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SUMMARY
This paper proposes a bilateral control structure with a realization of the force derivative in the control
loop. Due to the inherent noisy nature of the force signal, most teleoperation schemes can make use
of only a proportional (P) control structure in the force channel of the bilateral controllers. In the
proposed scheme, an α–β–γ filter is designed to smoothly differentiate the force signal obtained
from a reaction force observer integrated to both of the master and slave plants. The differentiated
force signal is then used in a proportional-derivative (PD) force controller working together with a
disturbance observer. In order to design the overall bilateral controller, an environment model based
on pure spring structure is assumed. The controller is designed to enforce an exponentially decaying
tracking error for both position and force signals. With the presented controller design approach,
one can independently tune the controller gains of the force and the position control channels. The
proposed approach is experimentally tested in a platform consisted of direct drive linear motors. As
illustrated by the experiment results, the contribution of the PD control in the force channel improves
the teleoperation performance especially under hard-contact motion scenarios by attenuating the
oscillations, hence, improving the transparency when compared to the structures using only a P force
control.

KEYWORDS: Haptics; Bilateral control; Teleoperation; PD force control; α–β–γ filter; Hard contact
motion control.

1. Introduction
The scope of the applications requiring the ability of manipulation in a remote location has been
increasing rapidly. In particular, semi-autonomous and risky tasks that require intervention of a human
operator seek for solutions based on intermediate robotic systems to extend the manipulation ability.
Bilateral control, as a method of teleoperation (i.e. operation at a distance), has thus been investigated
by many researchers.1–5 Among the potential applications of bilateral control, space robotics,6,7

underwater explorations,8 and robotic surgery systems9–11 can be counted. In the most general sense, a
teleoperation system contains two robots, namely, the master and the slave robots, mutually interacting
with each other in order to match the force and position responses. The objective of a bilateral control
algorithm is to enforce tracking of the master robot positions by the slave robot and reflection of the
interaction forces of the slave robot back to the master robot. Simultaneous tracking of these forces
and positions leads to an ideally desired situation called as transparent operation.12 Under such an
ideal operation, environmental impedance is fully transmitted to the human operator at the other end
of the teleoperation system.

In the literature, several methods have been proposed to satisfy the goals of a teleoperation system.
Early solutions were mainly concentrated on the elimination of the effect of time delay between
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the master and slave robots assuming a long distance operation. Among those solutions, Lyapunov-
based controllers,13 control schemes involving hybrid approaches,14 and designs based on impedance
representation15 can be counted. The idea of using the scattering theory through network could improve
the closed-loop dynamics by reducing the interference of wave reflections. Accordingly, controllers
derived based on wave variables attained a good solution providing the stable operation with improved
transparency under constant and known time delays.16 Considering the nature of time delay between
the master and slave robots, the two port time-domain passivity approach was modified to provide
the stable teleoperation for systems with a time-varying delay. Perceiving the effect of the time delay
as a disturbance acting on the teleoperation system, solutions based on the application of disturbance
observers (DOBs) and model-based control were illustrated.17 Analytical and quantitative comparison
of some of the solutions for teleoperation systems can be found in refs. [18] and [19], respectively for
continuous-time and discrete-time controllers.

Many researchers also focus on the problems of teleoperation systems for which signal transmission
delays are not involved in the control loop20,21 (i.e. systems targeting indoor operation). In that sense,
one of the focus points is the scaling of the position and force responses of the master and slave robots
as demanded in the teleoperation tasks between micro and macro systems.22 An example of the studies
addressing the scaling issue in bilateral control was presented in ref. [23], where the variable scaling
is addressed. More recently, benefitting from the advances in the field of atomic force microscopy,
researchers started to consider the perception of haptic feedback from the surfaces of nano structures
through teleoperated robots.24 Methodological evaluation of the performance in scaled teleoperation
systems was investigated in ref. [25] considering the aspects of stability and transparency.

