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SUMMARY

In order to widen the potentialities of manipulation of the
Laboratoire de Mécanique des solides (LMS) mechanical
hand, we developed a new planning approach based on the
use of a specific exoskeleton. This one has kinematics archi-
tecture and dimensions identical to the mechanical hand.
This feature allows us to obtain manipulation trajectories
for the mechanical hand, very easily and very quickly, by
using the exoskeleton, without complex calibration.
Manipulation’s trajectories are replayed offline with an
autonomous control, and, consequently, the exoskeleton is
not used with any feedback strategy for telemanipulation.
This paper presents the characteristics of this exoskeleton
and the graphic interface that we developed. This one
uses a method to determine the object’s evolution during
the manipulation with the exoskeleton, without using
exteroceptive sensors. This new approach was tested for
standard trajectories by simulation on a Computer-aided
design (CAD) robotics system and by using the mechanical
hand. Thus, we validate the use concept of an isomorphic
exoskeleton to mechanical hand for manipulation planning
with the LMS mechanical hand.

KEYWORDS: Dexterous hand; Exoskeleton hand; Manipu-
lation task.

1. Introduction

The current study will allow us to plan the manipulation
task for Laboratoire de Mécanique des solides (LMS)
mechanical hand using an innovative learning technique
based on the use of a specific exoskeleton. The existing
literature deals with the various learning methods and devices
that allow the complete or the partial description of the
human fingers’ motion during the manipulation task. To
recover the whole postures of the human hand during the
execution of a manipulation task, the exoskeletons1−6 or the
data gloves7−9 are usually used. These devices are used with
various aims such as the immersion in virtual worlds, the
teleoperation, or more specifically for rehabilitation and sign
language translation. They use various feedback strategies
such as force or tactile feedback for most trends, and,
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more recently, visual or auditive feedbacks. It is obvious,
as described in refs. [10–13] that the data gloves and the
exoskeletons require a calibration phase and a good model
of the human hand to accurately know the position of
the operator’s fingers. Moreover, in the mechanical hands
research area, an additional stage is necessary to map the joint
parameters of the operator’s fingers to mechanical hand’s
joint parameters.2−12 This mapping strongly degrades the
potentialities of the slave system and leads to many errors
related to the scale factor. In addition, the difference in
the kinematics architecture also leads to errors. The use
of an isomorphic exoskeleton to the mechanical hand, with
unit homothetic ratio, allows us to avoid these problems.
Therefore, our goal is to use the skill (the address, the
ingenuity, and the intelligence) of a human operator to take
advantage of the dexterity of the mechanical hand. Thus, the
operator manipulates the objects with a potential dexterity,
which is very close to that of the mechanical hand, using
his experience, skill, and adaptation capacities to achieve a
task with the exoskeleton. The movements transmitted by
the operator to the exoskeleton will, however, be limited
by the exoskeleton’s kinematics. However, the operator’s
capacity to adapt to this device will enable him to exploit
the potentialities of the exoskeleton and, consequently, those
with the mechanical hand. On the basis of this observation,
we only use this exoskeleton to quickly constitute a database
of various trajectories. In a preoccupation of analysis and
a planning of these trajectories for a later execution on
the mechanical hand, we developed a method to determine
the object’s evolution during the manipulation with the
exoskeleton, without using exteroceptive sensors.

In Section 2, this paper summarily presents the mechanical
hand of the LMS and, in particular, the exoskeleton that we
manufactured recently. Section 3 presents the model used
for the three-dimensional (3D) simulation of various grasped
objects as well as for the object manipulation planning with
the mechanical hand. In Section 4, we give some examples of
trajectories executed by the exoskeleton and reproduced by
the mechanical hand. Finally, we discuss the results to show
the interest of such an approach.

