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Feedback control of cavity flow oscillations
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Using data from direct numerical simulations, linear models of the compressible flow
past a rectangular cavity are found. The emphasis is on forming simple models
which capture the input–output behaviour of the system, and which are useful for
feedback controller design. Two different approaches for finding a linear model are
investigated. The first involves using input–output data of the linearized cavity flow
to form a balanced, reduced-order model directly. The second approach is conceptual,
and involves modelling each element of the flow physics separately using simple
analytical expressions, the parameters of which are chosen based on simulation data
at salient points in the cavity’s computational domain. Both models are validated: first
in the time domain by comparing their impulse responses to that of the full system
in direct numerical simulations; and second in the frequency domain by comparing
their frequency responses. Finally, the validity of both linear models is shown most
clearly by using them for feedback controller design, and then applying each controller
in direct numerical simulations. Both controllers completely eliminate oscillations,
and demonstrate the advantages of model-based feedback controllers, even when the
models upon which they are based are very simple.
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1. Introduction
The oscillations induced by the compressible flow past a cavity has become a

canonical problem in flow control. Some of the earliest control studies used either
passive means (Heller & Bliss 1975) or open-loop actuation (Sarohia & Massier 1977).
In more recent years the possibility of using feedback (or closed-loop) control for their
suppression has been investigated, the idea dating back to Gharib (1987). Early studies
of feedback control used simple (trial-and-error) phase-locked controllers (Shaw &
Northcraft 1999; Williams, Fabris & Morrow 2000), which do not require a model of
the cavity flow dynamics. These studies suppressed individual tones by up to 20 dB,
but other tones were unaffected or even made worse by the feedback.

Feedback control is most effective when an accurate model of the system to be
controlled is available, and this has been acknowledged for cavity oscillations in
recent years, with model-based feedback control of cavity resonances being promoted
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(Rowley et al. 2006). Such model-based approaches can take advantage of methods
from linear control theory to design robust controllers, which can give rise to improved
closed-loop performance. This could include the suppression of multiple tones; the
reduction of the peak-splitting phenomenon seen in previous studies (e.g. Rowley
et al. 2002b; Cabell et al. 2006); or the continued suppression over a wide range of
operating conditions.

Clearly, to use such model-based methods, a model of the system must be
available. Dynamical models of the cavity flow have typically been found using either
system identification methods (Kook, Mongeau & Franchek 2002; Cabell et al. 2006;
Kegerise, Cabell & Cattafesta 2007) or the proper orthogonal decomposition (Samimy
et al. 2007), and standard techniques such as linear quadratic control (Cabell et al.
2006) and H∞ control (Yan et al. 2006) have been used for controller design. For a
recent review of the control of cavity oscillations, see Cattafesta et al. (2008).

The focus of this paper is on finding simple, linear models of cavity oscillations
that are useful for feedback control purposes, and builds on the work of Rowley et al.
(2006). The focus is not on capturing every aspect of the cavity flow’s dynamics, but
rather on capturing those dynamics that have the greatest influence on the cavity’s
input–output behaviour. One of the main conclusions will be that when one prioritizes
capturing this input–output behaviour, very simple models suffice for feedback control
design.

The paper is organized as follows. In § 2 the conceptual modelling approach
proposed by Rowley et al. (2006) is introduced. In § 3, details of the cavity’s
geometry, the numerical scheme used for its solution, and a method for finding
its linear dynamics are described. In § 4, the two methodologies for forming linear
models are presented. In § 5, the two linear models are validated, first in the time
domain using their impulse responses, and second in the frequency domain using
their frequency responses. The validation of the models continues in § 6, where two
model-based feedback controllers (one for each linear model) are designed and tested
in direct numerical simulations.

2. Linear modelling approach
Rowley et al. (2006) propose a linear model for cavity oscillations. The model,

composed of four constituent transfer functions, is simple and is intended for feedback
control design purposes. Each of the constituent transfer functions corresponds to
one of the four elements in the mechanism commonly attributed to Rossiter (1964)
and also described by Powell (1953): the amplification of disturbances by the
free shear layer; the scattering of the disturbances into pressure fluctuations at the
downstream corner; the propagation of these pressure fluctuations inside the cavity;
and the receptivity to pressure perturbations at the upstream corner. This mechanism is
depicted in figure 1(a), and a block diagram of the linear model proposed is shown in
figure 1(b). Here s is the Laplace variable, and the ‘o’ and ‘L’ subscripts are used for
the upstream and downstream corners respectively.

In figure 1(b) a forcing term, fc, has been introduced, which will be provided by our
feedback controller. This forcing term enters the momentum equation (in the direction
perpendicular to the free stream) like ∂ρv/∂t = (Navier–Stokes + forcing), where ρ
is the fluid density and v is a velocity component which is perpendicular to the
free stream. We therefore model the relationship between the forcing term and the
change in ρv that it produces as an integrator. In the frequency domain, this means
that ρvc = fc/s. Summing the contributions from ρvc and from the natural receptivity
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FIGURE 1. Linear model of the cavity flow: (a) schematic of the mechanism; and (b) block
diagram of the linear model proposed by Rowley et al. (2006). ‘o’ and ‘L’ subscripts are used
for the upstream and downstream corners, and s is the Laplace variable.

process then gives ρvo (see figure 1b). For control purposes we are interested in the
transfer function between the forcing, fc, and the pressure at some point in the cavity.
For a pressure measurement at the upstream corner (po in figure 1), this is given by

po(s)

fc(s)
= 1

s

G(s)S(s)A(s)

1− G(s)S(s)A(s)R(s)
= P1(s). (2.1a)

If we are interested in a pressure measurement at the downstream corner instead (pL in
figure 1), then we have

pL(s)

fc(s)
= 1

s

G(s)S(s)

1− G(s)S(s)A(s)R(s)
= P2(s). (2.1b)

(It will become clear in the next section why P1,2(s) on the right-hand side of the two
equations have been introduced.)

3. Details of the cavity flow
The two-dimensional compressible flow past a rectangular cavity is considered,

shown in figure 2(a). The flow conditions are for a Mach number M = 0.6, length
to depth ratio L/D = 2.0, a Reynolds number based on momentum thickness θ at the
cavity leading edge of Reθ = 56.8, and L/θ = 52.8.

Two pressure sensors are positioned in the cavity: one half-way up the upstream
wall, denoted p1, and a second located half-way up the downstream wall, denoted p2.
Actuation is provided by a forcing term, fc, as introduced in the previous section. The
actuator is positioned in the shear layer a distance 0.05L from the cavity’s upstream
corner. The distribution of the actuation is Gaussian in space, specified such that the
forcing has fallen to 5 % of its maximum at a radial distance of 0.045L from its centre.

With the forcing, fc, as the system input, the two transfer functions between that
forcing and the two pressure measurements p1 and p2 are given by (2.1a) and (2.1b)
respectively. (Hence the introduction of P1,2(s) in those equations.) This can be seen
most clearly by comparing the pressures (po, pL) in figure 1 to (p1, p2) in figure 2.
(The pressures p1 and p2 are measured half-way along the upstream and downstream
walls, whilst the linear models (2.1a) and (2.1b) are for the pressure at the upstream
and downstream corners, but this should make little difference, since the Rossiter
mechanism is governed by the longitudinal acoustic resonances of the cavity.)

