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RUNOFF ON ROOTED TREES

OWEN DAFYDD JONES,∗ Cardiff University

Abstract

We introduce an idealised model for overland flow generated by rain falling on a
hillslope. Our prime motivation is to show how the coalescence of runoff streams
promotes the total generation of runoff. We show that, for our model, as the rate of
rainfall increases in relation to the soil infiltration rate there is a distinct phase change.
For low rainfall (the subcritical case) only the bottom of the hillslope contributes to
the total overland runoff, while for high rainfall (the supercritical case) the whole slope
contributes and the total runoff increases dramatically. We identify the critical point at
which the phase change occurs, and show how it depends on the degree of coalescence.
When there is no stream coalescence the critical point occurs when the rainfall rate
equals the average infiltration rate, but when we allow coalescence the critical point
occurs when the rainfall rate is less than the average infiltration rate, and increasing the
amount of coalescence increases the total expected runoff.

Keywords: Runoff; overland flow; coalescence; phase transition; recursive distributional
equation; distributional fixed point equation; voter model; Bienaymé–Galton–Watson
process; parking function
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1. Context and main results

The motivation for this work is the problem of modelling surface runoff. Surface runoff
depends on rainfall, infiltration into the soil, and surface topography, all of which vary spatially
and temporally. In particular, spatial variation of infiltration and topographical variability make
it difficult to fit differential fluid flow models (based on the Navier–Stokes equations) at coarse
scales, because parameters lose their physical meaning [6], while fitting them at fine scales
requires high-resolution data and is numerically prohibitively slow.

A practical alternative to measuring the infiltration and topography of a hillslope at high
resolution is to summarise small-scale variation statistically, which leads naturally to stochastic
runoff models. Suppose that we divide our hillslope into cells. We can model spatial variation
of the soil infiltration by supposing that for each cell it is sampled independently from some
infiltration distribution. It is known that this variation is enough for a hillslope to produce
surface runoff even when the rainfall is less than the average infiltration [9, 10]. In this work
we consider in addition the effect of variation in the micro-topography from one cell to the
next.

When surface runoff forms on a hillslope, we see small trickles combining to form larger
rivulets, which are proportionally less susceptible to soil infiltration. We call this mechanism
coalescence, and we want to show how it affects surface runoff. We suppose that micro-
topography will affect the direction of runoff from a cell. Water necessarily flows downhill,
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but local variation in the topography can mean that instead of taking the most direct route
down a slope, a rivulet is diverted to the left or right. We can model this by adding randomness
to the direction in which runoff flows out of a cell, where the degree of randomness reflects the
roughness of the hillslope.

1.1. An illustrative simulation

We can explore the effect of coalescence with a simple simulation.
Divide a hillslope into a rectangular m × n grid of cells, so that cells (1, j) are at the top

of the slope and cells (m, j) are at the bottom. We suppose that if there is any runoff from cell
(i, j), then it can run to cell (i + 1, j − 1), (i + 1, j), or (i + 1, j + 1) with probabilities δ, 1 − 2δ,
and δ respectively. This direction does not change over time, and we do not allow runoff to exit
via the sides of the grid.

Next, suppose that the rainfall has a constant rate ρ, and that the infiltration rate in cell (i, j)
has an exponential distribution with mean 1, independent of other cells. We suppose that the
system is in temporal equilibrium, so that at each cell the rates of rainfall, infiltration, runon
from above, and runoff do not vary in time. Let J(i,j) be the infiltration rate for cell (i, j) and
W(i,j) be the runoff rate from cell (i, j); then we have

W(i,j) =
(

ρ − J(i,j) +
∑

k : (i−1,k)→(i,j)

W(i−1,k)

)
∨ 0,

where we write (i − 1, k) → (i, j) if runoff from (i − 1, k) runs on to cell (i, j) (in which case
k ∈ { j − 1, j, j + 1}).

In Figure 1 we give three realisations of this process, for m = 150, n = 300, ρ = 0.7, and
δ ∈ {0, 0.1, 0.3}. We see that for δ = 0 any runoff that is formed is eventually reabsorbed back
into the slope, but for δ = 0.3 runoff makes its way down the whole slope, even though the
average infiltration rate exceeds the rainfall rate. This pattern is consistent for different values
of ρ: as δ increases there is increasing runoff; moreover, for any ρ there is a threshold value of δ

after which we start to see runoff making its way down the whole hillslope from top to bottom.
In what follows we will develop an abstract model for runoff for which we can establish this
phase change precisely.

1.2. Drainage trees

Suppose that we have a hillslope divided into cells, and that the runoff from any given
cell will flow into a unique cell below. For example, using a square lattice we could allow
runoff into any one of the three cells below with a common edge or vertex, or using a diamond
lattice we might choose to allow runoff into either of the two cells below with a common edge.
Examples of the runoff paths that can be generated in these two cases are given in Figure 2.
Selecting a single cell at the bottom of the hillslope and then considering all the cells that could
potentially drain into it we get a rooted tree, which we call a drainage tree, where the nodes
correspond to cells and edges indicate where runoff flows from one cell to the next (runoff is
always towards the root).

In what follows we will consider runoff on a single drainage tree. Given a rooted tree, let Xi

be the difference between rainfall and infiltration in cell i, and denote by { j : j → i} those cells
that send runoff directly into node i. The runoff from cell/node i is then

Wi =
(

Xi +
∑

j : j→i

Wj

)
∨ 0. (1)
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FIGURE 1: Simulation output illustrating the effect of coalescing streams. In each case water flows
from top to bottom; the darker the pixel the greater the flow. Each cell has rainfall rate ρ, a random
infiltration rate with mean 1, a chance δ that runoff is directed down and to the left, and a chance δ

that it is directed down and to the right. For δ = 0 any runoff that is formed is eventually reabsorbed
back into the slope, but for δ = 0.3 runoff makes its way down the whole slope, even though the average
infiltration rate exceeds the rainfall rate. Note that the three plots have been scaled so that the maximum
runoff is the same shade; the maximum runoff actually increases with δ. The code can be found at

http://researchers.ms.unimelb.edu.au/∼apro@unimelb/spuRs/index.html.