2. LMS Mechanical Hand and ITs Exoskeleton

In 1996, LMS developed an articulated mechanical hand
with four fingers and 16 degrees of freedom (dof). While
designing this hand, we tried to reproduce part of the
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Fig. 1. (a) Simplified kinematics of human hand. (b) Mechanical Hand of LMS.

anthropomorphic character of the human hand by copying,
as well as possible, the flexion-extension and abduction-
adduction motions (Fig. 1a). In addition, the layout of the
fingers on the palm and the phalanxes’ dimensions are similar
to those of an average-size human hand. Therefore, the
developed mechanical hand (Fig. 1b) generates the standard
postures of the human hand as shown in Fig. 2. This behavior
is obtained by using the CAD robotics system [System of
Modeling and Animation of Robots (SMAR)] developed
by the LMS.14 The mechanical hand has a reliable position
and affords low-level control of the fingers.15 A high-level
control deals with the manipulation task planning. It lays
down the control rules of the various fingers (kind of control

and coordination). A module dedicated to the planning of
a manipulation task was also developed within the SMAR
software.16 This module uses a strategy of manipulation
based on the geometry and the type of the contact between
the object and the fingertips. The first results showed the
performance of the proposed method for simple manipulation
tasks (translations or rotations of objects) using three fingers
only.

The resolution of the grasp stability problem has been
developed recently in order to calculate the grasping forces
in real time during the execution of the manipulation task.17

A synthesis method based on the genetic algorithms is
developed currently to solve the problem of the initial grasp

Fig. 2. SMAR simulation of various configurations of the hand. (a) Pinch. (b) Small stroke of the thumb. (c) Stroke of a maximum
opposition of the thumb.
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Fig. 3. Kinematics of the exoskeleton.

and the regrasping using the fourth finger. Thus, these whole
developments enable us to establish the complete planning
of the manipulation task with the mechanical hand. We
present in this paper another approach that uses a specific
exoskeleton to obtain the manipulation trajectories. Figure 3
shows the kinematics of this exoskeleton. This kinematics
and the dimensions of the phalanxes are identical to those of
the LMS mechanical hand, i.e., the exoskeleton is isomorphic
to the LMS mechanical hand with unit homothetic ratio.
The annotations specified in Fig. 3 are those used in the
rest of the paper. This exoskeleton is composed of four
kinematic chains with four degrees of freedom for each one
of three fingers and the thumb. The amplitudes of the flexion-
extension movement and abduction-adduction movement are
identical to those of the mechanical hand, and the lengths of
the phalanxes are also respected. The abduction-adduction
movement is placed after the flexion-extension movement
for the fingers while those movements are inverted for the
thumb.

As shown in Fig. 4, the distal phalanxes of the operator’s
hand are placed in gussets that have the size and the
external shape identical to the distal phalanxes of the
mechanical hand. The properties of contacts obtained with
the exoskeleton are similar to those of the mechanical hand.
The wrist of the operator is strapped; the rest of the hand
is free. The developed exoskeleton is passive and, during
manipulation, only the joint position parameters are recorded

using 16 potentiometers. These sensors are located away
from the articulations so as not to block the motion of the
fingers.

The acquisition frequency of the articular parameters is
50 Hz. An interface board between the personal computer
and the exoskeleton allows us to adjust gain and the offset
to adapt the sensor’s signal. The data are recorded during
the task, i.e., the initial grasp, the manipulation, and the
repositioning of the fingers on the object. They constitute
a knowledge base that is analyzed and exploited thereafter.
For the study presented here, the exoskeleton joint values
are stored in a database to be analyzed on the one hand,
and exploited graphically, in real time, by CAD software
(SMAR system) on the other. Figure 5 shows the complete
system that allows trajectory planning of the mechanical hand
by using the exoskeleton. The grasp stability calculation is
not dealt with here. In ref. [17], we deal with the object
stability during the object trajectory planning using the
CAD tool. For this, we check that the successive grasps,
generated during the object manipulation, are of force-
closure type. For contacts with friction, the choice of an
initial grasp with one finger in opposition to the others is
sufficient to check this constraint in most manipulations. This
method is also implemented for trajectory planning using the
exoskeleton. The mechanical hand, thus, reproduced several
trajectories of various manipulated objects obtained with the
exoskeleton. The behavior of the mechanical hand, using
the exoskeleton trajectories, was satisfactory. This method
is easy to implement and it is extremely rapid to obtain
manipulation tasks without having to define the object’s
trajectories.

3. 3D Simulation

The first stage consists in modeling the exoskeleton as
accurately as possible. For this, we used a specific module
dedicated to the articulated hands, which is available on the
SMAR software. Then, we developed a new application
which allows the acquisition and the exploitation of the
articular parameters of the exoskeleton. After identifying the
handled object and the initial grasp, the evolution of the
points of contact during manipulation, and, consequently,
the calculation of the six operational coordinates of the
object can be determined using the articular parameters of
the exoskeleton. Figure 6 shows the following stage that

Fig. 4. Exoskeleton of the LMS.
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Fig. 5. Diagram of the complete system: exoskeleton/CAD/mechanical hand.