Regardless of the target application, bilateral control systems suffer from the inherent nature of the
coupling between the force and position responses. In order to deal with that problem, some researchers
proposed methods to better decompose the force and position loops.4,26 The basic approach here is
to use appropriate transformations to single out the force and position controllers so that they can
be designed totally independently. The force and position signals are then matched in terms of the
accelerations and are given as references to the acceleration controllable plants. In that approach, the
overall performance of the bilateral control system depends on the independent controllers designed
for position and force tracking. In majority of the bilateral control studies, the current state of the art
relies on designing proportional-derivative (PD) and proportional (P) controllers for the position and
the force control tasks, respectively.27–31 Since the force signal has a very noisy characteristic, the
derivative of the force (i.e. yank) cannot be effectively used in the control loop. Thus, even though
the overall controller can provide certain level of transparency, the independent performance of the
force control loop sets some limits. This problem was addressed in ref. [32] where an adaptive
control approach was used to convert the teleoperation system into a rigid tool, applicable for
both of the hard and soft contact motion scenarios. In that study, the implemented control system
shows good performance in force tracking. However, the presented method is only valid within
a pre-specified bandwidth, which limits the application range of the proposed algorithm. Another
contribution to improve the force response was presented in ref. [33], where the non-linear friction
force of the manipulators are subtracted from the operational force in order to improve the force
control performance. Despite the relative improvements given in that study, the proposed method was
not analyzed for applications considering rapid change of forces. Therefore, the attenuation of hard
contact oscillations in the force control loop of the teleoperation systems still remain as a fundamental
problem since the force control loops lack the damping term. On the other hand, using only a P control
structure, the force control gains cannot be selected very high, which limits the bandwidth of the overall
bilateral controller. Especially in hard contact situations where the force measurement changes very
rapidly, a bilateral control system might show an oscillatory transient response, which reduces its
application range.

This study is carried out to address the problem of pure P force control of bilateral teleoperation
architectures and proposes a solution for the oscillatory behavior of the master and slave systems in
hard contact motion. The proposed scheme builds on the decoupled controller design approach for the
position and force control loops of a bilateral control system for which the time delays are negligibly
small.21 However, unlike the conventional methods, here, we propose the use of PD control for the
force control task of the overall bilateral control system. In order to acquire a smooth yank signal,
an α–β–γ tracker is realized and embedded to the force measurement channel. Furthermore, the
design of the force control loop is reformulated in this paper using a spring dominated environment
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approach. The proposed controller is tested under extreme conditions in two sets of experiments and
the responses are compared with the same bilateral control structure having only P control in the force
channel. It is verified that the proposed bilateral controller performs very good, especially in hard
contact environments, extending the application limits of the bilateral control theory.

The organization of the paper is as follows. Section 2 gives the background information for the
general system definition, the acceleration control framework and the force estimation method used
in this study. Section 3 presents the derivation of the bilateral controller showing independent design
of the position and force controllers and their combination assuming a spring dominated environment
model. In Section 4, the α–β–γ tracker-based smooth force differentiation is discussed. Section 5
illustrates the results of two independent sets of experiments and in Section 6, the concluding remarks
are given.

2. Background Information

2.1. System definition
In the context of this study, derivation of the proposed control architecture is made assuming single
degree of freedom (DOF) master and slave systems. Generalization of the presented scheme for
multi-DOF systems can be possible once the necessary matrix algebra is carried out.34 The equation
of motion for a single DOF mechanical system can be given as

m(x)ẍ(t ) = fr (t ) − fl (t ), (1)

where m(x), fr (t ), fl (t ), and x(t ) represent the mass 〈inertia〉, the reference force 〈torque〉, the load
force 〈torque〉, and the generalized coordinate of motion for a linear 〈rotational〉 system, respectively.
The reference force exerted on the system can be taken as

fr (t ) = kt ir (t ), (2)

where kt and ir (t ) represent the actuator gain (i.e. the force constant) of the system under consideration
and the reference current given to the system, respectively. For a single DOF freedom motion control
system, the parameters m(x) and kt of Eqs. (1) and (2) may show variations (δm, δk) around their
nominal values mn and kn, respectively, as

m(x) = mn + δm, (3)

kt = kn + δk. (4)