We can view the Xi as either rates or, if we integrate over discrete time periods, volumes. In
either case we are assuming that the system is temporally homogeneous and in equilibrium.

Our object of interest is W0, where 0 is the root. If the tree is finite then W0 is clearly well
defined: we have Wj = Xj ∨ 0 for all leaves j, so we can use (1) to recursively calculate Wi for

all the other nodes. For infinite trees we define W0 = limn→∞ W(n)
0 , where W(n)

0 is the root-

runoff from the tree truncated at generation/height n. The W(n)
0 are clearly non-decreasing so

W0 exists, though may be improper.
It is interesting to note that if instead of working our way down from the leaves we consider

working our way up from the root, then we get

W0 = max
T∈{rooted subtrees}

∑
i∈T

Xi, (2)
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FIGURE 2: Two realisations of paths of potential runoff, for a square lattice (left) and a diamond lattice
(right). In either case, if we take a single cell at the bottom and consider all the cells that could drain into

it we get a tree.

where a rooted subtree is any subtree including the root 0, or the empty subtree (in which case
we take the sum to be 0).

1.3. Drainage trees from the diamond lattice

In hydrology the use of the diamond lattice to generate random drainage patterns can be
traced back to Scheidegger [14]. Note, however, that in the hydrological literature drainage
trees are used to describe river networks, rather than the small-scale patterns of ephemeral
surface runoff that we are interested in.

Take as our hillslope a half-plane extending upwards ad infinitum, and divide it into cells
using a diamond lattice. Furthermore, suppose that from each cell runoff goes left with
probability β ∈ (0, 1) and right with probability β = 1 − β, independently of all other cells.
Consider the drainage tree attached to a single cell at the bottom of the slope. If we think of the
tree as growing from its root, then for any node the number of offspring has the distribution

z 0 1 2

P(Z = z) ββ β2 + β
2

ββ
(3)

If β = 0 or 1 then our tree degenerates to one dimension, but is infinite in size. This case
is considered in [9, 10], and from here on we will assume that β ∈ (0, 1/2], unless stated
otherwise. We can interpret β in terms of surface roughness: β = 1/2 gives the roughest
surface, with decreasing values corresponding to smoother surfaces. In terms of our model,
we get the greatest degree of coalescence when β = 1/2, and the least (none) when β = 0. The
cases β and 1 − β are equivalent by symmetry.

Clearly, unlike a Bienaymé–Galton–Watson (BGW) process, for a lattice-derived tree the
family sizes in any given generation are dependent. Let Zn be the number of nodes in generation
n (where the root is generation 0); then we have that Zn+1 = Zn + Dn, where Dn is independent
of Zn and has the distribution

k −1 0 1

P(Dn = k) ββ β2 + β
2

ββ
(4)

That is, the tree diameter is given by a random walk with zero drift, from which it follows
immediately that the tree is almost surely (a.s.) finite, but that its expected height is infinite.

To see where the distribution of Dn comes from, consider Figure 3. Here we have labelled
the nodes of the lattice relative to the root of the tree. In generation n the tree consists of all
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FIGURE 3: A tree on the diamond lattice with nodes in each generation numbered relative to the leftmost
possible position. At each generation the tree contains all nodes between some left limit Ln and right limit

Rn. From one generation to the next, the number of nodes can increase or decrease by at most 1.

nodes from Ln to Rn say, where Zn = Rn − Ln. We see that Ln+1 = Ln with probability β and
Ln + 1 with probability β, depending on the direction of the runoff from the above-left cell.
Similarly, Rn+1 = Rn with probability β and Rn + 1 with probability β, independently of Ln+1.
We then have Dn+1 = Rn+1 − Rn − Ln+1 + Ln, which has the distribution (4).

In what follows we will approximate the diamond lattice tree with a critical BGW tree by the
simple expediency of dropping the dependence between offspring numbers in each generation.
That is, we use the offspring distribution (3).

1.4. Runoff on a critical BGW tree

Suppose that we are given a critical BGW tree with offspring distribution (3) for β ∈
(0, 1/2]. We associate independent and identically distributed (i.i.d.) random variables Xi with
each node, and are interested in the Wi as defined by (1).

Write X and W for X0 and W0, the point contribution and net runoff at the root, and let WL
be the runoff from the cell above left and WR the runoff from the cell above right. From the
self-similar structure of the BGW tree we have that W, WL, and WR are identically distributed,
and WL and WR are independent.

Let IL indicate if the cell above left drains into the root cell, and similarly for IR; then
E(IL) = β, E(IR) = β, and

W
D= (WLIL + WRIR + X) ∨ 0. (5)

This equation is the focus of the remainder of the paper. We know that an a.s. finite solution
W exists, because we can construct one. By iterating the right-hand side of (5) we get a set of
equations of the form (1), where the underlying tree is a realisation of a critical BGW tree with
offspring distribution given by (3). This critical BGW tree is a.s. finite, so the solutions we
construct using (1) are a.s. finite. We will only consider a.s. finite solutions to (5). In general
it is not clear whether there is more than one solution; however, in the cases we consider we
obtain unique expressions for the probability-generating function (pgf) of W, assuming that W
is a.s. finite (see Propositions 4 and 6). That is, in the cases we consider we have a unique finite
solution.

We summarise our main results here, and defer the proofs to the next two sections. Section 4
then discusses some generalisations. In order to obtain exact results we will suppose that X has
the following distribution, for some α ∈ (0, 1):

x 1 −1
P(X = x) α α = 1 − α

If α = 0 then W = 0, while if α = 1 then W is just the size of the tree.
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FIGURE 5: Expected runoff for various values of α and β. For α larger than the given ranges, the expected
mean is ∞.

