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Abstract

With the development of remote sensing and geostatistical technology, complex environmen-
tal variables are increasingly easily quantified and applied in modelling soil organic carbon
(SOC). However, this emphasizes data redundancy and multicollinearity problems adding
to the difficulty in selecting dominant influential auxiliary variables and uncertainty in esti-
mating SOC stocks. The current paper considers the spatial characteristics of SOC density
(SOCD) to construct prediction models of SOCD on the basis of reducing the data dimen-
sionality and complexity using the principal component analysis (PCA) method. A total of
260 topsoil samples were collected from Chahe town, China. Eight environmental variables
(elevation, aspect, slope, normalized difference vegetation index, normalized difference mois-
ture index, nearest distance to construction area and road, and land use degree comprehensive
index) were pre-analysed by PCA and then extracted as the main principal component vari-
ables to construct prediction models. Two geostatistical approaches (ordinary kriging and
ordinary co-kriging) and two regression approaches (ordinary least squares and geographic-
ally weighted regression (GWR)) were used to estimate SOCD. Results showed that PCA
played an important role in reducing the redundancy and multicollinearity of the auxiliary
variables and GWR achieved the highest prediction accuracy in these four models. GWR con-
sidered not only the spatial characteristics of SOCD but also the related valuable information
of the auxiliary attributes. In summary, PCA-GWR is a promising spatial method used here to
predict SOC stocks.

Introduction

The spatial distribution and storage of soil organic carbon (SOC) represent the basic knowl-
edge needed to understand soil hydrological properties and the cycling of global carbon, and
play important roles in precision agricultural management (Six et al., 2000; Lal, 2003). Natural
factors (e.g. soil parent material, climate, topography and vegetation) and human activities (e.g.
land management, land use and degradation) can influence soil moisture, ventilation condi-
tions and soil temperature, which can then collectively influence the decomposition and trans-
formation of SOC via soil microbes. These environmental factors and such transformation
processes may result in spatial instability and non-uniformity of SOC in different landscapes
(Song et al., 2016). Therefore, the current paper proposes a test methodology for accurate
estimation of SOC stocks that extracts valuable information inherent in data on complex
environmental factors.

The spatial analysis of soil distribution patterns is an important field in soil science.
Adjacent soil patterns share similar natural environments and tillage methods. This condition
results in the spatial dependence of SOC in nearby geographical locations. In addition, SOC
has spatial heterogeneity because the environment varies with scale and geographical location
(Mishra et al., 2010). Natural and human-induced factors, which influence SOC content, inter-
act and affect each other resulting in complex inter-relationships and multicollinearity.
Multicollinearity generates data redundancy and contradicts the standard hypothesis
regression model that explanatory variables should be independent from one another (Liu
et al., 2013; Conforti et al., 2015). Therefore, multicollinearity among impact factors must
be eliminated before constructing a SOC model (Kumar et al., 2013; Sun et al., 2015). The
conventional method is to extract the valuable variables by Pearson’s correlation coefficient,
stepwise linear regression or analysis of variance, and then construct predictive models
(Kumar et al., 2012a; Guo et al., 2017). These methods ignore the valuable information
from secondary environmental factors. Principal component analysis (PCA) is a widely
used technique because it can decrease the basic dimensions of input parameters and reduce
data redundancy (Song et al., 2016). However, conventional PCA does not consider spatial
relations and is not designed specifically to identify spatial structures.
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Several prediction methods, ranging from simple regression
models to geostatistical models, have been suggested for mapping
the SOC density (SOCD) from sparse soil samples to continuous
surfaces. In terms of geostatistical approaches, recent studies have
been devoted to the utilization of a variety of environmental vari-
ables for enhanced SOCD modelling (Kumar et al., 2012b).
Ordinary kriging (OK) is a method used commonly for estimat-
ing untested locations by calculating the weighted averages of
explained variables from observed samples (Jobbágy and
Jackson, 2000). Specifically, when the correlated environmental
variables are valuable, they can provide great help in constructing
the prediction models of SOCD with high prediction accuracy and
limited observations (Keser et al., 2012). The ordinary co-kriging
(OCK) model can be used to interpolate the spatial distribution of
soil attributes based on the related and appropriate regionalized
variables, if the main soil attribute is sparse but the related auxil-
iary information is abundant (Wang et al., 2013b). As the repre-
sentative of traditional regression models, ordinary least squares
(OLS) can minimize the sum of the squared vertical distances
between the predicted data and the observed data through linear
approximation (Evrendilek et al., 2004), and the relationships
between the soil properties and environmental variables can be
used to predict the soil properties in unknown geographical loca-
tions by OLS. However, traditional regression methods only use
the available data at target locations and ignore existing spatial
autocorrelation of SOCD and its auxiliary variables (Liu et al.,
2015). Geographically weighted regression (GWR) considers the
spatial weights between the independent and dependent factors
relative to traditional regression models (Harris et al., 2010).
Also, the coefficients of the GWR model can respond to the spa-
tial non-stationary characteristics of explanatory variables to the
study object in geographical locations (Keser et al., 2012; Wang
et al., 2013a).