In the light of this information, one can recast Eq. (1) as follows:

mnẍ(t ) = knir (t ) − fd (t ). (5)

The terms mn, kn, and fd (t ) of (5), respectively, stand for the nominal mass of the system, nominal
force constant of the system, and the disturbance force acting on the system. The content of the
disturbance force fd (t ) in (5) can be given as

fd (t ) = δmẍ(t ) − δkir (t ) + b(x, ẋ)ẋ + g(x) + fe(t ). (6)

In (6), terms b(x, ẋ)ẋ, g(x), and fe(t ) represent the viscous friction force, gravitational force, and
external force acting on the system. Terms δmẍ(t ) and δkir (t ) of the disturbance, on the other hand,
stand for the acceleration induced force and the force due to the fluctuations of the force constant.
The rest of the derivation will continue assuming the models given in (5) and (6).

2.2. Robust acceleration control with disturbance observer
In order to enforce the robust motion control on the system, rejection of the disturbance given in (6)
is of particular importance. This can be accomplished via utilization of a DOB structure which makes
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use of the inverse nominal plant model and a low-pass filter to estimate the disturbance f̂d (t ) acting on
the system. The basic principle and the structure of DOB used in the context of this study was given
in ref. [35], while a more detailed study considering rapid changes of disturbance force was presented
in ref. [36]. With the inclusion of DOB, the dynamics of the system can be restated as follows:

ẍ(t ) = kn

mn
ir (t ) − δ fd (t )

mn
, (7)

where δ fd (t )
.= fd (t ) − f̂d (t ) is the remaining disturbance acting on the system. Since the division

of the desired torque reference of the system by the nominal mass represents the desired acceleration
(ẍdes) of the plant, one can further note the following identity:

ẍ(t ) = ẍdes(t ) − δ fd (t )

mn
. (8)

Equation (8) highlights an important aspect of systems with DOBs, since δ fd (t ) � fd (t ), a system
with DOB can easily trace the desired acceleration references with a simple outer loop compensation
such as a PD controller.37 Based on this fact, in the following sections, derivation of the control input
will follow a path to obtain the desired acceleration references using PD compensation.

2.3. Reaction force estimation
For the system under consideration, the acquisition of the reaction force information in a fast and
accurate way plays an important role. This requirement can be fulfilled by a reaction force observer
(RFOB) as illustrated in ref. [38].

The most critical issue for the accurate estimation of the reaction force is a precise identification
of the system. Recalling Eq. (6), the external force is one of the components that add up to the total
disturbance in the system. As the system has only single DOF, the fluctuations for the mass of the
system are negligibly small (i.e. mn � δm ⇒ δm ≈ 0). On the other hand, current state-of-the-art in
power electronics enable the production of very accurate drivers where the deviations of the force
constant from its nominal value are very small (i.e. kn � δk ⇒ δk ≈ 0). Under these assumptions,
the external force can be estimated as follows:

f̂e(t ) = f̂d (t ) − b̃(x, ẋ)ẋ − g̃(x), (9)

where b̃(x, ẋ) and g̃(x) stand for the estimated viscous friction coefficient and the calculated
gravitational force obtained after a parameter identification process and gathered from the system
geometry, respectively. In refs. [39] and [40], it has been shown by the authors that the estimation
of forces with an RFOB structure brings superior stability and performance improvement advantages
over systems measuring the forces with sensors once a proper parameter identification is carried out.
In the following sections, the derivation will follow the assumption that both of the master and the
slave plants contain integrated DOB and RFOB to accomplish the robust acceleration control and
accurate external force estimation.