Proposition 1. Put

αc(β) = (1/2)(1 + ββ −
√

ββ(2 + ββ)).

Then, for α ≤ αc(β),

E(W) = 1

2β(1 − β)
(1 − 2α −√

1 − 4α(1 − α + β(1 − β))),

while for α > αc(β), E(W) = ∞.

Figure 4 gives a plot of αc. Figure 5 gives plots of E(W) against α for various β.
Note that for all β > 0 we have αc(β) < 1/2, so that E(X) < 0. That is, the critical point at

which the expected runoff becomes infinite happens when the rainfall is less than the expected
infiltration. Moreover, as the degree of coalescence increases, i.e. as β ↑ 1/2, less rainfall is
required to reach the critical point. We say that the runoff is subcritical/critical/supercritical as
α is less than / equal to / greater than αc.

We can say more about the size of W, in terms of how heavy its tail is.
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Proposition 2. Put

h(t) = t[1 − α(4ββ + t) − α2(1 − 2β)2(1 − t2)]

4αβ2β
2
(1 − α(1 − t2))

,

and let t0 be the point at which h achieves its maximum in [0, 1]. Then, as x → ∞,

P(W > x) ∼
⎧⎨⎩
√

−h′′(1)(1−α)
8π

x−3/2 α = αc,√
(h(t0)−h(1))(1−α)

π
x−1/2 α > αc.

(6)

For α < αc, W has all positive moments finite.

Let NT be the total number of nodes in our drainage tree; then it is known that

P(NT = n) ≈ n−3/2 1

2
√

πββ
.

We give a sketch of the proof in Section 3.1. In particular, even though NT is almost surely
finite, we have E(NT ) = ∞. This suggests that when E(W) = ∞ it is because the runoff at the
root is getting contributions from all over the tree, where we say that a node i contributes to the
runoff at the root if there is a path (i1 = i, i2, . . . , in = 0) from i to the root such that Wik > 0
for all k. Our final result for this section says that this is indeed the case. Moreover, we see that
when E(W) < ∞ only the bottom of the tree is contributing.

We can re-express (5) as

W = (WLIL + WRIR + X) ∨ 0

= WLIL + WRIR + Y, (7)

where Y is the net contribution to runoff from our cell. WL, WR, IL, IR, and X are all in-
dependent, but the distribution of Y depends on X, WL, WR, IL, and IR.

Proposition 3. When α > αc we have E(Y) > 0, and for every δ > 0 there is an ε > 0 such that

P(100(1 − δ)% of the tree height contributes to root runoff) ≥ ε.

When α ≤ αc we have E(Y) = 0, and the expected tree height contributing to root runoff is
finite.

We finish the section with a hydrologically inclined qualitative summary of our results.

Summary. When the rainfall is subcritical, only the bottom of the hillslope contributes to
runoff, but when the rainfall is supercritical, the whole slope starts contributing, giving a
phase change in the amount of runoff produced. The critical point depends on the degree of
coalescence induced by the micro-topography of the hillslope.

1.5. Links to other work

The pattern of drainage trees produced by the diamond lattice is a familiar probabilistic
object, known as coalescing random walks or the voter model in dimension one; see, for
example, the books of Liggett [12] or Durrett [3].

As noted above, the offspring numbers in generation n of a drainage tree are dependent.
When producing generation n + 1 from generation n, we can group the nodes into runs with
a single offspring above left, and runs with a single offspring above right. When you switch
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from one type of run to the other you get a node with either two or zero offspring. We can map
these runs to runs in a sequence of independent Bernoulli random variables, which have been
studied in the context of various non-parametric statistics, most notably in [17].

Huber [7] and Takayasu & Takayasu [15] have considered sums of the form
∑

i∈T Xi where
T is a drainage tree arising from a diamond lattice, and the Xi are i.i.d. They used the tree to
model the aggregation of charged particles.

In the case where β = 0 and the drainage tree has dimension one, (1) is the same as the
equation for the waiting time in a single-server queue. In the queueing theory literature much
use is made of the time-reversed process, which satisfies the same equation as the original. In
our case, reversing the process gives (2) instead.

Equations of type (5) are known as distributional fixed-point equations or recursive distribu-
tional equations, and there is some general theory on the existence and uniqueness of solutions
to such equations [1, 8]. In the terminology of [1], the a.s. finite solution we consider here is
endogenous.

When X takes values on {−1, 0, 1, . . .}, Goldschmidt & Pryzykucki [5] observe that the
runoff process is equivalent to a parking process, used to analyse the performance of hash
tables. They have a number of nice results for parking on a critical BGW tree with Poisson
offsping numbers, on subcritical and supercritical BGW trees, and they conjecture about more
general behaviour on critical trees.

2. Proofs: The mean and right tail of W

Since X ∈Z we have W ∈Z+, and we define pi = P(W = i). For convenience we also define
pL

0 = P(WLIL = 0) = β + βp0 and pR
0 = P(WRIR = 0) = β + βp0. Let f be the pgf of W, f (t) =

E(tW ); then, from (5) we have

f (t) = E(tILWL+IRWR+X∨0)

= E(tILWL+IRWR+1I{X=1})
+ E(I{X=−1}I{ILWL=0}I{IRWR=0})
+ E(tILWL−1I{X=−1}I{ILWL>0}I{IRWR=0})
+ E(tIRWR−1I{X=−1}I{ILWL=0}I{IRWR>0})
+ E(tILWL+IRWR−1I{X=−1}I{ILWL>0}I{IRWR>0})

= α(β + (1 − β)f (t))(1 − β + βf (t))t

+ (1 − α)pL
0 pR

0

+ (1 − α)pR
0 (1 − β)(f (t) − p0)t−1

+ (1 − α)pL
0 β(f (t) − p0)t−1

+ (1 − α)β(1 − β)(f (t) − p0)2t−1

= t−1[(1 − α)(1 − 2β + 2β2)p0(t − 1)