Chahe Town, located in the middle of Jianghan Plain, China,
was chosen as the study region. Jianghan Plain is an important
agricultural region in China as it is a typical alluvial plain. In
the current paper, PCA was performed to capture extensive
explanatory variable information via orthogonal transformation.
Two geostatistical approaches (OK and OCK) and two regression
approaches (OLS and GWR) were used to estimate the spatial dis-
tribution of SOCD with the help of the principal components
(PCs) which were processed via PCA. The aims of the current
work are (1) to extract the valuable information from the compli-
cated and various environmental factors by PCA method, (2) to
construct a high-precision and efficient prediction models of
SOCD, and (3) to draw the spatial distribution characteristics of
SOCD by environmental factors.

Materials and methods

Study area

Chahe Town is located at the centre of Jianghan Plain, China
(29.39–30.13° N, 113.6–114.05° E). The elevation ranges from 2
to 35 m asl, and the geographical area covers 153 km2. Jianghan
Plain is a typical alluvial plain and it is an important agricultural
region in China that provides cotton, commodity grains and
edible oil. The mean annual precipitation is 1154 mm and the
average air temperature is 16.1 °C. A total of 260 topsoil samples
were collected in June 2013 by random sampling. However, the
minimum distance between two soil samples was >100 m. The
potassium dichromate method was used to measure soil organic

matter (SOM) content (Viscarra Rossel and McBratney, 1998).
The soil types are paddy soil, moisture soil, dark yellow-brown
soil and yellow-brown soil based on the Chinese soil taxonomy
classifications (Shi et al., 2006). The approximate classifications
based on the World Reference Base of Soil Resources (Deckers
et al., 1998) are as follows: Typical Haplaquept, Dystrochrept,
Eutroboralf and Hapludalf. The spatial distribution of the sam-
pling sites is shown in Fig. 1.

The auxiliary variable data

The spatial distribution characteristics of SOC is affected by
multitudinous environmental factors in different geographical
locations. The terrain factors (e.g. elevation, slope and aspect),
distance factors (e.g. nearest distance to construction area
(TRA) and road (TRD)), and remote vegetation indices such as
the normalized difference vegetation index (NDVI) and normal-
ized difference moisture index (NDMI) were chosen as the auxil-
iary variables (Wilson and Sader, 2002). These were calculated as
follows:

NDVI = (NIR − RED)/(NIR + RED)
NDMI = (NIR −MIR)/(NIR +MIR)

where NIR denotes the near-infrared band, RED denotes the red
band and MIR denotes the middle-infrared band of the Landsat 8
OLI imagery. The elevation, slope and aspect were calculated with
the Global Digital Elevation Model Version 2 using ArcGIS 10.3
(ESRI Inc., Redlands, CA, USA), and the Euclidean distance tool
of ArcGIS was used to calculate TRD and TRA. Aspect is
expressed in positive degrees from 0 to 359.9, measured clockwise
from north. If the input raster is flat with zero slope, the aspect is
assigned −1. The land use types in the study region were classified
by Landsat 8 OLI image on 26 June 2013 with 30 m spatial reso-
lution. The atmospheric rectification and geometric rectification
of the OLI images were first processed by ENVI 4.6 (ITT,
Boulder, CO, USA). The NDVI and NDMI were calculated
based on this remote-sensing image. Subsequently, land use
types were interpreted by man–machine collaboration based on
the OLI images, and the woodland, farmland, residential area
(construction area), wetland and unused land were classified
according to the Chinese Academy of Sciences (Wang et al.,
2001). Finally, a field survey was applied to improve the interpret-
ation accuracy until it was >80%. The TRA and TRD were calcu-
lated based on this interpretation result. The land use types were
thereafter quantified with the land use degree comprehensive
index (LDCI). The equation is as follows:

LDCIa = 100×
∑n
i=1

Ai × Ci (1)

