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Channelization of plumes beneath ice shelves
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We study a simplified model of ice–ocean interaction beneath a floating ice shelf, and
investigate the possibility for channels to form in the ice shelf base due to spatial
variations in conditions at the grounding line. The model combines an extensional
thin-film description of viscous ice flow in the shelf, with melting at its base driven by
a turbulent ocean plume. Small transverse perturbations to the one-dimensional steady
state are considered, driven either by ice thickness or subglacial discharge variations
across the grounding line. Either forcing leads to the growth of channels downstream,
with melting driven by locally enhanced ocean velocities, and thus heat transfer.
Narrow channels are smoothed out due to turbulent mixing in the ocean plume,
leading to a preferred wavelength for channel growth. In the absence of perturbations
at the grounding line, linear stability analysis suggests that the one-dimensional state
is stable to initial perturbations, chiefly due to the background ice advection.
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1. Introduction
Much of the ice loss from the Antarctic and Greenland ice sheets occurs through

melting at the ice–ocean interface. Melting is enhanced by the development of buoyant
plumes, which can entrain warm ocean water and facilitate heat transfer to the ice
interface (MacAyeal 1985; Jenkins 1991; Motyka et al. 2003). Such plumes may form
both at the near-vertical fronts of tidewater glaciers and beneath the gently sloping
base of floating ice shelves. In the latter case, melting interacts with ice deformation
to mould the shape of the ice shelf itself, and it is this interaction that forms the focus
of our study.

Ice shelves form when ice flows into sufficiently deep water that it becomes
neutrally buoyant and floats (e.g. Schoof & Hewitt 2013). The line separating
grounded ice from floating ice is referred to as the ‘grounding line’, and this is
also the place where subglacial meltwater is discharged to the ocean. Even a small
quantity of fresh subglacial discharge can be influential in establishing a buoyant
plume (Jenkins 2011).

A number of ice shelves have been observed to have channel-like incisions at
their base, oriented roughly in the direction of ice flow (Rignot & Steffen 2008;
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Bindschadler, Vaughan & Vornberger 2011; Vaughan et al. 2012; LeBrocq et al.
2013). Observationally inferred basal melt rates are enhanced within the channels
compared to the neighbouring thicker ice (Rignot & Steffen 2008; Dutrieux et al.
2013), and plumes containing a mixture of entrained warm deep waters and ice
shelf melt have been observed to emerge from under the Pine Island ice shelf in
the vicinity of larger channels (Mankoff et al. 2012). The existence of channels has
an important but unclear effect on the long-term evolution of an ice shelf; bending
stresses resulting from uneven melting may lead to crevassing and eventual breakup
(Vaughan et al. 2012), while the focussing of buoyant flow may actually lower the
average melt rate, thus protecting it from ocean warming to some extent (Gladish
et al. 2012; Millgate et al. 2013). It is of interest to understand how such channels
are created. One hypothesis is that the convective plume on the underside of the ice
is unstable to transverse perturbations which promote uneven melting. Another is that
localized sources of subglacial outflow at the grounding line generate stronger plumes
and promote enhanced melting directly downstream. Alternatively, the channels may
reflect topography at the grounding line, whose imprint is advected into the ice shelf,
or they may reflect patterns of stress in the ice shelf.

In this paper, we explore the potential for channels to form through the interaction
of plume-driven melting and ice-shelf topography. The basic mechanism here is that
regions of high plume velocity induce enhanced heat transfer and thus faster melting,
which increases the local transverse slope of the ice shelf and leads to flow focussing.
There is a partial analogy with hill-slope erosion (Smith & Bretherton 1972). We
seek to determine how a one-dimensional ice-shelf profile is affected by transverse
perturbations in the conditions at the grounding line. Our goal is to gain a basic
understanding of the mechanisms rather than to make quantitative predictions; thus we
adopt simplified models for the ice shelf and the plume on its underside. The results
may also provide insight into related channelization problems where the incision of
channels is caused by gravitationally-driven focussing of a wall-bounded current.

A number of previous studies are relevant. Ice-shelf melting has been modelled
extensively using depth-averaged ocean layer models (e.g. MacAyeal 1985; Jenkins
1991; Holland, Feltham & Jenkins 2007), adapted from the classical theory of buoyant
plumes (Morton, Taylor & Turner 1956; Ellison & Turner 1959). General circulation
models have also been used to study the effect of patterned ice shelf topography or
subglacial discharge on the melt rate (e.g. Millgate et al. 2013; Sciascia et al. 2013).
Until recently, these models have assumed a fixed ice-shelf geometry. However, two
recent numerical studies have examined the genuinely coupled problem in which
melting feeds back on the ice shelf (Gladish et al. 2012; Sergienko 2013). These
studies involved simultaneous solution of a depth-averaged ice flow model together
with the buoyant plume that controls melting. They found that channelization can
occur if there are topographic perturbations at the grounding line, or if lateral
confinement of the ice shelf gives rise to across-flow variations in ice thickness. In
this paper we examine in detail the destabilizing and stabilizing processes that control
this channelization, albeit in a necessarily simplified model.

The paper is structured as follows. In § 2 we describe the elements of the model
and perform non-dimensionalization so as to obtain a minimal set of parameters and
to facilitate the subsequent analysis. In § 3 we consider one-dimensional solutions for
a steady ice shelf with plume beneath, finding that under certain simplifications, the
melting rate is approximately uniform. In § 4, the model equations are perturbed from
the steady state to allow small transverse variations, and in § 5 we solve for such
perturbations driven by topographical or discharge perturbations at the grounding line.
In § 6 we discuss the results along with possible extensions. Further details and results
on temporal stability are included in the appendices A–C.
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FIGURE 1. (Colour online) (a) A schematic of the steady one-dimensional ice shelf.
Ice thickness h and velocity u evolve in the along-shelf coordinate (x) from their
grounding-line values (denoted with subscripts g) due to the deformation within the ice,
and subshelf melting. The melt rate m is controlled by a buoyant plume layer of thickness
D and velocity U, initiated by a meltwater source Qg at the grounding line. The dynamics
of the plume layer and melt rate depend on the temperature T and salinity S of the plume,
the mass of which increases with x as ocean water (with temperature Ta and salinity Sa)
is entrained at rate e. (b) A perturbation in thickness in the transverse (y) direction will
grow or decay from its grounding-line magnitude h̃g to h̃(x), depending on the effects of
ice deformation and plume dynamics.

2. Model
We first outline the basic ingredients of the model, before stating the equations and

then non-dimensionalizing them. The problem is posed in two horizontal dimensions,
with x in the direction of ice flow and y transverse to the flow (see figure 1).

The ice shelf extends from the grounding line at x= 0 to the front at x= X(y, t),
and is modelled as an extensional viscous thin-film flow, characterized by its
vertical thickness h(x, y, t) and depth-averaged horizontal velocity u(x, y, t) = (u, v).
In the glaciological literature, this model is referred to as the ‘shallow shelf
approximation’ (MacAyeal 1989). The front position must be determined as part
of the problem; in the assumed absence of calving, it is simply the position at which
melting causes the ice thickness to reduce to zero. Ice flow from the grounded ice
sheet is assumed known, and surface accumulation is ignored.

The plume is assumed to follow the underside of the ice without detaching, and
is modelled using a form of the turbulent plume models commonly employed to
study ice–ocean interactions (MacAyeal 1985; Jenkins 1991, 2011; Holland et al.
2007; Gladish et al. 2012; Sergienko 2013). The plume is characterized by its
vertical thickness D(x, y, t) beneath the ice base z= b(x, y, t), its thickness-averaged
horizontal velocity components U(x, y, t)= (U, V), temperature T(x, y, t) and salinity
S(x, y, t). The time dependence of these quantities derives from the slow evolution
of the ice–ocean interface, with the plume dynamics themselves being treated as
quasi-static on this time scale. The plume is assumed to be initiated at the grounding
line by the subglacial discharge of buoyant water.
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We make a standard Boussinesq approximation, taking the ocean water density
as a constant reference value, ρo, except when it contributes to the buoyancy
of the plume (see (2.5) below). Coriolis forces are also ignored. To simplify the
thermodynamics, we take the melting temperature Tm to be constant, ignoring both
pressure and salinity dependence, and assume that the ambient ocean’s temperature
and salinity are spatially uniform. These are significant simplifications of the real
problem, as they ignore changes in effective buoyancy flux that may eventually lead
to detrainment further out along the shelf as well as refreezing due to a change
in melting temperature. However, we believe they do not detract from the essential
dynamics of channelization which is our focus, and they allow for a more transparent
analysis. The possibility of including such features in future work is discussed in § 6.