In § 5, pressure measurements at both sensor locations will be used to validate the
linear models found, both in the time domain and in the frequency domain. In § 6,
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(a) (b)

Cavity

Dynamic phasor

FIGURE 2. Details of the cavity flow: (a) cavity geometry and actuator and sensor locations;
and (b) feedback arrangement used for acquiring input–output data of the linearized system.

the pressure measurement at probe 2 will be used as a sensor signal for model-based
feedback control of the cavity.

3.1. Numerical method
The flow is solved by direct numerical simulation. A sixth-order-accurate compact
finite-difference scheme is used for the spatial discretization (Lele 1992), and a fourth-
order Runge–Kutta method performs the time integration. Measured from the cavity’s
upstream corner, the computational domain has its upstream boundary at −3.9D, its
downstream boundary at +7.6D, and extends to +9.2D in the normal direction. The
simulation uses 240 × 96 grid points inside the cavity and 1008 × 384 grid points
above the cavity, which is sufficient to resolve all scales at this Reynolds number.
The initial condition for simulations is a (laminar) flat-plate boundary layer along
the wall, which spans the cavity, and for which the (incompressible) Blasius profile
and spreading rate are used. The wall is assumed to be isothermal at the same
temperature as the free stream. For the inflow, outflow and normal boundaries, the
one-dimensional boundary conditions of Poinsot & Lele (1992) are used, together with
artificial damping terms in a buffer region (Freund 1997). The simulations have been
carefully validated using grid resolution and boundary placement studies, together with
comparison with experimental data (Rowley, Colonius & Basu 2002a).

The compressible Navier–Stokes equations are non-dimensionalized using the speed
of sound, a∞, and the cavity depth, D. In the results presented later, then, the non-
dimensional pressure, p, is related to the dimensional pressure, pd, by p = pd/ρ∞a2

∞.
(Times and frequencies, however, will be non-dimensionalized by the free-stream
velocity, U∞, and the cavity length, L, to make them consistent with a Strouhal
number, St = f dL/U∞.)

3.2. Unforced behaviour
At these conditions, the flow develops into a limit cycle, with the two most energetic
peaks in the spectra occurring at Strouhal numbers of 0.40 and 0.70. (We will see
in § 5.3 that each of these peaks corresponds to an unstable mode of the cavity.)
These peaks are in reasonable agreement with the first two modes predicted by the
semi-empirical formula of Rossiter (1964):

Stn = f d
n L

U∞
= n− γ

M + 1/κ
, n= 1, 2, . . . , (3.1)
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which predicts the first two modes at Strouhal numbers of 0.32 and 0.74. Here n is
the mode number, and κ and γ are empirical constants corresponding to the average
convection speed of disturbances in the shear layer and a phase delay. Typical values
are γ = 0.25 and 1/κ = 1.75, which are the values used here.

3.3. Linearization of the cavity dynamics
We are interested in finding linear models of cavity resonances directly from
simulation data. The cavity flow under consideration is unstable, however, and this
makes finding a linear model challenging for two reasons. First, the impulse response
of an unstable system is unbounded, meaning that some of the standard techniques
for forming a reduced-order model of a high-dimensional system (such as balanced
truncation) cannot be used. Second, the growing amplitudes of the cavity’s unstable
Rossiter modes will ultimately give rise to nonlinear, limit-cycling behaviour, which is
certainly not linear.

One solution to this problem, which can be applied in numerical studies, is to
linearize the flow about an unstable steady state, and to develop a reduced-order
model of the unstable flow by partitioning it into two subspaces. The first subspace
describes the unstable dynamics using the unstable global modes, while the second
subspace describes the flow’s stable dynamics. This method has been applied to the
incompressible flow past an open cavity (Barbagallo, Sipp & Schmid 2009) and to the
flow past a flat plate (Ahuja & Rowley 2010).

A second solution is to acquire the model at a stable operating point which is close
to the unstable case of interest. This stable system will have a linear response to
(sufficiently small) forcing, and one hopes that a controller designed for this stable
system will also be successful for the unstable system of interest. This approach was
successfully used for the model-based feedback control of combustion oscillations by
Langhorne, Dowling & Hooper (1990) and by Tierno & Doyle (1992).

A third solution, and the solution used in this paper, is to first stabilize the flow
using feedback, and to measure the response to forcing of the (linear) system operating
in closed-loop. This approach was used successfully by Morgans & Dowling (2007)
for combustion oscillations, and is shown schematically in figure 2(b), where P(s) is
the open-loop system of interest and K(s) is a feedback controller. The controller used
for the linearization is the dynamic phasor model developed for the cavity flow by
Rowley & Juttijudata (2005). This dynamic phasor postulates a model that captures the
relevant dynamical features of the nonlinear, limit-cycling flow. It was found that this
controller eliminated oscillations in direct numerical simulations, and so it is used for
the present linearization of the system.

The total input, fc in figure 2(b) is given by fc = fw − ff (negative feedback
convention), where fw is a forcing signal and ff is the control signal from the feedback
controller. The system’s open-loop transfer function at either probe, P1,2(s), is then
given by

P1,2(s)= p1,2(s)

fc(s)
. (3.2)

Therefore despite the system’s operating in closed-loop, its open-loop dynamics are
recovered. (If instead the forcing signal fw were used as the system input, the closed-
loop, stabilized transfer function would be found.)

One must ensure that the system is responding linearly to the forcing signal, fw, for
the forcing amplitudes used. This was verified by checking that the controlled cavity
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satisfied both the additive property, y(u1 + u2) = y(u1) + y(u2), and the homogeneous
property, y(αu)= αy(u).

4. Identification of linear models
We now look at two ways of determining a linear model of the cavity flow from

direct numerical simulations. In both cases, the cavity flow is first stabilized using the
dynamic phasor described in § 3.3. The linearized system is forced with a broadband
signal, fw, at the input (see figure 2b), and this allows input–output data to be obtained.
The input–output data can then be used to form linear models of the cavity flow. The
emphasis here is on measuring linear models which are useful for feedback control
design purposes.

For convenience, the linear models found from the two methods will be referred
to as ‘LM1’ and ‘LM2’. The first method, which gives LM1, involves measuring the
cavity’s dynamics directly from input–output data, while the second method, which
gives LM2, involves finding approximations to the constituent transfer functions of the
conceptual model of § 2.

4.1. Identifying a linear model directly: LM1
The first method involves directly measuring the cavity’s linear dynamics (its transfer
function) from input–output data between the actuation and the pressure measured at
either of the pressure sensor locations to give directly P1,2(s). Since this first linear
model is measured directly, it should be able to capture the input–output behaviour
of the cavity very accurately, and this will be seen to be the case in § 5.1, where
its impulse response matches very closely the full system. Therefore this model is
intended to show what is possible when an accurate model of the system to be
controlled is available, and in some ways can be used as a benchmark for the second
linear model, LM2.

To form LM1 we use the eigensystem realization algorithm (ERA) (Juang & Pappa
1985), which gives a balanced, reduced-order state-space model of the system (in
discrete-time) of the form:

x(k + 1)= Ax(k)+ Bu(k), (4.1a)
y(k)= Cx(k). (4.1b)

Here u ∈ Rp is the system input; y ∈ Rq is the system output; x ∈ Rn is the system
state; k is the time step index; and A, B, C are suitably dimensioned matrices.

Cattafesta et al. (1997) and Cabell et al. (2006) use the ERA in their studies on
feedback control of cavity oscillations. In those studies, however, the ERA is used for
system identification purposes, whereas in this study we use it specifically to find a
low-order model of the cavity flow.