Fig. 6. Rotation of a parallelepiped object produced by the exoskeleton.
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concerns the graphic simulation of the exoskeleton and the
object.

In this approach, the object’s trajectory is obtained only
by the parameters of the exoskeleton, contrary to a direct
planning by the CAD tool where the trajectory of the object
is known beforehand. In Section 3.1, for an object whose
geometry and dimensions are known, we show how the
evolution of the points of contacts is obtained during the
manipulation task, starting from an initial grasp. Section 3.2
indicates how the objects handled are parameterized in order
to determine the positions of the contact points for the initial
grasps.

3.1. Evolution of the contact points during manipulation
The movement of the object resulting from the fingers’
motion has to be known to analyze it on the one hand, and to
create its graphic simulation on the other. In order to know the
movement of the object resulting from the fingers’ motion,
we have adapted the method proposed by J. Kerr and B.
Roth18 briefly described later. In this approach, the motion
of each finger is determined in order to obtain the desired
object motion. Each finger is regarded as an independent
manipulator, which has to follow the movement of the object.
The shape of the fingertip and the shape of the object are
supposed to be unspecified. The contacts are assumed with
friction. With the assumption of pure rolling (without sliding)
between the object and the fingertip, the paths of the contact
points on each surface will be determined by: the geometry of
each surface, the motion of the object, and the kinematics of
the finger. Because of the nonholonomic constraint of rolling,
the equations relating the motion of the object to the motion
of the fingertip are expressed by the velocity model of the two
bodies. By using the parameters of Fig. 7, we, thus, obtain
the following equations:

P OT + TC = P OB + BC (1)
Tn = Bn (2)

VT(q) + ωT ∧ TC = VB(X) + �B ∧ BC. (3)

Fig. 7. A finger constrained to roll on the object.

Relation (1) represents the coordinates of the contact point
C in the frame P while passing by the finger (frame T whose
origin is OT, which is attached to the fingertip) or by the
object (frame B whose origin is OB, which is attached to the
body). The equality of normals Tn and Bn at the contact point
C is expressed by the Eq. (2). The surface at the contact point
C on the finger and on the object is described respectively, by
the variables (α, β) and (η, ζ ). Relation (3) gives the equality
of the velocities at the contact point C, resulting from rolling
constraint.

For this application, we consider that only three fingers
are involved in the grasp and that the contact with the object
is obtained by the hemispherical shape of the fingertips. The
preceding system has 24 equations and only 18 unknowns.
These unknowns are the six operational coordinates of the
object, for each contact point the variables (α, β) and the
variables (η, ζ ). For each finger in contact with the object,
we finally obtain the following system of eight equations
since the normal vectors are defined by two independent
components (2′) (see the Appendix for details)

P OT + P AT · TC = P OB + P AB. BC (1′)

P AT · Tn = P AB · Bn (2′)

δOT + (
P Jω(qi−1) · δqi

) ∧ (
P Ai−1

T · TCi−1)

= δOB + (
P Ai−1

B · δθ) ∧ (
P Ai−1

B · BCi−1). (3′)

To solve this system, it is necessary to introduce six
new unknowns in order to obtain a nonlinear system of
24 equations with 24 unknowns. An intuitive solution is to
consider six joint parameter unknowns among the 12 given
by the exoskeleton, which offers a large possibility of choices
that are discussed in Section 4. The obtained nonlinear
system (24 equations and 24 unknowns) is then solved by
the Newton–Raphson method. Finally, we determine angles
defining the orientation of the object B with respect to the
frame P at each motion step. For each motion step, the
orientation change can be defined by the orientation vector
δθ . As δθ is small, the orientation corresponding matrix can,
thus, be written

Aθ =

⎡
⎢⎣

1 −δθz δθy

δθz 1 −δθx

−δθy δθx 1

⎤
⎥⎦ .