2.1. Ice-shelf model
With z= 0 corresponding to sea level, the base of the ice shelf is at z= b(x, y, t) < 0,
and its thickness is h(x, y, t)> 0. Assuming hydrostatic equilibrium, the base elevation
and the thickness are related by

b=−(ρi/ρo) h, (2.1a)

where ρo is the reference ocean density and ρi the ice density. Mass balance and
horizontal force balance are expressed as

∂h
∂t
+∇ · (hu)=−(ρo/ρi)m, (2.1b)

∂

∂x

[
2ηh

(
2
∂u
∂x
+ ∂v
∂y

)]
+ ∂

∂y

[
ηh
(
∂u
∂y
+ ∂v
∂x

)]
− (1− ρi/ρo)ρigh

∂h
∂x
= 0, (2.1c)

∂

∂x

[
ηh
(
∂u
∂y
+ ∂v
∂x

)]
+ ∂

∂y

[
2ηh

(
∂u
∂x
+ 2

∂v

∂y

)]
− (1− ρi/ρo)ρigh

∂h
∂y
= 0, (2.1d)

(see MacAyeal 1989, for example), where u(x, y, t)= (u, v) is the vertically uniform
ice velocity, η the effective viscosity, g the gravitational acceleration and m is the
basal melt rate (volume of water melted per unit area, per unit time). The gradient
∇ = (∂/∂x, ∂/∂y) is a two-dimensional operator. For the commonly used Glen’s law
ice rheology, η is a function of the strain rate, but for this paper we treat the ice as
Newtonian so the viscosity is constant.

The ice depth and velocity are assumed known at the grounding line and, as
mentioned previously, the ice depth is zero at the front, so boundary conditions are

h= hg, u= ugex at x= 0, (2.2a,b)
h= 0 at x= X, (2.3)

where hg(y) and ug(y) may in general vary with the transverse coordinate y. Aside
from requiring the velocity to be bounded, boundary conditions on the velocity
components at x=X are not required due to the degeneracy of the stress components
resulting from h= 0.

2.2. Melting
Melting is determined through the balance of heat transferred to and from the ice–
ocean interface. Following previous authors (e.g. Jenkins, Nicholls & Corr 2010), we

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

60
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.609


Channelization of plumes beneath ice shelves 113

parameterize the turbulent heat transfer as proportional to the temperature difference
and velocity of the plume,

mL= cγT |U|(T − Tm). (2.4)

Here L is the latent heat, c is the specific heat capacity of the ocean water, γT is
a constant dimensionless heat transfer coefficient and U and T are the velocity and
temperature of the plume (i.e. outside an interfacial viscous and diffusive boundary
layer). In (2.4) we have assumed that the ice-shelf temperature is already close to the
melting temperature Tm, and so ignore conduction into the ice; the effect of colder
ice can be effectively included in (2.4) as a small correction to the latent heat (e.g.
Jenkins 2011; Wells & Worster 2011).

If the salinity dependence of the melting point were included one would need, in
addition to (2.4), to model the salinity at the interface; a number of parameterizations
have been developed for this in the context of both ice shelves and sea ice (McPhee,
Morison & Nilsen 2008; Jenkins et al. 2010).

2.3. Plume model
For typical temperature and salinity variations near an ice shelf, the primary control
on density is the salinity (with thermal expansion coefficient βT = 3.87 × 10−5 K−1,
βS = 7.86 × 10−4 psu−1 (Jenkins 2011), and with typical temperature and salinity
differences given in table 1, the percentage changes in density due to temperature
and salinity changes are ∼0.01 % and ∼3 %, respectively). We therefore neglect
thermal expansion and take the density difference between the ambient ocean and the
plume as

ρa − ρ = ρoβSS∆, S∆ = Sa − S. (2.5)

Here ρa and ρ are the density of the ambient ocean and plume water, respectively,
ρo is the reference density, βS the haline contraction coefficient and S∆ is the salinity
deficit of the plume water from the ambient salinity Sa.

Conservation of mass, momentum, salt and heat in the plume are expressed as

∇ · (DU)= e+m, (2.6a)

∇ · (DUU)=DgβSS∆

(
∂b
∂x
− ∂D
∂x

)
+∇ · (κD∇U)−Cd|U|U (2.6b)

∇ · (DUV)=DgβSS∆

(
∂b
∂y
− ∂D
∂y

)
+∇ · (κD∇V)−Cd|U|V (2.6c)

∇ · (DUS)= eSa +∇ · (κD∇S)+mSi, (2.6d)

∇ · (DUT)= eTa +∇ · (κD∇T)+mTm − mL
c
. (2.6e)

Here e is the rate of entrainment of ambient water into the plume, κ is a turbulent
eddy diffusivity and eddy viscosity (assumed equal for simplicity), Cd is a constant
turbulent drag coefficient, Si (≈ 0) is the salinity of the ice and Ta is the ambient
ocean temperature. The formulation of turbulent stresses follows that of Holland
et al. (2007), Payne et al. (2007) and Gladish et al. (2012). One could potentially
argue for alternative formulations of these terms, either with D moved inside the final
derivative or with mixed-derivative terms that echo the viscous stretching terms in
(2.1c,d). Under the approximations made below, such alternative formulations would
make no difference to our results.
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Variable Description Value Source

ρo Reference water density 1030 kg m−3 Common
ρi Ice density 916 kg m−3 Common
g Gravity 9.8 m s−2 Common
L Latent heat of fusion 3.35× 105 J kg−1 Common
c Specific heat of water 3.98× 103 J kg−1 K−1 Common
E0 Entrainment coefficient 0.036 [J11]
βS Haline contraction coefficient 7.86× 10−4 psu−1 [J11]
Cd Turbulent drag coefficient 2.5× 10−3 [J11]
γT Thermal transfer coefficient 5.7× 10−5 See caption
κ Turbulent diffusivity 10–100 m2 s−1 Representative value
η Ice viscosity 2.6× 1013 Pa s Representative value

u0 Ice velocity scale 1000 m yr−1 [RS08]
h0 Ice thickness scale 600 m [RS08]
x0 Length scale 11 km (1 km) See caption
t0 Time scale 11 yr (1 yr) Before (2.9)
m0 Melt rate scale 18 m yr−1 (2.10)

Qg0 Subglacial discharge scale 10−2 m2 s−1 Representative value
D0 Plume thickness scale 22.6 m (2.11)
U0 Plume velocity scale 0.42 m s−1 (2.10)
Ta–Tm Temperature forcing 2 K [RS08]
Sa Ambient salinity 34.5 psu [RS08]

r Density ratio 1.12 (1.12) (2.9)
γ Dimensionless stretching rate 1 (0.09) (2.9)
λ Dimensionless melt rate 0.37 (0.034) (2.9)
ν Dimensionless eddy diffusivity 0.0022–0.022 (0.024–0.24) (2.12)
δ Dimensionless buoyancy correction 0.036 (0.036) (2.12)
εg Subglacial flux/entrained flux 1.1× 10−3 (1.1× 10−3) (2.12)
εm Subshelf melt/entrained flux 6.9× 10−4 (6.3× 10−5) (2.12)
µ Dimensionless drag coefficient 1.27 (0.12) (2.12)
β Inverse Stefan number 0.024 (0.024) (2.12)

TABLE 1. Parameters, scales and non-dimensional variables used in this paper, roughly
based on observation of the high-melt region downstream of the grounding line of
Petermann Glacier. [J11] refers to Jenkins (2011) and [RS08] refers to Rignot & Steffen
(2008). The length scale x0 is chosen such that γ = 1 in (2.9). Alternatively, the smaller
length scale x0 = 1 km gives rise to the parameter values in parentheses. The thermal
transfer coefficient γT is chosen to be consistent with an observed melt rate of 18 m yr−1

for the Petermann glacier (Rignot & Steffen 2008), given (2.10) and the value Qg0 of the
subglacial melt flux.