2.4. Environment model
In order to formulate the force control loop of the bilateral controller, one has to identify the physical
model of the environment interacted by either one of the master or slave systems. In the literature,
there are several studies which model the mathematical base of the interaction force.41,42 Among them,
the most commonly used model is the standard contact impedance model as given in the following
equation:

fe = δmeẍe + beẋe + keδxe. (10)

In that model, the source of force generated during interaction depends on three main components,
which are the inertial forces (δmeẍe) that exist due to the acceleration of the mass that is displaced
during motion, the viscous forces (beẋe) due to the speed of motion in a resistive environment and the
spring forces (keδxe) due to the displacement of the environment from its original position. Having
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a more detailed look at these three components, one can observe the common relationship ‖ke‖ �
‖be‖ � ‖δme‖ between the displaced mass (δme), the damping coefficient (be), and the stiffness (ke)
for most of the physical systems.43,44 In other words, a considerably high proportion of the interaction
force is created by the stiffness of the environment. Another interpretation of this approximation is
the possibility of disregarding the transient dynamics and focusing on the steady-state value of the
interaction force during force control. Accordingly, in many studies concerning the robotic force
control,45,46 researchers take the environment model in its simplest form as follows:

fe = keδxe. (11)

Here, δxe = x∗ − xe is the displacement of the environment position xe by the system ∗ with respect
to its original position. Assuming a stationary environment position, the relationship between the
interaction force of system ∗ with the environment can be recast as

ḟ∗ = keẋ∗, (12)

f̈∗ = keẍ∗. (13)

In the derivation given below, the force channel of the bilateral control algorithm is designed
assuming that the interactions between the robots and the corresponding environments are governed
by pure spring models as shown in (11). This assumption permits the realization of the PD force
feedback in the expressions obtained for the desired acceleration, making it possible to use the PD
force control in the system.

3. Derivation of Bilateral Controller
Referring back to Eq. (8) and recalling the fact that some estimation error remains, one can write the
dynamics of the master and slave systems as

ẍm(t ) = ẍdes
m (t ) − δ fdm(t )

mnm
, (14)

ẍs(t ) = ẍdes
s (t ) − δ fds(t )

mns
, (15)

where additional subscripts m and s represent the master and the slave systems, respectively. Similarly,
adopting the environment model given in (13), one can express the second-order dynamics of the
interaction force for the master and slave systems as

f̈m = kemẍm, (16)

f̈s = kesẍs. (17)

Since the goals of a bilateral control system is to synchronize the positions and the interaction forces,
one can define the following tracking errors:

ep = xm − xs, (18)

e f = fm + fs, (19)

where ep and e f , respectively, stand for the position and force tracking errors. The objective of the
controller can then be expressed as enforcing the errors given in (18) and (19) tend to zero value. In
order to fulfill this goal, the error vector e can now be defined as

e =
[

ep

e f

]
. (20)
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Taking into account the identities given between (14) and (20), by proper substitutions the second-
order dynamics of the error vector can be given as

ë =
[

ëp

ë f

]
=

[
1 −1

kem kes

]
︸ ︷︷ ︸

A

[
ẍdes

m
ẍdes

s

]
︸ ︷︷ ︸

ẍdes

−
[

δ fdm

mnm
− δ fds

mns

kem
δ fdm

mnm
− kes

δ fds

mns

]
︸ ︷︷ ︸

d

. (21)

Without loss of generality, one can select the desired accelerations for the master and slave device
using error feedback with PD control as follows:

ẍdes = A−1 (−Wė − Ye) , (22)

where W and Y are diagonal matrices with positive diagonal entries:

W =
[
w1 0
0 w2

]
, w1, w2 > 0, (23)

Y =
[

y1 0
0 y2

]
, y1, y2 > 0. (24)

Substituting (22) back to the desired accelerations in (21), the dynamics of the vector e takes the
following form:

ë + Wė + Ye = −d. (25)