Hence

P AB = P Ai−1
B · Aθ =

⎡
⎢⎣

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎥⎦

where P Ai−1
B is the orientation matrix of the object at the

previous step (iteration i − 1).
We use the following notations: Cϕi and Sϕi denote cos ϕi

and sin ϕi , respectively.
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The object’s orientation angles are obtained by identi-
fication of the matrix P AB with pitch, yaw, and roll
matrix

ϕ1 = ATAN 2

((−A23

Cϕ2

)
,

(
A33

Cϕ2

))

ϕ2 = ASIN (A13)

ϕ3 = ATAN 2

((−A12

Cϕ2

)
,

(
A11

Cϕ2

))

The iterative method that we present requires the
knowledge of the previous configuration. It is, thus, necessary
to initialize the algorithm to obtain the trajectory of the object.
In particular, it is necessary to know the initial configuration
of the object, i.e., the initial grasp.

3.2. The initial grasp
To start the iterative process we need the initial grasp i.e., the
initial position and orientation of the object with respect to
the frame P linked to the exoskeleton palm. This problem is
solved by using Eqs. (1) and (2) from the preceding system.
Indeed, the condition of rolling without sliding is no longer
of any interest since, the initial grasp is static. For this system
of 15 independent equations, the number of unknowns that
have to be determined is unchanged, and is equal to 18. In
the following paragraphs, we show that the knowledge of the
geometry of the object associated to the partial knowledge
of the position of the initial contact points on the object
make it possible to completely determine the initial grasp. In
order to obtain the initial grasp parameters without the use
of any other external sensors, we considered objects whose
shape is a priori known, i.e., parallelopiped, cylinder, or
sphere.

3.2.1. Parallelopiped. For a parallelopiped, we consider
that two fingers are in contact with the same side of the
parallelopiped while the thumb is in contact with the opposite
side.

In Cartesian coordinates, the partial knowledge of the
contact’s point in frame B is defined in Fig. 8. Then, the

Fig. 8. Modeling of the grasp of parallelopiped.

position of contact points Ci is written

BC1 =

⎡
⎢⎣

L/2 − e

�/2

a − H/2

⎤
⎥⎦ , BC2 =

⎡
⎢⎣

x2

−�/2

b − H/2

⎤
⎥⎦ , and

BC3 =

⎡
⎢⎣

x3

−�/2

c − H/2

⎤
⎥⎦

where �, x2, and x3 are the three unknowns.
By considering these new parameters into Eqs. (1′) and

(2′), we obtain a system of 15 independent equations with 15
unknowns.

The normal vectors at the contact points are then expressed
by

Bn1 =

⎡
⎢⎣

0

1

0

⎤
⎥⎦ , Bn2 =

⎡
⎢⎣

0

−1

0

⎤
⎥⎦ , Bn3 =

⎡
⎢⎣

0

−1

0

⎤
⎥⎦ .

3.2.2. Cylinder. For a cylinder, the partial knowledge of the
contact’s point in frame B is defined in Fig. 9. Then, the
position of contact points Ci is written

BC1 =

⎡
⎢⎣

R

0

a

⎤
⎥⎦ , BC2 =

⎡
⎢⎣

R Cψ2

R Sψ2

b

⎤
⎥⎦ , BC3 =

⎡
⎢⎣

R Cψ3

R Sψ3

c

⎤
⎥⎦

where R, ψ2, and ψ3 are the three unknowns.

Fig. 9. Modeling of the grasp of a cylinder.
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Fig. 10. Modeling of the grasp of a sphere.

By considering these new parameters into Eqs. (1′) and
(2′), we obtain a system of 15 independent equations with 15
unknowns.

The normals at the contact points are expressed then by

Bn1 =

⎡
⎢⎣

Cψ1

Sψ1

0

⎤
⎥⎦ , Bn2 =

⎡
⎢⎣

Cψ2

Sψ2

0

⎤
⎥⎦ , Bn3 =

⎡
⎢⎣

Cψ3

Sψ3

0

⎤
⎥⎦ .

3.2.3. Sphere. For a cylinder, the partial knowledge of the
contact’s point in frame B is defined in Fig. 10. Then, the
position of contact points Ci is written

BC1 =

⎡
⎢⎣

√
R2 − a2

0

a

⎤
⎥⎦ , BC2 =

⎡
⎢⎣

(
√

R2 − b2) Cψ2

(
√

R2 − b2) Sψ2

b

⎤
⎥⎦ ,

BC3 =

⎡
⎢⎣

(
√

R2 − c2) Cψ3

(
√

R2 − c2) Sψ3

c

⎤
⎥⎦

where R, ψ2, are ψ3 are the three unknowns.
By considering these new parameters into Eqs. (1′) and

(2′), we obtain a system of 15 independent equations with 15
unknowns.