The plume volume flux increases downstream due to entrainment of ambient fluid
and addition of meltwater according to (2.6a). Similar balances describe conservation
of salt in (2.6d) and conservation of heat in (2.6e) but with the addition of a
thickness-weighted eddy diffusion. The turbulent heat flux from the plume to the
ice has been eliminated using (2.4) giving rise to the final term in (2.6e). The three
acceleration terms on the right-hand side of (2.6b) and (2.6c) are due to the action of
buoyancy forces, thickness-weighted eddy viscosity and interfacial drag, respectively.
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Channelization of plumes beneath ice shelves 115

The buoyancy forces are determined by the slope of the lower plume interface
z = b − D (figure 1), so include both the slope of the ice base and the gradients of
the plume thickness. The latter are small, but are included for their possible role in
stabilizing transverse perturbations. Entrainment is parameterized as proportional to
the magnitudes of velocity and basal slope, (e.g. Jenkins 2011)

e= E0|U||∇b|, (2.7)

where E0 is a dimensionless entrainment constant.
Turbulent diffusion in the x direction will shortly be neglected and we therefore

impose plume boundary conditions only at the grounding line x = 0 (we make the
implicit assumption that U2 > DgβSS∆ so that the plume flow is supercritical in
the language of shallow water theory, else a condition would be required at the
downstream boundary, e.g. Stoker 1957). Conditions for fresh subglacial discharge
are

DU =Qg, U =Ugex, S= 0, T = Tm, at x= 0, (2.8a−d)

where Qg(y) and Ug(y) are the flux (in m2 s−1) and velocity of the outflow across the
grounding line, respectively, which may in general vary with the transverse coordinate.

2.4. Non-dimensionalization
To reduce the model to a minimal set of parameters we proceed to non-dimensionalize
the variables. Depth and velocity scales for the ice flow, h0 and u0, are chosen based
upon typical ice-shelf depths and speeds, and given a suitable horizontal length scale
x0 (discussed below), the time scale is taken as t0 = x0/u0. The melt-rate scale m0

is determined below from the plume dynamics, and the ice-shelf model then depends
upon three dimensionless parameters (see § 2.5)

r= ρo

ρi
, γ = (1− ρi/ρo)ρigh0x0

8ηu0
, λ= ρom0x0

ρih0u0
. (2.9a−c)

Here r is the density ratio, γ measures the strength of gravitationally-driven stretching,
and λ measures the strength of melting in the ice-shelf mass balance (2.1b). Two
natural choices of length scale x0 would be such that γ = 1 (with x0 representing
the length scale over which the ice thickness changes), or such that λ = 1 (with x0

representing the length scale of the ice shelf).
To estimate the size of terms in the plume, we take a typical size of subglacial

discharge Qg0. This determines a driving buoyancy flux Qg0gβSSa, which gives rise to
natural scales for the plume velocity and melt rate

U0 =
(

Qg0gβSSa

E0

)1/3

, m0 = cγTU0(Ta − Tm)

L
. (2.10a,b)

The conservation equations further suggest appropriate scalings for the plume
thickness D, salinity deficit S∆ and temperature deficit, which we define as
T∆ = Ta − T . These scalings are

D0 = E0h0, S∆0 = Qg0Sa

D0U0
, T∆0 = γTx0

D0
(Ta − Tm). (2.11a−c)
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Upon adopting these scalings, the plume model is found to depend on the following
dimensionless parameters (see § 2.5 below):

ν = κ

U0x0
, δ = D0

h0
(= E0), εg = Qg0

D0U0
, (2.12a−c)

εm = m0x0

D0U0
, µ= Cdx0

D0
, β = c(Ta − Tm)

L
. (2.12d−f )

Here ν is the dimensionless eddy diffusivity and δ represents the size of the
plume-thickness correction to the buoyancy term; both are typically small and
will henceforth be retained only when multiplying y derivatives, to account for
their possible smoothing effect on transverse perturbations. The parameters εg and εm

represent the size of the subglacial discharge and subshelf meltwater flux, respectively,
relative to the entrained flux. Both of these ratios tend to be small, but these fluxes
make important contributions to the buoyancy and temperature. Finally, µ is the
dimensionless drag coefficient and β is the inverse Stefan number.

Representative values of these parameters are estimated in table 1 for two different
choices of length scale. We base our calculations on the values obtained by taking
x0 to be the natural stretching length scale of the ice shelf, such that γ = 1 in (2.9)
and the one-dimensional ice shelf has a dimensionless slope of order unity near the
grounding line. However, we anticipate that our analysis is most appropriate over
shorter length scales (we are primarily interested in the development of channels
just downstream of the grounding line) so we use parameter estimates on a shorter
length scale x0= 1 km to further simplify the model in § 2.6. The neglect of ambient
temperature stratification and pressure dependence of the freezing point are likely to
be good approximations at this shorter length scale.

2.5. Non-dimensional model
The non-dimensional model is summarized here, with all subsequent variables
henceforth corresponding to dimensionless versions of their earlier dimensional
counterparts. Equations for the ice shelf are

∂h
∂t
+ ∂

∂x
(hu)+ ∂

∂y
(hv)=−λm, (2.13a)

∂

∂x

[
2h
(

2
∂u
∂x
+ ∂v
∂y

)]
+ ∂

∂y

[
h
(
∂u
∂y
+ ∂v
∂x

)]
− 8γ h

∂h
∂x
= 0, (2.13b)

∂

∂x

[
h
(
∂u
∂y
+ ∂v
∂x

)]
+ ∂

∂y

[
2h
(
∂u
∂x
+ 2

∂v

∂y

)]
− 8γ h

∂h
∂y
= 0, (2.13c)

with

b=−h/r, m= |U|
(

1− εm

β
T∆

)
. (2.14a,b)

The reduced equations for the plume are

∇ · (DU)= |U||∇b| + εmm, (2.15a)

∇ · (DUU)=DS∆
∂b
∂x
+ ν ∂

∂y

(
D
∂U
∂y

)
−µ|U|U, (2.15b)
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∇ · (DUV)=DS∆

(
∂b
∂y
− δ ∂D

∂y

)
+ ν ∂

∂y

(
D
∂V
∂y

)
−µ|U|V, (2.15c)

∇ · (DUS∆)= εm

εg
m+ ν ∂

∂y

(
D
∂S∆
∂y

)
, (2.15d)

∇ · (DUT∆)= βm+m+ ν ∂
∂y

(
D
∂T∆
∂y

)
. (2.15e)

The last two equations for salinity and temperature deficits, S∆ and T∆, respectively,
are obtained by subtracting Sa and Ta times the mass equation (2.6a) from (2.6d) and
(2.6e) for S and T , and then non-dimensionalizing.

The non-dimensional boundary conditions are

h= hg, u= ugex, at x= 0, (2.16a,b)

DU = εgQg, U =Ugex, S∆ = 1/εg, T∆ = β/εm, at x= 0, (2.16c−f )

and
h= 0, at x= X. (2.17)

The boundary values hg, ug, Qg and Ug, which may depend on the transverse
coordinate y, have been scaled with h0, u0, Qg0 and U0, respectively.

2.6. Simplification
The problem stated in § 2.5 could be solved numerically to determine the coupled
evolution of ice shelf and plume. Indeed, the studies of Gladish et al. (2012) and
Sergienko (2013) solved similar sets of equations with a number of additional terms.
Since our purpose is to gain a more detailed understanding of the processes and
parameter dependencies, we take a different approach that forces us to make some
further simplifications at this point.