Where LDCIa is the land use degree index; Ai is the land use clas-
sification index and the quantitative values are 4, 3, 2, 2 and 1 for
construction area, farmland, woodland, wetland and unused land;
and Ci is the area percentage of different land use types in one
unit. High Ai values indicate a large effect of human activities
at one region (Zhuang and Liu, 1997). The LDCI has been used
as the auxiliary variable in predicting SOCD and it has been
proved that LDCI has significant correlation with SOCD (Liu
et al., 2015).
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Coefficient of variation

The coefficient of variation (CV) shows the dispersion degree of
data sets and is defined as the ratio of the standard deviation
value to the mean value. High CV values indicate a high degree
of variation for a particular variable. The variability of variable is
classified based on the research ofWilding (1985), where properties
with CV < 0.15 are least variable, properties with 0.15 < CV < 0.35
are moderately variable and those with CV > 0.35 are most variable.

Calculation of soil organic carbon density

Soil organic carbon density is calculated as follows:

rSOC =
∑n
i=1

(1− ui%) × pi × Ci × Ti/100 (2)

where ρsoc is SOCD (kg/m2) of the top soil (0–20 cm), i is the soil
horizon, θi% is the gravel concentration (>2 mm) in the ith hori-
zon, pi is the soil bulk density in the ith horizon (g/cm3), Ci is
SOC content (g/kg) obtained by multiplying SOM by 0.58
(Bemmelen conversion fraction) and Ti is the soil thickness
(cm) in the current study.

Model calibration

Topsoil samples (260) were divided into a calibration data set
(n = 173, 2/3) and validation data set (n = 87, 1/3) on the basis
of the Kennard–Stone algorithm (De Groot et al., 1999). Eight
environmental factors (TRA, TRD, NDMI, NDVI, elevation,
slope, aspect and LDCI) were used as auxiliary variables.
Principal component analysis was performed as the pre-
processing method to reduce the multicollinearity and the dimen-
sion of these variables. A suitable number of PCs were chosen as
the explanatory variables for constructing the prediction models
of SOCD via OK, OCK, OLS and GWR.

Principal component analysis
Principal component analysis, a widely used traditional statistical
procedure, can explore trends in multiple variables. The proced-
ure transforms correlated variables into the number of independ-
ent variables which are uncorrelated, namely, PCs, which are
linear combinations of the original variables. The first principal
component (PC1) includes the largest possible variance, under
the constraint that the preceding component is orthogonal, and
each subsequent component has the highest possible variance in
turn (Jeyabharathi and Suruliandi, 2013). Other details on PCA
are found in the work of Johnson and Wichern (2002), which
provides a good overview of PCA.

Ordinary kriging and ordinary co-kriging
Kriging as an advanced geostatistical procedure can generate a
continuous surface from sparse soil samples based on their attri-
butes. Assume Z(Xi) is a regionalized variable with a variogram γ
(h), which is a function describing the spatial aggregation field or
stochastic process Z(u). Exponential and spherical methods are
used as the semi-variance model of the variation function. The
spherical function is defined as:

g(h) =
0 h = 0

C0 + C
3h
2h

− h3

a3

( )
0 , h ≤ a

C0 h . a

⎧⎪⎪⎨
⎪⎪⎩ (3)

The function of a Gaussian model can be estimated as follows:

g(h) = 0 h = 0
C0 + C(1− e−(r2/a2) ) h . 0

{
(4)

In these two equations, a is the range of the soil samples; h is the
spatial lag; C0 is the nugget; and C0 + C is the partial sill.

Fig. 1. Location of the study area in Chahe Town and the spatial distribution of samples for model calibration (n = 173) and validation (n = 87). Colour online.
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The traditional OK can provide unbiased estimates with min-
imum errors. The function of OK is expressed as

Z
∗ (x0) =

∑n
i=1

li(x0)Z(xi) (5)

Here,
∑n

i=1 li(x0) = 1; Z*(x0) is the predicted value of the vari-
able z at location x0; Z(xi)is the measured data; λi(x0) refers to
the weights associated with the measured values; and n is the
number of predicted values within some neighbour soil samples.

Ordinary co-kriging is used to incorporate an auxiliary vari-
able in process and is usually used in cases when two or more
auxiliary variables are exhaustively available. The OCK estimator
is written as follows:

Z
∗
OCK(u) =

∑n1(u)
a1=1

locka1
(u)Z1(ua1 ) +

∑Nv

i=2

locki (u)[Zi(u) −mi +m1]

(6)

where the single constraint is that the sum of all weights must be
equal to 1.