The state-space model used is eighth-order (n = 8), which is adequate to capture
the most pertinent input–output dynamics of the cavity, as we will see in § 5.1. The
formation of reduced-order models of the cavity flow is not the focus of this paper, but
for further details, see Illingworth, Morgans & Rowley (2011). For an overview of the
ERA for fluid systems, see Ma, Ahuja & Rowley (2011).

4.2. Identifying constituent transfer functions: LM2
The second method involves using flow data at salient points in the cavity’s
computational domain to measure approximations to each element of the conceptual
model introduced in § 2. (The excitation of the cavity is still provided by the
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broadband forcing term, fw, as it was in § 4.1.) The simple constituent models
proposed by Rowley et al. (2006), with suitable parameters, are then compared to the
measurements. An overall transfer function for the cavity is then formed by combining
the constituent transfer functions according to (2.1a) and (2.1b). This second approach
allows one to quantify to what extent a simple linear model can reproduce the cavity’s
linear dynamics (to be answered in § 5), and in particular to what extent such a model
is useful for feedback control purposes (to be answered in § 6).

We now look at each of the four constituent transfer functions in turn. In each
case, a simple model based on the constituent transfer function forms suggested by
Rowley et al. (2006) is compared to a direct measurement of the transfer function
using data from direct numerical simulations. Each measured constituent transfer
function comes from simulation data of the forced flow using spectral analysis. This is
achieved using MATLAB’s spafdr command. This spectral approach may be likened
to taking the ratio of the discrete Fourier transforms of the input and output signals,
but with an important refinement: to form the frequency response at some frequency ω,
it uses not just the ratio of the discrete Fourier transforms at that frequency, but also
a weighted contribution from neighbouring frequencies. This weighting, often called
the frequency window, provides some smoothing of the frequency response, and is
founded on the principle that the true frequency response is a smooth function of ω.
See Ljung (1999, chap. 6) for more details on this approach.

For each of the four measured transfer functions, a simple conceptual model, as
suggested by Rowley et al. (2006), is fitted to the measurements by trial-and-error.
(For the scattering and receptivity, we also consider the Rossiter mode eigenvalues
that the transfer functions give rise to.) The parameters stated for each constituent
model are non-dimensionalized by Strouhal number. For a time delay, for example,
the non-dimensional value that is stated, τ , is related to the dimensional value, τ d, by
τ = τ dU∞/L, where U∞ is the free-stream velocity. The measurement locations given
are all measured from the cavity’s upstream corner.

4.2.1. Shear layer
The shear layer transfer function, G(s), describes the amplification of velocity

perturbations in the shear layer as they travel downstream. Since the input used
for control includes the density (ρvc in figure 1b), we include the density in the
input and output. Referring to figure 1(b), the input to the shear layer is the
quantity ρvo, and so this is what we must measure. It is given by the summation
of the contributions from the natural receptivity process and from the forcing (ρvc).
We must therefore measure at a point which is just downstream of the actuation
region to ensure that its contribution is included (the actuation region ends at
x = 0.095L). For the shear layer’s output, meanwhile, we want to measure close
to the downstream corner. We cannot measure exactly there, though, since then ρv

would be zero. Subject to these constraints, and to the measurement data available,
the input and output are measured at the locations (x, y) = (0.1210L,−0.0136L) and
(x, y)= (0.9903L,−0.0136L), respectively.

The shear layer transfer function can be found using linear stability theory. As a
simpler alternative for a linear model, Rowley et al. (2006) propose using a second-
order system with a time delay,

G(s)= ρvL(s)

ρvo(s)
= kg

ω2
o

s2 + 2ζωos+ ω2
o

e−sτg . (4.2)
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FIGURE 3. Shear-layer transfer function G(s): as measured in direct numerical simulations
(—–); and approximated as a second-order transfer function with time delay (−−).

Figure 3 compares the measured shear-layer transfer function to that given by the
linear model (4.2) for kg = 3.35, ωo = 3.44 (corresponding to a Strouhal number
of 3.44/2π = 0.547), ζ = 0.07 and τg = 1.43 (which corresponds to κ = 0.70 in
Rossiter’s formula (3.1)). The simple model captures the important dynamical features
of the shear layer: near-unity gain at low frequencies; amplification of disturbances
at mid-frequencies; attenuation of disturbances at high frequencies; and an appropriate
phase. (The phase is given by the time delay τg, the time taken for a disturbance
generated at the upstream corner to propagate to the downstream corner.) One observes
that the maximum gain, cross-over frequency and phase characteristics are all well-
captured by the model. (The cross-over frequency is the frequency at which the gain
passes through 0 dB.)

4.2.2. Acoustics
The acoustic transfer function, A(s), relates pressure perturbations at the downstream

corner, pL , to pressure perturbations at the upstream corner, po. Since the two pressure
probes are located half-way down the cavity walls, we measure the pressure at this
y-location for both the input and the output. (Since the Rossiter mechanism is caused
by the longitudinal acoustic cavity resonances, the measured transfer function should
not be overly sensitive to the y-location chosen, and this has been verified.) The input
and output for the acoustic transfer function are therefore measured at the locations
(x, y)= (L,−0.25L) and (x, y)= (0,−0.25L), respectively.

The linear model proposed by Rowley et al. (2006) accounts for longitudinal
acoustic cavity resonances by modelling acoustic propagation and reflection in the
cavity:

(4.3)

An acoustic wave generated at the downstream corner propagates upstream. Some
of it reflects off the upstream wall, propagates downstream, and arrives back at the
downstream wall, where it is again reflected. The coefficients ka and r measure the
total efficiency of the reflection process, including losses to the far field. The time
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FIGURE 4. Acoustic transfer function A(s): as measured in direct numerical simulations
(—–); and approximated as a time delay with reflection (−−).

delay τa represents the time taken for an acoustic wave to propagate the length of the
cavity.

Figure 4 compares the measured acoustic transfer function with that given by the
linear model (4.3) for ka = 0.8, r = 0.16 and τa = 0.60. (This acoustic time delay is
the value expected and, in its non-dimensional form, is given simply by the Mach
number M.) One observes reasonable agreement, with the phase characteristics better
captured than the gain. It is likely that the discrepancy in the gain at lower frequencies
is caused by the acoustic field generated by the shear layer’s evolving vorticity. The
frequency at which the greatest discrepancy is seen coincides with the frequency at
which the shear layer’s gain is largest, which seems to support this observation.

We briefly note the behaviour of A(s) at high frequencies here. Above Strouhal
numbers of approximately 1.0, the gain of A(s) is poorly captured by the linear model,
and the phase of the measured A(s) has a positive gradient, which suggests a negative
time delay (since a pure time delay τ is represented in the frequency domain by e−sτ ).
We will see similar behaviour for the scattering and receptivity transfer functions: that
the agreement between measurements and the conceptual model is poor above Strouhal
numbers of approximately 1.0. An explanation for all of these observations will be
given in § 5.5.