Specifically, we wish to study the channelization of an otherwise y-independent
state due to perturbations at the grounding line, and for this purpose it is highly
advantageous to have an analytical one-dimensional solution. Such a solution can be
found if one assumes that the buoyancy source is dominated by subglacial discharge
rather than by melting from the shelf, that the entrained ambient water provides
the plume with a large thermal inertia compared to heat transfer at the ice–ocean
interface and if one ignores turbulent drag. Mathematically, this corresponds to taking
the asymptotic limits

εm� εg, εm� β� 1, µ� 1. (2.18a−c)

Although not necessary to obtain an analytic solution, we also take the limit εg� 1.
Under these assumptions, the plume mass is dominated by the entrained flux, and the
buoyancy flux is dominated by the initial grounding-line source (εm � εg � 1); the
subshelf meltwater does not have an appreciable effect on plume temperature (εm�β);
and the drag does not affect the velocity (µ� 1).

As seen in the next section, the solution for the plume in this limit becomes
remarkably simple. However, the neglect of some of these terms is hard to reconcile
with the estimates in table 1, where µ is not small and εm is barely less than
εg. Nevertheless, we justify studying this limit on three counts: firstly, the need
to make some simplification in order to make headway; secondly, because the
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essential dynamics driving channelization are still encapsulated; and thirdly and most
significantly, because this limit gives a good approximation to the full behaviour
relatively close to the grounding line, where channelization is most likely to occur.
This can be seen by comparing with solutions to the full system, or by estimating the
dimensionless parameters based on the smaller length scale x0, shown in parentheses
in table 1. The buoyancy source from subshelf melting and the effect of turbulent
drag have an increasingly important effect along the length of the shelf, but in reality,
other factors that we have already neglected also come into play on that larger scale,
such as the ambient stratification, Coriolis forces and iceberg calving.

We adopt the limits (2.18) for the remainder of this study. Essentially, this means
neglecting all terms in εm, εg, β and µ in (2.14), (2.15), and (2.16), although some
care is required to correctly account for the boundary conditions. Terms in ν and δ
are retained for their possible stabilizing influence on perturbations.

3. One-dimensional steady state
Taking the limits (2.18), and assuming independence of the transverse coordinate

y, the buoyancy forcing and the entrainment parameterization in (2.15) are both
proportional to the slope ∂b/∂x. This allows the plume equations to be solved as a
function of depth z= b(x), independent of the actual shape of the interface. Moreover,
with εm= 0, the equation for the temperature deficit (2.15e) decouples from the other
plume equations. To simplify the analysis below, we define the buoyancy B = DS∆.
Changing variables according to

∂

∂x
= ∂b
∂x

∂

∂z
, (3.1)

the dimensionless plume equations (2.15), with εm =µ= β = 0, are

∂

∂z
(DU)=U,

∂

∂z
(DU2)= B,

∂

∂z
(BU)= 0, (3.2a−c)

representing increase of the mass flux by entrainment, a momentum balance between
changing inertia of the plume and the buoyancy force, and conservation of the along-
slope buoyancy flux. The boundary conditions are

DU = εgQg, U =Ug, B=Qg/Ug, at z= b(0). (3.3a,b)

For εg= 0, the equations (3.2) are satisfied by constant velocity and buoyancy, and
increasing plume thickness, that is

D= z− b(0)= (hg − h(x))/r, U =Q1/3
g , B=Q2/3

g , (3.4a−c)

recalling that z= b(x)=−h(x)/r. This does not satisfy the boundary conditions on the
velocity or the buoyancy. However, the εg→ 0 limit is singular; there is a boundary
layer with width of order εg in which these conditions are satisfied, and the solution
converges to (3.4) outside this boundary layer. In fact, an implicit solution to the
system (3.2) with conditions (3.3) can be derived by finding U in terms of Q=DU,
then substituting into the equation for ∂Q/∂z and integrating. One obtains B=Qg/U,
and

U = Q1/3
g (ε3

gU3
gQ2

g − ε3
gQ3

g +Q3)1/3

Q
, z− b(0)=

∫ Q/Qg

εg

Q2/3
g q

(ε3
gU3

g/Qg − ε3
g + q3)1/3

dq.

(3.5a,b)
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0 0.5 1.0 1.5 2.0

−0.8

−0.6

−0.4

−0.2

0

Q U

Q, U

z
Eq. (3.4)

FIGURE 2. (Colour online) The solution (3.5) for plume flux Q = DU and velocity U,
versus depth z = b, for εg = 0.05 (larger than in table 1 so as to make the boundary
layer visible) and Qg= 1. Regardless of the subglacial discharge velocity Ug, the velocity
converges to U = 1 outside of an order εg boundary layer, and the flux is close to the
linear solution in (3.4) (it does not converge exactly to that solution as there is an order
εg correction which grows with z; for smaller εg the dashed lines are much closer to the
solid line).

Some examples of this solution are shown in figure 2, for different Ug. As εg→ 0,
the solutions converge to that given by (3.4). For the rest of the paper, we take the
limit εg→ 0, and use the simple solution (3.4). As a result, we replace the boundary
condition (3.3) with matching conditions to the boundary layer as x→ 0, and hence
z→ b(0). These are

D= 0, U =Q1/3
g , B=Q2/3

g , at x= 0. (3.6a−c)

With these approximate plume dynamics, the dimensionless melt rate m=U =Q1/3
g

is constant and scales with the one-third power of the subglacial discharge (cf. Jenkins
2011). It is interesting to note here that it is the subglacial flux Qg that is important;
the prescribed subglacial discharge velocity Ug is only important within the very
narrow boundary layer near the grounding line. Strictly, the melt rate also exhibits
this order εg wide boundary layer; since T∆(0) = β/εm the melt rate (2.14) is zero
at x= 0, but (2.15e) for T∆ implies that it decays at a rate proportional to 1/Q and
so 1/εg. Outside of the boundary layer, T∆ drops out of (2.14) for melt rate under
the limit εm � β. The physical interpretation here is that the plume temperature is
dominated by entrainment and hence lies close to the ambient temperature Ta. The
melting is therefore driven by the constant difference Ta− Tm from the melting point.

Furnished with this constant melt rate m = Q1/3
g , the equations for the steady one

dimensional steady ice shelf (2.13) may also be solved exactly. Taking Qg = 1 (as
we are permitted in one dimension, given the non-dimensionalization), the mass and
momentum equations for the ice flow reduce to

∂

∂x
(hu)=−λ, ∂

∂x

(
h
∂u
∂x

)
− 2γ h

∂h
∂x
= 0. (3.7a,b)

Again, by the choice of scales we may take hg = ug = 1, so that h(0) = u(0) = 1,
and h(X)= 0. These are readily integrated to find (e.g. MacAyeal 1989)

X = 1
λ
, u= (1+ γX − γX(1− x/X)2)1/2, h=

(
(1− x/X)2

1+ γX − γX(1− x/X)2

)1/2

,

(3.8a−c)
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0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
−1

0

1

Velocity u

Surface s

Base b

x

FIGURE 3. (Colour online) Explicit solutions (3.8) for the non-dimensional base-state
surface s and basal elevation b=−h/r (ice thickness h= h(x)= s− b) and ice velocity
u= u(x), for dimensionless melt rates λ= 0.5, 1, 2, and γ = 1.

which are plotted in figure 3. The non-dimensional length of the ice shelf is controlled
by the parameter λ which measures the importance of basal melting relative to
stretching.

4. Linearized perturbations
4.1. Perturbed equations

We now reintroduce the transverse coordinate y and study two-dimensional perturbations
from the one-dimensional state found above. Assuming small amplitude perturbations
and steady state in time, we derive a linear system of equations and boundary
conditions for their amplitude as a function of along-shelf distance x, and use this in
§ 5 to analyse the downstream development of transverse variability at the grounding
line. This is not a temporal linear stability analysis; rather, we are interested in
the growth or decay of perturbations as x increases. In appendix B, we analyse
an equivalent time-dependent problem, finding no evidence of temporal instability
arising from global perturbations in the initial condition in the absence of boundary
perturbations at the grounding line.