+ (1 − α)(1 − β)βp2
0(t − 1) + (1 − β)β(1 + α(t − 1))t

+ f (t)(1 − 2β + 2β2)(1 + α(t2 − 1))

+ f (t)2(1 − β)β(1 + α(t2 − 1))].
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For β > 0 this is just a quadratic in f (t), which we can solve to give

f (t) = t − (β2 + β
2
)(1 − α(1 − t2)) ± √

g(t)

2ββ(1 − α(1 − t2))
,

g(t) = 4αβ2β
2
(1 − α(1 − t2))(1 − t)

((
p0 + β2 + β

2

2ββ

)2

− h(t)

)
,

h(t) = t[1 − α(4ββ + t) − α2(1 − 2β)2(1 − t2)]

4αβ2β
2
(1 − α(1 − t2))

.

To find p0 and to work out which root of g we use in f (positive or negative), we consider
how f behaves at 0 and 1. We will need the following result on h.

Leema 1. h has a unique maximum on [0, 1].
Let t0 be the point at which h achieves its maximum in [0, 1], and define

αc = αc(β) = 1

2
(1 + ββ −

√
ββ(2 + ββ)).

Then, for α > αc we have t0 < 1 and h(t0) > h(1), while for α ≤ αc we have t0 = 1.

Proof. We show first that h has at most one point of inflection in [0, 1]. Clearly, this is

equivalent to showing that r(t) = 4αβ2β
2
h′(t) has at most one zero in [0, 1]. Writing γ = 4ββ

we have 1 − γ = (1 − 2β)2, so γ ∈ (0, 1] and

r(t) = s(t)

(1 − α(1 − t2))2
:= c4t4 + c2t2 + c1t + c0

(1 − α(1 − t2))2
,

where

c4 = −α(1 − γ ) ≤ 0

c2 = −(2α2(1 − α)(1 − γ ) + 2α2(1 − γ ) + α(1 − α)) ≤ 0

c1 = −2α(1 − α) < 0

c0 = (1 − α)2 + α(1 − γ ) − α3(1 − γ ) > 0.

Since the denominator of r(t) is strictly positive on [0, 1] it is sufficient to consider the zeros
of the numerator s(t).

Assuming β < 1/2 so that γ < 1 we can re-express the equation s(t) = 0 as(
t2 + c2

2c4

)2

= d1t + d0

for some d1 and d0. Since c2/(2c4) ≥ 0 this has at most two solutions. However, s(0) = (1 −
α)(1 + α2(1 − γ ) − αγ ) > 0 and s(t) → −∞ as t → −∞, so s has at least one root < 0, and
thus at most one root in [0, 1].

If β = 1/2 then γ = 1 and s(t) = −α(1 − α)(1 + t)2 + 1 − α, which has roots ±√
1/α − 1,

at most one of which lies in [0, 1].
Now h(0) = 0 and h′(0) = c0/(4α3β2β

2
) > 0, so t0 > 0. Since h has at most one inflection

point in [0, 1], it follows that t0 = 1 precisely when h′(1) ≥ 0. We have

h′(1) = 1 + 4α2 − 4α(1 + β(1 − β))

4(1 − α)β2(1 − β)2
. (8)
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Thus, h′(1) < 0 if and only if

4α2 − 4α(1 + β(1 − β)) + 1 < 0.

That is, on inspecting the roots of the left-hand side, h′(1) < 0 if and only if

α >
1

2
(1 + β(1 − β) −√

β(1 − β)(2 + β(1 − β)))

= αc(β), say. �

We can easily check that αc is monotonic in β, with αc(0) = 1/2 and αc(1/2) = 1/4. A plot
is given in Figure 4.

Proposition 4. If α ≤ αc(β) then f (t) uses the positive root of g(t) for all t ∈ [0, 1] and

p0 = 2β(1 − β) − 1 + √
1 − 4β(1 − β)α/(1 − α)

2β(1 − β)
, (9)

E(W) = 1

2β(1 − β)
(1 − 2α −√

1 − 4α(1 − α + β(1 − β))).

If α > αc(β) then t0 = arg maxt∈[0,1] h(t) ∈ (0, 1) and f (t) uses the positive root of g(t) on [0, t0]
and the negative root on [t0, 1], and

p0 =√
h(t0) − β2 + β

2

2ββ
,

E(W) = ∞.

Proof. At t = 0 we have h(0) = 0, g(0) = (1 − α)2(β
2 + β2 + 2ββp0)2, and thus

f (0) = −(1 − 2β + 2β2)(1 − α) ± √
g(0)

2(1 − β)β(1 − α)

= −(1 − 2β + 2β2)(1 − α) ± (1 − α)((1 − 2β + 2β2) + 2β(1 − β)p0)

2(1 − β)β(1 − α)
.

Since f (0) = p0 > 0 we must have that at 0, f uses the positive root of g. Moreover, since f is
continuous on [0, 1] and g(0) > 0, f uses the positive root in a neighbourhood of 0.

We will see that if t0, the point where h attains its maximum on [0, 1], is < 1, then the
root used by f switches at that point. (In Figure 6 we plot the two branches of f for α < αc,
α = αc, and α > αc.) First note that because f is real we must have g non-negative on [0, 1],
whence

h∗ :=
(

p0 + β2 + β
2

2ββ

)2

≥ h(t0) = max
t∈[0,1]

h(t).