∑n1(u)
a1=1

locka1
(u) +

∑Nv

i=2

locki (u) = 1 (7)

where, Z∗
OCK(u) is the predicted value of the original variable Z1 at

unknown location u; locki (u) is the weight of measured values in
different geographical locations; Z1(ua1 ) denotes the primary
values; Nv is the total number of auxiliary variables; Z1(ua1 ) is
the correlate data of the ith auxiliary variable; locki (u) is the weight
of the correlate data of the ith variable; and m1 is the mean of the
primary variables and mi is the mean of the ith auxiliary variable.

Geographically weighted regression model
An extension of the traditional regression model, GWR considers
the geographical locations and spatial weights of auxiliary
variables (Brunsdon et al., 1998; Fotheringham et al., 2002). It
is calculated as follows:

Ĉgwr(s0) = b0 +
∑p
k=0

bk(s0) × Xk(s0) + 1(u) (8)

where Ĉgwr(s0) represents the predicted value of SOCD at the loca-
tion of S0; Xk(s0) is the independent variables at the geographical
location of S0; β0 means the intercept; βk(s0) is the coefficient of
GWR which considers the relationship between the SOCD and
the auxiliary variables; p is the number of the soil samples; and
ε(u) is the error term.

The corrected Akaike information criterion (AICc) was used
to determine the optimal bandwidth in the current paper. The
AICc is defined as:

AICc = −2 ln L(ûL,X) + 2q (9)

where ûL is the maximum likelihood estimator, and q is the num-
ber of unknown parameters. A high likelihood function indicates
an accurate estimator. Thus, a minimum value of AICc is suitable
to optimize the model.

Model evaluation

Four SOCD models were constructed using calibration data sets
based on OK, OCK, OLS and GWR. The predicted accuracy of
different models is evaluated by the mean absolute estimation
error (MAEE), root mean square error (RMSE) and Pearson’s
correlation coefficient (r) in validation data sets.

MAEE = 1
n

∑n
i=1

|xi − yi| (10)

RMSE =
����������������
1
n

∑n
i=1

(xi − yi)2
√

(11)

r = n
∑

xiyi −
∑

xi
∑

yi�������������������
n
∑

x2i −
∑

xi
( )2√ �������������������

n
∑

y2i −
∑

yi
( )2√ (12)

where xi is the estimated SOCD at location i, yi is the observed
SOCD at geographical location i, and n is the number of sample
observations. An accurate model should have the lowest RMSE
and MAEE values.

Results

Descriptive statistics

The statistical summary of SOCD and environmental factors is
shown in Fig. 2. The observed SOCD varied from 0.33 to
11.23 kg/m2, with an arithmetic mean of 5.05 kg/m2 and a
range of 10.91 kg/m2. The values of skewness and kurtosis were
0.39 and 3.62, respectively, which implied that the samples fitted
a normal distribution. Thus, the original SOCD data can be used
to construct spatial models without any transformation. The CV
of SOCD was 32.50%, which indicated that SOCD in the study
region was moderately variable. For the other environmental vari-
ables, elevation had the least variability; NDVI, NDMI and LDCI
were moderately variable; and all the other variables were highly
variable. The mean values of TRA, TRD, NDMI, NDVI, elevation,
slope, aspect and LDCI were 176.64 m, 813.15 m, 0.27, 0.41,
21.59 m, 1.25°, 109.41 and 2.57, respectively. The topography of
the study area is flat, with slope ranging from 0 to 6.75°. The
LDCI ranged between 1 and 3.46 (mean 2.57). The values of
NDVI were from 0.06 to 0.58, which showed that most of the
land surface was covered with vegetation. Figure 2 also shows
the basic statistics of other environmental variables.

The formation, decomposition and transformation of SOC
were influenced by many environmental factors, which were com-
plex and varied greatly across different natural landscapes (Zhi
et al., 2013). The degree of influence of these factors on SOCD
should be distinguished and decided. Principal component ana-
lysis was used to classify these factors into several categories
and to eliminate data redundancy. The major information of
the impact factors was captured by PCA (Table 1). The first
three PCs were chosen as the explanatory variables, as their eigen-
values were >1, thus explaining 60% of the observed variance in
the environmental factors. The first component (PC1) explained
approximately 26.7% of the total variance and had a significant
positive correlation with NDMI (0.90) and NDVI (0.93). Both
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are spectral indices calculated with the spectrum of remote-
sensing images and reflected soil moisture and vegetation growth.
The second component (PC2) explained about 18.0% of the
observed variance in the data set. This component was correlated
negatively with TRA (−0.44) and TRD (−0.68) but positively
with elevation (0.72) and LDCI (0.44). It was the summary of
the elevation and human-induced factors. The third component
(PC3) accounted for an additional 15.5% of the observed
variance in the data set and had a strong positive correlation
with aspect (0.70) and slope (0.80): it represented terrain infor-
mation. The relationships observed from the PCA suggested
that various environmental factors were intricately connected in
the study region.