We look for steady solutions to (2.13) and (2.15) in the form

h(x, y)= h(x)+ h̃(x)eiky, (4.1)

with a similar expansion for each of the variables. Here, h(x) denotes the steady
solution from (3.8), h̃(x) the x dependence of the perturbation (to be solved for) and
k is the transverse wavenumber. Similar notation is used for the other variables. A
perturbation with more general y dependence could be written as a superposition of
such Fourier mode solutions.

The equations are again simplified by treating buoyancy B = DS∆ as a single
variable. We also subtract the linearized version of the equation for mass (2.15a)
from that for momentum (2.15b). From (2.13) and (2.15) the linearized corrections
to the base state satisfy

(h̃u+ hũ)′ + ikhṽ =−λŨ, (4.2a)
2[h(2ũ′ + ikṽ)+ 2h̃u′]′ + ikh(ikũ+ ṽ′)− 8γ (hh̃)′ = 0, (4.2b)

[h(ikũ+ ṽ′)]′ + 2ikh(ũ′ + 2kiṽ)+ 2ikh̃u′ − 8γ ikhh̃= 0, (4.2c)
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and

UD̃′ +DŨ′ + ikDṼ + r−1Uh̃′ = 0, (4.2d)

DUŨ′ + (2D′U + νk2D)Ũ + r−1h
′
B̃= 0, (4.2e)

DUṼ ′ + (D′U + νk2D)Ṽ + ikr−1Bh̃+ δikBD̃= 0, (4.2f )

BŨ′ +UB̃′ + ikBṼ + νk2B̃− νk2D−1BD̃= 0, (4.2g)

respectively (where primes denote a derivative with respect to x). In (4.2) we have
used U = B = 1 are constant, but have retained them for easier interpretation of the
physical meaning of each term. We have also used b=−r−1h, changing basal elevation
to total ice thickness. There is no need to include an equation for the temperature
deficit correction as its effect on the melt rate (2.14) is small; the cause of variable
heat transfer is due to variable plume velocity, rather than temperature.

4.2. Boundary conditions for perturbations
Boundary conditions for the linearized equations follow from the original conditions
(2.16a–f ). Having made the approximation εg→ 0, however, the latter conditions on
the plume variables are now replaced with the matching conditions (3.6a−c). (Strictly
speaking, the use of these matching conditions assumes a certain asymptotic ordering
between the smallness of εg and the size of the linear perturbations; we do not concern
ourselves with this detail.)

We allow for perturbations in the grounding-line ice thickness and subglacial
discharge in the form hg = 1 + h̃geiky, Qg = 1 + Q̃geiky, while supposing there are no
perturbations to the ice velocity there. Thus the necessary conditions are

h̃(0)= h̃g, ũ(0)= 0, ṽ(0)= 0, (4.3a−c)

B̃(0)= B̃g ≡ 2
3 Q̃g, D̃(0)= 0, Ũ(0)=Ug ≡ 1

3 Q̃g. (4.4a−c)

It might be of concern that there are only six conditions here, whilst the linearized
system (4.2) is of ninth order (i.e. (4.2b,c) are both second order, while the other five
equations are first order). This is again due to the singular nature of the problem: in
(4.2), the highest derivatives of the ice velocity components are multiplied by the base-
state ice thickness h, which is zero at the right-hand boundary x = X; and similarly,
the derivatives of the plume velocity components are multiplied by plume thickness
D, which is zero at the left-hand boundary x = 0. As is common for such singular
boundary value problems, effective conditions are provided by demanding that the
system be satisfied and variables remain bounded at the boundary. In this case, these
consistency conditions are

2ũ′(X)+ ikṽ(X)= 2γ h̃(X), ikũ(X)+ ṽ′(X)= 0, Ṽ(0)=− ikh̃g

λ+ γ , (4.5a−c)

where we have used u′ = γ h, and h
′
(0)=−(λ+ γ ) from the base solution (3.8).

Finally, the end condition (2.17) is linearized to find the perturbation X̃ in the length
of the shelf. Inserting the expansion X ∼ X + X̃eiky into the perturbed form for h in
(4.1), and expanding as a Taylor series, the condition h= 0 at x= X becomes

h̃(X)+ h
′
(X)X̃ = 0, (4.6)
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where h̃(X) is determined from the solution to (4.2). Hence

X̃ =− h̃(X)

h
′
(X)

. (4.7)

Physically, this simply expresses the fact that where the ice thickness has been locally
decreased (in a channel), the shelf would be shorter, and vice versa.

5. Boundary-driven instabilities
5.1. Perturbations in grounding line thickness: numerical results

In this section we look for steady-state perturbations of the form (4.1) forced by
an ice-thickness perturbation h̃g at the grounding line, and we establish the effects
of ice deformation, plume dynamics and transverse diffusion, for different transverse
wavenumbers k.

Numerical solution of the linearized system (4.2) is described in appendix A.
Figure 4 shows an example solution for the perturbations in ice thickness h̃, and
plume velocity Ũ for transverse wavenumber k= 10. Also plotted in panel (e) are the
thickness and plume velocity perturbations in the (x, y) plane, over two wavelengths.
This example solution exhibits the typical behaviour of the system (4.2). From the
grounding line, perturbations in thickness h̃ initially decay due to ice deformation, but
as transverse flow Ṽ concentrates fresher, more buoyant water into the channels, the
increased along-channel velocity Ũ increases heat transfer into the channels, thereby
leading to an increase in the perturbation of ice thickness (i.e. enhanced ice thinning).
This positive feedback loop is moderated by the effects of diffusion in the transverse
direction.

To further understand the importance of each effect, we compute the solution of
(4.2) over a range of wavenumbers k and parameter values, comprising the following
three cases:

(i) ice deformation in the absence of plume dynamics ((4.2a–c) are solved alone,
with Ũ = 0);

(ii) coupled perturbation of ice and plume, with eddy diffusivity neglected (ν = 0);
(iii) coupled perturbation of ice and plume, with eddy diffusivity included.

In each case, we assume a unit perturbation in the ice thickness at the grounding
line and use the value λ= 0.37. For the latter two cases, we also explore the effect
of including or excluding the buoyancy correction term δ.

The results of the numerical calculations for each of these cases are displayed in
figure 5. The dependence of the thickness perturbation h̃ on both downstream distance
x and transverse wavenumber k is important, so we plot the x dependence for a given
wavelength (k= 10), and the k dependence (that is, the power spectrum) for a given
position x. The midway point x = X/2 ≈ 1.4 is chosen for this purpose. Using the
values in table 1, this corresponds to a distance approximately 15 km downstream of
the grounding line, comparable in scale to the high-melt region under the Petermann
ice tongue (Rignot & Steffen 2008).

The effect of ice deformation in isolation, depicted in figure 5, is to cause
perturbations to decay downstream from their grounding-line value. This decay
rate, however, is largely independent of wavenumber k, and does not provide
sufficient smoothing to prevent channelization when the plume dynamics are included.
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FIGURE 4. (Colour online) A typical numerical solution to the linearized problem
(4.2) for the magnitude of perturbations to (a) the ice thickness h̃, (b) ice velocity
components (ũ, ṽ), (c) plume velocity components (Ũ, Ṽ) and (d) buoyancy B̃ for
transverse wavenumber k=10, given an initial perturbation h̃g=1, B̃g=0. (e) Ice thickness
perturbation in the (x, y) plane, with the plume velocity perturbation overlaid as directed
streamlines. The flow is concentrated into the channels (darker regions). Parameters are
λ= 0.37, γ = 1, ν = 0.02, δ = 0.036.