From (25), it can be concluded that the error vector has stable dynamics, and the disturbance estimation
errors influence only at the steady-state position and force errors, through the vector d. If satisfactory
disturbance compensations exist at the master and the slave sides, one can assume that both components

of the vector d are very small and thus ‖d‖ t→∞−−−→ 0. Hence, with proper disturbance compensation,
the resulting dynamics of the error vector can be written as

ë + Wė + Ye = 0. (26)

The content of Eq. (26) can be rewritten in the form

ëp + w1ėp + y1ep = 0, (27)

ë f + w2ė f + y2e f = 0. (28)

Here, selecting w1 = rp1 + rp2 > 0, y1 = rp1rp2 > 0, w2 = r f 1 + r f 2 > 0, and y2 = r f 1r f 2 > 0 with
rpi and r f i, respectively, standing for the ith root of the Eqs. (27) and (28), one can enforce the
exponential convergence of the position and force errors to zero without overshoots:

ep
t→∞−−−→ 0, (29)

e f
t→∞−−−→ 0. (30)

Here, it can be highlighted that one can also enforce different dynamics of the position error and force
error by selecting elements of the matrices W and Y. In other words, the control gains for the position
and force channels can be independently tuned without affecting the dynamics of each other.

Implementation of the control algorithm (22) requires the derivatives of the interaction forces fm

and fs as it appears in ė. In the next section, acquisition of the force derivative signal will be discussed.
In order to obtain the coefficients of the proposed controller, one can rearrange (22) and show the
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Fig. 1. Schematic representation of the proposed controller.

desired acceleration matrix as[
ẍdes

m
ẍdes

s

]
= 1

kes + kem

[
kes 1

−kem 1

] [−w1ev − y1ep

−w2ey − y2e f

]
, (31)

where ep, ev , e f , and ey stand for the position, velocity, force, and yank (i.e. the derivative of force)
errors, respectively. The identity given in (31) can be expanded and the explicit expressions for the
desired accelerations of the master and the slave systems can be acquired by defining parameters
η = kes

kem
, σ1 = η

η+1 , σ2 = 1
η+1 , and σ3 = 1

kes+kem
as follows:

ẍdes
m = −σ1w1ev − σ1y1ep − σ3w2ey − σ3y2e f , (32)

ẍdes
s = σ2w1ev + σ2y1ep − σ3w2ey − σ3y2e f . (33)

Equations (32) and (33), once given on acceleration controllable plants, enforce the master and slave
systems accomplish the tracking objectives given in (18) and (19). Besides the controller gains w1,
w2, y1, and y2, parameters σ1, σ2, and σ3 provide further flexibility in controller design. Recalling
that η = kes

kem
, one can analyze the effect of gains σi, i ∈ {1, 2, 3} based on the possible configurations

of the master and the slave environments. If the slave environment is much harder than that of the
master environment (i.e. kes � kem), the gains can be arranged as σ1 ≈ 1 and σ2 ≈ 0. On the other
hand, for applications where the slave environment is much softer than the master environment (i.e.
kes � kem), one can select these gains as σ1 ≈ 0 and σ2 ≈ 1. For unknown environments, one can
either take σ1 = σ2 = 0.5 or realize an adaptive structure for the estimation and updating of these
parameters. Such an adaptive structure, however, is beyond the scope of this paper.

It is important to discuss here the advantage brought by the design approach presented above. The
vector sitting on the right side of the expression shown in (31) indicates that the position and force
loops contain decoupled PD controllers. The contribution of that structure is the ability to single out
these two loops and tune the corresponding controller coefficients independently. Hence, the user is
equipped with the tools to adjust the error convergence rates of the position and the force loops without
interfering with the dynamics of one another. For better understanding of the controller structure, a
block diagram showing the overall signal flow of the proposed scheme is shown in Fig. 1.
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4. Smooth Force Differentiation with α–β–γ Filter
The acquisition of the smooth derivative of the force signal is a serious problem since a straightforward
differentiation results in a highly deteriorated response where signal to noise ratio (SNR) is very low.
As also proposed in this study, the use of yank (i.e. the derivative of force) in the control loop requires
a fast and clear differentiation of the reaction force. In order to attain this goal, the force response
obtained from RFOB is passed through an α–β–γ filter. The preference of α–β–γ structure over the
standard α–β tracker is due to its ability to track the accelerating targets with zero steady-state error.47