Figure 3 shows the spatial distribution characteristics of the
first three PCs, which represent different environmental factors
according to the eigenvectors of the correlation matrix. PC1,
which represented vegetation growth and soil moisture, was
related positively to NDVI and NDMI (Table 1). The PC1 value
ranged from −5.76 to 3.14, with large values indicating high ratios
of vegetation and soil moisture. High PC1 values were observed in
the southwest of the study area, where many farmland area and
woodland could be found. Low PC1 values were observed in

the south, where wetland was the main land use type. PC2 repre-
sented the elevation and human-induced factors. PC2 was nega-
tively related to TRA and TRD but was positively related to
elevation and LDCI (Table 1). PC2 also showed some zonal char-
acteristics because of the influence from the road and residential
area. Thus, the PC2 values were the comprehensive results of ele-
vation, TRA, TRD and LDCI, and human activities were the main
influence factors on PC2. Low PC2 values were observed at the
middle of the study area where residential area is the main land
use type. High PC2 values were found at the edge of the study
area, which was located far away from areas with human activities.
PC3 represented terrain information because of its positive rela-
tionship with slope and aspect (Table 1). High PC3 values indi-
cated high slopes and the proximity of a specific region to the
south of the aspect. Although the impact factors were transformed
by PCA, these three PCs could reflect the original information of
these factors according to the eigenvectors of the correlation
matrix. The values of the PCs in different geographical locations
could be interpreted on the basis of natural or human-induced
factors: PC1 representing the remote-sensing vegetation index,
PC2 representing the human activities and PC3 representing the
topographic features.

Fig. 2. Descriptive statistics of measured soil organic carbon density and other environmental variables of the study area (n = 260). SOCD, soil organic carbon dens-
ity; NDVI, normalized difference vegetation index; NDMI, normalized difference moisture index; TRD, recent distance to road; TRA, recent distance to city; CV, coef-
ficient of variation; LDCI, land use degree comprehensive index.
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Diagnostic information of the geostatistical and regression
models

Geostatistical models (OK and OCK) and regression models (OLS
and GWR) were used to simulate SOCD in the study region.
Table 2 shows the diagnostic parameters for the calibration data
set. The major ranges of the empirical semi-variable function
were 194.0 and 493.2 m. They were used in the fitting procedure,
which involved modelling with OK and OCK approaches. The
ratio of C0/(C0 + C) reflects the spatial structure of the estimated
factors, with 0–25% indicating strongly structured spatial depend-
ence, 25–75% indicating moderate dependence and >75% indicat-
ing weak dependence (Jobbágy and Jackson, 2000). The ratio for
SOCD in OK was 11.1%, which indicated the strong dependence
of SOCD. By contrast, the ratio for SOCD in OCK was 61.7%,
which indicated the moderate dependence of SOCD. Such a dif-
ference can be attributed mainly to the fact OCK considered
the PCs as auxiliary variables and that part of the spatial distribu-
tion of SOCD was influenced by their spatial characteristics. The
effective number (8.3) and sigma (0.48) of GWR are important
parameters in GWR model, and these figures are always used to
choose the suitable bandwidth. The AICc of GWR was 307.34,
which was smaller than that of OLS (309.5) and indicated that
GWR has better simulation precision than OLS. The RMSE can
be used to evaluate simulation precision between different models.
In the current study, the regression models yielded better results
than the geostatistical models in terms of RMSE values, and
also the spatial characteristics and the auxiliary variables played
an important role in improving the model performance.