4.2.3. Scattering and receptivity
After Rowley et al. (2006), the scattering and receptivity transfer functions are both

modelled as a constant gain and constant phase lag,

S(s)= kse−i2πθs, (4.4)

R(s)= kre−i2πθr . (4.5)

We will see shortly that these models provide only a crude approximation of the
scattering and receptivity processes. In particular, the measured transfer functions
show sizeable variations in gain and phase with frequency, meaning that the most
appropriate choices of ks, kr, θs and θr are not obvious. A slightly different approach
is therefore taken to approximating the scattering and receptivity transfer functions.
To determine them we note two things. First, the eigenvalues of the two open-loop
transfer functions (2.1a) and (2.1b) are given by the roots of their denominator, i.e. the
roots of 1 − G(s)S(s)A(s)R(s) = 0. Second, that with the shear-layer and acoustic
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transfer functions already determined, it remains only to determine the product of
the scattering and receptivity transfer functions, S(s)R(s)= kskre−i2π(θr+θs) to completely
determine the eigenvalues of (2.1a) and (2.1b).

We therefore proceed in three stages. First, find the values of (kskr) and (θs + θr)

which give the best match between the eigenvalues of LM1 and LM2. Since it is
the first two Rossiter modes that are unstable and that we must control, we consider
the eigenvalues corresponding to these two modes when choosing (kskr) and (θs + θr),
and we minimize the 2-norm of the distance between the eigenvalues of LM1 and
LM2 in the complex plane. Second, with (kskr) and (θs + θr) determined, we must
choose the individual values of ks, kr, θs and θr. We note that the scattering transfer
function, S(s) appears in the numerator of (2.1a) and (2.1b), and therefore that the
individual values of ks and θs also affect the two open-loop transfer functions. With the
eigenvalues already fixed, we find the values of ks and θs which give the best match
with the directly measured transfer function, LM1. This is achieved by minimizing
the H∞ norm between LM1 and LM2. Third and finally, with the values of ks, kr,
θs and θr all chosen, we compare the resulting model transfer functions with those
measured in direct numerical simulations. (We could have chosen to simultaneously
optimize over all four parameters ks, kr, θs and θr. But this requires optimization over
a four-dimensional parameter space, which is much more expensive than the current
approach, which optimizes over two two-dimensional parameter spaces.)

The parameter values given by this procedure are ks = 0.140, kr = 1.821, θs = 0.002
and θr = 0.140, which we will now compare to measurements from direct numerical
simulations.

4.2.4. Scattering
The scattering transfer function, S(s), describes the generation of acoustic waves

when velocity perturbations impinge on the downstream corner. In keeping with the
acoustic transfer function, we measure the pressure, pL , half-way down the cavity’s
downstream wall at (x, y) = (L,−0.25L), which serves as the output. For the input,
ρvL , we must be careful. If one measures exactly on the downstream corner, then
clearly ρv will be zero. We must therefore choose a point slightly away from the
surface. To ensure that the measured transfer function is not overly sensitive to the
exact distance chosen, the measured scattering transfer function is plotted for two
locations, which correspond to measurement locations of (x, y)= (0.9773L,−0.0136L)
and (x, y) = (0.9903L,−0.0136L). The comparison is shown in figure 5. Whilst the
model is crude, its constant gain and phase lag give reasonable agreement up to
Strouhal numbers of ∼1.0.

4.2.5. Receptivity
The receptivity transfer function, R(s), describes the perturbations in ρv generated

by incident pressure perturbations at the upstream corner. In keeping with the acoustic
transfer function we measure the input, po, half-way down the cavity’s upstream wall
at (x, y) = (0,−0.25L). Referring to figure 1(b), notice that the output of R(s) is not
the same as ρvo, since the quantity ρvo also includes the contribution from the forcing,
ρvc. We must therefore ensure that the output of the receptivity transfer function
does not include this forced contribution, and we do this by measuring at a point
which is upstream of the actuation region. (The actuation region is centred at 0.05L
from the cavity’s upstream corner, and has a radius of 0.045L.) Like the scattering
transfer function, we also cannot measure exactly on the upstream corner, since then
ρv will be zero. Subject to these constraints, and subject to the locations where
data are available, the measured transfer functions are shown for the two locations
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FIGURE 5. Scattering transfer function S(s): as measured in direct numerical simulations at
two locations (—–); and approximated as a complex-valued constant (−−).
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FIGURE 6. Receptivity transfer function R(s): as measured in direct numerical simulations at
two locations (—–); and approximated as a complex-valued constant (−−).

(x, y) = (0.0129L,−0.0495L) and (x, y) = (0.0129L,−0.0135L). The comparison is
shown in figure 6. Again, whilst crude, the model’s constant gain and phase lag give
reasonable agreement up to Strouhal numbers of ∼1.0.

5. Validation of the linear models
This section is concerned with validating the linear models found in § 4, and this is

done in two ways. First, both models are validated in the time domain by comparing
their impulse responses to that of the full system in direct numerical simulations
(DNS). Second, the models are validated in the frequency domain by comparing their
frequency responses. Staying in the frequency domain, we then look at the importance
of the conceptual model’s ‘loop gain’, before looking at how its inadequacies at higher
frequencies are explained in terms of the Rossiter mechanism being ‘cut-off’.

5.1. Impulse response of LM1
We now compare the impulse response given by LM1 to that found directly in DNS.
To prevent the large gradients that would be introduced by a pure impulse, we instead
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FIGURE 7. Impulse response for the pressure measurement: (a) at probe 1; and (b) at probe
2. In each plot, the impulse response of the directly measured linear model, LM1 (—–) is
compared to that of the full system in direct numerical simulations (◦).

inject a Gaussian pulse of the form fc = A exp{− (t − t0)
2/σ 2}, with A= 0.5, t0 = 0.484

and σ = 0.0638. This pulse is injected at the actuator location in the unforced DNS.
Similarly, that same signal acts as the input to the eighth-order ERA model, LM1,
which is simulated in MATLAB.

These impulse responses for both sensor locations are compared in figure 7. The
agreement is very good, and indicates that the eighth-order model captures the
input–output dynamics of the cavity flow successfully. (As expected, for longer time,
the two solutions diverge as the growing amplitudes give rise to nonlinear dynamics
which are not captured by the linear model.) This state-space model will be used in § 6
to design the first of two feedback controllers for the cavity flow.

5.2. Impulse response of LM2
We now study the impulse response of LM2 using the same Gaussian pulse as in § 5.1
as its input, comparing it to that found in DNS. Now, although the linear model (2.1)
given by the interconnection of the four constituent transfer functions is simple, the
time delays used in its development mean that it is infinite-dimensional. To remedy
this, a state-space model is formed by first finding a high-order rational fit using
the fitfrd command in MATLAB, and then using balanced truncation to reduce
the system order. The resulting state-space model is also eighth-order: this order was
chosen for consistency with the state-space model of LM1, and because eight states
were sufficient to capture the dominant dynamics of the model.

The impulse responses for LM2 and the DNS, again for both sensor locations, are
compared in figure 8. The agreement is reasonable. As one expects, it is not as good
as that given by LM1, which was found directly. This state-space model will be used
in § 6 to design a second feedback controller for the cavity flow.

5.3. Comparison in the frequency domain
We now compare the two linear models found in §§ 4.1 and 4.2 in the frequency
domain by comparing their frequency responses (transfer functions). Again, the models
are compared at both sensor locations, p1 and p2. Strictly speaking, both LM1 and
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FIGURE 8. Impulse response for the pressure measurement: (a) at probe 1; and (b) at probe 2.
In each plot, the impulse response of the conceptual linear model, LM2 (—–) is compared to
that of the full system in direct numerical simulations (◦).

LM2 are approximations of the full system, but LM1 is used here to validate LM2,
since LM1 was measured directly.