Below, a brief overview of α–β–γ filter is presented without the details of derivation. The same set
of equations are summarized in ref. [48] where the filter is further extended to α–β–γ –δ structure
which is applicable for third-order systems. For interested readers, refs. [49] and [50] provide further
detailed information about the α–β–γ filter.

Without loss of generality, one can assume the following state evolution for the signal to be
differentiated:

qp[k + 1] = qh[k] + T q̇h[k] + 1

2
T 2q̈h[k], (34)

q̇p[k + 1] = q̇h[k] + T q̈h[k], (35)

q̈p[k + 1] = q̈h[k], (36)

where q is the system state to be differentiated and T is the sampling period of the discrete-time
algorithm. In (34)–(36), the subscripts ∗p and ∗h represent the predicted and smoothed values of the
corresponding state ∗, respectively. The innovation of the smoothed states based on the measured
values are then given by

qh[k] = qp[k] + α
(
qo[k] − qp[k]

)
, (37)

q̇h[k] = q̇p[k] + β

T

(
qo[k] − qp[k]

)
, (38)

q̈h[k] = q̈p[k] + γ

2T 2

(
qo[k] − qp[k]

)
, (39)

where the variable qo[k] stand for the measured state. The selection of the values for parameters α,
β, and γ identify the characteristics of the filter being used. Having a stable tracking of the original
signal and its derivatives requires the following boundaries for these parameters as obtained from the
Jury’s stability analysis:48

0 < α < 2, (40)

0 < β < (4 − 2α) , (41)

0 < γ <
4αβ

(2−α) . (42)

In order to illustrate the performance of α–β–γ filter for the acquisition of the yank signal, a
simulation is done and the results are shown in Fig. 2. In the simulation, a motion control system is
manipulated with an arbitrary reference, forcing it to interact with an artificial environment. The
position reference of the system in the simulation is corrupted with white noise and the force
measurement is made using an RFOB. Within the control loop, the measured force is differentiated
in two different ways: one being the backward Euler differentiation with a third-order low-pass filter
and the other being obtained from an α–β–γ filter. The third-order low-pass filter for the backward
Euler differentiation is specifically selected to have a better evaluation of the responses since the α–
β–γ filter itself has third-order characteristics. The parameters for the simulation under consideration
are, respectively, selected to be α = 0.5, β = 0.0005, and γ = 0.000002 using trial and error, while
the cut-off frequency of the third-order low-pass filter used in the backward Euler differentiation is
adjusted to ωc = 159 rad/s (i.e. ≈ 1000 Hz).

The results of the force response, the yank response obtained by backward Euler differentiation
and the yank response obtained by α–β–γ filter-based differentiation are shown in Fig. 2(A)–(C),
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Fig. 2. Simulation results of force differentiation: Force response (A), backward Euler differentiation of force
with third-order low-pass filter (B), differentiation of force with α–β–γ filter (C).

respectively. As obvious from the given plots, the α–β–γ filter can give a much smoother response
than that of the standard differentiation methods. In order to quantify the difference between these
two approaches, the SNR for the two yank signals are calculated using the following formula:

SNR(w) =
√

1
L

∑L
i=1 u2

i√
1
L

∑L
i=1 n2

i

, (43)

where w, u, n, and L stand for the noisy signal, the actual (noise-free) signal, the noise on the actual
signal (i.e. w = u + n), and the length of the data set, respectively. The calculated SNR values are
1.428 and 6.849 for the backward Euler differentiated signal and the α–β–γ filter-based differentiated
signal, respectively.