Now consider the behaviour of f near 1.

f (t) = t − (1 − 2β + 2β2)(1 − α(1 − t2)) ± √
g(t)

2(1 − β)β(1 − α(1 − t2))
,

f ′(t) = 1 − (1 − 2β + 2β2)2αt ± g′(t)/(2
√

g(t))

2(1 − β)β(1 − α(1 − t2))

− t − (1 − 2β + 2β2)(1 − α(1 − t2)) ± √
g(t)

(2(1 − β)β(1 − α(1 − t2)))2
2β(1 − β)2αt;
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FIGURE 6: The two branches of f in the case β = 0.5 and for α � αc = 0.25. The solid line is the branch
using the positive root of g, and the dashed line the branch using the negative root.

g(t) = 4β2(1 − β)2(1 − α)(1 − t)(1 − α(1 − t2))(h∗ − h(t)),

g′(t) = −h′(t)4β2(1 − β)2(1 − α)(1 − t)(1 − α(1 − t2))

+ (h∗ − h(t))4β2(1 − β)2(1 − α)((1 − t)2αt − (1 − α(1 − t2))).

We have f (1) = 1, g(1) = 0, and

f ′(1) = 1 − (β2 + β
2
)2α ± limt↑1 g′(t)/(2

√
g(t))

2ββ
− 2α,

g′(1) = −(h∗ − h(1))4β2β
2
(1 − α).

We must have f ′(1) ≥ 0, so if h∗ > h(1) then f must take the negative root of g near 1, and
f ′(1) = ∞.

If t0 < 1 then h∗ ≥ h(t0) > h(1), so the root of g used by f switches from the positive to the
negative at some point in (0, 1). Since f is continuous on [0, 1] we must have that g(t) = 0
at the point where the root switches. That is, we must have h(t) = h∗ at this point. It follows
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that the root switches at t0 and that h∗ = h(t0). That is, if α > αc then p0 solves h∗ = h(t0) and
E(W) = f ′(1) = ∞.

If t0 = 1 then, as it is continuous, f must use the positive root of g on [0, 1). Thus we must
have h∗ = h(1), because otherwise we would get f ′(t) < 0 somewhere to the left of 1. We get
p0 in this case by solving h∗ = h(1), that is,(

p0 + β2 + β
2

2ββ

)2

= 1 − 2αββ

4(1 − α)β2β
2

.

To obtain f ′(1) in this case put h(1) − h(t) = (1 − t)(h′(1) + o(1)); then, as t ↑ 1,

g′(t)√
g(t)

=
2β(1 − β)(1 − α)[−(1 − α(1 − t2))h′(t) + (1 − t)(h′(1) + o(1))2αt

−(1 − α(1 − t2)(h′(1) + o(1))]√
(1 − α(1 − t2)(h′(1) + o(1))

,

lim
t↑1

g′(t)√
g(t)

= −4β(1 − β)
√

(1 − α)h′(1).

Thus, plugging in h′(1) (see (8)), we have

E(W) = f ′(1) = 1

2β(1 − β)
(1 − 2α −√

1 − 4α(1 − α + β(1 − β))).

Plots of E(W) for various α and β are given in Figure 5. �
Remark 1. Note that the expression for E(W) simplifies for α = αc, giving

1

2

(√
1 + 2

β(1 − β)
− 1

)
. (10)

Also note that for β = 1/2 the expression for p0 has a simple form for all α (here, αc(1/2) =
1/4):

p0 =
⎧⎨⎩2

√
1−2α
1−α

− 1 for 0 ≤ α ≤ 1/4,√
2√
α+α

− 1 for 1/4 ≤ α ≤ 1.

For β = 1/2 and α ≤ 1/4 we also have E(W) = 2(1 − 2α − √
(1 − α)(1 − 4α)).

Proposition 5. Let F be the cumulative distribution function of W. Then, as x → ∞,

1 − F(x) ∼
⎧⎨⎩
√

−h′′(1)(1−α)
8π

x−3/2 α = αc,√
(h(t0)−h(1))(1−α)

π
x−1/2 α > αc.

For α < αc, W has all positive moments finite.

Proof. We work with Laplace–Stieltjes (L–S) transforms. Let F̂ be the L–S transform of
F, so F̂(s) = f (e−s). We are interested in the behaviour of F̂(s) near 0, that is, the behaviour
of f near 1. We will write Pk to indicate a generic polynomial whose smallest non-zero term
is order k, possibly of infinite order, but convergent in a neighbourhood of 0.

The behaviour of f at 1 depends on the behaviour of g, which in turn depends on the term
h(t0) − h(t). If α < αc then t0 = 1 and h′(1) > 0, so h(t0) − h(t) = h′(1)(1 − t) + P2(1 − t). If
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α = αc then t0 = 1 and h′(1) = 0, so h(t0) − h(t) = − 1
2 h′′(1)(1 − t)2 + P3(1 − t). If α > αc then

t0 < 1 and h(1) < h(t0), so h(t0) − h(t) = h(t0) − h(1) + P1(1 − t). We take each case in turn.
In each case we use the fact that near 0, 1 − e−s = s + P2(s).

For α < αc, f uses the positive root of g near 1, and

h(1) − h(e−s) = (1 − e−s)h′(1) + P2(1 − e−s) = sh′(1) + P2(s).

This gives
F̂(s) = P0(s) + s

√
P0(s),

which has a convergent Taylor series expansion in a neighbourhood of s = 0. Thus, F̂ has all
its derivatives finite at 0, so W has all positive moments finite.

In the case α = αc, f again uses the positive root of g near 1, and

h(1) − h(e−s) = − 1
2 (1 − e−s)2h′′(1) + P3(1 − e−s) = − 1

2 s2h′′(1) + P3(s);

thus,

F̂(s) = 2ββ + (2α(1 − 2ββ) − 1)s + O(s2) + s3/2ββ
√−2(1 − α)h′′(1) + O(s)

2ββ(1 − 2αs) + O(s2)
.