Being now in the frequency domain, it makes less sense to plot the (low-order)
state-space models that were used for the impulse responses in figures 7 and 8. This
is because although both state-space models capture the most dominant dynamics (as
we saw in their impulse responses), they do so only over the frequency range of those
dominant dynamics, and not at higher frequencies where their responses are small.
One cannot really label this a disadvantage of the low-order state-space models, since
this is exactly what they set out to do. But here we are interested in comparing the
linear models over a wider frequency range. For the directly measured linear model
(LM1), this means using spectral methods (previously described in § 4.2) to find its
frequency response directly, which gives the complex-valued response at a discrete
set of frequencies (Ljung 1999, chap 6). For the conceptual model (LM2), it means
plotting the (simple but infinite-dimensional) linear model directly in the frequency
domain.

The frequency domain comparison is shown in figure 9, where the two transfer
functions P1(s) and P2(s) are plotted in a Bode diagram in figure 9(a,c), and in a
Nyquist diagram in figure 9(b,d). (These two diagrams show the same information
but in different ways: the Bode diagram plotting gain and phase as a function of
frequency, and the Nyquist diagram showing the response in the complex plane.) In all
four plots one observes three Rossiter modes captured by LM1 at Strouhal numbers of
0.40, 0.70 and 0.98. The increase in phase seen across the first two Rossiter modes
indicates that the corresponding eigenvalues (or poles) of those modes are in the right
half-plane, and therefore unstable. The phase decrease across the third Rossiter mode
indicates that its corresponding poles are in the left half-plane, and therefore stable.
This is shown more clearly in appendix A, where the locations of the eigenvalues of
the two (state-space) linear models are compared in the complex plane. Each Rossiter
mode corresponds to a complex-conjugate pair of eigenvalues, and therefore the three
Rossiter modes seen in figure 9 can be represented using six states. With this in mind,
appendix A also explains why eight states were needed for both state-space models.
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FIGURE 9. Comparison of the open-loop transfer functions: (a,b) for probe 1, P1(s); and
(c,d) for probe 2, P2(s). The comparison is shown in Bode diagrams in (a,c) and in Nyquist
diagrams in (b,d). In all four plots, the transfer function given by LM1 (——) is compared
with that given by LM2 (−−). Each of the three Rossiter modes is indicated on each Nyquist
diagram.

It is clear from all four plots that, over the frequency range of the first two Rossiter
modes, the agreement between LM1 and LM2 is very good. This is encouraging, since
it is the dynamics over this frequency range, where the unstable Rossiter modes are
found, that drives the design of a model-based controller. It is also encouraging that
the agreement is good at both probe locations. However, the third Rossiter mode is
not well-captured by the conceptual model LM2. We now look at understanding these
findings in terms of LM2’s loop gain.

5.4. Importance of the loop gain
Much of the behaviour of the conceptual model LM2 – and in particular its prediction
of the Rossiter modes – can be explained in terms of the loop gain, L(s), where

L(s)= G(s)S(s)A(s)R(s). (5.1)

This appears in the denominator of both transfer functions (2.1a) and (2.1b), from
which it is clear that the model’s poles occur at those values of s in the complex plane
satisfying L(s)= 1+ i0, since then the denominator of (2.1a,b) vanishes.

Let us now restrict our attention to s = iω, i.e. the frequency response. This will
allow us to relate the frequency response of the loop gain, L(iω), to the frequency
response of the linear model, P1,2(iω), which was plotted in figure 9. We can say
that we will observe a ‘mode’ (‘mode’ being loosely defined here as a peak in
P1,2(iω)) at some frequency ω when L(iω) passes near the point 1 + i0, since then the
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denominator of (2.1a,b) becomes large. This in turn implies that |L(iω)| ≈ 1 (and that
6 L(iω)≈ 0◦,−360◦, . . .).

This argument can be used to explain the poor prediction of the third Rossiter mode.
LM2 predicts a third Rossiter mode at a Strouhal number of 1.115 (see appendix A),
which is higher than that seen in simulations. Since the loop gain decreases with
increasing frequency, the over-prediction of the third Rossiter mode’s frequency has a
negative impact on the prediction of its loop gain as well, and so the prediction of
both its frequency and its loop gain is poor: the loop gain at this Strouhal number is
much smaller than 1, and therefore the third Rossiter mode is barely visible in LM2’s
transfer function.

5.5. High-frequency dynamics
The conceptual model LM2 shows reasonable success in predicting the gain and phase
characteristics of the unforced cavity flow over the frequency range of the Rossiter
tones, and it is the dynamics over this frequency range which dominate the cavity’s
input–output behaviour (as made clear by the impulse responses). Therefore LM2 is
clearly useful for feedback control design purposes, and this will be seen concretely in
§ 6. However, LM2 performs more poorly at higher frequencies, and so first we seek
an explanation for this.

The conceptual model LM2 neglects the acoustic field generated by the actuation
fc directly. At low frequencies, this is perfectly valid: the acoustics generated
by the Rossiter mechanism dominate, and the effect of the actuation’s direct
acoustic field is negligible. At higher frequencies, though, the shear layer attenuates
disturbances rather than amplifying them, i.e. |G(s)| < 1. This means that the
velocity fluctuations arriving at the downstream corner are small, and the Rossiter
mechanism is ‘cut-off’. Indeed, these considerations lead to a convenient definition
of low frequencies and high frequencies: low frequencies are those for which the
shear layer amplifies disturbances, whilst high frequencies are those for which
disturbances are attenuated. (From figure 3, the cross-over frequency of the shear
layer – where the magnitude of G(s) passes through 0 dB – is at a Strouhal number
of ∼1.1.)

This explains the positive gradient of the acoustic transfer function’s phase seen in
figure 4, which suggested a negative time delay. At frequencies above the shear layer’s
cross-over frequency, the actuation dominates the acoustic field. Since the actuator is
closer to the upstream corner than to the downstream corner, its effect is seen at po

before it is seen at pL , and this corresponds to A(s) = po(s)/pL(s) having a negative
time delay.

The acoustic transfer function makes clear what is true for all four constituent
transfer functions: it is only valid to seek them over the frequency range at which
the Rossiter modes can occur, i.e. at frequencies where |G(s)| & 1. To do so at higher
frequencies is to seek a mechanism that no longer exists, the open-loop dynamics
being instead dominated by the acoustics directly generated by the actuation fc. This
helps to explain the poor agreement seen at higher frequencies between measurements
and LM2 for the transfer functions representing the acoustics A(s), the scattering S(s)
and the receptivity process R(s).

6. Model-based feedback control
The focus of this paper is on finding simple, linear models of cavity oscillations

which are useful for feedback control design. With this in mind, the utility of the two
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FIGURE 10. General closed-loop control arrangement. The effect of noise, n, and
disturbances, d, is included.

linear models is now tested by using them to design model-based feedback controllers.
First, the specific type of feedback controller used, the linear quadratic Gaussian
(LQG) regulator, is described. Then closed-loop control results using two different
LQG regulators – one for each linear model – are presented.