RMSE, MAEE and r were used to evaluate the performance of
these four models based on the validation data set, namely, OK,
OCK, OLS and GWR. The RMSE values of these models were
1.2, 1.1, 1.2 and 1.1 kg/m2; MAEE values were 0.91, 0.92, 0.93
and 0.85 kg/m2; and r values were 0.30, 0.39, 0.35 and 0.46. The

RMSE v. the MAEE points are plotted in Fig. 4 for a comprehen-
sive comparison of the model performance. As shown in Fig. 4, a
long distance from the point to the origin would result in poor
prediction accuracy. The distances of the OK, OCK, OLS and
GWR models were 1.50, 1.46, 1.49 and 1.39, respectively. The
highest prediction accuracy was seen in GWR, followed by
OCK, OLS and OK. In these models, OLS only considers relation-
ships between the auxiliary variables and SOCD, and OK only
considers the spatial characteristics of SOCD. Moreover, GWR
could account for both the spatial trend and local variations of
the relationships between the environmental factors and SOCD,
whereas OCK could not easily capture the valuable information
regarding environmental factors in unknown soil samples. Thus,
environmental factors and local spatial variation of SOCD played
important roles in predicting SOCD, and GWR is a very promis-
ing spatial interpolation method for predicting soil properties.

Analysing the spatial distribution of soil organic carbon
density

Figure 5 illustrates the spatial distribution maps of SOCD
estimated by OK, OCK, OLS and GWR. Generally, the spatial
distribution characteristics of SOCD are the same across the
four images. Low estimated values of SOCD were concentrated
in the middle region and high estimated values were distributed
at the edge of the study region. Between these two kinds of
models, the SOCD values ranged from 0.32 to 11.23 kg/m2 in
the geostatistical models and from 2.76 to 9.97 kg/m2 in the
regression models. The geostatistical models had the bigger
numerical ranges than the regression models because the extrem-
ums of SOCD were smoothed by the regression models.
Meanwhile, in the middle area, the area of low (0.33–4.98 kg/m2)
SOCD values in geostatistical models were bigger than regression
models. The spatial distribution of SOCD under these two kinds
of models obviously differed. The shape was similar to the rings in
geostatistical models, but the lines were similar to those in the
regression models. These results can be attributed to the fact
that geostatistical models are spatial interpolation models and
that regression models are multiple linear regression models.
The measured SOCD and environmental variables played differ-
ent roles in estimating SOCD from different models.

Although these two models shared many similarities, their
interiors revealed detailed differences. Relative to OK, the spatial
distribution of SOCD in OCK can reflect more detailed informa-
tion in the local spatial, and the different values of SOCD were
divided more accurately. This phenomenon resulted from the
fact that OK only considered the spatial variation and dependency
of SOCD, whereas OCK considered the spatial information of
environmental factors that influenced the spatial distribution of
SOCD. In Fig. 5, the spatial distribution features of SOCD were
similar between OLS and GWR. High values were found in the
west and the northeast portion of the study region, and low values
were concentrated in the middle part of the study area. The spatial
patterns of SOCD were different in many patches because the
values of SOCD were estimated through auxiliary variables and
their weights. Table 3 shows the global coefficients and the
important parameters of PCs in the OLS model, while Fig. 6 pre-
sents the local coefficients of PCs in different locations in GWR
model. The spatial weights of the auxiliary variables were constant
in different geographical locations in the OLS model but were
different in the GWR model.

Table 1. Eigenvalues and the eigenvectors of the correlation matrix in principal
component analysis

Component variables

PC1 PC2 PC3 PC4

Items

Eigenvalues 2.1 1.4 1.2 0.9

Percentage of variance (%) 26.7 18.0 15.5 11.5

Cumulative percentage (%) 26.7 44.7 60.2 71.8

Eigenvectors

Elevation 0.14 0.72 0.04 0.26

Aspect 0.03 0.35 0.70 0.19

Slope 0.03 0.10 0.80 −0.30

NDVI 0.93 −0.02 −0.00 −0.14

NDMI 0.90 −0.29 0.02 −0.02

TRD 0.14 −0.44 0.20 0.71

TRA −0.23 −0.68 0.30 −0.33

LDCI 0.17 0.44 −0.14 −0.34

NDVI, normalized difference vegetation index; NDMI, normalized difference moisture index;
TRD, recent distance to road; TRA, recent distance to city; LDCI, land use degree
comprehensive index; PC, principal component.
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Fig. 3. Spatial distribution of the principal component scores: (a) first principal component scores (26.697%), (b) second principal component scores (18.026%) and
(c) third principal component scores (15.507%). Colour online.

