure 4 .  The symbol  c  corresponds to cosine
 function .

 In the simulation study ,  we use the two-layer neural
 network as shown in Figure 2 with 40 neurons at hidden
 layer .  The momentum coef ficient  a   is chosen as  a  5  0 . 9
 and the learning rate  h   is chosen as  h  5  0 . 5 .  The initial
 values of weights are selected as zero-mean random
 values with uniform distribution in [ 2 1 ,  1 1] .

 5 . 1  Obstacle free case
 We examine through simulation the neural network
 training on a specified domain spanned by 25 Cartesian
 positions  h ( x ,  y )  3  x  5  0 . 0 ,  0 . 6 ,  1 . 2 ,  1 . 8 ,  2 . 4 ;   y  5  0 . 6 ,  1 . 2 ,
 1 . 8 ,  2 . 4 ,  3 . 0 j   as shown in Figure 5 .  If  q 0  is specified as

 Fig .  5 .  Robot Postures With  q 0  5  (90 8 ,  0 8 ,  0 8 ,  0 8 ) T .
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 Table I .  Training Results of Case 1 and 2

 Case  E 0  Iterations

 1
 2

 0 . 000179
 0 . 001

 1000
 166

 (90 8 ,  0 8 ,  0 8 ,  0 8 ) T ,  which corresponds to an upright robot
 posture ,  then the robot postures for the desired solutions
 are elbow-up .

 Table I lists two training results for  q 0  5  (90 8 ,  0 8 ,  0 8 ,
 0 8 ) T .  Case 1 shows the minimized  E 0  value after 1000
 training iterations .  The final inverse kinematics solutions
 are plotted in Figure 5 .  Case 2 shows that the training is
 converged at 166 iterations for an error threshold  »  5
 0 . 001 .  Thus the convergence rate is fast for most practical
 applications .

 Shown in Figure 6 is an alternate training result when
 q 0  5  (0 8 ,  0 8 ,  0 8 ,  0 8 ) T   is used .  As expected ,  robot postures
 are elbow down .  This exercise demonstrates the property
 that choice of  q 0  af fects robot postures .

 5 . 2  Obstacle a y  oidance case
 The same four-link planar robot and neural network are
 used to investigate the obstacle avoidance solution of the

 Fig .  6 .  Robot Postures with  q 0  5  (0 ,  0 8 ,  0 8 ,  0 8 ) T .

 Fig .  7 .  Robot Postures without Obstacles .

 Fig .  8 .  Robot Postures with One Obstacle .

 inverse kinematics problem .  As shown in Figures 7 ,  8
 and 9 ,  the domain is spanned by 10 Cartesian positions
 h ( x ,  y )  3  x  5  0 . 35 ,  0 . 7 ,  1 . 05 ,  1 . 40 ,  1 . 75 ,  2 . 10 ,  2 . 45 ,  2 . 80 ,
 3 . 15 ,  3 . 50 ;   y  5  0 j   along a straight line on the  y  axis .  To
 obtain elbow-up solution we chose  q 0  5  (45 8 ,  0 8 ,  0 8 ,  0 8 ) T .
 Each robot is covered by 4 circles with identical radius of
 0 . 125 ,  and each obstacle is a circle of radius of 0 . 5 .  The
 minimum distance  d   between links and obstacles is
 chosen as 0 . 1 .  The Lagrange multiplier  m   is 3 . 0 .  The
 neural network weights are trained to minimize the
 objective function  E  in (12) .  Training is terminated when
 E 0  #  0 . 001 .

 Listed in Table II are three simulation results with
 dif ferent environments .  Figure 7 shows that the robot is
 trained for the 10 posiitons on the  x -axis without
 obstacles .  The training took 125 iterations to reach an
 accuracy of  E 0  5  0 . 001 .  When one obstacle is introduced
 as shown in Figure 8 ,  the robot postures are altered to
 avoid the obstacle .  535 iterations were needed for  E 0  to
 converge to the same value of  E 0  5  0 . 001 .  Figure 9 shows
 the solution when more obstacle is added in the working
 space in Figure 8 .  We see that avoidance of two obstacles
 is successfully accomplished after 591 iterations .

 These simulations verify that the proposed learning
 scheme can solve the inverse kinematics problem with
 obstacle avoidance .

 Fig .  9 .  Robot Postures with Two Obstacles .
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 Table II .  Obstacle Avoidance Results

 Figure  Number of
 obstacles

 q 0  E 0  iterations

 7
 8
 9

 0
 1
 2

 (45 8 ,  0 8 ,  0 8 ,  0 8 ) T

 (45 8 ,  0 8 ,  0 8 ,  0 8 ) T

 (45 8 ,  0 8 ,  0 8 ,  0 8 ) T

 0 . 001
 0 . 001
 0 . 001

 125
 535
 591

 The values of  m   af fects the convergence of training
 process .  For example ,  when  m   is too large ,  it takes more
 iterations to reduce the kinematic error to the preset
 threshold .  The convergence of the kinematic error is
 faster for a smaller  m  ,  however collision between robot
 and obstacles may occur even though kinematic error
 threshold has been met .  Thus the appropriate choice of
 m   depends on the problem at hand .