6.1. The LQG regulator
We now look at the specific choice of controller that will be used for feedback control
of the cavity – the linear quadratic Gaussian (LQG) regulator. A closed-loop control
arrangement for some general plant P(s) is shown in figure 10. Here K(s) is the
closed-loop regulator to be designed. The effect of noise (n) and disturbances (d) is
included. For the discrete-time state-space model defined by (4.1), a linear quadratic
(LQ) regulator uses the state feedback law

u=−Γ x, (6.1)

where Γ is a matrix of control gains, to minimize the quadratic cost function

J =
∞∑

i=0

(xTQxx+ uTQuu). (6.2)

Here Qx ∈ Rn×n and Qu ∈ Rp×p are weighting matrices used to penalize large system
states and large control inputs respectively. Substituting (6.1) into (4.1), we obtain the
closed-loop system

x(k + 1)= (A− BΓ )x(k), (6.3a)
y(k)= Cx(k), (6.3b)

and so by suitable choice of the feedback gain matrix Γ , the eigenvalues of (A− BΓ )
– and therefore the dynamics of the closed-loop system – can be made stable.

Linear Quadratic (LQ) control assumes that the full state x is available to the
regulator – this state is used in the feedback law (6.1). In many cases, though, the full
state is not available for measurement, the regulator having direct access only to the
inputs u and the outputs y. Linear quadratic Gaussian (LQG) control remedies this by
using an observer to form an estimate x̂ of the real state x. This estimate of the state is
used in the LQG control feedback law

u=−Γ x̂. (6.4)

It remains to see how the estimate of the state x̂ is formed. The Gaussian term in
linear quadratic Gaussian control refers to the type of observer used, the Kalman filter.
A Kalman filter amounts to a specific choice of the observer which is optimal, in the
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sense that the error converges in the presence of stochastic disturbances d and noise n
(see figure 10), assumed to be zero-mean, Gaussian, white-noise processes.

The LQG and optimal estimation problems can be solved using standard routines in
MATLAB. The resulting LQG controller and observer can then be combined to give
an overall regulator K(s), which is of the same order as the plant model used P(s).

It should be noted that although the LQ control problem has guaranteed stability
margins, there are no such guaranteed margins for the LQG control problem (Doyle
1978), and therefore the stability margins must be checked for a given control design.
In practice, though, LQG control often gives very satisfactory results, and this will be
seen to be the case for the cavity flow.

6.2. LQG regulator design

Having introduced the LQG regulator in the previous section, this section outlines
some specific details concerning the regulator design for the cavity flow. Two LQG
regulators are formed: one for each of the two linear models, LM1 and LM2. For
convenience, the regulator based on LM1 will be referred to as ‘LQG1’, while the
regulator based on LM2 will be referred to as ‘LQG2’. (See appendix B for further
details on these regulators, and their relation to the model orders chosen for LM1 and
LM2.)

The pressure at probe 2, p2 is used for feedback control. Therefore the cavity has a
single input, fc, and a single output, p2. The two models of the cavity flow found in § 4
do not include an actuator transfer function. The actuator dynamics can be important
for cavity oscillations, especially when the actuator has limited bandwidth, which
makes closed-loop amplification of disturbances over some parts of its bandwidth
inevitable (Rowley et al. 2006). Therefore an actuator is included here in the regulator
design, and will be included in direct numerical simulations in the next section. The
actuator transfer function used is a second-order, under-damped system:

kL

ω2
L

s2 + 2ζLωLs+ ω2
L

, (6.5)

with kL = 1.0, ωL = 6.28 (which corresponds to a non-dimensional frequency of
fL = 1.0) and ζL = 0.3. See Kegerise et al. (2007) for example, where the frequency
response of the piezoelectric actuator used is of this type. The LQG regulator is then
designed for the system including this actuator. (The actuator’s frequency response is
shown in appendix B.)

The cavity flow has a single input (fc), and so Qu in (6.2) is simply a scalar.
Choosing the output measurement y= Cx (= p2) as the output cost (giving Qx = CTC),
the quadratic cost function has the simple form

J =
∞∑

i=0

(p2
2 + quf 2

c ), (6.6)

where the scalar qu is used to specify the relative importance of maintaining a small
input signal fc and maintaining a small output measurement p2. (The same value of qu

is used for both regulators, LQG1 and LQG2.)
Very little noise is encountered in the simulations, but one expects more in a real

experiment, so Gaussian white noise is artificially added to the pressure measurement
p2. The covariance of this noise is used in the design of the observer.
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FIGURE 11. Closed-loop control of the cavity flow: (a) using LQG1; and (b) using LQG2.
In both figures, the pressure measurement (top) and the control signal (bottom) are shown.
For the pressure measurements, the closed-loop case (—–) is compared to the unforced case
(−−).

6.3. Results

In this section the two regulators LQG1 and LQG2 are applied to the full system in
direct numerical simulations.

Closed-loop control results for the two regulators are shown in figure 11. The
regulators have been designed using the directly measured linear model (LQG1)
in figure 11(a), and using the conceptual linear model (LQG2) in figure 11(b).
Encouraging results are seen: in both cases the regulator completely eliminates
oscillations. It is not surprising that the LQG1 regulator eliminates oscillations slightly
more quickly than the LQG2 regulator, or that it does so with a slightly smaller
control input, when one considers the more accurate model (LM1) of the cavity
dynamics used in its design. Nevertheless, the LQG2 regulator performs well, and
compares well with the LQG1 regulator.

The closed-loop behaviour can also be studied by looking at the time-delay phase
portrait of the pressure signal, which can help to distinguish between a stable, noise-
driven regime and a limit-cycling regime (Mezić & Banaszuk 2004). The phase
portrait of a limit-cycling system will be a closed curve (and, with noise, a fuzzy
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FIGURE 12. Phase portraits of the pressure measurement, p2: (a) without control; (b) for
LQG1; and (c) for LQG2. Note the larger scale used for the unforced data in (a).

curve). The phase portrait of a stable system, forced by noise, will be concentrated
about a point. Figure 12 shows the time-delay phase portraits for the unforced
system, for LQG1 and for LQG2. The pressure data have first been passed through
a narrowband filter at the frequency where the unforced flow has its greatest power
spectral density, which is at a Strouhal number of St = 0.7 (the second Rossiter
mode). The time delay 1t used in the phase portraits is chosen to be one quarter of
the period corresponding to this frequency (i.e. 1t = 1/(4 × 0.7)). For the closed-
loop cases in figure 12 (b,c), the pressure data are plotted for a short window
of time after oscillations have been completely eliminated. The plots help confirm
the closed-loop stability brought by both regulators, figure 12(a) being characteristic
of a limit-cycling regime, and figures 12(b) and 12(c) both characteristic of stable,
noise-driven systems. Comparing figures 12(b) and 12(c), what is perhaps surprising
is that the responses of the two closed-loop systems to noise appear very similar in
amplitude, even though LQG2 has been designed using a less accurate model of the
cavity.

We will now see that regulator LQG1 does in fact provide better closed-loop
attenuation than LQG2 by comparing the two regulators’ closed-loop spectra. We
will also compare the two LQG regulators to the original dynamic phasor compensator,
again using their spectra to perform the comparison.

6.4. Closed-loop spectra and comparison with the dynamic phasor compensator
Figure 13 shows the power spectral density (PSD) of the non-dimensional pressure (in
dB, relative to unity) for the unforced and closed-loop cavities. It is clear that both
regulators achieve significant reductions in the spectra when compared to the unforced
cavity. As expected, LQG1 achieves greater attenuation than LQG2. Figure 13 also
shows the spectrum for the original dynamic phasor controller. We see that, as
we might expect, LQG1 achieves greater attenuation than the dynamic phasor. The
attenuation achieved by LQG2, meanwhile, lies somewhere between the two.