The normals at the contact points are expressed then by

Bn1 = 1/R

⎡
⎢⎣
√

R2 − a2

0

a

⎤
⎥⎦, Bn2 = 1/R

⎡
⎢⎣

(
√

R2 − b2) Cψ2

(
√

R2 − b2) Sψ2

b

⎤
⎥⎦,

Bn3 = 1/R

⎡
⎢⎣

(
√

R2 − c2) Cψ3

(
√

R2 − c2) Sψ3

c

⎤
⎥⎦

Remarks: In the three preceding cases, one of the object’s
dimensions is taken as unknown (� for a parallelopiped, R

for a cylinder and a sphere). The computed value can, thus,
be compared with the measured dimension. This offers an
additional way to validate the model since this dimension is
well known. In Section 4, the obtained results show that this
deviation is lower than a few tenth of millimeter.

4. Experimental Validation

We have pointed out, in Section 3, that six new unknowns
were to be selected among the 12 articular parameters to
obtain a nonlinear system of 24 equations to 24 unknowns.
There are C6

12 = 920 possibilities to choose these unknowns.
Intuitively, one can easily imagine that it is better to take
the values of the abduction-adduction movement articular
parameters as unknowns, because that does not lock the
configuration space of each finger in only one plan. All
the choices were examined for several object motions. To
check this assumption and to validate the model, first we
use an experimental device that is able to lock five degrees
of freedom of the object and keep free one translation or
one rotation of the object. Thus, the computed trajectories
are easily compared with the real trajectories. For instance,
Fig. 11 shows a device that only allows the ϕ3 rotation of the
object around the zb-axis, which is collinear with the z-axis
of the palm frame P.

We observed that all the tests which take the joint
parameters of abduction-adduction (q04 for the thumb, q11
and q12 for the fingers) as unknown of the problem (case 1)
give similar results to those of Fig. 12a. The computed
parameters q∗

0j and q∗
1j are compared with those measured by

the exoskeleton (q0j , q1j ) during the rotation of a cylinder.
The deviations �ij between the recorded joint parameters
(qij ) and those computed (q∗

ij ) are shown in Fig. 12b. Those
deviations do not exceed 1.2◦, which is sufficient for the
application. We have to specify that during the manipulation
with the exoskeleton, an undesired sliding of the object in
the fingers can occur. Therefore, to eliminate the possible
sliding, the model adjusts the object trajectory or modifies the
joint parameters selected as unknowns. Thus, comparisons
between real trajectories and computed trajectories can only
be possible if the object does not slide.

When the abduction-adduction joint parameters are not
taken as unknowns, the deviations �ij between the recorded
parameters (qij ) and computed parameters (q∗

ij ) increase
and for some cases the model does not converge. For
example, Fig. 13 shows that there are significant deviations
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Fig. 11. Experimental device for a rotation around z.

Fig. 12. (a) Computed parameters (q∗
ij ) and measured parameters (qij ) for q0 and q1 taken as unknowns for the rotation of a cylinder around

the z-axis. (b) Deviations �ij = qij − q∗
ij .

Fig. 13. (a) Computed parameters (q∗
ij ) and measured parameters (qij ) for q2 and q3 taken as unknowns for the rotation of a cylinder around

z. (b) Deviations �ij = qij − q∗
ij .

when q2j and q3j are taken as unknowns of the problem
(case 2).

For this trajectory (cylinder rotation), Figs. 14a and c
shows the operational coordinates defining the object
movement (case 1 and case 2). Figure 14b and d describes in

plan the fingers’ path on the object (case 1 and case 2). For this
example, the cylinder described a rotation ϕ3 approximately
with a displacement of 63◦. The computed diameter of the
cylinder is equal to 51.6 mm whereas the real diameter is
equal to 51.2 mm. This small deviation is very satisfactory,
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Fig. 14. (a), (c) Evolution of the operational coordinates. (b), (d) Fingers’ path on the object.

all the more since it remains lower than a few tenths of a
millimeter for the different sizes and forms of objects we have
tested. Figure 14a and b shows that the computed trajectory
corresponding to case 1 is close to the real trajectory of the
object with a small deviation of the trajectory on the other
operational coordinates. Figure 14c and d, corresponding to
case 2, shows a more disturbed movement with trajectories

that deviate from the real trajectories. Thus, these results
consolidate the choice to take the parameters of abduction-
adduction as unknowns.