Writing μ for E(W) and plugging in our expression for α = αc we get, for s ↓ 0,

F̂(s) − 1 + μs = s3/2
√

− 1
2 (1 − α)h′′(1) + O(s) + O(s2)

= s3/2l(1/s),

where l is slowly varying at infinity. Standard Tauberian theory now tells us (see [2],
Theorem 8.1.6) that as x → ∞,

1 − F(x) ∼ l(x)
	(3/2)

	(1/2)2
x−3/2

∼
√−h′′(1)(1 − α)

8π
x−3/2.

In the case α > αc, f uses the negative root of g near 1, and we get

f (t) = 1 − √
1 − t

√
(h(t0) − h(1))(1 − α) + O(1 − t) + O(1 − t),

f (e−s) − 1 = −s1/2
√

(h(t0) − h(1))(1 − α) + O(s) + O(s).

That is, F̂(s) − 1 = s1/2l(1/s), where l is slowly varying, so applying our Tauberian theorem
we see that as x → ∞,

1 − F(x) ∼
√

(h(t0) − h(1))(1 − α)

π
x−1/2. �

2.1. The case β = 0

When β = 0 and α ∈ [0, 1/2) we get f (t) = αp0/(α − αt), from which it follows that p0 =
(1 − 2α)/(1 − α) (since f (1) = 1), and thus that W ∼ geom((1 − 2α)/(1 − α)) and E(W) =
α/(1 − 2α). For α ∈ [1/2, 1] we have that p0 = 0 and W = ∞ almost surely.
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3. How much of the tree contributes to root runoff?

In this section we look at how much of the tree is contributing to the runoff at the root; our
results are summarised in Proposition 3. Recall that W = (WLIL + WRIR + X) ∨ 0 = WLIL +
WRIR + Y , where Y is the net contribution to runoff from our cell. If X = 1 then Y = 1. If
WLIL + WRIR = 0 and X = −1 then Y = 0. If WLIL + WRIR > 0 and X = −1 then Y = −1.
Thus Y has the distribution

P(Y = y) =
⎧⎨⎩

α, y = 1,

(1 − α)[β + (1 − β)p0][1 − β + βp0], y = 0,

(1 − α)(1 − [β + (1 − β)p0][1 − β + βp0]), y = −1;

E(Y) = 2α − 1 + (1 − α)(β + (1 − β)p0)(1 − β + βp0).

It is easy to check that

E(Y)

{= 0 α ≤ αc,

> 0 α > αc.

In particular, for β = 1/2 and α > αc = 1/4 we get E(Y) = (1 + √
α)(2

√
α − 1)2/(2

√
α) > 0.

Thus, when α > αc the net contribution at each node has positive mean, and we expect most of
the tree to be contributing to runoff at the root.

Note that if we know that E(W) < ∞ then we get E(Y) = 0 from (7), which then gives us
the same equation for p0 as in (9) for α ≤ αc.

3.1. Size of the tree

Further evidence that most of the tree contributes to the root runoff when α > αc comes
from comparing the right tails of W and NT , the total number of nodes in the tree. It is known
that for a (sub)critical GW process with offspring distribution ξ , the total progeny NT has the
same law as T1, the first time to hit −1 for a random walk with steps distributed as ξ − 1,
started at 0 [11]. Let χi be i.i.d. distributed as ξ − 1 and put Sn =∑n

i=1 χi. Since our random
walk is left-continuous we have [16]

P(T1 = n) = 1

n
P(Sn = −1).

In our case we have Sn ∼ M1 − M3, where (M1, M2, M3) ∼ multinomial(n, (ββ, β2 +
β

2
, ββ)). Moreover, for large n, writing ρ = ββ,⎛⎝ M1

M2
M3

⎞⎠≈ N

⎛⎝⎛⎝ nρ

n(1 − 2ρ)
nρ

⎞⎠ ,

⎛⎝ nρ(1 − ρ) −nρ(1 − 2ρ) −nρ2

−nρ(1 − 2ρ) n2ρ(1 − 2ρ) −nρ(1 − 2ρ)
−nρ2 −nρ(1 − 2ρ) nρ(1 − ρ)

⎞⎠⎞⎠ .

Thus, M1 − M3 ≈ N(0, 2nββ) and (using the usual continuity correction)

P(M1 − M3 = −1) ≈ �

(
3

2
√

2nββ

)
− �

(
1

2
√

2nββ

)

≈ φ(0)
1√

2nββ
= 1

2
√

πnββ
.
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That is,

P(NT = n) ≈ n−3/2 1

2
√

πββ
.

Thus, if some fixed percentage of the whole tree were contributing to the root runoff, we would
expect 1 − F(x) = O(x−1/2), which is indeed the case (from (6)).

3.2. Runoff down the spine

When considering overland flow on a hillslope, it is important to know if the runoff at the
bottom of the slope is being generated by the whole hill, or just by a strip at the bottom, since
in the first case the volume of runoff will scale with the length of the slope. In our model we
effectively allow for a hillslope of infinite length, though we only consider runoff from a finite
part of the slope, represented by our drainage tree. In terms of the model, we wish to know
if W0 gets contributions from the all of the drainage tree, or just from some small number of
nodes near the root. We can show how the drainage tree contributes to runoff by considering
its spine [4, 13].

Condition the tree to be of height n, then consider the leftmost line of descent of length n.
At any fixed depth along this line of descent (the spine), the offspring distribution converges
to the size-biased offspring distribution as n → ∞. Subtrees attached to the spine grow
like the original tree but with limited height: at generation k, subtrees growing to the left
are conditioned to have height at most n − k − 1, while subtrees growing to the right are
conditioned to have height at most n − k. So, fixing k and sending n → ∞, the runoff coming
from a subtree attached to the spine at generation k will have a distribution tending to W. In
our case the size-biased distribution is 1 with probability 1 − 2ββ and 2 with probability 2ββ.
That is, spinal nodes can have at most one subtree attached, with probability tending to 2ββ as
n → ∞.