These observations are made quantitative in table 1, which supplements figure 13 by
showing the peak in the power spectral densities at each of the three Rossiter modes,
and does so for each of the three compensators. From table 1 we see that LQG1
provides the best attenuation across all three Rossiter modes, and we can attribute this
to the quality of the model used to synthesize LQG1. Consistent with the less accurate
model used to synthesize it, LQG2 performs less well than LQG1 for all three Rossiter
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FIGURE 13. Power spectra of the non-dimensional pressure signal (in dB, relative to unity):
(a) without control; and closed-loop spectra for (b) the dynamic phasor; (c) LQG1; and
(d) LQG2. Notice the larger scale used for the unforced spectrum in (a).

Compensator Rossiter 1 Rossiter 2 Rossiter 3

Phasor −63.5 −65.3 −70.4
LQG1 −72.8 −68.9 −91.4
LQG2 −66.1 −67.9 −88.5

TABLE 1. Comparison of the power spectral densities (in dB, relative to unity) of each
Rossiter mode for each of the three compensators.

modes but, encouragingly, still provides better attenuation than the dynamic phasor,
again for all Rossiter modes.

In this study we have focused attention on control at the design Mach number
of M = 0.6, but an additional benefit of LQG1 is its greater robustness to changes
in the free-stream Mach number. Using the dynamic phasor at off-design Mach
numbers, oscillations were reduced but not stabilized at M = 0.65, and at M = 0.55
oscillations were made worse by control (Rowley & Juttijudata 2005). For LQG1,
on the other hand, closed-loop stability is still provided at Mach numbers in the
range 0.4 6 M 6 0.7 (Illingworth et al. 2011). The off-design performance of LQG2,
meanwhile, sits somewhere between the two. Applying LQG2 at a Mach number of
M = 0.50, oscillations are completely suppressed, while at M = 0.70 the limit cycle
persists, but is reduced in amplitude by control by approximately 30 % (3.1 dB).
Notice that this off-design performance of LQG2 is for the regulator designed for
M = 0.60. An alternative approach would be to anticipate the cavity’s dynamics at a
different Mach number by using the constituent transfer functions of LM2 to form a
new linear model, using which a new regulator could be formed, and this would be an
interesting area for further work.
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6.5. Discussion

The system under consideration is not an easy one to control: the cavity flow is
governed by high-order, nonlinear dynamics; there are two unstable modes that
must be stabilized simultaneously; there is an appreciable time delay; and the
controller must contend with a limited-bandwidth actuator, which makes closed-loop
amplification of disturbances over some parts of its bandwidth inevitable (Rowley
et al. 2006). Considering these challenges it is quite remarkable that the regulators
– designed using simple, low-order, linear models of the cavity’s dynamics – perform
so well.

At this point we may ask what effect the eighth-order models used for LM1 and
LM2 have on the closed-loop control results. In particular, how sensitive are the
results to the model order, and would we see any improvement if higher-order models
were used? These questions are answered in appendix B, where the LQG regulators
produced by the low-order models are compared in the frequency domain to those
given by higher-order representations of LM1 and LM2. It is shown that the regulators
produced by the eighth-order and higher-order models are almost identical, and this
tells us that the cavity’s dynamics that are important for control purposes have been
captured by the eighth-order models. (An alternative approach would have been to
form LQG1 and LQG2 based on the high-order models of appendix B, and then
perform model reduction on the regulators themselves. The results of appendix B,
however, tell us that these regulators would be almost identical to the regulators we
have used.) This means that, should we choose to use these higher-order models as
our starting point for the regulator design, the closed-loop performance that we would
achieve would be the same as that already seen, and this is borne out in practice:
closed-loop simulations have been performed using the higher-order regulators shown
in appendix B, and the closed-loop spectra that they produce are indistinguishable
from those shown in figure 13.

We have seen that the feedback controller LQG2 performs well despite the
inaccuracies in the model (LM2) used to design it, and therefore that the controller
exhibits a certain level of robustness to model uncertainty. We have not tried
to quantify this robustness, but this could be achieved using the ν-gap metric
(Vinnicombe 2000), which is the most useful measure of distance between dynamical
systems when one is concerned specifically with applying feedback to those systems.
The ν-gap metric fits very naturally into an H∞ loop-shaping control design, and this
would be an interesting area for future work.

7. Conclusions
This paper has focused on forming linear models of cavity resonances that are

useful for feedback control purposes. Two linear models have been found using two
quite different methodologies: the first using input–output data of the cavity flow
directly, and the second using a simple conceptual model to represent each element of
the flow physics separately, as suggested by Rowley et al. (2006). Both models are
simple and can be represented using few degrees of freedom (or equivalently, states).

The linear models have been validated: first in the time domain by comparing
their impulse responses to that of the full system in direct numerical simulations;
and second in the frequency domain by comparing their frequency responses. The
conceptual linear model does not capture the high-frequency dynamics of the cavity,
owing to the Rossiter mechanism upon which it is based being ‘cut-off’. Nevertheless,
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FIGURE 14. Comparison of the system eigenvalues (or poles) corresponding to the first three
Rossiter modes for LM1 (×) and LM2 (4).

by modelling only the dominant dynamics, it captures the important input–output
characteristics of the cavity reasonably well.

Finally, the utility of these linear models has been demonstrated most clearly by
using them to design model-based feedback controllers, and applying these controllers
in direct numerical simulations. Both controllers completely eliminate oscillations, and
their success suggests two things. First, that linear-model-based control can be very
effective in eliminating cavity oscillations; and second, that the linear models used can
be very simple when one concentrates on modelling those dynamics which are most
important for feedback control.
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Appendix A. Rossiter mode eigenvalues
Figure 14 shows the eigenvalues (or poles) corresponding to the three Rossiter

modes for the state-space models of LM1 and LM2. Each Rossiter mode gives a
complex-conjugate pair of poles, so there are six plotted altogether. The poles of the
first two Rossiter modes (for both models) are in the right half-plane, Re(s) > 0, and
are therefore unstable. The poles of the third Rossiter mode are in the left half-plane,
Re(s) < 0, and are therefore stable.

The agreement between the two linear models for the first two Rossiter modes
is good, and this goes some way to explaining the success of LM2 for feedback
controller design. The agreement for the third Rossiter mode is poor though, with
the poles of LM2 for this mode lying much deeper in the left half-plane, which
corresponds to that mode being more heavily damped. This explains why the third
Rossiter mode is barely visible in LM2’s frequency responses in figure 9.

As noted in § 5.3, each Rossiter mode corresponds to a complex-conjugate pair of
eigenvalues, and therefore the three Rossiter modes seen in figure 9 can be represented
using six states. One may now ask why eight states were needed for the two linear
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models, then? This is most easily answered by looking at LM1, whose state-space
model came from the eigensystem realization algorithm (ERA), although similar
arguments apply to LM2. The ERA is a form of approximate balanced truncation,
and balanced truncation has a very useful property: for a given model order n, it
guarantees a minimum level of ‘goodness’ of the reduced-order model. That is, an
upper bound for the error in the reduced-order model can be derived. Let Pn denote
the transfer function of the reduced-order model of order n, and let Pr denote the
transfer function of the full system, of order r. Then the H∞-norm of the error
satisfies

‖Pr − Pn‖∞ 6 2
r∑

j=n+1

σj (A 1)

(‘twice the sum of the tails’), where σj are the Hankel singular values of Pr.
Balanced truncation is not optimal though: for a given order n, there is no guarantee

that the model is as good as is possible. It is difficult to know whether the two
extra states in the state-space models represent some ‘lumped’ approximation to some
other important dynamics of the cavity, or if they are simply a by-product of the
non-optimality of the method, but in any case it is not surprising (or troublesome) that
eight states were needed. In fact, it is not at all surprising that more than six states
were required when one considers that, as well as the Rossiter modes that one expects
to recover, there are also time delays introduced by the convection of disturbances
in the shear layer and by acoustic propagation times (see §§ 4.2.1 and 4.2.2). It is
crucial that these time delays are captured by the state-space models, and therefore
one can say that suitable low-dimensional approximations of these delay dynamics are
‘embedded’ in the state-space models for LM1 and LM2.