In that case, but without including eddy diffusion (ν = 0), perturbations grow rapidly
downstream, and the amplitude increases with increasing k (we show below that the
growth is exponential in k1/2 as k→∞).
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FIGURE 5. (Colour online) Numerical computation of the amplitude of a kth mode
perturbation, given a unit amplitude at the grounding line and fixed parameters λ= 0.37,
γ = 1: (a) the evolution along the ice shelf, for a given wavenumber k= 10, for various
values of buoyancy correction term δ and eddy diffusivity ν, as indicated by solid-dashed
lines and symbols respectively; (b) the magnitude of perturbations at a given position
x=X/2, showing unbounded growth as k→∞ for ν= 0, while the inclusion of diffusion
smooths out high wavenumber perturbations, leading to a selected wavenumber kmax where
the amplitude is largest (values of δ and ν are the same and indicated in the same
manner as in (a)); (c) the numerical and WKB approximation (5.3), with ν = δ= 0, grow
exponentially in k1/2 as k→∞; (d) numerically computed values of the wavenumber kmax
for positive ν, asymptotically fit a −2/3 power-law as ν→ 0, as shown on a logarithmic
scale. The coefficient α = 0.91 is determined by fitting a power law to the two smallest
values of ν.

The inclusion of the eddy diffusivity ν = 0.02 has the effect of smearing
short wavelength features, and thus limits the development of high wavenumber
perturbations. The amplitude is maximised for a certain value kmax, and decreases for
larger k (smaller wavelengths). As k → ∞, the mode amplitude tends toward that
given purely by the ice deformation. For a smaller value ν = 0.002, the preferentially
selected wavenumber kmax is larger, and the peak amplitude is an order of magnitude
larger. Note that the value of kmax depends slightly on the value of x at which the
amplitude is measured; we always measure it at x= X/2 for consistency.

Our final numerical experiment regards the thus far neglected buoyancy correction
term proportional to δ. While the inclusion of this term moderates the amplitude of
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perturbations, it does not prevent the unbounded growth for large k. The numerical
results for δ= 0.036 are included in figure 5 for each of the previous values of ν; it
does not qualitatively affect the behaviour.

5.2. Asymptotic results for large k
These numerical results may be understood in light of the asymptotic behaviour of the
system (4.2) in the limit that wavenumber k is large. From the two stress equations
for the ice flow (4.2b,c), the ice velocity components ũ and ṽ must be of order k−2h̃
and k−1h̃, respectively. This is consistent with the magnitudes seen in the numerical
solution plotted in figure 4 for k= 10. Combining (4.2a) and (4.2c) results in

uh̃′ + (2γ h+ 1
2 u′)h̃= uh̃′ + 5

2 u′h̃=−λŨ +O(k−1), k→∞, (5.1)

where we have used u′ = γ h from the base state solution (3.8). The first term on
the left-hand side represents the advection of ice thickness by the background flow,
while the second term represents decay of perturbations due to both transverse flow
(the h term) and stretching (the u′ term). At leading order, these contributions balance
plume-driven melting (the −λŨ term). For large k, (5.1) may therefore be used in
place of (4.2a–c).

In the absence of plume dynamics, that is, the first case discussed in the previous
subsection, Ũ = 0 and (5.1) may be integrated to give

h̃(x)∼ h̃gu(x)−5/2, k→∞. (5.2)

Although not shown, this formula agrees with the numerical solution (marked ‘ice’)
in figure 5 when k is large, being within 10 % of the numerical solution when k> 6,
and within 1 % when k & 60. As observed in the numerical solution, the perturbation
decays as the base-state ice velocity u increases (see figure 3), but this decay rate
is asymptotically independent of k and so does not preferentially smooth out high
wavenumber perturbations. Thus, at leading order, the viscous stretching damps all
perturbations equally.

Next we include the plume dynamics with no eddy diffusivity or buoyancy
correction term (ν = δ = 0). The unbounded growth depicted in figure 5 is
explained by again taking the large k limit. We carry this out by assuming a
WKB (Wentzel–Kramers–Brillouin) ansatz, in which each variable is supposed to
have exponential dependence on some function of x and a power of k, so that
differentiation increases a term’s order in k. The determination of dominant balances
in (4.2d–g) shows that Ũ and Ṽ must be of order k1/2h̃, while B̃ and D̃ are of order
kh̃. The exponent in the WKB expansion, and thus differentiation, is of order k1/2.
Details of the full WKB analysis are included in appendix C. The process is similar
to that routinely performed on second-order problems, although the application of
boundary conditions is hampered by the the existence of an order k−1 boundary layer
near x= 0 due to the singular nature of the system (4.2d–g). The final result is that

h̃(x)∼ h̃gAhk−3/4H(x) exp(k1/2C(x)), k→∞, (5.3a)

where the functions H and C, and constant Ah are given by

C(x)=
∫ x

0

(
−λh′

u(1− h)2

)1/4

dx, H(x)= (−h
′
)1/8

u(1− h)3/4
, Ah ≈ 0.28λ−3/8(γ + λ).

(5.3b−d)
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This result is only valid outside the boundary layer near x = 0, as described in
appendix C. Most important to note is that the exponent is proportional to k1/2 and,
roughly, to x1/2, indicating that the perturbation grows exponentially as x increases
downstream (note that the integrand in C(x) scales as x−1/2 as x→ 0, so the integral,
while improper, is defined). In figure 5(c) we plot the numerical and asymptotic
solutions for fixed x = X/2 against k1/2, with the exponential dependence manifest
as a straight line when the h̃ axis is scaled logarithmically. While the numerical and
asymptotic solutions are distinguishable (the first neglected term in the expansion of
H(x) in (5.3b−d) is order k−1/2), it is clear that the exponential dependence on k1/2

has been faithfully captured.

5.3. Channelizing mechanism
The asymptotic analysis presented above also provides a way to understand the
positive feedback loop that causes the channelizing instability. By carrying out the
WKB analysis described in appendix C, the dominant terms in each equation of the
plume model (4.2d–g) are found to be

UD̃′ ∼−ikDṼ (5.4a)

DUŨ′ ∼−r−1h
′
B̃ (5.4b)

DUṼ ′ ∼−ikr−1Bh̃ (5.4c)
UB̃′ ∼−ikBṼ. (5.4d)

In the third balance (5.4c), the buoyancy force resulting from transverse thickness
variability (ikr−1Bh̃) accelerates fluid in the transverse direction (DUṼ ′), driving flow
up into the channels. The fourth balance (5.4d) then shows that the buoyancy carried
by the increased transverse flow (ikBṼ) has the effect of focusing buoyancy as x
increases (UB̃′). In the second balance (5.4b), the increased buoyancy in channels
(−r−1h

′
B̃) accelerates the fluid in the along-channel direction (DUŨ′). The increased

velocity then increases the melt rate, which enlarges the perturbations in thickness
according to (5.1), and completes the positive feedback loop. The first balance (5.4a)
simply describes the impact of transverse flow on increasing or decreasing local plume
thickness, which does not play a dominant role in the channelizing instability.

5.4. Influence of eddy diffusivity
We do not attempt a similar WKB analysis of the system (4.2) with ν 6= 0, which
becomes rather involved. However, given the large k scalings of the terms in (4.2e–g)
obtained above, it can be seen that the diffusion terms become of the same order as
the dominant terms in each equation when k2ν=O(k1/2). Thus diffusion will dominate
if k3/2ν� 1, and we expect the maximum amplitude wavenumber to be related to the
diffusivity by

kmax ∼ αν−2/3, ν→ 0, (5.5a)

for some constant α. We verify (5.5a) using the numerical solutions and an
optimization algorithm to find kmax (see figure 5d). The comparison also gives us
a numerical approximation of the factor α (for the given λ = 0.37, γ = 1, and
x= X/2) of

α ≈ 0.91. (5.5b)
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FIGURE 6. (Colour online) Numerical computation of the amplitude of a kth mode
perturbation in ice thickness h̃ given a unit amplitude perturbation in the buoyancy B̃g=−1
and no thickness perturbation h̃g = 0 at the grounding line: (a) amplitude versus distance
x for k = 10 for various values of buoyancy correction term δ and eddy diffusivity
ν, as indicated by solid-dashed lines and symbols respectively; (b) amplitude versus
wavenumber k for midpoint x = X/2 (values of δ and ν are the same and indicated in
the same manner as in (a)). Eddy diffusion with ν = 0.02 is sufficient to dominate even
at relatively small wavenumbers, so no selected wavenumber kmax arises in that case.