5. Experiments
In order to validate the proposed teleoperation architecture, two sets of experiments are carried out.
In the first experiment set, the master system is controlled by another single DOF system, physically
connected to the master robot. The goal in this experiment is to give the same motion reference to
the master system and observe the responses of the bilateral control architectures with pure P force
control and PD force control. In both of these architectures, the controller gains are pushed to the
limits and slave system is enforced to have hard contact.

In the second set of experiments, the master robot is manipulated by a human operator with arbitrary
motion references and the slave robot is interacted with a very hard environment. The goal in this
experiment is to highlight the extent of the proposed control architecture. In order to better illustrate
the performance of the controller, in this experiment the slave robot is used as a hammer to insert
nail on a piece of wood which is remotely operated by the reference enforced on the master robot.
The configuration of the experimental setup for these two experiments are explained in the following
subsection.

5.1. Experimental platform
The first group of experiments are made on a platform consisted of three systems standing for the
master robot, the slave robot, and the operator robot which generates the same motion profile for
the master robot in both experiments (i.e. ones with P and PD force control loops). All three robots
contain a Faulhaber LM2070 series direct drive linear motor equipped with an appropriate driver and
a Renishaw RGH41 series encoder which has 500 nm resolution. Real-time operation of the algorithm
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Fig. 3. Configuration of the experimental platform for the computer generated uniform references.

Fig. 4. Configuration of the experimental platform for random references generated by a human operator.

is realized in a DSpace DS1103 system running at 10 KHz loop execution frequency. The depiction
of the setup used in the first experiment set is given in Fig. 3.

The second experiment set is made on a setup with a similar configuration. In the second setup,
however, the master robot is rearranged to be free (i.e. the operator robot is removed from the system)
such that a human operator can generate the motion reference of the master robot. In order to validate
the performance of the proposed architecture, the second experiment is tested on various hard and
soft contact scenarios. For better illustration purposes, however, the results taken during penetration
with a hard environment is given here in the experiment results section. The setup used in the second
experiment is shown in Fig. 4.

In both of the experiment configurations, the same set of control and filtering parameters are used.
The decision on the values of these parameters are made after extensive trial and error. During the
tuning process, first, low values are selected for these parameters and then the selected values are
increased to the limits after which there is no further improvement in the results. The parameters used
in the experiments are summarized in Table I.

5.2. Experimental results
The results obtained from two different sets of experiments are presented in Figs. 5 and 6 for the
uniform (i.e. the robot operator) and the random (i.e. the human operator) master motion references,
respectively. In the first experiment, the operator robot is controlled to apply a constant 5.8 N force
on the master robot and the slave robot strikes a steel environment positioned at 0.03 m. Looking at
the responses illustrated in Fig. 5(C) and (D), the oscillations in the force response are considerably
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Table I. Parameters used in the experiments for
controller and filter.

Parameter Value Parameter Value

y1 3000 η 0.5
w1 200 α 0.5
y2 75 β 0.0005
w2 5 γ 0.000002
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Fig. 5. Comparison of the bilateral controller responses with P control and PD control in the force channel under
the uniform reference motion: Position responses (A)–(B), force responses (C)–(D).

less in PD controller than that of the conventional P controller. The settling times for the responses
are 0.76 s and 0.33 s, respectively, for P and PD force controllers. Another salient feature of the
force responses is the steady-state error. The steady state errors of the controllers are 5.17% for the
conventional controller and 1.21% for the proposed controller. On the other hand, due to the nature of
the haptic interaction, the improvement on the force response is also reflected in the position tracking
performance as shown in Fig. 5(A) and (B). The overshoots in position response are reduced from
11.2% to 8.2% in the proposed controller structure.