Table 2. Diagnostic parameters of the geostatistical and regression models

Geostatistical models

Model Semivariance Variables C0 C Range (m) C0/(C0 + C) (%) RMSE

OK Exponential SOCD 0.30 2.4 194.0 11.13 1.90

OCK Gaussian SOCD 1.9 1.2 493.3 61.72 1.87

PC1 0 2.0 0.00

PC2 0 1.0 0.00

PC3 0.41 0.89 31.7

Regression models

Effective number Sigma AICc RMSE

OLS – – 309.5 0.54

GWR 8.39 0.48 307.3 0.53

SOCD, soil organic carbon density; OK, ordinary kriging; OCK, ordinary co-kriging; OLS, ordinary least squares; GWR, geographically weighted regression; C0, nugget; C, partial sill; C0 + C: total
sill; RMSE, root mean square error; Range, major range of the empirical semi-variable function, the range of exponential is 3a and the range of Gaussian is

��
3

√
a; AICc, corrected Akaike

information criterion.
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Discussion

Influence of different independent variables on soil organic
carbon density

Soil organic carbon density is influenced by different environ-
mental variables, and such influence results in strong spatial het-
erogeneity and spatial dependence; these variables vary with the
environment and geographical locations (Zhan et al., 2013).
Kumar et al. (2012a) integrated natural variables (e.g.

temperature, precipitation, elevation, slope, geology and NDVI)
with human variables (e.g. land use) in their spatial modelling
of SOCD in the state of Pennsylvania, USA. Zhang et al. (2011)
investigated and used environmental factors (e.g. rainfall, land
cover and soil types) as explanatory variables to establish SOC
models. Therefore, the influence of different environmental vari-
ables and human activities should be explored when mapping
SOCD. The constant of a regression model can guarantee that
the residuals have a zero mean. PC1 had a coefficient of 0.06 in

Fig. 4. Root mean square error (RMSE) v. mean absolute
estimation error (MAEE) plots for the four models and
their Pearson’s r values, namely, ordinary kriging (OK),
ordinary co-kriging (OCK), ordinary least squares (OLS)
and geographically weighted regression (GWR). Colour
online.

Fig. 5. Spatial distribution of soil organic carbon density (SOCD) by ordinary kriging (OK), ordinary co-kriging (OCK), ordinary least squares (OLS) and geograph-
ically weighted regression (GWR). Colour online.
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the OLS model but a coefficient of 0.04–0.09 in the GWR model.
PC1 was also positively correlated with SOCD and high PC1
values equate to high SOCD. This result is reasonable because
PC1 was representative of NDVI and NDMI, which were usually
positively related to SOCD (Ruiz-Colmenero et al., 2013). PC1
had a stronger influence in the north than in the south, possibly
because of the differences in land use types, soil moisture and
land cover. Normalized difference moisture index was an indica-
tor of soil moisture, and a higher soil moisture could improve the
living environment of soil microbes, accelerate the transformation

and decomposition of SOC, and prevent the net loss of organic
soils from oxidation (Liu et al., 2015). PC2 had a coefficient of
−0.35 in OLS model and a coefficient of −0.02 to −0.28 in
GWR model. PC2, which represented elevation and
human-induced factors, had a negative correlation with SOCD.
On the basis of the eigenvectors and coefficients of the models,
SOCD had a positive correlation with TRA and TRD but a nega-
tive correlation with elevation and LDCI. Soil organic carbon
density decreased along with an increase in elevation because
the soil could be easily transferred from highly elevated areas to

Table 3. Principal component variables in the ordinary least squared (OLS) model

Variable Coefficients SE Z-value Probability VIF

Intercept 5.1 0.13 37.7 <0.001 –

PC1 0.06 0.10 0.63 0.491 1.0

PC2 −0.35 0.11 −3.2 0.005 1.0

PC3 0.01 0.12 0.07 0.945 1.0

S.E., standard error of mean; VIF, variance inflation factor.