Appendix B. Model order and its relation to LQG regulator design
In this appendix we provide further details relating to our choice of eighth-order

models for both LM1 and LM2, together with details of the LQG regulators that those
models produce. We do so for two reasons. First, some consideration of the regulators
produced by the LQG design procedure is useful in its own right. In particular, the
LQG regulator problem is posed in the time domain, but an understanding of the
regulator is best gained by considering its behaviour in the frequency domain using
its transfer function. Second, by comparing the regulators produced by the low-order
representations of LM1 and LM2 to those produced by higher-order representations,
we provide justification for our choice of those low-order models.

B.1. The actuator transfer function
The actuator transfer function (gain only) given by (6.5) is shown in figure 15. Notice
that the LQG regulators presented next are designed for the cavity including this
actuator.

B.2. The overall open-loop plants and their LQG regulators
Recall that, for control, we have a single input and a single output, the output given by
the pressure at probe 2. We therefore only consider this second probe location in this
section. We do this first for LM1, and then for LM2.

B.2.1. Linear model LM1
Figure 16(a) compares the transfer function for the eighth-order model of LM1,

which was generated by the ERA, to a hundredth-order (n = 100) model found using
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FIGURE 15. Actuator transfer function (only gain shown) given by (6.5) with kL = 1.0,
ωL = 6.28 and ζL = 0.3.
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FIGURE 16. Different representations of LM1 and LM2, and their corresponding LQG
regulators. In (a), the spectral estimate of LM1 (—–) is compared to eighth-order (−−)
and hundredth-order (− · −) models given by the ERA. In (b), the LQG regulators given
by the eighth-order (—–) and hundredth-order (−−) ERA models are compared. A similar
analysis is performed in (c,d) for LM2: the original conceptual model (—–) is compared to its
eighth-order (−−) and thirtieth-order (− · −) state-space approximations in (c); and the LQG
regulators given by the eighth-order (—–) and thirtieth-order (−−) models are compared
in (d).

the same ERA procedure. Both of these models are compared to the spectral model
that was previously plotted in figure 9(a). We see that the agreement between the
hundredth-order model and the spectral model is excellent, while the eighth-order
model captures only the dominant dynamics – that is, the three Rossiter modes.

Figure 16(b) shows the LQG regulators that are produced using the eighth-order and
hundredth-order representations of LM1. An important point here is that, despite the
two models being of vastly different orders, the two regulators which they give rise to
are almost identical. This tells us that the control objectives, which are encapsulated
in the regulator, remain the same across the two models, and therefore that the eighth-
order model, although unable to capture all of the cavity’s dynamics, still captures the
dynamics which are important for control.

For both regulators, the response is largest at the frequencies of the two unstable
Rossiter modes, where the benefits of feedback (i.e. for closed-loop stability and
disturbance rejection) are sought.
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B.2.2. Linear model LM2
Figure 16(c) shows the transfer function for the conceptual model (2.1b) which,

we recall, is given by the interconnection of the four constituent transfer functions
(4.2)–(4.5), and which we saw previously in figure 9(c). This is compared to
its thirtieth-order state-space approximation, found using the fitfrd command in
MATLAB. By performing balanced truncation on this thirtieth-order model, the eighth-
order representation of LM2 – which is then used for the regulator design – is found,
which is also plotted. We see that the original conceptual model and its thirtieth-order
approximation are indistinguishable, while there are some small differences introduced
by the eighth-order approximation.

Despite this, the control objectives are still captured by the eighth-order
approximation of LM2. This is demonstrated in figure 16(d), where the regulators
given by the thirtieth- and eighth-order models are compared: the two are
indistinguishable. Like LQG1, we see that LQG2’s response is largest at the
frequencies of the two unstable Rossiter modes, where the benefits of feedback are
sought.

R E F E R E N C E S

AHUJA, S. & ROWLEY, C. W. 2010 Feedback control of unstable steady states of flow past a flat
plate using reduced-order estimators. J. Fluid Mech. 645, 447–478.

BARBAGALLO, A., SIPP, D. & SCHMID, P. J. 2009 Closed-loop control of an open cavity flow
using reduced-order models. J. Fluid Mech. 641, 1–50.

CABELL, R. H., KEGERISE, M. A., COX, D. E. & GIBBS, G. P. 2006 Experimental feedback
control of flow-induced cavity tones. AIAA J. 44 (8), 1807–1815.

CATTAFESTA, L. N. III, GARG, S., CHOUDHARI, M. & LI, F. 1997 Active control of flow-induced
cavity resonance. AIAA Paper 97–1804.

CATTAFESTA, L. N. III, SONG, Q., WILLIAMS, D. R., ROWLEY, C. W. & ALVI, F. S. 2008
Active control of flow-induced cavity oscillations. Prog. Aerosp. Sci. 44, 479–502.

DOYLE, J. 1978 Guaranteed margins for LQG regulators. IEEE Trans. Autom. Control 23 (4),
756–757.

FREUND, J. B. 1997 Proposed inflow/outflow boundary condition for direct computation of
aerodynamic sound. AIAA J. 35 (4), 740–742.

GHARIB, M. 1987 Response of the cavity shear layer oscillations to external forcing. AIAA J. 25 (1),
43–47.

HELLER, H. H. & BLISS, D. B. 1975 The physical mechanism of flow-induced pressure fluctuations
in cavities and concepts for their suppression. AIAA Paper 75–491, pp. 281–296.

ILLINGWORTH, S. J., MORGANS, A. S. & ROWLEY, C. W. 2011 Feedback control of flow
resonances using balanced reduced-order models. J. Sound Vib. 330, 1567–1581.

JUANG, J. N. & PAPPA, R. S. 1985 Eigensystem realization algorithm for modal parameter
identification and model reduction. J. Guid. Control Dyn. 8 (5), 620–627.

KEGERISE, M. A., CABELL, R. H. & CATTAFESTA, L. N. III 2007 Real-time feedback control of
flow-induced cavity tones—Part 1: Fixed-gain control. J. Sound Vib. 307, 906–923.

KOOK, H., MONGEAU, L. & FRANCHEK, M. A. 2002 Active control of pressure fluctuations due to
flow over Helmholtz resonators. J. Sound Vib. 255 (1), 61–76.

LANGHORNE, P. J., DOWLING, A. P. & HOOPER, N. 1990 A practical active control system for
combustion oscillations. J. Propul. Power 6 (3), 324–333.

LELE, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys.
103 (1), 16–42.

LJUNG, L. 1999 System Identification: Theory for the User, 2nd edn. Prentice-Hall.
MA, Z., AHUJA, S. & ROWLEY, C. W. 2011 Reduced order models for control of fluids using the

Eigensystem Realization Algorithm. Theor. Comput. Fluid Mech. 25, 233–247.
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