We now consider the runoff process on the spine. At each point on the spine we have a
point contribution, distributed as X, and, with some positive probability, runoff generated by a
subtree. If α > αc then, fixing the generation k and sending the tree height n → ∞, the mean
runoff from a subtree will tend to infinity. It follows that for any δ > 0 we can choose an m such
that for all n ≥ m, the runoff process down the spine is bounded below by a random walk with
positive drift, at least for the bottom n(1 − δ) nodes. Thus there will be a positive probability
that the runoff will be strictly positive all the way down the bottom 100(1 − δ)% of the spine.

If α < αc then the mean runoff from subtrees must be finite, so as n → ∞ the mean runoff
generated at each point on the spine will tend to

δ := E(X) + 2ββE(W) = 2α − 1 + 2ββE(W).

But, from (10), for α < αc = (1 + ββ −
√

ββ(2 + ββ))/2 we have that E(W) <

(
√

(2 + ββ)/(ββ) − 1)/2, so

δ < 1 + ββ −
√

ββ(2 + ββ) − 1 +
√

(2 + ββ)ββ − ββ = 0.

Thus, if α < αc then runoff down the spine behaves like the waiting time process in a stable
single-server queue (or, equivalently, like a random walk with negative drift reflected at 0). In
this case the expected queue size is finite, which translates as saying that the number of nodes
on the spine that contribute to the runoff at the root has finite mean.
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4. Left-continuous X

The approach taken in Section 2 for X ∈ {−1, 1} can be largely extended to left-
continuous variables. Suppose that X ∈ {−1, 0, 1, . . .}. Let α = P(X ≥ 0), m = E(X), and put
η(t) = E(tX+1) (a proper pgf). Let f (t) = E(tW ) as before; then, conditioning on {ILWL = 0},
{IRWR = 0}, and {X = −1}, we get

f (t) = f (t)2ββE(tX) + f (t)(β2 + β
2
)E(tX)

+ ββE(tX) + (1 − α)(β + βp0)(β + βp0)(1 − t−1).

Solving for f , we get

f (t) = t − (β2 + β
2
)η(t) ± √

g(t)

2ββη(t)
,

g(t) = 4β2β
2
(1 − α)(1 − t)η(t)

⎡⎣(p0 + β2 + β
2

2ββ

)2

− h(t)

⎤⎦ ,

h(t) = 1

4β2β
2
(1 − α)η(t)

(
(1 − 2β)2η(t)

1 − η(t)

1 − t
+ (1 − α)(1 − 2β)2η(t)

− 2(β2 + β
2
)η(t) − 1 − η(t)

1 − t
+ 1 + t

)
.

To keep the algebra manageable, we will restrict ourselves to the case β = 1/2 for the rest
of this section. We will also assume that X has finite mean and variance. When β = 1/2 we
have

f (t) = 2t − η(t) ± 2
√

g(t)

η(t)
,

g(t) = 1

4
(1 − α)(1 − t)η(t)((p0 + 1)2 − h(t)),

h(t) = 4

(1 − α)

t(η(t) − t)

(1 − t)η(t)
.

Proposition 6. Assume that X ∈ {−1, 0, 1, . . .} has finite mean and variance, and that h has
a unique maximum in [0, 1], occurring at t0 > 0. If t0 = 1 then f takes the positive root of g on
[0, 1] and, writing m = E(X) (necessarily negative in this case),

p0 = 2

√ −m

1 − α
− 1,

E(W) = −2m −√
2(−m(1 − m) − Var X).

If t0 ∈ (0, 1) then f takes the positive root of g on [0, t0] and the negative root on [t0, 1], and

p0 =√
h(t0) − 1,

E(W) = ∞.
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Proof. Consider first the behaviour of f at 0. We have

η(0) = 1 − α,

h(0) = 0,

g(0) = 1

4
(1 − α)2 (p0 + 1)2 ,

f (0) = −1 ± (p0 + 1).

Thus, since f (0) = p0, near 0 f must take the positive root of g.
Now consider the case t0 = 1. Since g(t) ≥ 0 we have

(p0 + 1)2 ≥ max
0≤t≤1

h(t) = h(1).

Moreover, assuming m = E(X) < ∞, we have that near t = 1, η(t) = 1 − (1 − t)(m + 1) +
o(1 − t) and so

h(1) = −4m

1 − α
,

p0 ≥
√ −4m

1 − α
− 1.

By assumption, h has a unique maximum at t0 = 1, so g(t) > 0 for all t ∈ [0, 1). Thus, since
f is continuous it uses the positive root of g for all t ∈ [0, 1], whence near t = 1 we have

f ′(t) = 2 − η′(t) + g′(t)/
√

g(t)

η(t)
− 2t − η(t) + 2

√
g(t)

η(t)2
η′(t).

As t ↑ 1 we have η(t) ↑ 1, η′(t) ↑ m + 1, g(t) ↓ 0, so

lim
t↑1

f ′(t) = −2m + lim
t↑1

g′(t)√
g(t)

.

Now, provided h′(1) is finite, near t = 1 we have

g′(t) = 1 − α

4
[(−η(t) + (1 − t)η′(t))((p0 + 1)2 − h(t)) − (1 − t)η(t)h′(t)]

= − (1 − α)η(t)

4
((p0 + 1)2 − h(t)) + O((1 − t)).

Thus, since limt↑1 f ′(t) ≥ 0, we must have

(p0 + 1)2 ≤ h(1).

That is, if h achieves its maximum on [0, 1] at 1 (and nowhere else), and h′(1) is finite, then
(p0 + 1)2 = h(1). That is, p0 = √−4m/(1 − α) − 1.