We then reproduced this rotation with a free cylinder
(without the device of Fig. 11). In this case, the goal of
the operator is to choose an initial grasp in order to execute
the largest rotation allowed. The results are shown in Figs. 15

Fig. 15. (a) Calculated parameters (q∗
ij ) and measured parameters (qij ) for q0 and q1 taken as unknowns for a desired rotation of a cylinder

around the zb-axis. (b) Deviation �ij = qij − q∗
ij .
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Fig. 16. Operational coordinates of the object.

and 16. In Fig. 15a and b, we can observe that the deviations
between the calculated and the measured parameters have
the same order of magnitude as previously. In Fig. 16,
the corresponding rotation ϕ3 has indeed a largest range
approximately of 80◦. However, an undesired translation
along the y-axis approximately of 15 mm appears. The other
motion parameters are negligible.

Finally, we present in Figs. 17 and 18 the results for
a combined translation and rotation of a parallelopiped
where dimensions are 20 × 44, 8 × 80 mm3. The software
computes a width of the object according to the grasp axis
equal to 45.1 mm instead of 44.8 mm. The deviation between
these two values remains satisfactory. For this combined
motion, the deviations between the calculated parameters
and the measured parameters for q0 and q1 (Figs. 17a and
b), are still satisfactory. This proves the robustness of the
model. We can verify in Fig. 18, that the object described a
combined motion of 20 mm for the translation and of 35◦ for
the rotation ϕ3.

Fig. 18. Operational coordinates of the object.

5. Conclusion

We presented an efficient approach that allows us to
easily generate trajectories of objects handled by the LMS
mechanical hand. This approach is based on learning and
uses an exoskeleton that has kinematics and dimensions
identical to the LMS mechanical hand. The exoskeleton
and its exploitation were presented. Starting from a reliable
model, which is proposed, the only knowledge of the articular
parameters and the partial knowledge of initial grasp enable
us to determine the trajectory of the object. The proposed
approach has been checked by a CAD software as well
as by the mechanical hand. The joint parameters given
by the exoskeleton are directly loaded on the mechanical
hand-control device which solves the grasp stability in real
time during the manipulation of object. The behavior of the
mechanical hand and the handled object in this way is very
satisfactory. Since the exoskeleton has the same capability
of movement as the mechanical hand, this feature is used to
exploit the ability, the experiment, and the adaptability of a

Fig. 17. (a) Calculated parameters (q∗
ij ) and measured parameters (qij ) for q0 and q1 taken as unknowns for a combined translation and

rotation of a parallelopiped. (b) Deviation �ij = qij − q∗
ij .
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human operator for the manipulation of objects through the
exoskeleton. The obtained results show that this approach is
well adapted for trajectory planning.
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Appendix

We consider hemispherical fingertips with a known radius r.
The manipulated objects are convex. Thus, in frame T, the
position of the contact point C and its normal are defined by

TC =

⎡
⎢⎣

rCαCβ

rCαSβ

rSα

⎤
⎥⎦ and Tn =

⎡
⎢⎣

CαCβ

CαSβ

Sα

⎤
⎥⎦

Likewise, in frame B, the same position of the contact point
C and its normal are defined by

BC =

⎡
⎢⎣

x(η, ζ )

y(η, ζ )

z(η, ζ )

⎤
⎥⎦ and Bn =

⎡
⎣xn(η, ζ )

yn(η, ζ )
zn(η, ζ )

⎤
⎦

where x, y, z, xn, yn, and zn depend on the geometry of the
manipulated object.

Moreover, we introduce the following notations:

P OT = [xt , yt , zt ]T is the matrix of components of vector
OOT with respect to the P frame.

P OB = [xb, yb, zb]T is the matrix of components of vector
OOB with respect to the P frame.

• Thus, Eq. (1) can be expressed as.