 5 . 3  Applications to PUMA  5 6 0   robot
 The PUMA 560 robot arm has six joints .  When both the
 Cartesian position and orientation are taken into
 account ,  the PUMA 560 arm is a non-redundant robot .
 However ,  if we only consider the position of the end
 point of an attached tool ,  the PUMA 560 arm as shown
 in Figure 10 will become a redundant robot since the tool
 tip in the three-dimensional Cartesian space is related to
 five joint angles (a two degree redundancy) .  With the
 joint angle and link parameters defined in Table III ,  the
 positional forward kinematics is expressed as follows :

 X  5  C 1 [ d 6 ( C 2 3 C 4 S 5  1  S 2 3 C 5 )  1  S 2 3 d 4

 1  a 3 C 2 3  1  a 2 C 2 ]  2  S 1 [ d 6 S 4 S 5  1  d 2 )  (15)

 Fig .  10 .  PUMA 560 Robot with A Long Tool .

 Y  5  S 1 [ d 6 ( C 2 3 C 4 S 5  1  S 2 3 C 5 )  1  S 2 3 d 4

 1  a 3 C 2 3  1  a 2 C 2 ]  1  C 1 ( d 6 S 4 S 5  1  d 2 )  (16)

 Z  5  d 6 ( C 2 3 C 5  2  S 2 3 C 4 S 5 )  1  C 2 3 d 4  2  a 3 S 2 3  1  a 2 S 2

 (17)

 A set of 15 points on a straight line ,  as shown in Figure
 11(a) and listed in Table IV ,  is used for training .  The first
 run of training is in the environment without obstacles .
 We use a neural network with 45 neurons at the hidden
 layer .  In order to obtain the elbow-up solution ,   q 0  is
 chosen as (0 8 ,   2 90 8 ,  90 8 ,  0 8 ,  0) T .  It took 1765 iterations to
 reduce the kinematics error  E 0  to below 0 . 001 .  The joint
 solutions are plotted in Figure 11(b) .  The robot links of
 the solution are almost in a plane .

 When there is an obstacle in the work space as shown
 in Figure 12(a) ,  the obstacle avoidance solution took
 3826 iterations to reduce the kinematics error to below
 0 . 001 .  The joint solutions are plotted in Figure 12(b) .

 Fig .  11(a) .  Robot Posture without Obstacle .

 Fig .  11(b) .  Joint Solutions at 15 Positions .

 Table III .  PUMA 560 Arm Link Coordinate Parameters

 Joint  i  θ i  a i  a i  d i  Joint range

 1
 2
 3
 4
 5

 tool

 90
 0

 90
 0
 0

 2 90
 0

 90
 2 90

 90

 0
 431 . 8  mm

 2 20 . 32  mm

 0
 149 . 09  mm

 0
 433 . 07  mm

 0
 256 . 25  mm

 2 159 to  1 159
 2 180 to  2 0 , 0 to 43 ,   1 137 to 180

 2 180 to  2 128 ,   2 51 . 9 to  1 180
 2 110 to  1 170
 2 100 to  1 1
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 Table IV .  15 Training Points on a Straight Line
 (in meters)

 x  y  z

 2 0 . 700
 2 0 . 725
 2 0 . 750
 2 0 . 775
 2 0 . 800
 2 0 . 825
 2 0 . 850
 2 0 . 875
 2 0 . 900
 2 0 . 925
 2 0 . 950
 2 0 . 975
 2 1 . 000
 2 1 . 025
 2 1 . 050

 0 . 700
 0 . 725
 0 . 750
 0 . 775
 0 . 800
 0 . 825
 0 . 850
 0 . 875
 0 . 900
 0 . 925
 0 . 950
 0 . 975
 1 . 000
 1 . 025
 1 . 050

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Fig .  12(a) .  Robot Posture with an Obstacle .

 Fig .  12(b) .  Obstacle Avoidance Joint Solutions at 15 Tool Tip
 Positions .

 The robot links are no longer in a plane ,  rather they are
 twisted to avoid the obstacle .

 VI .  CONCLUSION
 A neural network technique has been introduced in this
 paper to solve the inverse kinematics problem of
 redundant robot manipulators with obstacle avoidance
 capabilities .  The solution technique requires only the
 knowledge of robot forward kinematics including the
 corresponding Jacobian .  Both obstacle free and obstacle

 avoidance cases were studied .  The latter case was
 ef fectively solved by employing the ball-covering object
 modeling technique which is mathematically tractable
 and computationally ef ficient .  Extensive simulations have
 been performed ,  which showed that the proposed neural
 network schemes are very ef fective in obtaining accurate
 robot inverse kinematics solution in a given work space
 through training in a straightforward manner .  The
 feasibility of the solution technique is also successfully
 demonstrated on a PUMA 560 arm .  Thus the proposed
 technique is highly useful in practice .
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