Assuming Var X < ∞, near t = 1 we have η(t) = 1 − (1 − t)(m + 1) + 1
2 (1 − t)2η′′(1) +

o((1 − t)2). Thus,

h(1) − h(t) = 4

1 − α
(1 − t)

(
m2 − 1

2η′′(1)
)

+ o(1 − t)

= (1 − t)
2

1 − α
(−m(1 − m) − Var X) + o(1 − t).
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So h′(1) = 2(−m(1 − m) − Var X)/(1 − α) is finite, as required.
Plugging our value for p0 into the expression for f ′(1) = E(W) we get

g(t) = 1 − α

4
h′(1)(1 − t)2 + o((1 − t)2),

g′(t) = −1 − α

2
h′(1)(1 − t) + o(1 − t),

f ′(1) = −2m + lim
t↑1

g′(t)√
g(t)

= −2m −√
(1 − α)h′(1)

= −2m −√
2(m(m − 1) − Var X).

Now consider the case t0 ∈ (0, 1). We have h(t0) > h(1), so near t = 1,

g′(t) = −1 − α

4
((p0 + 1)2 − h(1)) + O((1 − t)) < 0.

Thus, since limt↑1 f ′(t) ≥ 0, we must have that near t = 1 f takes the negative root of g,
whence

E(W) = f ′(1) = −2m − lim
t↑1

g′(t)√
g(t)

= ∞.

Also, because f is continuous, we must have g(t) = 0 at the point where the root switches. That
is,

p0 =√
h(t0) − 1. �

Proposition 7. Suppose that η exists in a neighbourhood of 1, and that h has a unique
maximum in [0, 1], occurring at t0 > 0. If t0 = 1 and Var X < −m(1 − m) then W has all
positive moments finite (subcritical case).

If t0 = 1 and Var X = −m(1 − m) (critical case) then, as x → ∞,

1 − F(x) ∼
√

−h′′(1)(1 − α)

8π
x−3/2.

If t0 < 1 (supercritical case) then, as x → ∞,

1 − F(x) ∼ x−1/2

√
(hmax − h(1))(1 − α)

π
.

Proof. From our assumption on η, X has all positive moments finite. We recall from the
proof of Proposition 6 that h′(1) = 2(−m(1 − m) − Var X)/(1 − α). As before, let F̂ be the L–S
transform of F. Our proof follows that of Proposition 5.
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Consider first the case t0 = 1 and h′(1) > 0, i.e. Var X < −m(1 − m). We have, for Pk as in
the proof of Proposition 5,

g(t) = 1 − α

4
h′(1)(1 − t)2 + o((1 − t)2),

f (t) = 2t − η(t) + 2
√

g(t)

η(t)

= (1 + (1 − t)(m − 1) + (1 − t)
√

(1 − α)h′(1) + P1(1 − t))

× (1 + (1 − t)(m + 1) + P2(1 − t)),

F̂(s) = (1 + s(m − 1) + s
√

(1 − α)h′(1) + P1(s) + P2(s))

× (1 + s(m + 1) + P2(s))

= P0(s) + s
√

P0(s).

This has a convergent Taylor series expansion about 0, so W has all positive moments finite.
Next, we take the case t0 = 1 and h′(1) = 0, i.e. Var X = −m(1 − m). We have, from

Tauberian theory,

g(t) = −1 − α

8
h′′(1)(1 − t)3 + o((1 − t)3),

g′(t) = +1 − α

4
h′′(1)(1 − t)2 + o((1 − t)2),

E(W) = f ′(1) = −2m + lim
t↑1

g′(t)√
g(t)

= −2m,

f (t) = 2t − η(t) + 2
√

g(t)

η(t)

= (1 + (1 − t)(m − 1) + (1 − t)3/2
√−(1 − α)h′′(1)/2 + P1(1 − t))

× (1 + (1 − t)(m + 1) + P2(1 − t)),

F̂(s) = (1 + s(m − 1) + s3/2
√−(1 − α)h′′(1)/2 + P1(s) + P2(s))

× (1 + s(m + 1) + P2(s)),

F̂(s) − 1 − 2ms = s3/2
√−(1 − α)h′′(1)/2 + P1(s) + P2(s),

1 − F(x) ∼
√

−h′′(1)(1 − α)

8π
x−3/2.

Lastly, we take the case case t0 < 1. Again using Tauberian theory, we have

g(t) = 1

4
(1 − α)(1 − t)(hmax − h(1)) + o(1 − t),

f (t) = 2t − η(t) − 2
√

g(t)

η(t)

= (1 + (1 − t)(m − 1) − (1 − t)1/2
√

(1 − α)(hmax − h(1)) + P1(1 − t))

× (1 + (1 − t)(m + 1) + P2(1 − t)),
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FIGURE 7: Subcritical/critical/supercritical regimes for Example 1. The critical region is given by the
solid curve.

F̂(s) = (1 + s(m − 1) − s1/2
√

(1 − α)(hmax − h(1)) + P1(s) + P2(s))

× (1 + s(m + 1) + P2(s)),

F̂(s) − 1 = −s1/2
√

(1 − α)(hmax − h(1)) + P1(s) + P1(s),

1 − F(x) ∼ x−1/2

√
(hmax − h(1))(1 − α)

π
. �

Remark 2. Note that if h has at most one point of inflection in [0, 1], then we can determine
supercritical/critical/subcritical behaviour from h′(1). Specifically, if h′(1) < 0 then t0 < 1 and
the runoff is supercritical; if h′(1) = 0 then t0 = 1 and the runoff is critical; and if h′(1) > 0 then
t0 = 1 and the runoff is subcritical.

Example 1. Suppose that

X =
⎧⎨⎩

1 with probability a,

0 with probability b,

−1 with probability c = 1 − a − b.

Then we have

h(t) = 4t(1 − a − b − at)

(1 − a − b)(1 − b(1 − t) − a(1 − t2))
,

h′(1) = 4((1 − b)2 + 4a2 − a(5 − 4b))

1 − a − b
.

In this case h′ has at most one root in [0, 1], so the runoff is subcritical/critical/supercritical
according to h′(1) > / = / < 0. We plot these regions in Figure 7 as functions of a and b.
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