For ν = 0.02 (corresponding to a dimensional eddy diffusivity κ = 100 m2 s−1),
this results in a selected wavenumber kmax ≈ 12. Returning to the dimensions used
in table 1, this corresponds to a wavelength of approximately 6 km, close to the
∼5 km spacing observed on Petermann Glacier. An order of magnitude decrease in
the diffusivity ν = 0.002 (κ = 10 m2 s−1) leads to a selected wavenumber kmax ≈ 54,
or a wavelength of approximately 1 km.

5.5. Perturbations in the buoyancy flux

One can also consider grounding-line perturbations in the subglacial discharge Q̃g

or equivalently buoyancy B̃g. We perform the same numerical experiments as the
previous section calculating the amplitude of a kth mode perturbation at x = X/2,
taking B̃g=−1 (the sign is reversed so that the ice thickness perturbation has the same
sign as the previous subsection for comparison). As before, we consider diffusion-free
perturbations before adding in diffusion. The results are plotted in figure 6.

The perturbation in h̃ still increases exponentially in k1/2 in the absence of diffusion,
although the prefactor is an order of k smaller than when the grounding-line thickness
is perturbed directly. The addition of diffusivity ν = 0.02 as in table 1 is sufficient
to suppress the increase with k completely, while for intermediate values of ν a
preferentially selected wavelength kmax does appear.

The smaller size of the developing ice-thickness perturbation compared to the case
of imposed thickness changes at the grounding line is revealed in the large k WKB
approximation. As seen in appendix C the asymptotic behaviour in this case is

h̃(x)∼−B̃gABk−7/4H(x) exp(k1/2C(x)), k→∞, (5.6)

where H and C are the same as in (5.3b−d), and AB≈ 0.21λ1/8(λ+ γ )3/2. The power
of k on the prefactor in (5.6) is one less than that in (5.3a).
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Again, the inclusion of the buoyancy correction term δ has only a minor effect on
the overall picture, failing to remove the exponential growth of large wavenumber
perturbations in the absence of diffusion, and having an appreciable effect on the
diffusive system only when ν is much smaller than δ.

6. Discussion and conclusion

By employing an idealized model, we have analysed the spatial instability of an
under ice-shelf plume that leads to the growth of channels in the ice-shelf base
from perturbations in grounding-line conditions. The numerical and asymptotic results
derived in this paper help to understand the behaviour of more comprehensive models.

The chief mechanism of the spatial instability is the concentration of fresher,
buoyant water due to transverse flow into pre-existing channels, which increases
along-flow velocity and thus turbulent heat transfer. A similar instability, though of
lower order in transverse wavenumber, is observed due to growth of perturbations in
the along-shelf slope itself, which becomes important when there are lateral variations
in subglacial discharge at the grounding line, rather than ice thickness.

Transverse ice motion driven by the ice-thickness gradient has a slight smoothing
effect to counteract channel growth, but this effect does not preferentially smooth
short-wavelength perturbations. Stabilisation of short wavelengths is due to the
turbulent eddy diffusivity within the plume layer, and the transverse wavelength
of maximum growth has a two-thirds power law dependence on the diffusivity.
For physical parameters in table 1 and channelization caused by variations in ice
thickness at the grounding line, this leads to a preferred wavelength of ∼1–6 km
for eddy diffusivity κ = 10–100 m2 s−1, compared to the ∼5 km spacing observed
on Petermann Glacier. Despite the simplified nature of our analysis, the fact that
these values are comparable lends some support to this mechanism of wavelength
selection. If the diffusivity is too large, then channelization does not occur, as
we observed in the case of variable subglacial discharge and κ = 100 m2 s−1.
Of course, even with the simplified physics in this model, the actual pattern that
should be seen depends on the relative amplitudes of each wavelength of the initial
grounding-line perturbation, and on the nonlinear interaction between this spectrum
of wavelengths.

We have concentrated on the development of steady-state channels, seeded by
transverse variability in the boundary conditions at the grounding line. Another
issue is the possibility of time-dependent channelization due to instability from
an initial perturbation, which could potentially occur even if the grounding-line
thickness and buoyancy flux are uniform in y. Sergienko (2013) has shown that such
‘self-channelization’ is possible if the base-state thickness varies with y due to lateral
confinement, although numerical simulations found no evidence that a one-dimensional
state is unstable. In appendix B we have adapted the linearised perturbations from § 4
to include a temporal growth rate σ , and analyse the temporal stability by determining
the growth rates from the corresponding eigenvalue problem. The eigenvalues all
appear to have negative real part, suggesting that the one-dimensional state is indeed
stable to such perturbations. On the other hand, this stability is likely to be of limited
relevance to the real world, where transverse perturbations at the grounding line are
presumably rife.

It has been suggested that the shape of the ice–ocean interface affects the average
melt rate across the shelf (e.g. Gladish et al. 2012). Given that our study deals only
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with linear perturbations, the melting rate always averages out across the width, so it
unfortunately does not allow us to say anything about the net effect of channelization
on melting.

We now turn our attention to the limitations of this study, and to possible extensions.
Some of the terms that we have neglected (such as thermal expansion, and increase
of plume volume flux from melting) can be shown formally to be small. Other
simplifications pose more serious restrictions, such as the neglect of turbulent drag
and changes in plume buoyancy resulting from melting. We argue that, at least over
small spatial length scales from the grounding line, the reduced model includes the
dominant dynamics relevant to channel growth and decay. Of course, the assumption
of small perturbations that is necessary to allow linearization is not valid far from
the grounding line if the growth rate is large, nor if the initial perturbations are large.
Thus, our analysis should be seen as examining the tendency for channelizing or
smoothing of the ice shelf base rather than predicting its eventual evolution.

Arguably the most serious omissions are the changes in buoyancy along the shelf.
These may be due both to the neglected buoyancy source from subshelf melting (the
εm/εg term in (2.15d)) which increases buoyancy, and due to the ambient salinity
stratification, which generally decreases it. The major cost of including these effects
in the linearized model such as (4.2) is that the base state no longer has an explicit
representation (as in (3.4), (3.8)), and must itself be computed numerically.

Another simplification is our use of Newtonian rheology for the ice flow. The same
analysis as performed in this paper could be carried out for a power-law rheology;
there is still an exact solution for the one-dimensional base state (MacAyeal 1989),
and the equivalent linearized system to (4.2) could be derived with a variable effective
viscosity. We expect the results to be very similar to those found here, since the
perturbations in ice deformation velocity (ũ, ṽ) have little effect on short wavelength
perturbations, compared to the destabilising effects of the plume dynamics.

The simple parameterizations of turbulent entrainment (2.7) and heat transfer
(2.4) are based on those of Jenkins (2011). These in turn are approximations of
parameterizations with more complicated dependence on the Richardson number
(for entrainment) and Reynolds number (for heat transfer) (Holland et al. 2007;
Payne et al. 2007), which were used in the numerical studies of Gladish et al.
(2012) and Sergienko (2013). With such additional complexities, the base state
would again have to be computed numerically. However, the basic form of these
parameterizations is by no means certain. With regard to the heat transfer, it is the
dependence of melt rate m on plume velocity U that is instrumental in producing the
channelization outlined in this paper. As long as the melt rate is an increasing function
of velocity, the linearization around the base state will produce a melt rate perturbation
proportional to the velocity perturbation Ũ, resulting in a similar expression to
(4.2a) but with modified prefactors. For example, if the salinity dependence of the
melting temperature were included, together with a parameterization of the interfacial
salinity using the three equation formulation of Jenkins (2011), one can show that a
modification of the melting rate occurs, but this should not significantly change any
of our conclusions.