Fig. 6. Spatial distribution of the coefficients of different auxiliary variables in the geographically weighted regression (GWR) model. Colour online.
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low elevated areas by rains or winds. Moreover, SOC tends to
accumulate in low-lying areas (Liu et al., 2015). The LDCI is a
comprehensive index that indicates the influence of human activ-
ities on land use. A strong influence of human activities would
result in a low SOCD value because human activities could des-
troy the soil structure that provides a favourable living environ-
ment for soil microbes (Wu et al., 2003). The coefficients of
TRA and TRD reflected the influence of the residential area
and road on SOCD. A short distance would result in a low
SOCD because closeness to residential areas and roads would
strengthen the influence of human disturbance on SOCD. The
vegetation and soil structure in natural landscapes are usually
destroyed during the processes of urban development and road
construction, thereby accelerating soil erosion, reducing soil nutri-
ents and eventually reducing SOCD (Shubin, 2006). PC3 had a
coefficient of 0.01 in the OLS model and a coefficient of −0.02
to 0.04 in the GWR model. The relationships between the PC3
and the slope and aspect were positive, which means SOCD
was positively related to the slope and aspect, except in a small
area in the southeast. Slope could influence the accumulation of
soil, while aspect could influence the time exposure of sunlight,
which would subsequently influence soil moisture and the activ-
ities of soil microbes (Yimer et al., 2006). In summary, the coef-
ficient maps of GWR can reflect the influence of different
explanatory variables on SOCD across regions. This finding
could help environmentalists distinguish the importance of differ-
ent impact factors and help farmers manage their farmlands in a
suitable and scientific way.

Evaluating the prediction accuracy of the ordinary kriging,
ordinary co-kriging, ordinary least squares and geographically
weighted regression models

Previous studies have investigated a number of different estima-
tion approaches considered here. For example, Zhang et al.
(2011) evaluated the prediction accuracies of GWR, OK, inverse
distance weighted and OLS in mapping SOC in Ireland by
using rainfall, land cover and soil types as the explanatory vari-
ables. Wang et al. (2013b) used GWR and OCK to estimate the
total nitrogen in soil by referring to elevation, slope, land use
type, topographic wetness index and soil type. Kumar et al.
(2013) compared the application of GWR and OLS in mapping
the spatial distribution of SOCD in Ohio, USA. These studies
showed the potential of GWR in predicting soil properties by
using its excellent prediction accuracy and various weight coeffi-
cient maps. However, these studies considered all environmental
variables as explanatory variables and ignored the multicollinear-
ity and redundancy among them. In the current paper, PCA was
used as a pre-processing method in the present work to address
the aforementioned problems and constructed prediction models
according to the PCs of the selected environmental variables. The
prediction accuracy of GWR was the highest among all the tested
models (OCK, GWR, OLS and OK) for the auxiliary variables and
the spatial weights estimated were found to be highly beneficial in
predicting SOCD. Ordinary least squares achieved poor accuracy
because this model ignored the spatial characteristics of both
SOCD and the auxiliary variables (PC1, PC2 and PC3) and sim-
ply used PCs as explanatory variables to construct SOCD models.
Moreover, OLS could not account for the spatially varying rela-
tionships between the environmental factors and SOCD.
Ordinary kriging also obtained a low accuracy because this
model only considered the spatial dependence of SOCD but

ignored the valuable information from the environmental vari-
ables. Therefore, OK and OLS achieved lower prediction accur-
acies than the other two models. Both GWR and OCK utilized
the spatial correlations of the environmental variables and
SOCD during the model construction, but the auxiliary variables
of the soil samples cannot be used to predict SOCD at unknown
geographical locations by OCK. Geographically weighted regres-
sion can construct a soil SOCD map based on the relationship
between the SOCD and the auxiliary variables, and this is why
the GWR has better prediction accuracy than OCK. Meanwhile,
the SOCD map that was interpolated with GWR could provide
additional information on SOCD within local regions. The coef-
ficient maps could reflect the influence degree of environmental
variables to SOCD in different geographical locations. Thus,
PCA is one useful method in reducing the dimensionality and
redundancy of the auxiliary variables. Geographically weighted
regression has enormous potential in enabling prediction of soil
properties as it provides more information in explaining the
local spatial relationships between the environment variables
and SOCD.

Conclusion

A total of 260 soil samples from Chahe Town, which is located at
the centre of Jianghan Plain, were analysed. Eight environmental
variables (TRA, TRD, NDMI, NDVI, elevation, slope, aspect and
land use type) were used as auxiliary variables to construct the
prediction models of SOCD. The PCA method was used to reduce
multicollinearity and redundancy of these environmental vari-
ables. The first three PC variables were chosen as explanatory
variables. Two geostatistical models (OK and OCK) and two
regression models (OLS and GWR) were used to map SOCD.
As revealed by the evaluation indices (MAEE, RMSE and
Pearson’s r), GWR demonstrated the highest accuracy, followed
by OCK, OLS and OK. The main reason was that GWR can
capture more details on the local variation in SOCD and reflect
the effects of auxiliary variables on SOCD. Therefore, the
combination of PCA and GWR is a promising method in redu-
cing the redundancy of environmental factors and in constructing
prediction models of SOC stocks.
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