In the second experiment set, on the other hand, the response and the tracking error of the proposed
controller are illustrated when a human operator manipulates the master robot. The operator uses the
master robot as a hammer for the first 5 s to insert a nail on a wooden piece located at 0.05 m position.
After 5 s, the operator continues to push the master robot, while the slave system preserves the contact
with the nail. The hard contact responses can be observed from the peaks in Fig. 6(C) and (D). In
order to better evaluate the proposed controller, the errors between the master and the slave system
responses with respect to the corresponding references for the

• free motion without contact,
• moment of the hard contact, and
• motion in contact with the environment

are evaluated independently in terms of the peak and mean values. The peak and the mean values of
the percentage errors are given in Table II. The values shown in the table indicate mean percentage
errors of less than 1% and peak percentage errors of less than 4% for both of the free motion and the
motion in contact. On the other hand, the error values at the moment of hard contact are bigger as
expected. This is because of the rapid change of the slave system velocity during the hard contact.
Since actuator’s maximum force cannot stop the master system (i.e. the master motor’s force limit
is achieved), the error between the two systems rise temporarily. However, even in that hard contact
moment with such errors, the controller preserves stability and successfully eliminates the error with
a very short transient.

6. Conclusion
This study presents a DOB-based acceleration controller structure for the decoupled force and position
controller design of a teleoperation system. Unlike the other existing studies, the paper proposes the
use of the force derivative in the control loop of the bilateral control system. Replacing the conventional
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Table II. Percentage tracking errors.

Free motion (no contact)

Response Peak error Mean error
Position 0.49% 0.04%
Velocity 2.19% 0.22%
Force 3.45% 0.41%
Yank 1.39% 0.22%

Hard contact moment

Response Peak error Mean error
Position 1.77% 0.59%
Velocity 42.66% 28.26%
Force 21.23% 17.70%
Yank 25.76% 21.91%

Motion in contact

Response Peak error Mean error
Position 0.49% 0.21%
Velocity 2.24% 0.61%
Force 0.33% 0.06%
Yank 0.39% 0.06%

1 2 3 4 5 6 7

0

0.01

0.02

0.03

0.04

0.05

Time (s)

P
os

it
io

n 
(m

)

Position Responses

Master
Slave

1 2 3 4 5 6 7

−0.1

0

0.1

0.2

Time (s)

V
el

oc
it

y 
(m

/s
)

Velocity Responses

Master
Slave

1 2 3 4 5 6 7

−5

0

5

Time (s)

F
or

ce
 (

N
)

Force Responses

Master
Slave

1 2 3 4 5 6 7

−50

0

50

Time (s)

Y
an

k 
(N

/s
)

Yank Responses

Master
Slave

1 2 3 4 5 6 7
−5

0

5

10x 10
−4

Time (s)

E
rr

or
 (

m
)

Position Tracking Error

1 2 3 4 5 6 7

0

0.05

0.1

Time (s)

E
rr

or
 (

m
/s

)

Velocity Tracking Error

1 2 3 4 5 6 7
−0.5

0

0.5

1

1.5

Time (s)

E
rr

or
 (

N
)

Force Tracking Error

1 2 3 4 5 6 7
−5

0

5

10

15

Time (s)

E
rr

or
 (

N
/s

)

Yank Tracking Error

(A) (B) (C) (D)

Fig. 6. Master and slave tracking responses and errors under random free and contact motion by a human operator.
Position response and error (A). Velocity response and error (B). Force response and error (C). Yank response
and error (D).

P control structure with a PD controller, the controller gains in the force channel are increased. Higher
control gains and derivative action in the force channel eventually improve the overall teleoperation
performance via decreasing the hard contact oscillations and providing a more stable, transparent,
and vivid operation capability. The proposed controller structure is tested on two different sets of
experiments both of which include extreme hard contacts with the environment. Preserving stable
operation under the hard contact situations, the master-slave system can be used under very harsh
conditions (e.g. even as a hammer to insert a nail on a piece of wood at a remote location). The results
of the experiments show the promising contribution with the inclusion of the force derivative in the
bilateral control which is prone to opening new paradigms in teleoperation controller design.
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