The neglect of Coriolis forces was necessary to avoid an essentially two-dimensional
base state for the ice thickness. Numerical evidence suggests that Coriolis forcing will
tend to deflect the path of channels on longer spatial scales, and produce channels
with asymmetric cross-sectional profiles, but not quantitatively change the spacing
of channels (Sergienko 2013). For this reason we believe it will not have a serious
impact on the basic channel-forming mechanism outlined here, but we acknowledge
that Coriolis forces are an inherent aspect of the real system.
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Appendix A. Numerical solution method

The system of equations (4.2) for perturbations to the base thickness and velocity is
a linear, but non-constant coefficient, boundary-value problem. Because D vanishes at
x= 0 and h vanishes at x= X, the order of the system is reduced at these points and
the boundary-value problem is therefore singular. Given the form of the base state
(3.4), (3.8), an analytic or series solution of even the linearized problem is intractable.
In order to compute numerical solutions to (4.2), we adopt a Chebyshev spectral
collocation method. The seven unknown variables are represented by their values at
N discrete Chebyshev nodes (mapped to the interval [0, X]), and concatenated into a
single solution vector

y= [h̃ ũ iṽ rD̃ Ũ iṼ B̃]T ∈R7N−4. (A 1)

Four variables, h̃(0), ũ(0), ṽ(0) and B̃(0), are prescribed from the four non-singular
left-hand boundary conditions, namely (4.3) and the first of (4.4), so are removed
from the solution vector y; the remaining singular conditions in (4.4) and (4.5) are
enforced naturally from solving the remaining components of the linear system at the
boundary points. In addition, the problem has been simplified by suitable definition
of the dependent variables that appear in (A 1). Firstly, solving for rD̃ instead of D̃,
along with the definition rD = 1 − h from (3.4), removes the parameter r explicitly
from (4.2). Secondly, including the imaginary constant i with the transverse ice and
plume velocities ṽ and Ṽ results in a linear system (and therefore solution vector y)
with purely real elements (note that all imaginary constants i in (4.2) cancel upon
making this substitution of dependent variables).

For given values of λ, γ , k, ν and δ, the system (4.2) may then be represented by
a single matrix equation

M y= b, M ∈R(7N−4)×(7N−4), b∈R7N−4. (A 2)

The derivatives in (4.2) are represented in M by the (dense) Chebyshev differentiation
matrix (Trefethen 2000), while the rows and columns corresponding to the non-
singular boundary conditions are removed and used to construct b. Typically we use
N = 50–100 nodes to compute the results contained in this paper; this runs in a
negligible amount of time using MATLAB on a personal computer, which allows us
to explore the system over a wide range of parameters.
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Appendix B. Stability with respect to initial perturbations
We consider the temporal linear stability of our system to time-dependent

perturbations by adding a growth rate σ to the perturbations (4.1), as

h(x, y, t)= h(x)+ h̃(x)eσ t+iky, (B 1)

and similarly for the other variables. The linearized system of equations is then
identical to that in (4.2), except for the first equation (in which the only time
derivative appears), which becomes

σ h̃+ (h̃u+ hũ)′ + khiṽ =−λŨ. (B 2)

To determine the linear stability of this modified system we compute eigenvalues
σ and eigenfunctions h̃ (and other variables) using a variant of the numerical code
outlined in appendix A. We set all boundary conditions to be homogeneous (i.e. no
grounding-line perturbations), and impose further the right-hand condition h̃(X) = 1
to remove the trivial solution. The eigenvalues σ are found by solving the problem
without the left-hand condition on h̃(0), and then using a root-finding algorithm to
obtain the values of σ such that h̃(0)= 0. For simplicity we only report results here
for the case ν = δ = 0, although we found that their inclusion does not qualitatively
affect the stability.

The eigenvalues σ thus found are shown in figure 7. The eigenvalues are complex
with negative real part, with corresponding oscillatory eigenfunctions that grow
exponentially in x. This downstream growth leads to a great deal of sensitivity in
detecting the eigenvalues; indeed, we found it difficult to resolve the values for k & 6.
However, the real parts Re(σ ) thus computed are all negative, with a maximum
occurring at k ≈ 1 for each eigenvalue; Re(σ ) tends to −∞ both as k→ 0 and as
k→∞. This strongly suggests that all eigenvalues have negative real part for all k
and the system is stable.

The structure of complex eigenvalues and oscillatory eigenfunctions depicted in
figure 7 is primarily due to the advection of the underlying ice flow. Indeed, this
appears to be the primary reason for the lack of an inherent global instability
here; there is no mechanism to cause information about perturbations to propagate
backwards and interact with the forwards advection of the interface (cf. Gladish et al.
2012).

Appendix C. WKB analysis of channel growth
The large k behaviour of the system (4.2) is determined by using a WKB-type

ansatz, that is, expansions of the form

h̃(x)∼ Aka(H0(x)+ k−1/2H1(x)) exp(k1/2C(x)), k→∞, (C 1)

and similar for other variables (an examination of the dominant balance indicates
that Ũ and Ṽ are of order k1/2h̃, while B̃ and D̃ are of order kh̃). As with the
standard application of WKB analysis (e.g. Holmes 1995), the exponent function C
is determined from the leading order problem in large k, while the first coefficient
function H0 (and those of the other variables) comes from the equations at next order.
After considerable algebra, we find that

C′(x)=
(
−λh′

u(1− h)2

)1/4

, H0(x)= (−h
′
)1/8

u(1− h)3/4
. (C 2a,b)
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FIGURE 7. (Colour online) (a) The first six eigenvalues σ in the complex plane, for
varying k. Re(σ ) appear to tend to −∞ as k→ 0 and k→∞, with maximum around
k= 1. (b) An expanded view of the path of the first eigenvalue as k varies. (c) The first
six eigenfunctions Re(h̃) for k= 1. Note the increasing frequency of oscillations as Im(σ )
increases.

The prefactor constant A and exponent a must be determined from the boundary
conditions. Note for large k, (5.1) implies

h̃(0)= h̃g, h̃′(0)=−λ
2

B̃g − 5
2
γ h̃g +O(k−1) (C 3)

(recall that u(0) = 1, u′(0) = γ , and that Ũ(0) = B̃g/2 from (4.4)). However, these
conditions cannot be applied directly to (C 1) as the system (4.2) possesses an order
k−1 boundary layer at x = 0 due to its singular nature there. From the base state
solution (3.8) we have u(0) = 1, h

′
(0) = −(γ + λ), D(0) = 0 and D′(0) = (γ + λ)/r.

Defining the inner variable ξ by

x=
√
λ+ γ
λ

k−1ξ, (C 4)

the leading order plume equations (4.2e–g) and large k ice flow equation (5.1) can be
rearranged into a single fourth-order differential equation

ξ 2h̃ξξξξ + 6ξ h̃ξ + 4h̃ξξ − h̃= 0, (C 5a)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

60
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.609


Channelization of plumes beneath ice shelves 133

with boundary conditions from (C 3)

h̃(0)= h̃g, h̃ξ (0)=−k−1

√
λ+ γ
λ

(
λ

2
B̃g + 5

2
γ h̃g

)
. (C 5b)

The perturbation in buoyancy B̃g appears only in the O(k−1) derivative condition;
thus, the channel growth is dominated by the perturbations in ice thickness (assuming
h̃g 6= 0). For h̃(0)= 1 and h̃ξ (0)= 0, the far field behaviour of (C 5) is

h̃∼ 0.28ξ−3/4e2
√
ξ , ξ→∞. (C 6)

On the other hand, if h̃(0)= 0 and h̃ξ (0)= 1, the far field behaviour of (C 5) is

h̃∼ 0.42ξ−3/4e2
√
ξ , ξ→∞. (C 7)

Here the factors of 0.28 and 0.42 have been determined numerically by comparing
the asymptotic behaviour to the exact series solutions of (C 5).

Transforming ξ 7→ x and matching to the behaviour of the outer problem as x→ 0
gives the coefficients A and exponent of k for each case. For h̃g 6= 0, the leading-order
behaviour in large k is given by (C 6), thus

A≈ 0.28h̃gλ
−3/8(γ + λ), a=−3/4. (C 8)

For h̃g = 0, the behaviour follows from (C 7), thus

A≈−0.21B̃gλ
1/8(γ + λ)3/2, a=−7/4. (C 9)

These are the two results given in (5.3) and (5.6), respectively.
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