P OT + P AT ·TC = P OB + P AB · BC (A1)

or
⎡
⎢⎣

xt

yt

zt

⎤
⎥⎦ + P AT

⎡
⎢⎣

rCαCβ

rCαSβ

rSα

⎤
⎥⎦ =

⎡
⎢⎣

xb

yb

zb

⎤
⎥⎦ + P AB

⎡
⎢⎣

x

y

z

⎤
⎥⎦

where P AT is the transform matrix between reference
frames P and T.
The matrix P AT is given by:

For finger:

P AT =

⎡
⎢⎣

C0C1C23 − S0S23 −S0S1 C0C1S23 + S0C23

S1C23 C1 S1S23

−S0C1C23 − C0S23 S0S1 −S0C1S23 + C0C23

⎤
⎥⎦

For the thumb: P AT =

⎡
⎢⎣

C123 −S123 0

C0S123 C0C123 −S0

S0S123 S0C123 C0

⎤
⎥⎦ .

The fingers’ bases are oriented of an angle γ around z with
respect to the palm. So, to be expressed in the reference
frame P, P AT is multiplied by the following transform
matrix Aγ :

Aγ =

⎡
⎢⎣

Cγ −Sγ 0

Sγ Cγ 0

0 0 1

⎤
⎥⎦ .
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P AB is the transform matrix between P and B using pitch,
yaw, and roll angles ϕ1, ϕ2, and ϕ3, i.e.

P AB =⎡
⎢⎢⎣

Cϕ2Cϕ3 −Cϕ2Sϕ3 Sϕ2

Cϕ1Sϕ3 + Sϕ1Sϕ2Cϕ3 Cϕ1Cϕ3 − Sϕ1Sϕ2Sϕ3 −Sϕ1Cϕ2

Sϕ1Sϕ3 − Cϕ1Sϕ2Cϕ3 Sϕ1Cϕ3 + Cϕ1Sϕ2Sϕ3 Cϕ1Cϕ2

⎤
⎥⎥⎦ .

• Relation (2) becomes

P AT · Tn= P AB · Bn (A2)

or

P AT

⎡
⎢⎣

CαCβ

CαSβ

Sα

⎤
⎥⎦ = P AB

⎡
⎢⎣

xn

yn

zn

⎤
⎥⎦ .

• In differential form, relation (3) can be written

ȮT + ωT ∧ (
P AT · TC

) = ȮB + �B ∧ (
P AB · BC

)

where the dot denotes the time derivative. Thus, the small
displacements model is given by

δOT + δωT ∧ TCi−1 = δOB + δ�B ∧ BCi−1

where δOT and δOB are translation vectors of points OT and
OB between iteration i and iteration i − 1.

δωT and δ�B are angular velocity vectors relatively to the
distal phalanx and the object between iteration i and iteration
i − 1.

TCi−1 and BCi−1 are position vectors of point C,
respectively, to frame T and frame B at iteration i − 1.

We define P Jω the rotational Jacobian matrix of the
fingertip in frame P as

δωT = P Jω

(
qi−1

0 , qi−1
1 , qi−1

2 , qi−1
3

) · δq

where

δq = [δq0, δq1, δq2, δq3]T,

P Jω =Aγ Jω(Aγ previously described),

Jω =

⎡
⎢⎣

0 −S0 C0S1 C0S1

0 C0 S0S1 S0S1

1 0 C1 C1

⎤
⎥⎦ for a finger,

Jω =

⎡
⎢⎣

0 S0 S0 S0

0 −C0 −C0 −C0

1 0 0 0

⎤
⎥⎦ for the thumb.

The global motion of the object can be defined by the
vector components δ�B = [δθx, δθy, δθz]T in frame B.

With these notations, Eq. (3) can be expressed as

δOT + (
P Jω

(
qi−1

0 , qi−1
1 , qi−1

2 , qi−1
3

) · δqi

)
× ∧ (

P Ai−1
T · TCi−1)

= δOB + (
P Ai−1

B · δθ
) ∧ (

P Ai−1
B · BCi−1) (A3)

where P Ai−1
T is the transform matrix between P and T at

iteration i − 1 and P Ai−1
B is the transform matrix between P

and B at iteration i − 1.
We can note that the last equation contains the six

unknowns concerning the position and orientation of the
object, i.e., δOB and δθ .
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